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New rational cubic Ball interpolation with one parameter is proposed for shape preserving interpolation such as positivity,
monotonicity, and convexity preservations and constrained data lie on the same side of the given straight line. To produce shape
preserving interpolant, the data dependent su�cient condition is derived on the parameter. 
e rational bicubic Ball function is
constructed by using tensor product approach and it will be used for application in image upscaling. Numerical and graphical
results are presented by using Mathematica and MATLAB including comparison with some existing scheme.

1. Introduction

Shape preserving interpolation and approximation is impor-
tant inmany sciences and engineering applications. Common
strategy in shape preserving interpolation is the construction
of rational or nonrational interpolant that satis�es some
shape preserving criteria. When the interpolant satis�es the
conditions, then the resulting interpolating curve or approx-
imating curve preserves the shape of the given data. For
instance, if the given data is positive, then the interpolating
curve is positive on the whole interval. 
ere is many
good research in this area. For instance, Abbas et al. [1]
discussed the application of rational cubic spline for image
interpolation based on genetic algorithm (GA). Abbas et al.
[2] use similar idea as in [1] but they replace the rational cubic
spline with rational cubic Ball interpolation.

Majeed et al. [3] discussed the craniofacial reconstruction
by using rational cubic Ball with cubic denominator without
any free parameters. 
ey utilized the original Ball function
from Ball [4]. 
e main di�erence between their scheme and
the proposed scheme in this study is that we construct ratio-
nal cubic Ball spline with quadratic denominator with one
parameter. 
us the computation time will be less compared
with the work of Majeed et al. [3] (Table 7). Besides that,

there are di�erent types of rational cubic Ball interpolant.
For instance, Karim [5, 6] uses di�erent form from what we
proposed in this study. 
e main contributions of this study
can be summarized as follos:

(i) 
e proposed scheme does not require the modi�-
cation of the �rst derivative if shape preserving is
violated as shown in the work of Brodlie and Butt [7].

(ii) 
e proposed scheme is guaranteed to produce pos-
itive and convex curves for positive and convex data
sets while the scheme by Hussain et al. [8, 9] might be
producing nonpositivity interpolating curve on some
interval.

(iii) 
e proposed scheme requires less computation time
compared to the bicubic spline interpolation for
image upscaling.


is paper is organized as follows. A�er the Introduction
to the subject matter, Methodology will be discussed in
Section 2. 
is includes the construction of the new rational
cubic Ball interpolation and the derivation of the su�-
cient condition of the rational cubic Ball for constrained
data interpolation,monotonicity, and convexity preservation,
respectively. Numerical and graphical results are given in
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Section 3. Section 4 is devoted for application of rational
bicubic Ball function for image interpolation. Conclusions
are given in the �nal section.

2. Methodology


is section discusses the construction of new rational cubic
Ball (cubic/quadratic) with one parameter.

2.1. Rational Cubic Ball Spline Interpolant. Given the data{(��, ��), � = 0, 1, . . . , �} and �rst derivative ��, � = 0, 1, . . . , �
with �0 < �1 < ⋅ ⋅ ⋅ < ��, let ℎ� = ��+1 − ��, Δ � = (��+1 − ��)/ℎ�
and 
 = (� − ��)/ℎ�; thus 0 ≤ 
 ≤ 1. On each subinterval� ∈ [��, ��+1], � = 0, 1, . . . , � − 1, the new rational cubic Ball
interpolant with shape parameter 
� ≥ 0 is de�ned by

�� (�) = �� (
)�� (
) , (1)

where �� (
) = (1 − 
)2 �� + (1 − 
)2 
� � + (1 − 
) 
2��+ 
2��+1,�� (
) = 1 + 
� (1 − 
) 
.
(2)


e rational cubic Ball interpolant in (1) is �1 continuity at
the knots ��, � = 1, 2, . . . , � − 1. Mathematically this can be
rewritten as � (��) = ��, �(1) (��) = ��� (��+1) = ��+1, �(1) (��+1) = ��+1, (3)

where �(1)(��) denotes the �rst-order derivative with respect
to � at the knot ��. From conditions (3), by simple derivation
using (1), the unknown variables,� �, �� � = 0, 1, . . . , �−1, are
given as � � = (
� + 2) �� + ℎ���,�� = (
� + 2) ��+1 − ℎ���+1. (4)

It can be veri�ed that, at 
 = 0, �(1)(��) = �� and similarly at
 = 1, �(1)(��+1) = ��+1.
2.2. Derivative Estimation. 
ere are many methods to esti-
mate the �rst derivative ��, � = 0, 1, . . . , �, for instance, the
geometric mean method (GMM), harmonic mean method
(HMM), and arithmeticmeanmethod (AMM).
e common
method is arithmetic mean method (AMM) (Karim [5, 6]).
In this study we adopted AMM since it is simple to use and
suitable for all types of data set. 
e derivation is given as
follows [5, 6].

2.2.1. Arithmetic Mean Method. 
e values of �� are given as

�� = ℎ�−1Δ � + ℎ�Δ �−1ℎ�−1 + ℎ� , � = 1, 2, 3, . . . , � − 1. (5)

Table 1: Data set for shape control analysis.� 0 1 2 3 4�� 0 2 3 9 11�� 0.5 1.5 7 9 13�� −2.833 3.833 4.762 1.583 2.417


e derivative value of �0 and �� is given as

�0 = Δ 0 + (Δ 0 − Δ 1) ( ℎ0ℎ0 + ℎ1) , (6)

�� = Δ �−1 + (Δ �−1 − Δ �−2) ( ℎ�−1ℎ�−1 + ℎ�−2) . (7)


e �rst derivative value ��, � = 0, 1, . . . , � is estimates from
(5), (6), and (6). For data point {(��, ��), � = 0, 1, . . . , �}, the
�rst derivative value, ��, � = 0, 1, . . . , �, and shape parameter
� ≥ 0, the rational cubic Ball, ��(�), de�ned by (1) can be
constructed.

2.2.2. Shape Control Analysis. Obviously when 
� = 0, the
proposed rational cubic Ball interpolant is reduced to cubic
Ball polynomial as�� (�) = �� (1 − 
)2 + (2�� + ℎ���) (1 − 
)2 
+ (2��+1 − ℎ���+1) (1 − 
)2 
 + ��+1
2. (8)


e piecewise rational cubic Ball ��(�) de�ned by (1) can also
be rewritten as�� (�)= (1 − 
) �� + 
��+1

+ [Δ � (2
 − 1) + (1 − 
) �� − 
��+1] ℎ� (1 − 
) 
�� (
) . (9)

When 
� → ∞, the rational cubic interpolant ��(�) reduces
to a straight line on the subinterval [��, ��+1], � = 0, 1, . . . , �−1

lim��→∞
�� (�) = (1 − 
) �� + 
��+1. (10)

To avoid the denominator in (1) becoming zero, we restrict
the parameter as 
� ≥ 0 for � = 0, 1, . . . , � − 1.

Shape control analysis can further be elucidated by using
a graphical approach. To see the e�ect of the shape control, by
varying the value of shape parameter 
� ≥ 0, � = 0, 1, . . . , �−1,
the data given in Table 1 is used.

2.3. Numerical Example 1: Shape Control Analysis. Figure 1
shows the shape control analysis. For Figure 1(a) the value for
shape parameter 
�, � = 0, 1, 2, 3, 4 are 0.1 (black), 10 (dashed),
and 100 (gray). 
e higher the value of the parameter 
� is,� = 0, 1, 2, 3, 4, themore loose the interpolating curve tends to
be. Meanwhile for Figure 1(b) the values for shape parameter
are
� = 0 (black), cubic polynomial Ball, that is, from (8), and
� = 1000 (dashed). Equation (10) is veri�ed by Figure 1(b),
that is, the rational interpolant converging to a straight line
when 
�, � = 0, 1, 2, 3, 4 is a larger positive number.
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(a) With �� = 0.1 (black), �� = 10 (dashed), and �� = 100 (gray)
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(b) With �� = 0 (black) and �� = 1000 (dashed)

Figure 1: Shape control analysis.

2.4. Application in Shape Preserving Interpolation. In this
Section, we discuss the application of the proposed rational
cubic Ball function for shape preserving interpolation. 
e
data under consideration are positive,monotone, convex, and
on the same side as the constraint line.

2.5. Positivity Preserving. In this study, the given data is
strictly positive to avoid dividing by zero such that�� > 0, � = 1, 2, . . . , �. (11)


e main objective is to �nd the value of shape parameter
� ≥ 0, � = 0, 1, . . . , � − 1 that will ensure that rational
interpolant de�ned by (1) is positive to produce the positive
interpolating curve on the whole given domain. Since, for
all 
� ≥ 0, � = 0, 1, . . . , � − 1, the denominator ��(
) > 0,
therefore, the positivity of the rational cubic interpolant in
(1) depends on the cubic polynomial ��(
), � = 0, 1, . . . , � − 1;
that is, ��(
) > 0. Schmidt and Hess [11] have developed the
result for the positivity of ��(
), � = 0, 1, . . . , � − 1 as(��� (0) , ��� (1)) ∈ �1 ∪ �2, (12)

where

�1 = {(", #) : " > −3�� (0)ℎ� , # < 3�� (1)ℎ� } , (13)

�2 = {(", #) :36����+1 ("2 + #2 + "# − 3Δ � (" + #) + 3Δ2�)+ 3 (��+1" − ��#) (2ℎ�"# − 3��+1" + 3��#)+ 4ℎ� (��+1"3 − ��#3) − ℎ2� "2#2 > 0} .
(14)

Notation ��� (0), ��� (1) indicates the �rst derivative of � with
respect to � at �� and ��+1 (i.e., at 
 = 0 and 
 = 1, resp.). Note
that " = ��� (0) and # = ��� (1), respectively [11].


e following theorem gives the su�cient conditions
for the positivity of the rational cubic Ball interpolant. It is
data dependent and has one free parameter to alter the �nal
positive interpolating curves.

�eorem 1. For a strictly positive data de	ned in (11), the
rational cubic Ball interpolant on [�0, ��] is positive if, in
each subinterval [��, ��+1], � = 0, 1, . . . , � − 1, if the following
su
cient conditions are satis	ed:


� > max{0, −ℎ����� , ℎ���+1��+1 } . (15)

Proof. 
e su�cient condition of the positivity is derived
from condition (13) as follows:��� (0) > −3�� (0)ℎ� '⇒

−2�� + -�ℎ� > −3��ℎ� ,
��� (1) < 3�� (1)ℎ� '⇒

2��+1 −5�ℎ� < 3��+1ℎ� .
(16)

Both conditions can be further simpli�ed as follows:


� > −ℎ����� , (17)


� > ℎ���+1��+1 . (18)


e su�cient condition the positivity of the rational cubic
Ball de�ned by (1) can be obtained by combining conditions
(17) and (18) into one condition given as follows:


� > max{0, −ℎ����� , ℎ���+1��+1 } . (19)
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For the purpose of computer implementation, the above
condition can be rewritten as follows:


� = 7� +max{0, −ℎ����� , ℎ���+1��+1 } (20)

such that 7� > 0 satis�es 0 < 7� ≤ 0.25.
Algorithm for computer implementation is as follows.

Algorithm 2.

Input. Data points, �rst derivative, and parameter 7� > 0.
Output. Positive interpolating curve.

Step 1. Input data points {(��, ��), � = 0, 1, 2, . . . , �}.
Step 2. For � = 1, . . . , �

(i) calculate the �rst derivative values by using (8), (9),
and (10).

Step 3. For � = 1, . . . , � − 1
(i) calculate the parameter values, 
� > 0 by using the

su�cient condition given in (20);

(ii) repeat by choosing di�erent value of 7� > 0; that is,0 < 7� ≤ 0.25.
Step 4. For � = 1, . . . , � − 1

(i) construct the positive interpolating curve with �1
continuity.

2.6. Constrained Data Interpolation. 
is section discusses
the construction of the su�cient condition for constrained
data interpolation for data that lies on the same side as the
given constraint line.
ere are three types for constraint line
such as above straight line, below straight line, and in between
two lines. In this paper, we will only study the constrained
interpolation for the data lie above arbitrary constraint line.

e problem statement can be read as follows.

Given data set {(��, ��), � = 0, 1, . . . , �} which lies above
the straight line, that is, 9 = ;� + ?, such that�� > ;�� + ?, � = 0, 1, . . . , �, (21)

by rewriting the arbitrary straight line in parametric form,
then, (21) is equal to�� (�) > @� (1 − 
) + A�
 (22)

with @� = ;�� + ?, � = 0, 1, . . . , � and A� = ;��+1 + ?, � =0, 1, . . . , � − 1, respectively.
Equation (22) can be further simpli�ed to

�� (�) = �� (
)�� (
) > @� (1 − 
) + A�
, � = 0, 1, . . . , � − 1 (23)

or equivalently

�� (�) = B� (
)�� (
) > 0, (24)

where B� (
) = �� (
) − (@� (1 − 
) + A�
)�� (
) . (25)

By simple derivation we obtain

B� (
) = (1 − 
)2 (�� − @�) + (1 − 
)2 
��1+ (1 − 
) 
2��2 + 
2 (��+1 − A�) (26)

with��1 = �� + 
� (�� − @�) + (�� − @�) + ℎ��� − A�,��2 = ��+1 + 
� (��+1 − A�) + (��+1 − A�) − ℎ���+1 − @�. (27)


e interpolating curve lies above the given straight line 9 =;� + ? if B�(
) > 0 because ��(
) > 0 for all 
� ≥ 0, � =0, 1, . . . , � − 1. 
e necessary conditions are �� − @� > 0 and��+1 − A� > 0, respectively.
us the su�cient condition for the
interpolating curve to lie above the given straight line can be
derived from ��1 > 0 and ��2 > 0:��1 > 0 '⇒�� + 
� (�� − @�) + (�� − @�) + ℎ��� − A� > 0,��2 > 0 '⇒��+1 + 
� (��+1 − A�) + (��+1 − A�) − ℎ���+1 − @� > 0.

(28)

Inequalities (28) provide the following:


� > −ℎ��� + A� − ���� − @� , (29)


� > ℎ���+1 + @� − ��+1��+1 − A� . (30)

For � = 0, 1, . . . , � − 1, conditions in (29) and (30) can be
combined to form the following su�cient condition:


� > max{0, −ℎ��� + A� − ���� − @� , ℎ���+1 + @� − ��+1��+1 − A� } . (31)


e above result is stated in
eorem 3 below.

�eorem3. �erational cubic Ball interpolant ��(�) lies above
the given straight line 9 = ;� + ?, if in subinterval [��, ��+1],� = 0, 1, . . . , � − 1, the parameter satisfy the condition
� = C�

+max{0, −ℎ��� + A� − ���� − @� , ℎ���+1 + @� − ��+1��+1 − A� } , (32)

where a positive value C� satis	es the inequality 0 < C� ≤ 0.25.
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2.7. Monotonicity Preserving. 
ere are two cases for strictly
monotonic preserving interpolation.

Case 1 (if Δ � = 0, � = 0, 1, . . . , � − 1). If Δ � = 0, that is, some
data are collinear or comonotone, then the rational cubic
Ball interpolant de�ned by (1) is constant on the subinterval[��, ��+1], � = 0, 1, . . . , � − 1. 
is can be achieved by setting
the �rst derivative �� = ��+1 = 0, such that ��(�) = �� = ��+1.
Case 2 (if Δ � > 0, � = 0, 1, . . . , � − 1). For this case, we have
the following theorem.

�eorem 4. �e rational cubic Ball interpolation de	ned in
(1) preserves the monotonic increasing data on each subinterval[��, ��+1], � = 0, 1, . . . , � − 1 if the parameter satis	es the
following condition:


� > �� + ��+1Δ � . (33)

Proof. Shape preserving interpolation for strictly monotonic
data can be stated as follows.

For monotonic increasing data {(��, ��), � = 0, 1, . . . , �}
with �0 < �1 < ⋅ ⋅ ⋅ < �� and satisfying �0 < �1 < ⋅ ⋅ ⋅ < ��,
we want to construct the monotonic interpolating curve by
using the rational cubic Ball de�ned by (1).
e rational cubic
Ball �(�)will produce themonotonic increasing interpolating
curve if and only if the �rst derivative at the knot ��, � =0, 1, . . . , � satis�es

�(1) (�) > 0. (34)


e �rst derivative �(1)(�) is equal to
�(1) (�) = ∑4�=0 � �� (1 − 
)4−� 
�[�� (
)]2 (35)

with� �0 = ��,� �1 = 2 (
� + 3) Δ � − 2��+1,� �2 = 12Δ � + 3
�Δ � + (
� + 3) (
�Δ � − �� − ��+1) ,� �3 = 2 (
� + 3) Δ � − 2��,� �4 = ��+1.
(36)


e following are the necessary conditions to obtain mono-
tonicity increasing interpolant:

�� ≥ 0 for � = 0, 1, . . . , �,Δ � > 0 for � = 0, 1, . . . , � − 1. (37)


e su�cient condition for the monotonicity of the rational
cubic Ball �(�) can be derived from (34). 
e �rst derivative�(1)(�) > 0 if and only if � �� ≥ 0, E = 0, 1, 2, 3, 4. Clearly

� �0 ≥ 0 and � �3 ≥ 0. 
e remaining inequalities � �� ≥ 0,E = 1, 2, 3 give us 2 (
� + 3) Δ � − 2��+1 > 0, (38)
�Δ � − �� − ��+1 > 0, (39)(
� + 3) Δ � − �� > 0. (40)


e su�cient condition formonotonicity of the rational cubic
Ball interpolant is derived as follows.

From (38), we obtain 
� > ��+1Δ � . (41)

Similarly (39) and (40) lead to the inequalities (42):


� > �� + ��+1Δ � , (42)


� > ��Δ � . (43)

Combining conditions (41), (42), and (43) gives the su�cient
condition for the monotonicity preserving of the rational
cubic Ball interpolation.


� > �� + ��+1Δ � . (44)


is completes the proof for 
eorem 4.

Condition in (44) can be rewritten as
� = F� + �� + ��+1Δ � (45)

with 0 < F� ≤ 0.25.
2.8. Convexity Preserving. We assume that a strictly convex
data set {(��, ��), � = 0, 1, . . . , �} is given with �0 < �1 < ⋅ ⋅ ⋅ <�� such that Δ 0 < Δ 1 < ⋅ ⋅ ⋅ < Δ �−1 < Δ � < ⋅ ⋅ ⋅ < Δ �−1, and�0 < Δ 0 < �1 < Δ 1 < ⋅ ⋅ ⋅ < Δ �−2 < ⋅ ⋅ ⋅ < �� < Δ �−1. (46)

We want to produce the convex interpolating curve on each
subinterval [��, ��+1], � = 0, 1, . . . , �−1 by using rational cubic
Ball de�ned by (1).
e function is convex if �(2)(�) > 0. A�er
some simpli�cation, the second derivative of the rational

cubic Ball �(2)(�) is given as

�(2) (�) = ∑3�=0 G�� (1 − 
)3−� 
�ℎ� [�� (
)] (47)

with G�0 = 2 [(
� + 2) (Δ � − ��) − (��+1 − Δ �)] ,G�1 = 6 (Δ � − ��) ,G�2 = 6 (��+1 − Δ �) ,G�3 = 2 [(
� + 2) (��+1 − Δ �) − (Δ � − ��)] .
(48)

In order to derive the su�cient condition for convexity
preserving, there are two cases that need to be considered.
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Table 2: Positive data from Hussain et al. [8].� 0 1 2 3�� 0 1 1.7 1.8�� 0.25 1 11.10 25�� −7.2962 8.7962 123.429 154.571

Case 1. If the convex data satisfy ��+1−Δ � = 0 andΔ �−�� = 0,
then the rational cubic Ball interpolant will produce a linear
segment on the subinterval [��, ��+1], � = 0, 1, . . . , � − 1 such
that �� (�) = (1 − 
) �� + 
��+1. (49)

Case 2. If the convex data satisfy (46), then the necessary
condition for convexity is ��+1 − Δ � > 0 and Δ � − �� > 0.

us �(2)(�) > 0 if and only if G�0 > 0 and G�3 > 0. Both
conditions provide the following inequalities:2 [(
� + 2) (Δ � − ��) − (��+1 − Δ �)] > 02 [(
� + 2) (��+1 − Δ �) − (Δ � − ��)] > 0. (50)

Simplifying conditions (50) lead to


� > ��+1 − Δ �Δ � − �� , (51)


� > Δ � − ����+1 − Δ � . (52)


ese two conditions give the su�cient condition for the
convexity of the rational cubic Ball interpolant


� > max{��+1 − Δ �Δ � − �� , Δ � − ����+1 − Δ �} . (53)


e result is summarized as 
eorem 1 below.

�eorem 1. �e rational cubic Ball de	ned by (1) preserves the
convexity of the data if the parameter satis	es the following
condition: 
� = H� +max{��+1 − Δ �Δ � − �� , Δ � − ����+1 − Δ �} (54)

with 0 < H� ≤ 0.25.
3. Results and Discussion


is section is devoted to the numerical results for the
constrained data interpolation subject to constraint line
above straight line, monotonicity preservation and convexity
preservation.

3.1. Numerical Example 2. 
e positive data sets from Hus-
sain et al. [8] are listed in Table 2.

For this example, Figure 2(a) shows the cubic Ball poly-
nomial with 
� = 0, � = 0, 1, 2. Meanwhile Figures 2(b) and
2(c) show the positive interpolating curve a�er applying the
result from
eorem 1 with 7�, � = 0, 1, 2, varying as indicated
in both Figures 2(b) and 2(c).
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Figure 2: Positivity preserving using the proposed rational cubic
Ball.

3.2. Numerical Example 3. 
e data in Table 3 lie above the
straight line 9 = 0.2� + 0.1.

Figure 3(a) shows that the cubic Ball cannot produce the
interpolating curve that lies above the given straight line.
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Figure 3: Constraint interpolation for data in Table 3.

Applying 
eorem 3, we obtain the interpolating curve that
lies above a straight line with C� = 0.1 for Figure 3(b) andC� = 0.1 for Figure 3(c).
3.3. Numerical Example 4. Table 4 shows the monotone data
taken from Akima [10].

Table 3: Constraint data.� 0 1 2 3 4 5�� 0 0.5 1.6 2 3 5�� 2 0.6 0.33 0.35 1 0.5�� −2.653 −1.357 4.424 5.143 1.833 −2.833
Figure 4(a) shows the cubic Ball cannot preserve the

monotonicity of the data set. 
is �aw has been recovered
nicely by using condition (45), Figure 4(b) with F� = 0.1 and
Figure 4(c) with F� = 0.25. Clearly the resulting monotonic
interpolating curve is visually pleasing.

3.4. Numerical Example 5. Table 5 shows the convex data
from Brodlie and Butt [7]

Figure 5(a) shows the cubic Ball cannot produce the
convex interpolating curve. Condition (52) guarantees to
produce convex interpolating curve on the whole interval.

is can be veri�ed by plotting the second derivative graph
for Figures 5(a) and 5(b), respectively. From Figure 6(a) the
second derivative for cubic Ball polynomial is a straight line
and has some negative value which contradicts with the
su�cient condition given in (49) and (54). Figure 6(b) shows
that the proposed rational cubic Ball interpolant produces
the convex interpolating curve since its second derivative is
greater than zero.

3.5. Application in Image Processing. An application of the
proposed rational cubic Ball interpolation in image process-
ing is discussed in this section. Firstly the univariate spline
given in (1) is extended to the bivariate cases by using tensor
product approach. 
e rational bicubic function over each
rectangular patch [��, ��+1] × [9�, 9�+1], � = 0, 1, . . . , � − 1;E = 0, 1, . . . , ; − 1 is de�ned as follows:��,� (�, 9) = � � (
) I�,��� (J)� , (55)

where

I�,� = [[[[[[[
I�,� I�,�+1 I��,� I��,�+1I�+1,� I�+1,�+1 I��+1,� I��+1,�+1I
�,� I
�,�+1 I
��,� I
��,�+1I
�+1,� I
�+1,�+1 I
��+1,� I
��+1,�+1

]]]]]]]
,

� � (
) = ["0 (
) "1 (
) "2 (
) "3 (
)] ,�� (J) = ["̂0 (J) "̂1 (J) "̂2 (J) "̂3 (J)] ,
(56)

where

"0 (
) = (1 − 
)2 + (
�,� + 2) (1 − 
)2 
R� (
) ,
"1 (
) = 
2 + (
�,� + 2) (1 − 
) 
2R� (
) ,
"2 (
) = ℎ� (1 − 
)2 
R� (
) ,
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Table 4: Monotone data from [10].� 0 1 2 3 4 5 6 7 8 9 10�� 0 2 3 5 6 8 9 11 12 14 15�� 10 10 10 10 10 10 10.5 15 50 60 85�� 0 0 0 0 0 0 1.0833 24.0833 25 18.3333 31.6667
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Figure 4: Interpolating curves for data in Table 4.

"3 (
) = −ℎ� (1 − 
) 
2R� (
) ,
"̂0 (J) = (1 − J)2 + (
̂�,� + 2) (1 − J)2 JR� (J) ,

"̂1 (J) = J2 + (
̂�,� + 2) (1 − J) J2R� (J) ,
"̂2 (J) = ℎ̂� (1 − J)2 JR� (J) ,
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Figure 5: Interpolating curve for convex data set.

Table 5: Convex data from [7].� 1 2 3 4 5 6 7�� 0 2 4 10 28 30 32�� 20.8 8.8 4.2 0.5 3.9 6.2 9.6�� −7.85 −4.15 −1.8792 −0.4153 1.0539 1.425 1.975

"̂3 (
) = − ℎ̂� (1 − J) J2R� (J) ,

 = � − ��ℎ� ,
J = 9 − 9�ℎ̂� ,
ℎ� = ��+1 − ��,ℎ̂� = 9�+1 − 9�,

R� (
) = 1 + 
�,�
 (1 − 
) , 
�,� ≥ 0,R� (J) = 1 + 
̂�,�J (1 − J) , 
̂�,� ≥ 0,
(57)

whereI
�,� andI��,� are partial derivatives on� and9directions,
respectively. Meanwhile I
��,� is mixed partial derivatives

(twists) at the interior points [12]. All can be estimated by
using the method discussed in [12].

We apply the rational bicubic Ball function to image
interpolation application. 
e main spotlight here is the
image upscaling. Given the original image 256 × 256, then
we can upscale the image with factor two or four and so on.
To achieve this, we employ the following algorithm.

Algorithm 3.

Input. Image; by � pixel and parameter values 
�,� and 
̂�,�.
Output. Upscaling image, computation time, and PSNR
value.
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Figure 6: Second derivative plot for Figures 5(a) and 5(b).

Step 1. Let (�, E), � = 1, 2, . . . , ;, E = 1, 2, . . . , � represent input
pixel indexes and V�� (0–255) be their corresponding grayscale
intensity. Our aim is to �nd the function; that is, V�� = I(�, E)
which interpolate the given input pixels.

Step 2. Construct rectangular mesh for given input pixels
using our rational bicubic Ball surface de�ned by (55).

Step 3. Let

arbitrary input pixel be (�, 9);(��, 9�) be arbitrary output pixel;@ be scaling factor at pixel (1, 1) (@ = 2 or @ = 4).
Output Image. ;@ by �@ pixels will be obtained by the
following transformation:

(��9�) = (;@ − 1; − 1 00 �@ − 1� − 1 )(�9)
+(;(1 − @); − 1� (1 − @)� − 1 ) .

(58)

Step 4. Identify the rectangles with the missing grayscale
intensity values.


e original pixels and their intensity values of input
image are at vertex of rectangular mesh.

Step 5. Estimate the derivative at each vertex of rectangular
(input pixels) by method discussed in [12].

Step 6. Estimatemissing grayscale intensity value in Step 4 by
using the proposed rational cubic Ball scheme de�ned in (55).

Step 7. Display the result and compare the performance of
proposed method against nearest neighbor, bilinear interpo-
lation, and bicubic spline interpolation by using peak signal
to noise ratio (PSNR).

We test the proposed rational bicubic Ball functions for
image upscaling by using �ve di�erent images shown in
Figure 7.We compare the performancewith nearest neighbor
and bilinear and bicubic spline interpolation. Table 6 sum-
marized the results including the value of PSNR. 
e value
of PSNR will re�ect the quality of image that is the larger
PSNR value the higher quality of images [13]. It is measured
in decibels (dB).

Peak signal to noise ratio (PSNR) is de�ned as

PSNR = 10 log10 (2552MSE
) , (59)

where MSE is mean square error given as

MSE = 1;� �∑�=0 �∑�=0 bbbbbV�� − V��bbbbb2 (60)

with V�� and V�� de�ned as in Step 2 in Algorithm 3.
From all PSNR value, we conclude that the proposed

scheme is at par with the standard scheme for image inter-
polation, that is, bicubic spline. In fact, for some images, the
proposed scheme gives higher PSNR compared with bicubic
spline interpolation. To obtain the result we use parameter
value as 
�� = 
̂�� = 0.1. Finally, for all tested images, the
proposed rational bicubic Ball surface gives less computation
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Figure 7: Tested images: boat, cameraman, nuvola, lena, and thumb print.

Table 6: PSNR value for image upscaling.

Method/images Boat Cameraman Nuvola Lena 
umb print

Nearest neighbor 33.85 39.42 35.94 36.10 35.40

Bilinear interpolation 34.02 39.99 36.30 36.18 35.75

Bicubic spline interpolation 34.46 39.86 36.73 37.00 35.76

Proposed method 34.45 40.08 36.75 36.64 35.82

Table 7: Computation time.

Method/images Boat Cameraman Nuvola Lena 
umb print

Bicubic spline interpolation 0.6340 0.5273 0.5492 0.5278 0.2245


e proposed method 0.6268 0.5148 0.5389 0.5054 0.2113
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time comparing with bicubic spline interpolation. Compu-
tation time is calculated based on CPU time to generate the
upscaling images with factor 4.

4. Conclusion


is study has proposed new rational bicubic Ball function
with one parameter. 
is rational cubic has been used for
shape preserving interpolation, that is, positivity, mono-
tonicity, convexity, and constrained data interpolation. 
e
univariate rational cubic Ball is extended to the bivariate
cases. 
e rational bicubic Ball function is used for image
upscaling problem in image processing. From all results, we
conclude that the proposed scheme is at par with standard
scheme, that is, bicubic spline interpolation. Further works
can be explored such as to determine the optimum value of
the parameters 
�� and 
̂�� for image processing application.

is can be achieved by using genetic algorithm (GA) or
neural network (NN) algorithm such as in Hussain et al.
[14]. Furthermore, we intend to apply the proposed scheme
for image resizing and image zooming in medical imaging.


e proposed rational cubic Ball can also is extended to �2
continuous interpolating curve in linewith thework of Karim
and Kong [15].
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