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ABSTRACT

Shape recognition has applications in com puter vision tasks such as 

industrial au tom ated  inspection and  autom atic target recognition. W hen 

objects a re  occluded, m any recognition m ethods th a t use global inform ation 

will fail. T o recognize partia lly  occluded objects, we represent each object by a 

Set of landm arks. T he landm arks of an  object are points of in terest which 

have im portan t shape a ttrib u tes and  are usually obtained from  the  object 

boundary. In th is study, we use high curvature points along an object boun- 

dary  as the landm arks of the object. Given a scene consisting of partia lly  

occluded objects, the  hypothesis of a model object in the scene is verified by  

m atching th e  landm arks of an  object w ith those in the scene. A  m easure of 

sim ilarity  betw een tw o landm arks, one from  a model and the  o ther from  a 

scene, is needed to  perform  th is m atching. One such local shape m easure is 

the  sphericity  of a triangu lar transform ation  m apping the m odel landm ark  

and its tw o neighboring landm arks to  the scene landm ark and its two neigh

boring landm arks.

Sphericity is in general defined for a  diffeomorphism. Its invarian t pro- 

perties under a  group of transform ation , namely, translation , ro tation , and 

scaling are derived. T he sphericity of a triangular transform ation is shown to  

be a robust local shape m easure in the sense th a t m inor d istortion in the
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landm arks does no t significantly alter its value.

To m atch  landm arks between a  m odel and a scene, a  tab le of com patibil- 

ity, where each en try  of the table is the  sphericity value derived from  the  

m apping of a  model landm ark to  a scene landm ark, is constructed. A  hopping 

dynam ic program m ing procedure which switches betw een a forw ard and  a 

backw ard dynam ic program m ing procedure is applied to  guide the  landm ark  

m atching through the com patibility table. T he location of the  model in the  

scene is estim ated w ith a least squares fit among the  m atched landm arks. A  

heuristic m easure is then  com puted to  decide if the  model is in the  scene.



C H A P T E R  I  

IN T R O D U C T IO N

1.1 . S h a p e

A  trem en dou s a m o u n t o f  research h as been  u n d erta k en  to  u n d ersta n d  h ow  

th e  h u m a n  v isu al sy stem  fu n ctio n s . T h e  p resen t s ta te  o f  th e  a rt co m p u ter  v is io n  

sy stem s are still a  long w a y  off fro m  b ein g  a b le  to  m im ic  tr iv ia l v isu a l ta sk s th a t  

hu m a n beings perform  ro u tin e ly . S h ap e reco g n itio n  is o n e  su ch  ta sk  th a t  

r e m a in s a  difficu lt co m p uter  v is io n  p ro b lem .

T h e y isu a l p ercep tio n  o f  an  o b je c t is d eterm in ed  b y  m a n y  fa cto rs  su ch  as 

lum ina nce , ch ro m a tic ity , co n tra st, a cu ity , tex tu re , an d  th e  sh a p e  o f  th e  o b je ct . 

W e sh all u se th e  w ord  shape to  refer to  th e  in v a r ia n t g eo m etr ica l p ro p erties  o f  

th e  relativ e d ista n ces a m o n g  a  se t  o f  s ta t ic  sp a tia l fea tu res o f  th e  o b je c t . T h ese  

sta tic  sp a tia l fea tu res are k n o w n  a s th e  shape features  o f  th e  o b ject . T w o  o b jects  

are sa id  to  h a ve  th e  sa m e sh a p e  if  th ere  ex is ts  a  s im ila r ity  tra n sfo rm a tio n , w h ich  

con sists  o f  a  co m b in a tio n  o f  tra n sla tio n , ro ta tio n , a nd  sca lin g , th a t  m a p s th e  

sh a pe  fea tu res o f  o n e o b je c t in to  th o se  o f  th e  o th er  o b je ct .

1 .2 .  A  G e n e r a l  S h a p e  R e c o g n i t i o n  S y s t e m

T h e com p uter  v is io n  ta sk  o f  sh a p e  reco g n itio n  is th a t  o f  id e n tify in g  sp ec ific  

o b jects  in one  or m ore  im a g es o f  a  scen e. T h e  im a ges m a y  b e acqu ired  fro m  

sensors th a t  respond to  o n e  o f  severa l p o ssib le  p h y sica l s t im u li su ch  as lig h t, 

h e a t, or m o tio n . T h e  sensor d a ta  are u su a lly  arran ged  in  a  d iscrete  arra y. E a ch  

e le m en t o f  an  (im age) array is  k n o w n  as a  p ix e l, a n d  it  rep resen ts th e  en erg y  o f  

a  p h ysical stim u lu s in  a  p a rticu lar  area . F o r  ex a m p le , a n  in frared  im a g e  

corresponds to  th e  th erm a l en erg y  o f  a  scen e. T h o u g h  o th e r  im a g er ies  are  

equa lly  a p p licab le  to  th e  sh a p e  reco g n itio n  ta sk , w e  sh a ll o n ly  co n sid er  gJW  

level in ten sity  im ages.

A  general co m p uter  sh a p e  reco g n itio n  sy stem  u s in g  a  s in g le  v iew  is  

illu stra ted  in F ig u re  1 .1 . G iven  an im a g e  o f  a  scen e , th e  sy s te m  tr ies  to  

recogn ize and  id en tify  th e  o b jects  in th e  scen e b y  m a p p in g  th e m  to  m o d e ls  

stored  in  a  library. T h e  sy stem  co n sists  o f  th ree  fu n ct io n a l b lo ck s — fea tu re
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ex tra ctio n , fea tu re  m a tch in g , and  a d ec ision  str a teg y . E ach  m od el o f  th e  o b ject  

is rep resen ted  b y  its  a sso c ia ted  sh a pe  featu res w h ich  are ex tra cted  in a d v an ce  

and  stored  in th e  library. T h e  c o m p le x ity  o f  th e  fea tu re  ex tra cto r  d ep en d s on  

th e  k ind  o f  sh a p e  fea tu res to  be d e tec ted . M odel fea tu res can b e ex tra cted  in a 

w ell co n tro lled  lig h tin g  co n d it io n . T h ey  can a lso  be derived  from  co m p u ter  aided  

design  (C A D ) m o d els , or chosen  b a sed  on a priori k n ow led g e. In a b o tto m -u p  

(d a ta -d r iv en ) a p p ro a ch , sh a p e  fea tu res o f  o b je cts  in th e  scen e  are e x tra cted  from  

raw  im a g e d a ta  w ith o u t  k n o w led g e  o f  th e  geom etric  str u c tu r es or o th er  v isu a l 

p rop erties  o f  th e  m o d els . E x tra cted  sh a p e  fea tu res o f  o b jects  in th e  scen e are 

th en  com p a red  to  th o se  o f  each  m o d el. B a sed  on  a decision  s tra teg y  on h o w  w ell 

th e  sh a pe  fea tu res  o f  ea ch  m o d el are m a tch ed  to  th o se  in th e  scen e, o b jects  in 

th e  scen e  are id en tified . If k n o w led g e  o f  w h a t is  to  be ex p e cted  in a  scen e a nd  a 

h ig h  leve l d escr ip tio n  o f  ea ch  m o d e l is a v a ila b le , a  to p -d o w n  (g oa l-d irected ) 

a pp roa ch  can  b e  u sed  to  a id  th e  sh a p e  reco g n itio n  ta sk . T h e  sh a p e  fea tu res o f  a  

m o d el u su a lly  fo rm  a  h ig h  lev el d escr ip tio n  o f  th e  m o del, su ch  as its  g eo m etric  

stru c tu re . K n o w led g e  o f  ea ch  m o d el is u sed  to  g u id e  ex tra ctin g  sh a p e  fea tu res in  

th e  scen e. A g a in , b a sed  on  a  d ec isio n  str a teg y  on  h o w  w ell sh a p e  fea tu re s o f  each  

m o d el are m a tch ed  to  th o se  in th e  scen e , o b jects  in th e  scen e  are id en tif ied .

A  sh a p e  fea tu re  is c lassified  as e ith er  a  g lob al or a  loca l rep resen ta tio n . A  

global shape feature  rep resen ts th e  en tire  o b ject  region  su ch  a s th e  s ilh o u e tte  or  

co n to u r  o f  th e  o b ject; local shape features  rep resen t p o rtio n s o f  th e  o b je c t reg ion  

su ch  a s lin e  seg m en ts, ed ges, an d  corn ers o f  th e  o b je c t. A fte r  e x tra ctin g  th e  

sh a p e  fea tu re s fro m  a  m o d el a n d  a  scen e , so m e k in d  o f  s im ila r ity  or  dissim ilarity  

m ea sures m u st  b e  u sed  to  q u a n tify  th e  d ifference b e tw een  th e  sh a p e  fea tu res. 

T h ese  s im ila r ity  or d iss im ila r ity  m ea su res are referred to  as shape measures. 

S in ce  th e  sh a p e  o f  a n  o b je c t  refers to  th e  in v a r ia n t g eo m etr ica l p ro p erties  a b o u t  

th e  re la tiv e  d is ta n ce s a m o n g  th e  sh a p e  fea tu res o f  th e  o b je c t, i t  sh o u ld  rem ain  

th e  sa m e w h en  th e  o b je c t  is v iew ed  a t  a  d ifferent sca le  or o r ie n ta tio n . T h is  d o es  

n o t  su g g es t th a t  s iz e  a n d  o r ie n ta tio n  a re  n o t  im p o rta n t for  th e  sh a p e  recog n itio n  

ta sk . T h e y  are in  fa c t  im p o r ta n t a ttr ib u te s th a t  w ill b e  e s t im a te d  e ith er  as a  

p a r t o f  th e  sh a p e  reco g n itio n  sy stem , or as a  sep a ra te  ta sk . S h a p e  m easures  

sh o u ld  th u s  b e  in v a r ia n t to  tra n sla tio n , ro ta tio n , and  sca lin g . A  sh a p e  m easure  

is  c lassified  as e ith er  a  g lo b a l or a  lo ca l sh a p e  m ea su re. A  global shape measure 

q u a ntifies  th e  s im ila r ity  or  d iss im ila r ity  b e tw een  tw o  en tire  o b jects; a  local shape 

measure  q u a n tifies  th e  s im ila r ity  or d is sim ila r ity  b e tw een  p o r tio n s  o f  th e  o b jects . 

A  g lo b a l sh a p e  m ea su re  is d er iv ed  fro m  th e  g lob al sh a pe  fea tu re s o f  th e  ob jects; 

a  lo ca l sh a p e  m ea su re  is d er iv ed  fro m  th e  local sh a p e  -features. A  sh a p e  

reco g n itio n  m e th o d  th a t  u ses g lo ba l sh a p e  fea tu res and g lo b a l sh a p e  m easures to
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achieve recognition is known as a global shape recognition method', one th a t  uses 

local shape features and local shape m easures is known as a local shape 

recognition method.

I .& . P r o b le m  S t a t e m e n t

Extensive research w ork on tw o-dim ensional (2-D) global shape recognition 

has been done in the  past tw o decades. A pplications include recognition of 

handw ritten  characters, biological cells, and industrial parts. Surveys of various 

2-D global shape recognition m ethods such as Fourier shape descriptors, m om ent 

shape descriptors, and tem plate  m atching can be found in 

[Pav78,PavSO, Lev85, O tt88]. These approaches are applicable only when the 

en tire  object contour or silhouette  is available.

T he problem  we w an t to  address is th a t  of recognizing and locating p lanar 

objects th a t  m ay be occluded or touching each other. A  typical situation  is 

shown in F igure 1.2, w here there  are th ree objects occluding each other. These 

objects are alm ost flat w ith  one dim ension being m uch sm aller th an  the  other 

two. O ur task  in th is situation  is to  identify and  locate the  th ree individual 

objects in th e  scene. Since en tire  object contours or silhouettes are no t 

available, global shape recognition m ethods will fail to  identify such partia lly  

occluded objects.

1 .4 .  L a n d m a r k - B a s e d  A p p r o a c h

R ecent w ork [Bol82, Bha84, Pri84, Bha87, Aya86, Koc87, T ur85, Kno86, 

Gor88] on 2-D p a rtia l shape recognition have exhibited an increasing in terest in 

developing m ethods capable of recognizing objects when global inform ation 

ab o u t th e  objects are no t available. M ost of the  approaches use as the ir shape 

features line segm ents resulting from  a polygonal approxim ation to  the  object 

contour. T hey will all be reviewed in C hap ter 4.

F or th e  purpose of recognition, m uch of the  visual d a ta  perceived by a 

hum an  being is highly red u n d an t. I t  has been suggested from  th e  view point of 

th e  h um an  visual system  [Att54] th a t  some dom inant poin ts along an object 

contour are  rich  in inform ation  con ten t and  are sufficient to  characterize the  

shape of th e  object. T his concept of dom inan t points has been applied in the  

field of m orphom etries [Boo78] to  study  and observe the  grow th of biological 

objects. One such application  is th e  study  of craniofacial grow th [Boo84] by 

observing th e  changes of dom inan t points of a  cranial face a t  tw o tim e intervals. 

C ardiac images can also be analyzed by observing the  changes of some dom inant 

po in ts along th e  cardiac wall in a  sequence of echocardiogram s [Boo85, Sko86].
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F ig u re  1 .2 . A  ty p ic a l scen e  co n sistin g  o f  o cc lu d in g  o b jects .
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These dom inan t points of an object are usually referred to  as the landm arks of 

the object. However, we shall define the landmarks of an object as the points of 

in terest of the  object th a t  have im portan t shape a ttribu tes. Exam ples of 

landm arks are corners, holes, protrusions, and extreme curvature points. They 

can be problem  specific based on a p r io r iknowledge. For example, in medical 

imaging, landm arks could be the location of im portant bone jo ints. F igure 1.3 

shows the  po ten tial landm arks of an object. The landmark-based shape 

recognition  approach th a t  we shall present is m otivated by the above concept of 

dom inan t points. It uses landm arks as shape features to  recognize objects in a 

scene. One of the  m erits of landm ark-based shape recognition is th a t  the 

ex traction  of the  entire  object contour is no t required to  achieve recognition. It 

only requires a  landm ark  extractor th a t  can detect and order the landm arks in a 

sequence th a t  corresponds to consecutive points along the object boundary. If all 

the  landm arks of an object in the scene are available, global recognition of the 

object can be achieved. If only a  portion of the landm arks of the object are 

available, the  iden tity  of the object m ay be deduced by recognizing a  portion of 

th e  object.

A  landm ark-based  shape recognition system  is shown in Figure 1.4. I t  is 

sim ilar to  the  general shape recognition system  shown in Figure 1.1. L andm arks 

ex tracted  from  a model object and from  the scene are referred to  as model 

landmarks and  scene landmarks, respectively. P roperties of landm arks of each 

m odel can be used to  guide the  extraction of landm arks in the scene. The 

hypothesis of a  model object in th e  scene is m ade by m atching th e  model 

landm arks to  th e  scene landm arks. Based on a decision stra tegy  on how well the 

landm arks of each model are m atched to  those of the scene, objects in the  scene 

are  identified.

1 .5 .  T h e  S c o p e  o f  W o r k

In th e  rem aining chapters, we shall discuss in detail all the  functional 

blocks shown in Figure 1.4. W e shall define two local shape m easures known as 

d ila ta tion  and  sphericity  in C hap ter 2. B oth  measures can be used to  quantify  

th e  sim ilarity  o r dissim ilarity between a model landm ark and a  scene landm ark. 

T heir in v arian t properties will also be derived. Sphericity will be shown to  be a 

robust local shape m easure in th e  sense th a t  a  sm all pertu rba tion  in the  

landm ark  locations does no t significantly a lter its value. The landm ark-based 

shape recognition approach does n o t require the extraction of the  en tire  object 

contour. However, for illustrative purposes, we shall discuss two data-driven 

landm ark  ex traction  m ethods in C hapter 3. W e shall only consider one type of
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F ig u re  1 .3 . P o te n tia l land m ark s o f  a  ta n k . E a ch  la nd m a rk  is in d ic a te d  b y  a  
d ia m o n d  sym b ol.
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Figure 1.4. A  landm ark-based shape recognition system .



landm ark — extrem e curvature  points along object contour. The object contour 

can be the boundary of an object region which m ay consist of m ore th an  one 

object overlapping each other. O ther problem  specific types of landm arks will 

no t be considered. The first landm ark  extraction m ethod is known as cu rva tu re  

guided polygonal approxim ation. I t uses extrem e curvature  points along an 

object contour as an initial s ta rting  set of break points for a subsequent 

polygonal approxim ation algorithm . T he subsequent polygonal approxim ation 

algorithm  is a split-and-m erge algorithm  sim ilar to  the one described in [Pav74]. 

T he second m ethod is based on the cardinal curvature  points along an object 

contour. The cardinal curvature  points are obtained from  successive Gaussian 

sm oothing of a contour. In C hap ter 4, we shall review the  recent lite ra tu re  on 

2-D partial shape recognition m ethods, and com pare them  w ith our landm ark- 

based approach. W e shall use landm arks as shape features and  sphericity  as a 

shape m easure. Hypothesis of m atches between model landm arks and  scene 

landm arks is m ade by a H O PPIN G  dynam ic program m ing procedure. F inal 

m atches as well as the location of the  object in the  scene are presented. In 

C hapter 5, we shall present fu rther experim ental results. W e shall conclude and 

present fu ture  directions in C hapter 6.
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C H A P T E R  2

M A T H E M A T IC A L  P R E L IM IN A R IE S :

T H E  P R O P E R T IE S  O F  A  L O C A L  S H A P E  M E A S U R E

2.1 . I n t r o d u c t io n

All shape recognition m ethods employ some kind of shape m easure, 

w hether global or local, ad hoc or robust, derived from  features th a t  are 

extracted from different shapes to achieve recognition. In landm ark-based 

shape recognition, as discussed in C hapter I, we represent each object by a set 

of landm arks. To determ ine if a model object m atches a  scene object one m ust 

determ ine how well their corresponding landm arks m atch each other. Since 

each object is approxim ated by its associated landm arks w ith a  polygon, 

m atching landm arks of a  model object w ith those in the scene becomes the  

problem  of m atching vertices of the two polygons associated w ith the model 

and the scene, respectively. A measure of sim ilarity between tw o vertices, one 

from  a model polygon and the other from a scene polygon, is needed to achieve 

th is m atching. One such local shape measure is the sphericity of a  triangular 

transform ation  which m aps one triangle into another triangle.

This chapter justifies the use of the sphericity of a  triangu lar 

transform ation  as a local shape m easure. Before describing the sphericity, we 

shall first define a related local shape m easure known as the d ila ta tion  of a  

triangu lar transform ation . The dilatation of a triangu lar transform ation  is also 

known as the  anisotropy from  the work of Bookstein [Boo?8, Boo84] in th e  field 

of m orphom etries. We have adopted the term , d ila tation , th a t  is used in th e  

m athem atics com m unity. Bookstein [Boo84] com putes the d ila tations derived 

from  various m anually chosen points of a  cranial outline a t tw o tim e intervals 

to  study  craniofacial grow th. However, he does not show how the  d ila ta tion  of 

a  triangu lar transform ation is com puted. I t will be shown th a t  th e  d ila ta tion  

can be com puted by m eans o f three different m athem atical approaches: d irect 

geometric m ethod, quasiconform al m apping, and through the  use of s tra in  

tensors. The d ilatation is n o t only defined for a triangu lar transform ation , b u t
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it will also be defined for a diffeom orphism .1 In Section 2.3, we shall derive the  

invarian t properties of the d ila ta tion . Sphericity will be introduced in Section 

2.4 and will be shown to be m ore m athem atically tractab le. Its invarian t 

properties will also be derived. T he sphericity takes on values in [0, l] while 

the  d ila ta tion  takes on values in [l, cc). In Section 2.5, we shall show th a t the 

sphericity of a triangular transform ation  is a robust local shape measure. T h a t 

is, m inor distortion in the landm ark locations (vertices of a triangle) does no t 

significantly change the value of the sphericity. We assume th a t  the d istortion 

in the scene landm arks can be modeled as “noise” added to  the model 

landm ark  locations. The probability  density function of the sphericity of a 

triangu lar transform ation  will then be derived. In Section 2.6, we shall 

em pirically estim ate  the probability  density function of the sphericity for cas.es 

where the probability  density function cannot be obtained in closed form.

To investigate the properties of dilatation and sphericity, various 

m athem atica l principles will be used. Existing definitions and theorem s which 

are used to  derive the desired properties of these local shape measures will be 

sta ted  w ithou t proof.

2 .2 .  D i l a t a t i o n  Y

T he d ila ta tion  of a triangu lar transform ation th a t  m aps one triangle to  

ano ther triangle  is a m easure of sim ilarity between the tw o triangles. U nder 

such a  trian g u la r transform ation , the  inscribed circle of a triangle is m apped 

onto  an inscribed ellipse of the o ther triangle. The dilatation  of the  triangu lar 

transfo rm ation  is the ratio  of the length of the m ajor axis to  th a t  of the  m inor 

axis of th e  inscribed  ellipse. This is shown in Figure 2.1, where the  dila tation  
' d

=  — Not e  th a t  if the  tw o triangles are sim ilar, the  d ila tation  is I. As

■ . <*2 ■ rY Y'
described below, the triangu lar transform ation  is uniquely determ ined by an

affine transform ation . T he d ila ta tion  of a triangular transform ation can be 

evaluated  by a direct geometric approach. I t can also be evaluated by m eans of 

a  quasiconform al m apping and th e  stra in  tensor of an affine transform ation.

1 A iiffeom orpkitm  it a continuous one-to-one mapping whose inverse mapping is also continuous, with both the 

mapping and its inverse having continuous partial derivatives.
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2 .2 .1 . A fR ne T r a n s f o r m a t io n

P e D n it io n  2 .1 : An affine transform ation  is a m a p p in g  of x  to  u , where,

x , u  G H 2, defined by:

u = A x  +  t  , (2.1)

where
I - • - -I

> U =
U
V V t -

■ 
- 

»

a b 

c d
, and  det( A  ) #  O

An affine transform ation  is a  one-to-one m apping of the  plane onto  itself w ith 

the  following properties [Gan69] :

•  Collinearity is preserved under the  transform ation .

•  N oncollinearity is preserved under the  transform ation .

•  Betweenness relation is preserved under the  transform ation , i.e., a  m id

poin t of a  line rem ains the  m id-point of th e  transform ed line.

Thus, a  poin t is m apped in to  a point, a  line in to  a  line, and  an angle rem ains 

an angle. The six coefficients which describe an affine transfo rm ation  are 

uniquely determ ined if th ree noncollinear points and  their corresponding non- 

collinear image poin ts are known. The term  image point*  used in th is chapter 

is in the m athem atical sense. I t is no t an  image pixel.

By direct substitu tion  of th e  equation o f a  circle in to  an affine 

transform ation , it is readily seen th a t  the  transform ed circle is an ellipse. I t can 

also be shown th a t  the  area of the  triangle th a t  results from  an  affine 

transform ation  is scaled by d e t(A ). Coefficients of the  unique affine 

transform ation  w hich m aps one triangle in to  ano ther are com puted using the  

following equation, (see F igure 2.1):

=  B -1

U 1

U2

u 3

and B
- i

V 2

v3

( 2 .2 )

2 I* t  A C R 2 Md B c R 2 be two sets and /  be a mapping of A  into B . If 2  G A , /  ( * )  is defined as the 
image point of x .



(x 'i,y i)

(*2^2)

(X2,y2)
(x i ,y i)

(X 2J2)

■2r„

(x 3»y3) (u 2,v2)

(C)

(U3Iv 3)

Figure 2.1. R epresentation of a m apping from  a triangle to  another triangle.
(a) Original triangles, (b) M apping from  the inscribed circle to  an 
inscribed ellipse, (c) M apping of the p rincipal axes. 

d x 2
dila tation  =  —  , sphericity =  ,—  .

a  2 0 | + a 2



where B

*i Vi J 

x 2 V2 I 

Z3 y z I

, and

K ,  Vi )  are the image points of the points ( i, y,), i =  1,2,3 under the 

transfpriTiation described by E quation 2.1. Since the vertices of a triangle are 

noncollinear, det( B  ) and B ~ 1 exists. Assum ing we know the vertices of 

thq first triangle, we can com pute the param eters (radius and center) of the 

inscribed circle. The inscribed circle is then m apped through the 

transform ation into an ellipse from which the param eters of the ellipse can be 

obtained; and thus the d ila tation  of the triangu lar transform ation  can be 

com puted. This is the  direct geometric approach.

2 .2 .2 .  Q u & s ic o n fo r m a l M a p p in g

Quasiconformal m apping was introduced over half of a century  ago, and 

in recent years, there has been a g reat deal of work in the area. W e shall use 

these results to  find the dila tation  described in the previous section.

2 .2 .2 4 V  T w o - D im e n s io n a l  Q u a s i c o n f o r m a lM a p p in g

Quasiconformal m apping in the plane has geom etrical properties sim ilar to  

the triangu lar transform ation  m entioned above. T he following is one 

definition, due to  Ahlfors [Ahl66], used for a tw o-dim ensional quasiconform al 

m apping.

Q e f in it ip n  2 .2 : Let w = g(z),  w, z S E  (w =  « + iV, z =  x +  iy) , be a

complex valued differential m apping, such th a t  the  differential

dg — gz dz +  g-dz ,

where z  is the  complex conjugate of z ,

9z and g- are the p a rtia l derivatives of g w ith  respect to  z and 

z , respectively.

N ote th a t  dg m aps a  circle around  z  in to  an ellipse around  g(z).  

Qonsider the  case th a t  g is sense preserving (the Jacobian is positive), 

then  (I — 10jl)l<fel < 1 ^ 1  <  (IffJ  +  lffjl)l<fel . g is said to  be K -  

quasiconform al for some constan t K  if the  ratio  of th e  length of the



15

m ajor axis to the length of the m inor axis of the ellipse is

I <? J +  I <?-l

'V - - )  — -  ■ <2 »

Dg(z)  is the d ila tation  of the m apping a t 2.

For n o ta tio n al convenience, the  argum ent of the d ila tation  m ay be om itted. 

Nbte th a t  the  d ila ta tion  takes on values in [I, oc). T he m apping is cbnfbtfrhal if 

the d ila ta tion  equals I. T he following lem m a follows im m ediately from the 

above definition.

L e m m a  2 .3 : If g is an affine transform ation  defined by Equation 2.1 and

U l  >  0, then Dg , the  d ila ta tion , is a constan t and

Ds -  V ? iL l—  for J 0 >  I . (“ ■*)

ViiT-i
where

_  ( a + d ) 2 +  ( c —b)2 

9D { a - d f +  ( c + b ) 2 ‘

P r o o f :  T he lem m a is obtained by direct substitu tion  of E quation 2.1 into

Definition 2.2. TH

T his provides a  simple com putational form ula for obtain ing  th e  d ila tation  of 

the  above triangu lar transform ation . T he d ila ta tion  of a  triangular 

transfo rm ation  is I if the  tw o triangles are sim ilar. T he less sim ilar the 

triangles, th e  larger the value of the d ila tation . W e shall call gD the  conformity  

of the  trian g u la r transform ation . T he conform ity is m ore com putationally  

efficient th an  the  dila tation . I t  can also be used as a  shape m easure. I t is seen 

from  E quation  2.4 th a t  the  larger the  conform ity is, the  sm aller the  d ila tation  

is, and  vice versa. Like the  d ila ta tion , the  conform ity takes on values in 

[I, 00). T he probability  density function of the conform ity will be discussed in 

Section 2.5.

2 i2 * 2 .2 .  n - D im e n s io n a l  Q u a s ic o n f o r m a l  M a p p in g

In th is section, we shall define th e  d ila tation  of a  diffeomorphism. A  

diffeomorphism  is a continuous one-to-one m apping whose inverse m apping is 

also continuous, w ith bo th  the  m apping and its inverse having continuous



partia l derivatives [0 ’N66]. T he following definition of n-dimensional 

quasiconform al m apping is due to Vaisala }V ai61]:

D e f in i t io n  2 .4 :  A diffeomorphism, g:U—*il, (11, SI C  IR") is called K -

(2.S)

quasiconform al if

XiU Dgix ) K  <  cc for some constant K ,  

where Dg (x) =  max(Z)ff (x), R g (x)) ,

i.-'T

()f(x) , —  J -  • . H s U )
I J (x )  I

< & ' ( * ) #

, and

e  is an un it vector in IR” .

J (x )  an d  p '(x) are the Jacobian and the derivative (Jacobian m atrix) of 

g (x), respectively. I l g(x) , Dj (x) , and Dg(x)  are known jus the  inner, 

ou ter, and m axim al d ila ta tion  a t x , respectively.

F or no tationai convenience, the  argum ents of the various function used in 

Definition 2.4 m ay be om itted . T he following lemmas, Lem mas 2.S-2.7, relate 

th e  d ila tations to  the  eigenvalues of g ^ g 1. Note th a t  g' m aps a un it ball in Q 

in to  an ellipsoid in fl. The eigenvalues of g'* g' correspond to the lengths of the 

semi-axes o f the  transform ed ellipsoid. Since J{x)  0, g ft g' is positive definite 

[Seb77]. T he eigenvalues of g 1* g' are thus positive.

L errim it 2 .5 : y = jlV (x )e l2 corresponds to  the largest eigenvalue of g'* g'.

P r o o f :  ly 'e l2 =  <  g'e, g'e  >

=  <  e  >

=  <  Q t D b e i e  >

— <  D e , e  >

2 2 

=  \ c i +  * • ' + \ C f »  >
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where D fP is the spectral decom position [Fri79] of g', and

Xn >  Xn_j >  • • • >  X1 >  0, are the eigenvalues of g'1 g'.

Since e =  4>e =  ((T1, • • •  ,en) ',  I e I = I  implies I e I = I .  

Therefore, y ^ l§ '( x ) e l2 =  Xn . □

L e m m a  2 .6 : y i^ l f f 'M e l2 corresponds to  the sm allest eigenvalue of g'1 g'.

P ro o f :  T he proof is sim ilar to  the above lemma.

L e m m a  2 .7 : J 2(x) is the  p roduct of the eigenvalues of g'* g'.

P ro o f :  / 2(x) =  d e t2( g ’)

=  det{ g , l g ' ) =  X1 - • • Xn ,

where det() is the  m atrix  determ inant. E

Now, the  d ila ta tions can all be expressed in term s of the eigenvalues of g'1 g' by 

the  following:

\  n 
A n

Ix1V •• -x j

Ix1V - - X nI
x i

( 2 . 6 )

In the  tw o-dim ensional case, Definition 2.2 and Definition 2.4 are equivalent, 

and  provide two different approaches for analysis and com putational 

convenience.

L e m m a  2 .8 : If g is an affine transform ation  defined by Equation 2.1, then

Xo I
D g =  — , where, X2>X j, are the eigenvalues of A  A .

* ■ ■ X j

P ro o f :  T he proof follows im m ediately from  Lem mas 2.5-2.7 by noting th a t

g' =  A  for an affine transform ation  defined by E quation  2.1. □

2 .2 .3 .  S t r a in  T e n s o r

T he purpose of th is section is to  show th a t  the  d ila tation  can also be 

evaluated  th rough  the use of stra in  tensors. Tensor analysis is an ideal tool to  

s tu d y  en tities th a t  are independent of the choice of reference frames. A tensor 

is an  ab strac t quan tity  represented in a particu lar reference fram e by a set of
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functions. These functions obey certain laws of transform ation from  one 

coordinate system  to another. We consider a general transform ation of a pair 

of n-dim ensibnal coordinate systems, X ,  and X  :

Xt = f ' ( x \  i 2, • • • , ! “ ) ,  for i= l ,2 ,... ,n  ,

Xt =  gr ( x \  x2, • • • , x n \ ,  for i= l ,2 ,... ,n  ,

where / " s and g " s are functions th a t m ap X  to X  and X  to  X ,  

respectively.

D e f in it io n  2 .9 : A quantity , represented by the com ponents,

T i l i - iku  . . .  im , and T u r- ■ ■ ■ tm , in the X  and X

reference fram e, respectively, is said to be a mixed tensor w ith k 

con travarian t components, m covariant components, and of w eight N ,  

if the com ponents obey the following rule of transform ation:

T i ' ,J

I ax  | d  x 

dx  d x r'

d x 1 dx
i .

dx  m mf| r.j ■■■ Ti

S P - T
( 2 .7 )

S i "  ( / ? ’

where the general sum m ation rule is assumed, th a t ' is, 

-XxXx =  I 1X1 +  X2I 2 +  • * • +  x nx n , and

I-^ ;l is the Jacobian of the coordinate transform ation.
dx

T he above is a  generalized form of B rand ’s definition [Bra57]. In general, the 

com ponent, T rir2 . .  tm > is simply referred to as a  tensor. If N=O,

T ryr' Tkt] ..  im is known as an absolute tensor. If k= 0, it is known as a

covariant tensor. If m = 0 , it is then known as a contravariant tensor. This 

section is n o t intended to  explore the details of tensor theory which can be 

found in m any texts [Sok51,Bra57]. A strain  tensor provides another approach 

for com puting the d ilatation. Let g:Cl—^fi, f], H C  IRn , be a  hom eom orphic 

m apping w ith  orthogonal cartesian reference fram e X ,  and  X ,  respectively. A  

homeomorphic mapping  is a one-to-one m apping such th a t  bo th  th e  m apping 

and its inverse are continuous [Gug63]. The square of the  arc length of 0  and 

Cl, using the  general sum m ation rule, are, respectively:

ds2 =  dx%dxx and ds2 =  d P dx* , *=1,2, • • • ,n.

T hus, d s * - d s 2 =  dxk dxk -  dxk dxk
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—  —  d x 'd x 3 -  bt j d x 'd x 3 
Dxt Ox3 ,}

=  2/ii j dx , dx3 , 1,2, • • •  ,n ,

where //,y
1 ( d x k d x k

2  Y d x i d x 3 ij

„ ds2 — ds2 dx dx3
Therefore, ------ —----= V i j - J------T ~  ’ (2.8)

2 dsz ds ds

D e f in itio n  2 .10 : The tensor Miji which is symmetric ( Mij — Uji )> is known

as the stra in  tensor [Sok5l].

Note th a t  the  stra in  tensor is related to  g'1 g' of the quasiconformal m apping 

(Definition 2.4) as follows:

2Mij =  S ltS1 ~  I  

where  I  is the  identity  m atrix.

The eigenvalues of Mij are known as the principal strains, and  the  

corresponding eigenvectors are orthogonal. The directions corresponding to  the 

principal stra ins are known as the principal directions (axes) of the stra in  

tensor. A t any point, it is a  m apping from  a ball to an ellipsoid. The ratio  of 

the length of each semi-axis of the ellipsoid to  the length of the radius of the  

ball is

V I + 2  X1- , i = l , 2 ,...,n , (2.9)

where X1-’s are the  eigenvalues of Mij •

The inner, ou ter, and m axim al d ilatations can also be obtained from  the  above 

relationship (Equation 2.9). F or exam ple, let the  hom eom orphic m apping be 

the affine transform ation  defined by Equation 2.1. The sym m etric tensor, 

Miji *ij  =  1>2, for the afiine transform ation  is

1 O 2 - J - C 2 - I  ab +  cd

2 ab +  cd b2 +  d2 — I
(2 . 10 )

T he d ila ta tion  of the affine transform ation  can thus be evaluated by finding 

the eigenvalues of E quation 2.10 and using the relationship given by E quation

2.9.
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2 .3 . i n v a r i a n t  P r o p e r t ie s  o f  D i la ta t io n

In this section, the invariant properties of the d ila tation  will be discussed.

L e m m a  2 .11 : The dilatation of a triangular transform ation  is transla tion

invariant.

P ro o f :  From  Equation 2.4, the dilatation is not a function of the

translational p a rt of the affine transform ation , and thus invarian t to 

translation. □

L e m m a  2 .12 : The dilatation of a triangu lar transform ation  is ro tation

invariant.

P ro o f :  From  Equation 2.4, it is sufficient to  show th a t  the  term s,

(a +  d)2 +  (c — b)2 , and (a — d)2 4- (c 4- b)2 , are invarian t to  

rotation. W hen the image points are ro tated , th a t  is,

U cos 6 sin#
Xi

V
—sin# cos# V

cos# sin# a b
X cos# sin#

—sin# cos# c d y
+

—sin# cos#

a I cos# sin# r i

C It

X

y
+

—sin# cos# '-S
i 

C*

it can be seen th a t

(o +  <?)2 +  (c — b)2 =  (a  4- d)2 +  (c — b)2, 

and;

(a  — H)2 4- (c +  T>)2 =  (o — d)2 +  (c +  6)2 . □

L e m m a  2 .13 : The dilatation of a  triangu lar transfo rm ation  is scale

invariant.
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P ro o fs  Scaling of image points corresponds to  m ultiplying the  coefficients of 

the affine transform ation  by a constant. From  E quation 2.4, the  d ila ta 

tion is thus invarian t to scaling. □

The following theorem  is thus obtained from the above th ree  lemmas:

T h e o re m  2 .14 : The dila tation  of a triangu lar transform ation  is invarian t

under the group of transform ations G  =  {

translation , ro tation , scaling}.

P ro o f :  This follows im m ediately by Lemmas 2.11-2.13. □

The above invarian t properties are not restricted  only to  the triangu lar 

transform ation. They also hold for a diffeomorphism.

T h e o re m  2 .1 5 : T he d ilatations of Definition 2.4 for a  quasiconform al

m apping are invarian t under the group of transform ations G  =  { 

translation, ro tation , scaling}.

P ro o f :  Let g be a diffeomorphism, and assume th a t  g is m apped to  J  by G ,

th a t is,

g =  ocHg -I- h ,

where a  is the scaling factor,

H  is the  ro tation  m atrix , and 

h is the transla tion  vector.

Thus, .

S t t?  =  ( C H g i ( O H g t)

From  Lemmas 2.5 - 2.7, the  desired invariance is obtained . □

Three definitions (Definitions 2.16, 2.17, and 2.18) th a t  can be found in 

[Mui82] are given below in order to  show th a t  the  d ila ta tion  of a  triangu la r 

transform ation is a  m axim al invarian t (defined below). D enote G  as a  group of

transform ations from  a space fJ, in to  itself.

D e fin itio n  2 .16 : Let U1, U2 be in f l  (Ulj U 2 G jtX). U1 is equivalent to  u 2

under G , w ritten  as U1 ~  u 2(m odG ), if there exists a  S €  G  such th a t  

U2 - S u 1 ( S n ia p s u 1 I o u 2).
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D e f in itio n  2 .17 : A function d>(u) defined on f l  is said to  be invarian t

under G  if

d>(Su) =  o(u)  for all u  E / I  and S 6  G .

D e f in i t io n  2 .18 : A function <f>(u) defined on f l  is said to  be a m axim al

invarian t under G if it is invarian t under G  and if

o (u j) =  d ( u 2) implies U 1 ~  u 2(m odG ).

From  the above definitions, we can prove the following theorem :

T h e o re m  2 .1 9 :  L et u  be a set of three tw o-dim ensional points, th a t  is, u E

/ I  = I R 2XlR2XlR2. D enote D (u) as the d ila ta tion  derived from  the 

affine transform ation  of a  set of three fixed points, x , to  u. D (u)  is a 

m axim al invarian t under G  =  { transla tion , ro tation , scaling}.

P ro o f :  Note th a t we have used D ( u) to  indicate th a t  it is u  which is

transform ed by G . The d ila tation  is invarian t under G  by T heorem

2.14. To show th a t  the  d ila tation  is a m axim al invarian t under G,;. it. is

sufficient to  show th a t  if U 1 E f l ,  and U 2 €  / I ,  then

D(U1) =  D (u 2) implies u 2 =  S u 1 for some S €  G .

Given U 1 and U 2 in f l ,  there .exist affine transform ations th a t  m ap the  

set of three fixed points X  to  U 1 and u 2, respectively. Let A 1 and be 

the linear p a rt and  the  translation  p a rt of the  affine transform ation  

th a t  m aps x  to U 1, and likewise for A 2 and t 2 .

From  Lem ma 2.8, if D (U 1) =  D (u 2), then  the  eigenvalues of A  /  A 1 

are m ultiples of the  eigenvalues of A 2i A 2. T h a t is,

A 2 =  A ^A 1

for some constan t k ,  and 4> is an orthogonal m atrix . N ote th a t  the  

vertical vectors of 4> form  an orthogonal basis in IR2. corresponds to  

a  ro tation  m atrix  and  k  corresponds to  th e  scaling. F inally , the  

transla tion  p a rt does n o t con tribu te  to  the  evaluation of the  d ila ta tion .

Therefore, U2 =  S u 1 , □
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T he im portance of a  m axim al invarian t is shown by the  following theorem .

T h e o re m  2 .2 0 : If 4>(u) on jJL is a  m axim al invarian t under G , then  is

invarian t under G  if and  only if is a function of <^(u).

P ro o f :  T he proof can be found in [Mui82]. □

2 .4 .  S p h e r i c i t y

Sphericity is an  a lternative shape m easure relative to  the  d ilatation  

m entioned earlier. T his shape m easure will be used th roughou t th is report due 

to  its properties. T he sphericity  has the sam e invarian t properties of the  

d ila ta tion . F o r a  trian g u la r transform ation , as shown in Figure 2.1, the  

sphericity  is defined as the  ra tio  of the  geometric m ean to  the  arithm etic  m ean 

of th e  lengths of the  principal axes of the  inscribed ellipse; i.e., the  sphericity

2 V M 2
= ------------ . W e define th e  sphericity of a  diffeomorphism as follows:

d \ + d 2

D e fin it io n  2 .2 1 : T he sphericity of a diffeomorphism, g:Q—*0,

(fl, H e  IRrl), for x  E fV  is defined as

Jl

( d e t ( / y ) ] n
T ( x )  =  I ■ - I t  , (2.11)

-trig'* 9')

w here det()  and  tr{) are the determ inan t and the  trace of a  m atrix .

F o r th e  no tational convenience, the  argum ent of the sphericity m ay be 

om itted .

L e m m a  2 .2 2 : T he sphericity  can be expressed in term s of th e  eigenvalues

of g ̂ g 1 as follows:

| \ i X 2 • • • X n j
In

l ~ ( x i + \  +  ’ * ■ +  K )

( 2 . 1 2 )

w h e re  Xt-, t = 1 ,2 , ,n  , a re  th e  e igenva lues o f g ’1 g ' .
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P ro o f :  N o te th a t

d e t ( j ,<p') =  det(4><Z)4>)

=  det(Z)4>'4>)

=  det(Z>)

(spectral decomposition)

n r

and

H l riS 1)

-  X 1X 2 ■ X

I r ( Q t Dfy)

=  I r (D Q t Q)

.. =  t r (D )

=  X 1 H - X 2 +  • • •  +  X n .

The resu lt thus follows. O

N ote th a t  the  sphericity  is the  ratio  of the geometric m ean to  the  arithm etic  

m ean of the  eigenvalues of g 1 g 1. Since the geometric m ean of a  sequence of 

positive real num bers is always greater than  or equal to the arithm etic  m ean of 

the  sam e sequence of num bers [Bar76], the  ratio  of the geometric m ean to  the  

arithm etic  m ean is between O and I. T he sphericity thus takes on values in 

[0, I]. If T ff(x) =  I for all x € fi, p(x) is a  conformal m apping. For a  triangu lar 

transfo rm ation , the  sphericity is I if the  two triangles are sim ilar. T he less 

sim ilar th e  two triangles are, the  sm aller the value of the sphericity. W e shall 

next derive th e  relationship between the sphericity and the d ila tation , and the  

invarian t properties of the  sphericity.

L e m m a  2 .2 3 :  In the  two-dim ensional case, T g

d ila ta tion  as defined in Definition 2.4.

2 V ^

I +  D m
, where D a is the

P ro o f :  T he  resu lt is obtained by using Definition 2.4 and  Lem m a 2.22. □

T h e o r e m  2 .2 4 :  T he sphericity of a  triangu lar transform ation  is invarian t

u n d er G  =  { transla tion , ro tation , scaling).
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P ro o f :  By using Theorem s 2.14, 2.19, 2.20 and Lem m a 2.23, the  sphericity

of a triangular transform ation  is invarian t under G . □

T h e o re m  2 .2 5 : The sphericity of a diffeomorphism of Definition 2.21 is

invarian t when the diffeomorphism undergoes the group of 

transform ations G  =  { translation , ro tation , scaling}.

P ro o f :  T he proof is sim ilar to  Theorem  2.15. □

T h e o re m  2 .26 : The sphericity of a triangu lar transform ation is a maximal

invarian t under G  =  { transla tion , ro tation , scaling}.

P ro o f :  T he proof is sim ilar to the proof of Theorem  2.19. □

L e m m a  2 .2 7  The sphericity of an affine transform ation defined by 

E quation 2.1, for the case when I .A I >  0, is:

(2.13)II t i + t l  -(<** + * ! :

1 1 +  " M l +

where t x —  a  +  d  ,

■■ ;■ -.A- t  j =  CL —“ d  j

12  =  b c j an d

. £ 4  =  b “4" c .

N ote th a t  E quation 2.13 expresses the  sphericity, T ff , in term s of the 

coefficients of the affine transform ation . It is equivalent to  the ratio  of 

the  geometric m ean to  the  arithm etic  m ean of the lengths of the 

principal axes of the  inscribed ellipse, as shown in Figure 2.1.

P ro o f :  F rom  Equations 2.1 and 2.11,

detfA*./!)

( L r ( A 1A ))2
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det
o 2 + c 2 ab -|- cd  

ab +  cd b 2 -+■ d 2

'

|(< .! + I 2 + C1 +  d!)

2

2(ad  -  be)

( a 2 +  b 2 +  c 2 +  d 2)

11 +  i l  ~  ( t j  +  i t )

t \  + t 2 +  +  t 2

Lem m a 2.27 will be used to determ ine the probability density function of the 

sphericity of a triangu lar transform ation in the following section.

2 .5 .  T h e  P r o b a b i l i t y  D e n s i t y  F u n c t i o n  o f  T h e  S p h e r ic i t y

As m entioned earlier, the sphericity is introduced because it has the  sam e 

invarian t properties of the dila tation  and it is more m athem atically  trac tab le  

for analysis. The sphericity of a triangular transform ation which m aps three 

m odel landm arks to  three scene landm arks is a local shape m easure th a t  

indicates the sim ilarity between the two sets of landm arks. Let 

{(uj, V 1 ) ,  (u 2, v2), (u3, v3)} be the coordinates of a  sequence of th ree  

consecutive landm arks belonging to  a  scene, and let ((Z1, y j), (z 2, y2), (z 3, y3)} 

be those of three consecutive landm arks belonging to  a  model. The sphericity  

of the  triangu lar transform ation  which m aps {(zj, yj), (z 2, y 2), (z3, y3)) to  

( (u J r wI ) J (u ZJw2)j (Usj Vs)) determ ines how well the  model landm arks 

{(®ij  ifiX (^Zj ^2^ (1Sj Vs)} m atch the scene landm arks 

( ( u IJ wl) j  ( u 2> w2)j ( u Sj v 3)}-

If the  object in the scene is the  ro tated , translated , scaled, or a d istorted  

version of the  model, how well do the associated landm arks m atch each other? 

In o ther words, is the  shape m easure (sphericity) robust w ith respect to
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ro tation , transla tion , scaling, and distortion? It has been shown in Section 2.4 

th a t the sphericity is ro tation , translation , and scale invariant. In this section, 

we shall show th a t the sphericity is relatively robust with respect to  d istortion 

in the landm ark locations. If the set of three scene landm arks are duplicates of 

the three model landm arks, the sphericity derived from the m apping of the 

model landm arks to the scene landm arks should be I. W e assume th a t the 

distortion in the scene landm arks can be modeled as “ noise” added to  the 

locations of the model landm arks by the following:

u, =  Xi 4- n, , i =  1,2,3 , and

Vi =  y, +  ni+3 , J =  1,2,3 ,

where n,, »=1,2, • • • ,6, are independent identically d istributed  

( i . i .d .) norm al (Gaussian) random  variables w ith mean zero 

and standard  deviation cr.

T h a t is,

U1 ~  n ( i j ,  o2) , Vi ~  n ( y v  o2) ,

y 2 > v2 ~  n Cy2 lCT2) , and

U3 ~  n ( x 3, o2) , v 3 ~  n ( y 3, a2)

where n (//, cr2) denotes a norm al probability density function w ith 

m ean, /i, and standard  deviation, a.

U1 ~  n(x.j, Cr2) m eans th a t  the  random  variable U1 has a  norm al probability  

density function w ith m ean X 1 and standard  deviation <7. T he i.i.d. norm al 

random  variables are used to  m ake the analysis tractable. W ith  the above 

assum ptions, the  sphericity is a random  variable. We w ant to  determ ine the 

probability  density function, the  m ean, and the variance of the  sphericity. W e 

would hope th a t  the  sphericity has a m ean close to  I and variance close to  0 

when <7 is small; th is thus indicates th a t the  sphericity is robust w ith  respect to  

the  above model of distortion. W e thus have:

L e m m a  2 .2 8 :  T he vector u  is a  m ultivariate  norm al random  vector w ith

m ean vector, /i, and covariance m atrix , cr2/ ;  th a t is, u  ~  m y n  (/i, a2/ ) ,  

where:
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u I x I

u2 x 2

u3

vI
, and /i =

x 3

y i
V 2 y%

v3 y3

ju ~  m v n  (/I, c?I) means th a t the random  vector u  has a m ultivaria te  

norm al probability density function with mean vector jjl and covariance 

m atrix  O2L

P ro o f :  The lemma follows from the above assum ption. □

F rom  E quation 2.13, the sphericity of a triangular transform ation  is described 

in term s of the coefficients of the linear p a rt of the affine transform ation . W e 

shall next determ ine the probability density function of these coefficients w ith 

the above assum ption.

L e m m a  2.29  Let n The elem ents of sl are the coefficients of the

linear p a rt of the affine transform ation defined by E quation  2.1. T hen, 

a  ~ m v n (i! , E), where

,2

U. =

and where

° \  ~

o {  O12 0  0

CT12 o \  0  0

0  0  O1 O12

0  0  O12 o 2

((y2-y3)2+ (y 3 -y i )2+ ( i / i-y 2 )2)»

O

2A
( ( y 2 - y 3 ) ( i 3 - a :2 ) + ( y 3 - y i ) ( i i - * 3 ) - K y i - y 2 ) ( ^ 2 - ^ i ) ) »

o \ ( ( i3- i 2)2+ ( i i - a :3 )2+ ( x 2 - i i ) 2), and



A =  —det 
2

I----------------

r
if—

t

H

x 2 y 2 I

x 3 y 3 I

=  a r e a  o f  a  t r ia n g le  w ith  v e r t ic e s  ( I 1, t /j ) , ( i 2, y 2), a n d  ( I 3, y 3).

P ro o f :  From  Equation 2.2, we have

I

2A

(2.14)

y 2 - ^ 3  y -̂yi y\-yi  0 0 0
I 3- I 2 X1- I 3 I 2—X1 0 0 0

0  0  0  y 2- y 3 y 3- y \  y i ~ y 2

0 0 0 X3- I 2 I 1- I 3 I 2- I 1

If T  has full rank, i.e., rank ( T )  =  4, & is m ultivaria te  norm al. By 

noting the fact th a t rank  ( T )  =  2 if and only if

y 3- y 3

y s - y i =  (non-zero constant) X
^3 x 2 

X\~~XZ

y i - y 2 .. x 2 x I

th a t is, ( I 1, Jz1), ( i 2, y2), and ( i 3, y3) are collinear, it follows th a t  T  

has full rank  if and only if ( i 1? Jz1), ( i 2, y2), and ( i 3, y3) are no t 

collinear.

Hence, a  ~  m v n (T ^ , O2T I T t ).

The expressions for u  and  E are obtained by fu rther sim plification □

Note th a t  E  is block diagonal, and {a, 6} are sta tistically  independent of 

{c, d) .  From  the expression of the sphericity (see Lem m a 2.27), we m ake the  

following transform ation:
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2

*3

t*

C a ,

where C

1 0  0 

I 0 0 

0 1 - I  

0 1 I

0

0

L e m m a  2 .30  I  ~~ m vn(w , E), w here

and

<7j2+<J2 (T2-CT2 0

II • ... - C ,

CT12- <t |  CT12H-Or22 2 CT12 0
. ' , . '

0 2 CT12 CT2-I-CT2 -(CT2-CT22)
• ■ ■>. . .. ' :

2ct12 0 -(CTj2-CT2) A i M
M

;

P ro o f :  Since C  is orthogonal, we have I  ~  m v n (C i/, C H C t ). By direct

algebraic m anipulation, we obtain  the above expressions for U2 and E. □

Note th a t  I 1 and  I 3 are statistically  independent, and  so are t 2 and t 4. F rom  

the  above lem m a and Lem m a 2.27, it  is difficult to  find the  p robab ility  density  

function of the  sphericity in closed form  because the  elem ents o f I  are  

correlated. W e shall exam ine the  special case w here the  elem ents of I  are  

m utually  independent. F or th is case, the  probability  density function of the  

sphericity will be shown to  have a non-central B eta  probability  density  

function. T he special case is the  following lemma.

L e m m a  2 .3 1  If th e  set of poin ts (X1, (x2, y2), and  (x3, y3) form  an

, (ct 2 -f ct22)J).equilateral triangle, then  I  ~  m v n (
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P ro o f :  By simple geom etric and algebraic m anipulation , it is seen th a t  if

(x lt t/i), (x2, y2), and (x3, y3) form an equilateral triangle,

(z 3- x 2)2+ (z i - i 3)2+ (z 2- z 1)2 =  (y 2- y 3)2+ (y 3 -y i )2+ (y i-y 2 )2

and (y 2- y 3) ( i 3- z 2)+ (y 3- y 1) ( i 1- x 3)+ (y 1- y 2)(x2- x 1) =  0 ,

Equivalently , (T12 — (r | =  0 and (T12 =  0. Therefore, the  elem ents of I  

are m utually  independent. E

Before deriving the probability  density function of the sphericity for this 

special case, we need to  discuss the properties of the non-central B eta 

probability  density  function.

D e f in itio n  2 .3 2  Let

U =  17,2 , Ui ~  n (a , , o2) , and
«=i

V  =  E  V f  , V,- -  n(0, a2) , 

j'=i

w here f/, ’s and Vi ’s are sta tistically  independent.

U
T hen, the  random  variable W has a  non-central B eta

U + V

probability  density  function [Hod55, Seb63] w ith U1 and n 2 degrees of 

freedom , and the  non-centrality , p, denoted by:

f  w i w ) =  >

where f  w{-) denotes the probability  density function of the random  

variable W,

w is the  variable of the  function /  w (.), and

Note th a t  W  is (central) B eta  d istribu ted  if p — 0. W e shall use the  no tation  of 

the  p robability  density function of a  non-central B eta  random  variable w ithou t 

th e  non-centrality  te rm  to  denote the  probability  density  function of a  

(central) B eta  random  variable.

T h e o r e m  2 .3 3  T he probability  density function of the  random  variable W  

described by Definition 2.32 can be expressed as an infinite sum  of the
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probab ility  density functions of the central B eta random  variables as 

follows:

B i  T i n  X  , ) k  T l  ■, T i n

where

T l -1 T l  o

£(™ ;— + * ,— )

H1 n 9

n f + m f y

u I ri .
y +* -‘V J t - ')

! '  « !  1

denotes the probability  density function of a central B eta

n j n 2 -■
random  variable w ith param eters — + k,  —— , and

2 2

T is the ! -function [Kap8l].

P ro o f :  T he proof can be found in [Gra6l], □

Having defined the  non-central B eta probability  density function, we can now 

derive the  probability  density function of the sphericity in closed form  for the 

above special case.

T h e o re m  2 .3 4  The sphericity derived from the triangu lar transform ation  

o f an  equilateral triangle has the following probability  density function:

I + 1

/ t K )  =  - 0 H — ; l ,  I,T1V g )  2 V 2 o \ + o l ■),

w here f r , { - )  is the  probability  density function of the sphericity, T ff, 

and Vg is the  variable of the function / T>(.).

P r o o f :  M anipulating Equation 2.13, we have

i f  +  t j

M  + i j

"I" *4

-  I .

+  1

N ote th a t  t lf t 2, t 3, and t A are m utually  independent. By Definition 

2.32, the  random  variable

+  *f

+  t.A

t {  +  t j  

t \  +  t \

has a non-central B eta

+  I
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probab ility  density function with 2, 2 degrees of freedom, and
o

noncentrality , --------~. By simple transform ation , the probability
<r,2+rr22

density function of T„ is obtained.

We shall la ter show th a t
*1 +  U

t l  +  t l
( 9d

+ 4

t l +  * 4

see Equation 2.4) is a

non-central F -d istribu ted  random  variable [Joh70]. W e shall next (Sdttlputb the 

mean and variance of the sphericity. Hence, we m ust com pute the mean and 

the variance of a non-central B eta  random  variable. W e shall briefly show how 

to  com pute the m ean and variance using Theorem  2.33. A detailed proof of 

Lem m a 2.36 is provided in the Appendix.

L e m m a  2 .35  Let VF be a B eta  random  variable w ith param eters p ,q .  T h at 

is, f  W{w ) =  w VP*?)- Then,

E (W )

E ( W 2)

P

P +  9 ’ 

P P + 1

P +  9 / P +  9 +  IA /

Var (W )
________ ES______ _

(P +  S ) 2(P  + 9 + 1 )

P ro o f :  T his is verified by noting the following [Bic77]:

l
j  w p~ 1( l —w ) q~ i div 
0

(Wp )W i )

l'(p  +  9) ’
□

L e m m a  2 .3 6  If W is a non-central B eta  random  variable, w ith 2, 2 degrees 

of freedom , and the  noncentrality , p ,  th a t  is, f  y y ( w )  =  ,

th en

E ( W )  =  I -  -  +  -7 - ,
P P 2 P2

^(VK2) =  I — — +  - ^ (1  — — +
V P  P2 ' P P



34

V a r(W )  _  4 ( 1  -  1  -  4  +  'U  +  4 +  4  +  -1T ) )  -
P P P P P P

P ro o f :  It is not obvious th a t  there are any published results on the

m om ents of a non-central Beta random  variable. The m om ents can be 

com puted by noting th a t  the probability density function of a non- 

central B eta random  variable can be expressed in term s of an infinite 

sum  of the product of the probability density functions of the Poisson 

and the central B eta random  variables in a separable fashion as 

indicated by Theorem  2.33. The m oments of a Poisson random  variable 

can be obtained by using its m om ent-generating function. T he mean 

and the variance of a central B eta random  variables are given in 

Lem m a 2.35. W ith fu rther algebraic m anipulation, the desired result is 

obtained. A detailed proof of this lemma is provided in the Appendix. □

In general, the m om ents of a non-central Beta random  variable w ith o ther 

degrees of freedom can be obtained in a similar way. We shall now determ ine 

the m ean and the variance of the sphericity.

T h e o re m  2 .37  Using the same notation and assum ption of Theorem  2.34, 

w e.have

£ ( i g  =  l - i  +  4 - 4 e - ' ' ,  (2 .1 5)

P P  P

V«.r(T>) =  4 ( l - ^ - 4 + 2e- ' ' ( l  +  i  +  4 + - £T - ) ) -  (2-16)
P P  P  P P P

P ro o f :  T he result is obtained by using Lemma 2.36 and Theorem  2.34. □

F o r an equilateral triangle, the non-centrality of the  sphericity,

p — _ if  ^jie set of three scene landm arks are duplicates of the
2<r

th ree  m odel landm arks, the  sphericity derived from  m apping the  model 

landm arks to  the scene landm arks should be I. W ith m inor distortion in the  

landm ark  locations, we would hope th a t  the  sphericity would be close to  I; i.e., 

we would hope the  sphericity has a  m ean close to  I and variance close to  0. 

T his indicates th a t  the  sphericity  is relatively robust w ith respect to  the  

d istortion. M inor d istortion in the landm ark locations implies th a t  the  

variance, a2, of the  i.i.d. norm al random  variables corresponding to  the  

d istortion  in the  scene landm arks is small. From  Equation 2.15 and 2.16, if



m
e
a
n

 
o

f

35

i.oo ■

Figure 2.2. A plot of the  m ean of the sphericity, E ( T g), given by E quation

2.15 versus —. Note th a t  — — ------ -— — - r ,  where a  and
p P (sidelength)

sidelength are the  standard  deviation used for the i.i.d. zero m ean 

norm al random  variables th a t  model the distortion in the  scene 

landm arks, and  the  length of a  side of the equilateral triangle, 

respectively.
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Figure 2.3. A plot of the  variance of the  sphericity, F o f(T j ), given by E qua

tion 2.16 versus —. Note th a t  — = ------ —— r ,  where cr and
P P (sidelength)2

sidelength are the standard  deviation used for th e  i.i.d. zero m ean 

norm al random  variables th a t  model the  distortion  in the  scene 

landm arks, and the  length of a  side o f the  equilateral triangle, 

respectively.
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cr2 —► 0,

E (T ff) —  I and F a r ( T ff) - O .

The mean (Equation 2.15) and the variance (Equation 2.16) of the sphericity

are shown in Figures 2.2 and 2.3. Note th a t  if — <C 0.02 ( . <  0.1 ),

F a r(T ff) <  0*015 and E (T ff) > 0 .9 6 . This m eans th a t  if the  standard  

deviation of the i.i.d. norm al random  variables, the  d istortion, is less than  

10% of the sidelength of the equilateral triangle, the m ean of the  sphericity  is 

greater than  0.96 and the variance is less than  0.015. Since the  sphericity of a 

triangular transform ation indicates the  sim ilarity between the  two triangles 

formed from  the model and the scene landm arks, respectively, the  two 

triangles are less similar as the distortion increases. W e thus expect th a t, as the 

distortion increases (cr increases), the mean of the sphericity decreases from  I, 

and  the variance of the sphericity increases, as are shown in Figures 2.2 and 

2.3. Hence, the  sphericity is relatively robust w ith respect to  d istortion  in the 

sense th a t  a small pertu rbation  in the  landm ark locations does n o t significantly 

change its value.

We shall next define a  non-central F random  variable and  show th a t  the 

conform ity (see Equation 2.4) has a non-central F  probability  density  function.

D e fin itio n  2 .38  Let

#  =  E  Ui I Ui ~~ N (Qi> 1J » and
. - I

F =  ^  V* » Vi ~  ^ ( 0 ,  J ) >
J - 1 . " '

where Ui ’s and Vi ’s are statistically  independent.

Then, the  random  variable
” 2 U 

n , F
is non-central E -d istribu ted  [Joh70],

w ith W1, Ti2 degrees of freedom , and non-centrality , E)a«'*
i=i

T h e o r e m  2 .3 9  The conform ity derived from  the  triangu lar transfo rm ation  

of an  equilateral triangle  w ith the above assum ptions is non-central F -

4
distributed w ith 2, 2 degrees of freedom  and n o n -c e n tra lity ,—;------

+  <?2
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P ro b f i: From  Equation 2.4,

: * ? ■+ < £ ■

W t e - T F T T r

Dividing both the num erato r and the denom inator of gD by (a f  +  rr|), 

it is seen th a t  the random  variable gp is non-central F -d istrib u ted  by 

Lem m a 2.31 and Definition 2.38. □

Since the m ean and the variance of a non-central F  random  variable do no t 

exist for 2, 2 degrees of freedom  [«Joh70], likewise, the m ean and the  variance of 

th e  conform ity do ho t exist.

W e have derived the probability  density function, the  m ean, and the 

variance of the sphericity of a  triangu lar transform ation  in closed form for the  

special case of an equilateral triangle. W e shall next em pirically estim ate the 

probability  density function of the sphericity for cases where the  probability  

density function cannot be obtained in closed form.

2 .6 .  E m p ir ic a l  E s t i m a t i o n  o f  T h e  P r o b a b i l i t y  D e n s i t y  F u n c t i o n  o f  

S p h e r i c i t y a n d D i l a t a t i o n

W e have derived the probability  density function of the sphericity  in 

closed form  for the special case of the  equilateral triangle. It is n o t clear how 

the sphericity is d istributed  for the  general case. W ith  the sam e assum ptions 

used in the case of modeling the  distortion  in the scene landm arks described in 

the  previous section, We em pirically estim ate the probability  density function, 

the  m ean, and the standard  deviation of the sphericity for several types of 

triangles using histogram s. E ach type of triangle is specified by an angle w ith 

a fixed height and a fixed base length such th a t  an angle of 6 0 0 corresponds to  

an equilateral triangle, as shown in Figure 2.4. W e refer to  the  sm allest 

perpendicular distance of a  triangle as the  sm allest perpendicular distance from  

a vertex to  th e  opposite side of th e  triangle, as shown in F igure 2.5. E ach of 

the i.i.d. norm al fandom  variables th a t  is used for m odeling the  d istortion is 

assum ed to  have zero m ean, and  s tan d ard  deviation equal to  a  percentage of 

the sm allest perpendicular distance o f the  triangle. T en thousand  sam ples are  

used for the  estim ation for each case.

T he sphericity  is d istribu ted  on [0, 1], which is quantized in to  50 regions 

for the cases studied. F igures 2.6-2.11 show the  estim ated probability  density  

function o f the  sphericity for six types of triangles specified by their angles. 

Each value of the  ‘‘noise level” corresponds to  a  percentage of the sm allest
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perpend icular distance of the triangle; the  length corresponding to this 

percentage is used as the stan d ard  deviation of the zero m ean i.i.d norm al 

random  variables used to model the distortion in the scene landm arks. Figures 

2.12 and 2.13 show some profiles of the plots shown in Figure 2.7 and 2.9, 

respectively. T he estim ated  m ean of the sphericity for various types of 

triangles and “ noise levels” is shown in F igure 2.14, and the estim ated 

stan d ard  deviation is shown in Figure 2.15. W ith a low noise level, the 

sphericity has an estim ated m ean close to I, and standard  deviation close to 0. 

The sphericity is thus relatively robust with respect to distortion in the sense 

th a t  a small pertu rb a tio n  in the landm ark locations does not significantly 

change its value.

W ith  the sam e assum ptions as m entioned above, we also estim ate the  

probability  density function, the  m ean, and the  s tan d ard  deviation of the 

dila tation  using histogram s as shown in Figures 2.16-25. From  Equation 2.4, 

the  d ila tation  is d istribu ted  on [1.0, oo). Since sam ples of the dila tation  th a t 

fall beyond 5.0 are negligible for the  cases studied, only the range [1.0, 5.0] is 

shown in Figures 2.14-23. T his range is also quantized into 50 regions. W ith a 

low noise level, the  d ila ta tion  has an estim ated m ean close to  I, and a very 

small stan d ard  deviation com pared to  the  range of the  dila tation . This 

indicates th a t  the  d ila ta tion  is also relatively robust w ith respect to  distortion. 

Since the value of the d ila ta tion  m ay be too large for com puter m anipulation, 

the  use o f the  sphericity as a  local shape m easure is preferable.

2 .7 .  S u m m a r y

Two local shape m easures, the  d ila ta tion  and the sphericity, have been 

studied in detail. W e have defined the  d ila ta tion  of a triangular 

transform ation , and shown th a t  it can be evaluated by three different 

m athem atical approaches: d irec t geom etric m ethod, quasiconform al m apping, 

and through th e  use of stra in  tensors. T he sphericity has also been introduced 

and defined as a  shape m easure.

B oth the  d ila ta tion  and  th e  sphericity  of a  triangu lar transform ation  are 

transla tion , ro tation , and  scale invarian t. To dem onstrate  th e  effect of these 

shape m easures w ith respect to  d istortion  in th e  scene landm ark  locations, the 

coordinates of the  model landm arks are assum ed to  be corrupted  and modeled 

as random  variables. F o r a  set of th ree model landm arks th a t  form  an 

equilateral triangle, the  p robability  density  function of th e  sphericity of the 

trian g u la r transform ation  is shown to  have a  non-central B eta  probability  

density  function . T he p robability  density  function of bo th  the  sphericity and
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d ilatation for cases which cannot be obtained in closed form are em pirically 

estim ated. W e conclude from these results th a t  these shape measures are 

relatively robust w ith respect to d istortion. The following chapters will 

dem onstrate  the  application of the sphericity for object recognition.
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F igure 2.4.

F igure 2.5.

Types of triangles used for estim ating probability  density func
tion of the sphericity and dilatation: each specified by an angle.

An exam ple showing the sm allest perpendicular distance from  a 
vertex to the opposite side of a  triangle.
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a n g l e = I 5

I .OC -I

F igure 2.6. E stim ated  probability  density function of the sphericity  for 
a n g le =  15° a t various noise levels. E ach  value of th e  “ noise 
level” corresponds to  a percentage of the  sm allest perpendicular 
distance of the triangle. The length corresponding to  the  
percentage value is used as the  s tan d ard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for m odeling the  
d istortion in the  landm arks.
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a n g le = 3 0

F igure  2.7. E stim ated  probability  density function of the  sphericity for 
an g le = 3 0 °  a t various noise levels. Each value of the “ noise 
level” corresponds to  a percentage of the sm allest perpendicular 
distance of the triangle. The length corresponding to  the  
percentage value is used as the standard  deviation of the zero 
m ean i.i.d. norm al random  variables used for modeling the  
distortion in the  landm arks.



e
s

t
im

a
t

e
d

 
p

44

a n g l e = H 5

Figure 2.8. E stim ated  probability  density function of th e  sphericity  for 
angle—45° a t various noise levels. E ach value of the “noise 
level” corresponds to  a  percentage of the sm allest perpendicular 
distance of the  triangle. The length corresponding to  the  
percentage Value is Used as the  s tan d ard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for m odeling the  
distortion in the  landm arks.
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a n g le = 6 0

F igure 2.9. E stim ated probability  density function of the  sphericity for 
a n g le =  60° a t various noise levels. Each value of the “noise 
level” corresponds to  a percentage of the sm allest perpendicular 
distance of the triangle. The length corresponding to  the  
percentage value is used as the  s tandard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for m odeling the  
distortion in the landm arks.
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a n g l e = ? 5

1.00

F igure 2.10. E stim ated  probability  density function of the sphericity for 
a n g le =  75 ° a t various noise levels. Each value of the “noise 
level” corresponds to  a  percentage of the sm allest perpendicular 
distance of the  triangle. T he length corresponding to  the  
percentage value is used as the  stan d ard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for m odeling the  
distortion  in the  landm arks.
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a n g l e = 9 0

F igure 2.11. E stim ated probability  density function of the  sphericity for 
an g le=  90 ° a t various noise levels. Each value of the  “ noise 
level” corresponds to  a  percentage of th e  sm allest perpendicular 
distance of the  triangle. T he length corresponding to  the  
percentage value is used as the  s tandard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for m odeling the  
distortion in the  landm arks.
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a n g le = 30
1.00 -I

s p h e r i c i t g

-- Noise Level = H

--Noise Level = 8

-- Noise Level - 16

Figure 2.12. Profiles of the  plo t of Figure 2.7. T hey correspond to  the  
estim ated  probability  density function of the  sphericity for 
a n g le =  30 ° a t noise levels of 4, 8, and 16.
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s p h e r i c i t y

-------;--- — Noise Level = H

--- -— ------Noise Level = 8

------- —----Noise Level = 16

Figure 2.13. Profiles of th e  p lo t of F igure 2.9. They correspond to  the 
estim ated  probability  density  function of the sphericity for 
a n g le = 6 0 <’ a t  noise levels of 4, 8, and 16.
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e s t im a te d  mean o f s e p h e r i c i t y

\ \ \

\

Y \

a n g  I e

a n g l e  -  30

------  — a n g l e .  = 4 5

-  -   ------- -  • a n g  I e  = 60

■----------- a n g l e  = 7 5

— -  -  - ---------   a n g l e  =  90

Figure 2.14. E stim ated  m ean of the  sphericity corresponding to  different types 
of triangles specified by angles 1 5 ° , 3 0 ° , 4 5 ° , 6 0 ° , 7 5 ° , and 
9 0 ° .
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e s t im a te d  s ta n d a r d  d e v i a t i o n  o f s e p h e r i c i t y

.M S-

/ /  '

/ / '

/ / /  / 9

1 3 .9  1 3 .9  «

n o is e  l e v e l

15

30

4 5

60

7 5

90

■-------- ------------- a n g l e  =

—  -•---— ---- ang Ie =

-------------- - ----- a n g l e  =

— — — ---- ------- a n g l e  =

— -  -  -  ----------- a n g I e  =

Figure 2.15. E stim ated  standard  deviation of th e  sphericity  corresponding to  
different types of triangles specified by angles 1 5 0, 3 0 0, 45 , 

6 0 ° , 7 5 ° , and 9 0 ° .
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a n g l e = 1 5

F igure  2.16. E stim ated  probability  density function of the d ila tation  for 
a n g le =  15° a t various noise levels. Each value of the “ noise 
level” corresponds to  a percentage of the sm allest perpendicular 
distance of the triangle. T he length corresponding to  the  
percentage value is used as the  s tandard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for modeling the  
distortion  in the  landm arks.
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a n g l® = 3 0

F igure 2.17. E stim ated  probability  density function of the  d ila ta tion  for 
a n g le =  30° a t various noise levels. Each value of the “noise 
level” corresponds to  a percentage of the sm allest perpendicular 
distance of the  triangle. T he length corresponding to  the  
percentage value is used as the  stan d ard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for m odeling the  
d istortion in th e  landm arks.
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a n g l e =45

1.00

F igure 2.18. E stim ated  probability  density function of the  d ila ta tion  for 
a n g le = 4 5 °  a t various noise levels. Each value of the  “noise 
level” corresponds to  a percentage of the sm allest perpendicular 
distance of the triangle. The length corresponding to  the  
percentage value is used as the standard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for modeling the  
distortion  in the  landm arks.
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a n g l e = 6 0

1.00

F igure 2.19. E stim ated  probability  density function of the  d ila tation  for 
a n g le = 60 ° a t various noise levels. Each value of the “noise 
level” corresponds to  a  percentage of the sm allest perpendicular 
distance of the  triangle. T he length corresponding to  the 
percentage value is used as the standard  deviation of the  zero 
m ean i.i.d. norm al random  variables used for modeling the 
d istortion in the  landm arks.
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a r i g l e =75

F igure 2.20. E stim ated  probability density function of the  d ila ta tion  for 
a n g le = 7 5 0 a t various noise levels. Each value of the  “noise 
level” corresponds to a  percentage of the  sm allest perpendicular 
distance of the triangle. The length corresponding to  the  
percentage value is used as the stan d ard  deviation of th e  zero 
m ean i.i.d. norm al random  variables used for m odeling the  
distortion in the landm arks.
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a n g l e = 9 0

1.00

F igure  2.21. E stim ated  probability  density  function of the  d ila ta tion  for 
a n g le =  75 0 a t various noise levels. E ach value of the “noise 
level” corresponds to  a  percentage of the  sm allest perpendicular 
distance of the  triangle. T he length corresponding to  the  
percentage value is used as the  s tan d ard  deviation of the zero 
m ean i.i.d. norm al random  variables used for modeling the  
distortion in th e  landm arks.
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-Noise Level = H 

‘Noise Level = 8 

-Noise Level =16

Figure 2.22. Profiles of the plot of Figure 2.17. They correspond to  the  
estim ated probability  density function of the dila tation  for 
a n g le = 3 0  * a t noise levels of 4, 8, and 16.
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a n g le ® . 6 0

.3 4 1  ■

s.ooa 3.*H 3

d i l a t a t i o n

—--— — ------ Noise Level

------------ Noise LeveI

---------  Noise Level

= H 

=  8  

=  1 6

Figure 2.23. Profiles of the  p lo t of F igure 2.19. T hey correspond to  the  
estim ated  probability  density  function of the sphericity  for 
a n g le = 6 0 0 a t noise levels of 4, 8, and 16.
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1 .9 6

* .0 0  1 3 .9 1 3 .0

n o is e  l e v e l

— — a n g l e  = 1 5  

a n g l e  — 30

----------------------- a n g l e  = 4 5

----------------------- a n g l e  = 60

— — ----- — — a n g l e  = 7 5

----------------------  a n g l e  = 90

Figure 2.24. FstiinE ted m ean of the  d ila tation  corresponding to  different types 
of triangles specified by angles 1 5 0, 30 ° , 4 5 ° ,  60 ” , 7 5 0, and
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e s t im a te d  s ta n d a r d  d e v ia t io n  o f d i l a t a t i o n

'  / /

•  .0 0

n o is e  l e v e l

—— — —------- -— a n g l e  = 15

------- —  ----- -— — a n g l e  = 30

-----— — -— -  —.—  a n g  I e  = 4 5

-  --- - --------- a n g l e  = 60

— — ——   --------a n g l e  = 7 5

—  _ -  -  <—  a n g l e  = 90

Figure 2.25. E stim ated  s tan d ard  deviation of the  d ila ta tion  corresponding to  
different types of triangles specified by angles 15" , 3 0 ” , 45* , 
60 *, 75 *, and 90 *.
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C H A P T E R  3

L A N D M A R K  E X T R A C T I O N

3 .1 . I n t r o d u c t io n

The shape features of each model in a library as -well as those of the 

objects in a scene have to  be extracted  before the shape recognition task  can be 

perform ed. The complexity of the feature ex tractor depends on the  desired 

shape features, which in tu rn  depend on the n a tu re  of the  shape recognition 

algorithm . A shape feature can be classified as e ither a  global or a  local shape 

feature. Exam ples of global shape features are the  silhouette and contour of an 

object. Exam ples of shape recognition m ethods th a t  operate on the  en tire  

object silhouette and contour are the  m om ent shape description m ethod 

[Hu62, E)|ud77], and the F ourier shape description m ethod [Per77], respectively. 

Exam ples of local shape features which represent portions of an object are line 

segments, edges, and corners of the  object. M any p artia l shape recognition 

m ethods [Bha84,Pri84, Aya86,Bha87,K oc87] use line segm ents as shape 

features to  achieve recognition. This chap ter discusses the  feature  ex traction 

task  of the  landm ark-based shape recognition system  shown in Figure 1.4. W e 

refer to  th is task  as landm ark extraction.

T he landm ark-based shape recognition approach uses landm arks, which 

are local shape features, to  recognize objects in a  scene. As m entioned earlier, 

landm arks are points o f in terest of the  object th a t  have im p o rtan t shape 

a ttribu tes. T hey are usually the  extrem e points, such as corners, holes, 

protrusions, and  points w ith high curvature. T hey can also be problem  specific 

based on a p rio n  knowledge. I t is im p o rtan t to  note th a t  the  en tire  object 

contour o f an  object is not needed for th is approach to  achieve recognition; the  

approach only requires knowledge of the  positions of the  landm arks o f the  

object in the  image. I t  is necessary to  order the  landm arks as consecutive 

points along the object boundary . However, if the  in terio r points of the  object 

are used as landm arks, it  is necessary to  arrange them  in a  pre-defined order 

reflecting the shape and geom etry of the  object.
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Among the extrem e po ints, points w ith high cu rvatu re  along the object 

contour are features th a t  are m ost a ttrac tive . An object contour is the  

boundary of the object. T his contour, as in the case of a model, usually 

represents one object. However, in a general scene, when occlusion is allowed, 

the contour could represent m erged boundaries of several objects. In th is 

chapter, we shall consider landm arks as the points of high curvature  on an 

object contour. O ther problem  specific types of landm arks will no t be 

considered. Note th a t erroneous landm arks of objects in a scene m ay occur due 

to  object occlusion or noise in the  scene. T he effectiveness of the landm ark  

m atching task  w ith respect to  erroneous scene landm arks will be discussed in 

the next two chapters. F or illustra tive purposes, we assum e th a t  images are 

obtained by orthographic projection, and  the  silhouette of an object region is 

either given or can be easily acquired from  an back-lit image by a  simple 

thresholding operation. Exam ples of back-lit images of objects together w ith 

their corresponding boundaries are shown in Figures 3.1-3.5. T he boundary of 

each object region is ex tracted  by m eans of a  chain code [Fre74].

M any partia l shape recognition m ethods use line segm ents which are  

derived from  polygonal approxim ation of an object contour as shape features. 

The vertices of the approxim ated  polygon are usually points w ith high 

curvature  along the object contour. T he vertices are also know n as the break 

points. W e shall begin by discussing tw o com m only used polygonal 

approxim ation algorithm s [Ram 72,Pav74] in Section 3.2. W e shall then  present 

tw o m ethods of detecting landm arks from  contours, the  cu rvatu re  guided 

polygonal approxim ation m ethod and  the  cardinal cu rvatu re  points m ethod, in 

Section 3.3 and  Section 3.4, respectively. F inally , a  sum m ary of this chap ter 

will be given in Section 3.5.

3 .2 .  P o ly g o n a l  A p p r o x im a t i o n

Polygonal approxim ation is th e  representation  of an object boundary  by a 

polygon. I t has been used to  ex trac t line segm ents used as shape features for 

m any p artia l shape recognition algorithm s [B ha84,Pri84, A ya86,B ha87,K oc87]. 

Two Commonly used polygonal approxim ation  approaches will be discussed. 

T he first approach is R am er’s algorithm  [Ram72]. T he second approach is a 

split-and-m erge algorithm  sim ilar to  the  one discussed in [Pav74]. A comm on 

function shared by m ost polygonal approxim ation algorithm s is the  collinearity 

test th a t  checks if points along a  boundary  portion  are collinear w ith  respect to  

a  stra ig h t line. C ollinearity is usually determ ined by the  m axim um  

perpendicular distance from  a po in t of the  boundary  portion  to  the  s tra ig h t
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F ig u re  3.1. A  512X 512 b a c k - li t  im age  o f  a  w ren ch  to g e th e r  w ith  its  b o u n -



65

F ig u re  3.2. A  512X 512 b a c k - li t  im ag e  o f a  need le-nose  p lie r  to g e th e r  w ith  its
b o u n d a ry .
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F igure  3.3. A 512X512 back-lit image of a  wire cu tter together w ith its boun- 
■ dary.
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F ig u re  3 .4 . A  512X 512 b a c k - li t  im age  o f a  spec ia lty  p lie r to g e th e r  w ith  its
b o u n d a ry .
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line. Consider a boundary portion between two points, A and B, we com pute 

the maximum perpendicular distance from the boundary portion to  the  

stra igh t line AB. If the distance is w ithin tolerance, th a t boundary portion is 

approxim ated by the stra igh t line segm ent AB. Otherwise, the poin t along the 

boundary portion th a t yields the m axim um  distance becomes a new break 

point, say C, and the boundary portion is approxim ated by two line segm ents 

AC and CB.

R am er’s algorithm  finds a set of break points along a given closed or open 

boundary using the above collinearity criterion repeatedly. T he boundary  is 

then approxim ated with a polygon by joining the break points w ith stra ig h t 

lines. Consider a closed boundary, R am er suggests th a t  the top left m ost po in t 

and the bottom  right m ost point of the boundary be used as the tw o initial 

break points. Based on these initial break points, new break points along the 

boundary are iteratively determ ined.

We shall illustrate the algorithm  by m eans of the following example:

The two initial break points are point I which is the  top  left m ost po in t, and 

poin t 4 which is the bottom  right m ost point of the  contour. Along the  upper 

right portion of the boundary between the  two initial break points, po in t 5 has 

the m axim um  perpendicular distance from  the boundary  portion  to  the  

stra igh t line joined by points I and 4. I t is greater th an  a  given tolerance, and 

hence becomes a  new break point. Similarly, poin t 2 along th e  lower left 

portion of the boundary between the tw o initial break points becomes a  new 

break point. The m axim um  perpendicular distance from  the  boundary  portion  

between points 4 and 5 is w ithin tolerance, and hence no new break po in t is 

found along th is boundary portion. Along the  boundary  portion  betw een points 

I and 5, point 8 which yields the m axim um  perpendicular distance to  th e  

stra ig h t line between points I and 5 th a t  is greater th an  the  tolerance becomes



a new break po int. Continuing in this fashion for the rem aining portions of 

the boundary th a t  have not passed the collinearity test, new break points along 

the boundary are found as shown. The algorithm  stops when no more break 

point can be found in which case all break points have passed the  collinearity

test v

'F igure 3.6a shows a closed boundary extracted from  a 512X612 image. 

The boundary a t a different orientation and a different scale are shown in 

Figures 3.7a and 3.8a, respectively. Applying H am er’s algorithm  to  these 

boundaries results in the approxim ated polygons shown in Figures 3.6b, 3.7b, 

and 3.8b, respectively. A tolerance of 20 pixels is used for the algorithm . These 

examples show th a t the  num ber of break points and their locations along the  

boundary obtained by R am er’s algorithm  are not the  sam e if the  sam e 

boundary is a t a different orien tation  or a different scale. T h a t is, break points 

along the boundary obtained by th is algorithm  are sensitive to  the  o rien tation  

and the scale of the boundary.

The split-and-m erge algorithm  requires a slightly m ore complex procedure 

than  R am er’s algorithm . T here are several versions of the  split-and-m erge 

algorithm . The one sim ilar to  [Pav74] will be discussed. Pavlid is and  Horowitz 

[Pav74] approxim ate boundary points by in terpolating stra ig h t line segm ents. 

Consequently, the  break points of the  approxim ated polygon do n o t usually lie 

on the  original boundary, and in fact, can be far from  it. In con trast, th e  

following split-and-m erge algorithm  will find break  points along a  given 

boundary. I t is briefly outlined below:

(I) Assign an a rb itrary  num ber of points along the  boundary  as the  in itial set 

of break points. The initial approxim ated polygon is form ed by jo ining the  

sequence of break points along the  original boundary  w ith  s tra ig h t lines.

(2) F o r each pair of ad jacen t break points, determ ine the  po in t along the  

boundary  portion th a t  yields the  m axim um  perpendicular distance to  th e  

stra ig h t line segm ent joined by th e  two break points. If th e  m axim um  

perpendicular distance is greater th an  a given tolerance, th a t  po in t 

becomes a  new break point; i.e., th e  line segm ent is replaced by tw o line 

segm ents. This is th e  “sp litting” p a r t  of the  algorithm .

(3) F o r each pair of ad jacen t line segm ents com prising of th ree  consecutive 

break points, say A, B, and  C, com pute the  m axim um  perpendicular 

distance from  the  boundary portion between A and C to  line AC. If the  

distance is w ithin tolerance, break poin t B is rem oved. T h a t is, line 

segm ents AB and BC are replaced by line segm ent AC. N ote th a t  each



F igure 3.6. Results of polygonal approxim ation of a  contour using different 
m ethods, (a) A  contour ex tracted  from  a 512X512 image, (b) 
T he approxim ated  polygon of th e  contour ob tained  by R am er’s 
algorithm , (c) T he approxim ated  polygon o f the  contour 
obtained by the  split-and-m erge algorithm , (d) The landm arks 
of the  contour obtained  by cu rva tu re  guided polygonal approxi
m ation. E ach landm ark  is indicated by an “ X-”
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(b)

■ ' :rv

Figure 3.7. R esults of polygonal approxim ation of the  ro ta ted  contour using 
different m ethods, (a) T he ro ta ted  contour of F igure 3.6a. (b) 
T he approxim ated  polygon of th e  ro ta ted  contour ob tained  by 
R am er’s algorithm , (c) T he approxim ated  polygon of th e  ro ta ted  
contour obtained by the  split-and-m erge algorithm , (d) The 
landm arks of the ro ta ted  contour obtained by cu rvatu re  guided 
polygonal approxim ation. E ach  landm ark  is indicated by an “ X*”
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F igure 3.8. R esults of polygonal approxim ation of the enlarged contour using 
different m ethods, (a) T he enlarged contour of F igure 3.6a. (b) 
T he approxim ated  polygon of th e  enlarged contour obtained by 
R am er’s algorithm , (c) T he approxim ated polygon of the  
enlarged contour obtained  by the  split-and-m erge algorithm , (d) 
T he landm arks of th e  enlarged contour obtained by curvature 
guided polygonal approxim ation. Each landm ark  is indicated by 
an “ X .”
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rep lacem ent is im m ediately tested for merging with the next Iihe segment.

T his is the “ m erging” p a rt of the algorithm .

(4) R epeat Steps (2) and (3) until an equilibrium  is reached; i.e., no more

splitting and m erging is necessary.

A pplying the split-and-m erge algorithm  to  the same set of boundaries th a t 

are used for R am er’s algorithm  results in the approxim ated polygons shown in 

Figures 3.6c, 3.7c, and 3.8c. Ten equally spaced points along the boundary are 

assigned as the initial set of break points. As in R am er’s algorithm , a tolerance 

of 20 pixels is again used. Like R am er’s algorithm , the num ber of break points 

and their locations along the boundary obtained by the split-and-m erge 

algorithm  are no t the same if the  boundary is a t a  different orientation or a 

different scale.

Both algorithm s are very sensitive to the tolerance. The original starting  

set of break points will also affect the final result. Regardless of the scale and 

the orien tation  of an object, the  num ber of landm arks of the object should no t 

vary, and their locations relative to  the object should no t deviate. Break 

points obtained by the  above polygonal approxim ation algorithm s th a t  vary  

w ith the  orien tation  and the scale of the  boundary are thus no t desirable 

landm arks. Two approaches th a t  obtain  more stable break points are 

discussed in the  following sections.

3 J 3 . C u r v a t u r e  G u id e d  P o ly g o n a l  A p p r o x im a t i o n

As m entioned above, different s ta rting  sets of break points used in a 

polygonal approxim ation algorithm  will result in different approxim ated 

polygons. A good sta rting  set of break points is thus im portan t to  the  

polygonal approxim ation algorithm . P o in ts w ith extrem e curvature  are 

po ten tial break points for approxim ating a  boundary w ith a  polygon. Since 

these extrem e curvatu re  points are likely to  be break points, we propose to  use 

these points as a  s ta rtin g  set of break points for the polygonal approxim ation 

algorithm . T he split-ang-m erge algorithm  will be used as th e  polygonal 

approxim ation algorithm  to  correct and  m odify the  original sta rtin g  set of 

break points. W e shall call such an approach curvature guided polygonal 

approximation.

Due to  th e  discrete boundary  representation and quantization error, false 

local concavities and convexities along a  boundary are introduced. Sm oothing 

is thus necessary to  reduce these false concavities and convexities. It has been 

shown th a t  a Gaussian filter is an ideal sm oothing filter for num erical 

differentiation [Tor86j. W e use the  approach of sm oothing a  p lanar curve w ith
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a Gaussian filter to find a starting  set of break points for the polygonal 

approxim ation. A planar curve can be represented by a set of points in 

param etric  form ,

( z ( 0 ,  y ( 0 )  £  Ir 2  »

•where t is the  path  length along the curve. Smoothing the curve w ith a 

Gaussian filter is the same as convolving x( t )  and y ( t ) ,  respectively, w ith a 

one-dim ensional Gaussian filter,

ri(t , cJ) — r—  z ,
V  2 ttcj

where cj is the  w idth (spatial support) of the filter. Denote the Gaussian 

sm oothed curve by the set of points ( X ( t y (J)j Y ( t ,  oj)). T h a t is,

X { t ,  J)  = x ( t )  * ri(t, 'j) , (3.1)

Y{ t , o j )  =  y{ t )  * r,{t, oj) , (3.2)

where * indicates convolution. It can be shown using elem entary calculus 

[Tho72] (as was shown in [Mok86]) th a t  the curvature of the  sm oothed curve is:

K ( t ,  (J)
X Y - Y X  

{ X 2 +  Y 2)3/2 ’

w here t is th e  p a th  length along the curve, 

u / is the  w idth of the Gaussian filter, 

K is th e  curvature  of the  curve a t  t ,

(3.3)

N ote th a t  th e  argum ents of X ( t ,  J )  and Y ( t ,  J )  have been dropped. As we 

“ traverse” along t in increasing values of t ,  a  positive curvature corresponds to  

a  concavity on our left, and a negative curvature corresponds to  a  concavity on 

our right. W e therefore propose to  select points along a curve th a t  corresponds 

to  th e  positive m axim um  and the  negative m inim um  curvature  points of the  

G aussian sm oothed curve as the  starting  set of break points for polygonal 

approxim ation . From  now on, we refer to  an extrem e curvature poin t as either 

a  positive m axim um  or a negative m inim um  curvature point.
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The curvature  guided polygonal approxim ation algorithm  as applied to  a 

closed boundary can be sum m arized by the following procedure:

(l)  Remove all one-pixel wide protrusions. Figure 3.9 shows an exam ple of a 

one-pixel wide protrusion which m ay result due to  the discrete boundary  

■representation and quantization error.

•

•

■ •

X X

X X X

(a)

:

, ,

\ X X 7

X X X

.(b>

Figure 3.9. An exam ple of a  one-pixel wide protrusion, (a) One-pixel wide 
protrusion, (b) A fter removing the protrusion. X indicates a  
boundary pixel. •  indicates a boundary protrusion pixel.

(2) Sm ooth the boundary w ith the above Gaussian filter.

(3) F ind  th e  set of positive m axim um  and negative m inim um  curvature  points 

along th e  Gaussian sm oothed boundary.

(4) The points along the  original boundary (with one-pixel wide protrusions 

rem oved) th a t  correspond to  the set of points found in Step (3) are used as 

the  sta rting  set of break points for polygonal approxim ation of the 

original boundary.

(5) Em ploy th e  split-and-m erge polygonal approxim ation algorithm  

m entioned in Section 3.2.

(6) T he resulting break  points are the  landm arks of the  boundary.

Two param eters, u> of the  Gaussian filter and  the tolerance for 

collinearity, m ust be set in using the algorithm . T here is a  trade-off w hen 

choosing th e  value of u>. A  large value will remove small details of the  

boundary  curvature, while a  small value will perm it false concavities and 

convexities. Since We only w an t to  estim ate a  starting  set of break points for 

the split-and-m erge polygonal approxim ation algorithm , a  flexible range of
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values for us is feasible. The tolerance is scale dependent; i.e., using the sam e 

tolerance for a boundary a t a different scale m ay yield a different result. I t  is 

usually chosen by trial and error, or based on a priori knowledge abou t the  

scale of the boundary. T he curvature guided polygonal approxim ation 

algorithm  is thus sensitive to  scaling. It does, however, eradicate  two 

undesirable characteristics associated with m ost polygonal approxim ation 

algorithm s; it provides a good starting  set o f  break points, and it is less 

sensitive to orientation.

The results of applying curvature guided polygonal approxim ation 

algorithm  to  the same set of boundaries th a t  are used for R am er’s algorithm  

are shown in Figures 3.6d, 3.7d, and 3.8d, respectively. A w idth  of 5 pixels for 

the Gaussian filter and a  tolerance of 20 pixels for the collinearity tes t are used. 

The examples indicate th a t  break points obtained by th is a lgorithm  are less

sensitive to orientation, b u t rem ains sensitive to scaling.

A  step by step pictorial depiction of extracting the  landm arks of a 

“w rench” image (Figure 3.1) using curvature guided polygonal approxim ation 

algorithm  is described below. Figure 3.10 shows the  Gaussian sm oothed 

contour of F igure 3.1 w ith co=10. The corresponding curvatu re  function is 

shown in Figure 3.11, where a symbol indicates a b reak  po in t w hich is 

either a local positive m axim um  or a local negative m inim um  curvatu re  poin t. 

Drily points on stra igh t line segm ents have curvature  value of zero. Since 

extrem e curvature points w ith curvature values close to  zero are  likely lying on 

curve segments th a t  are alm ost stra ight, we consider only those positive 

m axim a which lie above a  specified threshold. Likewise we consider only those 

negative m inim a which lie below another specified threshold. F rom  em pirical 

results, we have found th a t  using 0.0035 and -0.0035 as th e  respective positive 

and negative threshold provides reasonable results. T he in itial break poin ts 

along the original boundary are shown in Figure 3.12. A fter the  sp lit-and- 

merge polygonal approxim ation using a  tolerance of 15 pixels, th e  final set of 

landm arks along the original boundary  are shown in F igure 3.13. Using th e  

same param eters as above, the  extracted landm arks of th e  needle-nose plier 

(Figure 3.2), the  wire cu tter (Figure 3.3), the  specialty plier (Figure 3.4), and 

the  wire stripper (Figure 3.5) are shown in Figures 3.14-3.17, respectively.
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F igure 3.10. The Gaussian sm oothed boundary  of a  w rench (Figure 3.1) using 
CcJ=IO. Each “ X” indicates an extrem e curvatu re  point.
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F igure 3.11, T he curvature  function of th e  Gaussian sm oothed boundary  of 
the  wrench using a>=10. E ach  indicates an extrem e curvature  
point.
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F igure 3.12. The initial set of break points, each indicated by an “ X ,” used 
for a  subsequent polygonal approxim ation.

F igure 3.13. The landm arks of the  wrench obtained by th e  cu rvatu re  guided 
polygonal approxim ation. E ach landm ark  is num erically labeled, 
and is indicated by an “ X .”
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F igure 3.14. T he landm arks of the needle-nose plier (Figure 3.2) obtained by 
the curvature  guided polygonal approxim ation. Each landm ark is 
num erically labeled, and is indicated by an “ X .”

Figure 3.15. T he landm arks of the  wire cu tte r (Figure 3.3) obtained by the 
curvature  guided polygonal approxim ation. Each landm ark is 
num erically labeled, and is indicated by an “ X .”
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F igure 3.16. T he landm arks of the  specialty plier (Figure 3.4) obtained by the  
cu rvatu re  guided polygonal approxim ation. Each landm ark is 
num erically labeled, and is indicated by an “ X.”

Figure 3.17. T he landm arks of the wire stripper (Figure 3.5) obtained by the  
curvature  guided polygonal approxim ation. Each landm ark is 
num erically labeled, and is indicated by an “ X .”
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3 .4  C a r d in a l  C u r v a tu r e  P o in t s

In the  curvature guided polygonal approxim ation algorithm , if the 

boundary is sm oothed by a Gaussian filter w ith a large oj, false local 

concavities and convexities are unlikely because of the sm oothness of the  

boundary . T he extrem e (positive m axim um  and negative m inim um ) curvature  

points of such a sm oothed boundary are stable with respect to orientation and 

scaling; i.e., their locations along the unsm oothed boundary rem ains relatively 

unchanged when the boundary is ro tated , or scaled w ithin a reasonable range. 

W e shall refer to these stable local extrem e curvature points as the cardinal 

curvature points.

The cardinal curvature points along the boundary of an object are 

suitable landm arks of the object. They are extreme curvature points of the  

boundary  th a t  are stable w ith respect to Gaussian sm oothing for a reasonable 

range of values of o j  and, a t the  same tim e, possess the shape a ttrib u tes of the  

boundary. Since .o j  determ ines the degree of detail (smoothing) of the sm oothed 

boundary , stab ility  of the cardinal curvature  points for a reasonable range of 

values of o j  implies th a t the cardinal curvature  points are stable w ith respect to  

a  reasonable degree of scaling. Since cardinal curvature points are obtained by 

Gaussian sm oothing w ith a larger o j  th an  the o j  used for the curvature  guided 

polygonal approxim ation, the  num ber of landm arks obtained from  the cardinal 

cu rva tu re  points is usually less th an  th a t  by the curvature guided polygonal 

approxim ation.

Given a library of model objects, the  cardinal curvature points of each 

object boundary  are obtained by successively sm oothing the boundary w ith a 

Gaussian filter w ith various w idths un til the  extrem e curvature points do no t 

change (their num ber rem ains the  same, and their locations deviate only a 

sm all am ount) for a  reasonable range of o j . Figures 3.18-3.33 depict the  

extrem e curvature  points of th e  Gaussian sm oothed boundaries of a wire cu tter 

(Figure 3.3) and the corresponding curvature  functions a t various degrees of 

sm oothing. T he extrem e curvatu re  points of the wire cu tter shown in Figure 

3.23 are th e  cardinal curvature  points. T hey are stable for o j  ranging from  16 

to  28.5. T he locations of th e  cardinal curvature points along the  original 

boundary  are th e  locations of the  landm arks of the wire cu tter, as shown in 

F igure 3.34. T he landm arks obtained for o ther objects by th is approach are 

shown in Figures 3.35-3.38, and  their corresponding range of stability  for the  

values o f  o j  are sum m arized in T able 3.1. Stability  w ith respect to  a reasonable 

degree of scaling is dem onstrated  by the  examples shown in Figures 3.39 and

3.40, w here th e  locations of the  landm arks obtained for the specialty plier
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which has been scaled by an area factor of 0.5 and 2.1, respectively, are 

relatively invarian t. One draw back of this approach is th a t small desirable 

details m ay be deleted by the smoothing. On the o ther hand, an algorithm  th a t 

can detect small details m ay a t the same tim e introduce m any false details.

3 .5 .  S u m m a r y

Two widely used polygonal approxim ation algorithm s along w ith their 

draw backs have been discussed. We have developed two new m ethods to  

detect landm arks from contours. The first m ethod is known as the curvature  

guided polygonal approxim ation. It is based on the fact th a t break points 

resulting from  a polygonal approxim ation o f an object boundary are m ostly 

extrem e curvature  points of the  boundary. Sm oothing is carried o u t to avoid 

excessive false concavities and convexities. A more robust approach is 

introduced th a t  uses the cardinal curvature points of an object boundary  as 

the landm arks. The num ber of landm arks obtained using th is approach is 

usually Smaller than  th a t  using the curvature guided polygonal approxim ation; 

hence, less com putation is required for the higher level landm ark m atching  

processing stage.

Table 3.1.
Range of u  values used to  obtain the landm arks 

of various objects based on cardinal curvature points

Models Figures Range of u>

wrench 3.35 14.5-24

needle-nose plier 3.36 14.5-(>100)

wire cu tte r 3.34 16-28.5

specialty plier 3.37 14-40.5

wire stripper 3.38 16.5-36.5
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F igure 3.18.

F igure 3.19.

The Gaussian sm oothed boundary of the wire cu tte r using lo=1. 
Each “ X” indicates an extrem e curvature  point.

T h e  G aussian  sm o o th e d  b o u n d a ry  o f th e  w ire  c u t te r  u s in g  u*=2.

E a c h  “ X ”  in d ic a te s  a n  e x trem e  c u rv a tu re  p o in t.



F igure 3.20. The Gaussian smoothed boundary  of the  wire cu tte r using cj= 4. 
Each “ X” indicates an extrem e curvature  point.

F ig u re  3.21. T h e  G au ssian  sm o o th ed  b o u n d a ry  o f th e  w ire  c u t te r  u s in g  u*=8
E a c h  “ X ”  in d ica tes  a n  e x tre m e  c u rv a tu re  p o in t.
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F igure 3.22. The Gaussian sm oothed boundary  of the wire c u tte r  using u^=12. 
E ach  “ X” indicates an extrem e curvature point.

F ig u re  3.23. T h e  G au ss ian  sm o o th e d  b o u n d a ry  o f  th e  w ire  c u t te r  u s in g  0^=20.
E a c h  “ X ” in d ic a te s -a n  e x tre m e  c u rv a tu re  p o in t.
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F igure 3.24. T he Gaussian sm oothed boundary  of the wire cu tte r using u*=30. 
E ach “ X” indicates an extrem e curvatu re  point.

F ig u re  3 .25 . Thfe G au ss ian  sm o o th e d  b o u n d a ry  o f  th e  w ire  c u t te r  u s in g  u*=40.
E a c h  “ X ” in d ic a te s  a n  e x tre m e  c u rv a tu re  p o in t.
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Figure 3.26. T he curvature  function of the  Gaussian sm oothed boundary of 
the  wire cu tte r using w = l.
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F igure 3.27. T he cu rvatu re  function of the  Gaussian sm oothed boundary of 
th e  wire cu tte r using cu=2.
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F ig u re  3 .28 . T h e  c u rv a tu re  fu n c tio n  o f th e  G aussian  sm o o th ed  b o u n d a ry  o f
th e  w ire  c u t te r  u sin g  co = 4 .  E a c h  in d ica te s  a n  e x tre m e
c u rv a tu re  p o in t.
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F ig u re  3 .29 . T h e  c u rv a tu re  fu n c tio n  o f th e  G au ssian  sm o o th e d  b o u n d a ry  o f
th e  w ire  c u t te r  u sing  w = 8. E a c h  in d ic a te s  a n  e x tre m e

c u rv a tu re  p o in t.
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F ig u re  3 .30 . T h e  c u rv a tu re  fu n c tio n  o f th e  G au ssian  sm o o th e d  b o u n d a ry  o f
th e  w ire  c u t te r  u s in g  cv=12- E a c h  in d ic a te s  a n  e x tre m e

c u rv a tu re  p o in t.
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F ig u re  3.31. T h e  c u rv a tu re  fu n c tio n  o f  th e  G au ss ian  sm o o th e d  b o u n d a ry  o f
th e  w ire  c u t te r  u sin g  c j= 20. E a c h  in d ic a te s  a n  e x tre m e
c u rv a tu re  p o in t.
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F ig u re  3 .32 . T h e  c u rv a tu re  fu n c tio n  o f th e  G au ss ian  sm o o th e d  b o u n d a ry  o f
th e  w ire  c u t te r  u s in g  w = 30 . E a c h  in d ic a te s  a n  e x tre m e
c u rv a tu re  p o in t.
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F ig u re  3 .33 . T h e  c u rv a tu re  fu n c tio n  o f th e  G au ss ian  sm o o th e d  b o u n d a ry  o f
th e  w ire  c u t te r  u sin g  w = 40. E a c h  in d ic a te s  a n  e x tre m e
c u rv a tu re  p o in t.
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F igure 3.34. T he landm arks of the wire cu tte r based on the cardinal curvature  
points. E ach landm ark  is num erically labeled, and is indicated 
by an “ X .”

Figure 3.35. T he landm arks of the  wrench based on the  cardinal curvature  
points. E ach landm ark  is num erically labeled, and is indicated 
by an “ X .”
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F igure 3.36. The landm arks of the needle-nose plier based on the cardinal 
curvature  points. Each landm ark is num erically labeled, and is 
indicated by an “ X .”

Figure 3.37. T he landm arks of the specialty plier based on the cardinal 
cu rva tu re  points. Each landm ark is num erically labeled, and is 
indicated by an “ X .”
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F igure 3.38. The landm arks of the wire stripper based on the cardinal 
curvature  points. Each landm ark is num erically labeled, and is 
indicated by an “ X .”

Figure 3.39. T he landm arks of the  specialty plier, scaled by an area factor of 
0.5, based on the  cardinal curvature points. Each landm ark is 
num erically labeled, and is indicated by an “ X.”
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F igure 3.40. The landm arks of the specialty plier, scaled by an area  factor o f 
2.1, based on the cardinal curvature points. E ach  landm ark  is 
num erically labeled, and is indicated by an “ X .”
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C H A P T E R  4

L A N D M A R K  M A T C H I N G  A N D  L O C A T I O N  E S T I M A T I O N

I . - ■ ■: i ̂  v: ' . ■ ''; ■

4 .1 .  I n t r o d u c t io n

In the previous chapters, we have developed tw o m ethods to  ex trac t 

landm arks. W e have also shown th a t  sphericity is a robust shape m easure. In 

th is chapter, we shall describe the  landm ark  m atching task  and  th e  decision 

strategy  of our landm ark-based shape recognition approach (see F igure 1.4). 

Before we discuss the  landm ark  m atching  task , we shall first review recent 

work on 2-D p artia l shape recognition in Section 4.2. L andm ark  m atching, 

location estim ation, and  m atching verification will be discussed in Section 4.3. 

The com putational com plexity of th e  landm ark  m atching task  will be 

evaluated. Some experim ental results will be presented in Section 4.4. A  

su m m a r y  of th is chap ter will then  be given in Section 4.5.

4 .2 .  L i t e r a t u r e  R e v ie w

R ecent w ork on 2-D partia l shape recognition has exhibited an increasing 

in terest in developing m ethods capable of recognizing objects when global 

inform ation abou t the  objects are n o t available. W e shall discuss several 

m ethods reported in the  recent lite ra tu re .

Bolles and  C ain [Bol82] use a hypothesis generation and  verification 

approach to  recognize and  locate p artia lly  visible objects. T he shape features 

of an  object are holes and  corners (right-angled corners are used in th e  paper). 

T he physical description of the  features, such as the  size of a  hole and  the  

included angle of a  corner, are used to  indicate th e  sim ilarity  betw een a  m odel 

feature and  a  scene feature. T he s tru c tu ra l relationships am ong the  shape 

features are then  exploited to  construct a  s truc tu red  graph. A  node of th e  

graph corresponds to  an  assignm ent p a ir indicating a  possible m atch  betw een a  

model and  a scene fea ture  based on their physical description. Tw o nodes th a t  

are m utually  com patible in s tru c tu re  and  m eet certain  criteria  are connected 

w ith an  arc. Tw o nodes are said to  be struc tu ra lly  com patible if th e  physical
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d istance and the  relative o rien tation  between two scene features are w ithin 

certain lim its w ith respect to  those of the two model features. The hypothesis 

of a model in a scene is generated by finding the largest completely connected 

subgraph using an algorithm  know n as a maximal-clique algorithm . The 

largest connected subgraph corresponds to  the largest set of structu ra lly  

com patible m atches of the graph. T he location and orien tation  of the model in 

the scene is estim ated from  the m atched pairs of the largest connected 

subgraph. The model is then  transla ted  and ro tated  onto  the scene. The 

hypothesis is then  verified by checking the boundary consistency between the 

scene and the coordinate transform ed model. Since the  goodness of m atch 

between the m odel features and the  scene features is determ ined by the  

physical and  stru c tu ra l descriptions of the  features which are no t scale 

invarian t, th is approach is susceptible to  scale variations. In addition, the  

clique finding algorithm  is very complex and com putationally  intensive.

B hanu and Faugeras [Bha84] cast th e  shape m atching problem  as a 

segm ent m atching problem . An object contour is first approxim ated by a 

polygon from  w hich feature  values such as the  length of a  segm ent, the  slope of 

a  segm ent, th e  angle betw een tw o ad jacen t segm ents, and  th e  intervertice 

distance are com puted. T he sum  of the  w eighted absolute differences of the 

feature  values betw een a  m odel and a scene segm ent is th e  shape m easure 

betw een the  tw o segm ents. This m easure indicates the  goodness of m atch  

between the  tw o segm ents. A  stochastic labeling scheme is then  used to  label 

each model segm ent e ither as one of the  scene segm ents or NIL (no m atch).

This approach  exemplifies an  application of the relaxation labeling m ethod 

in th e  com puter vision area. I t is com putationally  intensive. A  good estim ate of 

the  initial assignm ent of th e  label is im p o rtan t to  the  convergence of the 

approach and the  valid ity  of the  result. In addition, feature  values such as the  

length of a  segm ent and  th e  in tervertice distance are scale dependent, the 

shape m easure based on these fea ture  values are thus sensitive to  scale 

variations. Therefore, th e  algorithm  canno t recognize objects in a  scene th a t  

have a  different scale from  th a t  of th e  models.

A  sim ple technique to  solve the  occlusion problem  has been proposed by 

Price [Pri84]. T he shape features of an object are the  line segm ents of the  

approxim ated polygon of the  object. E ach  m odel segm ent is then  com pared 

w ith  every scene segm ent in term s of th e ir lengths, and  the  included angles 

betw een successive segm ents. If the  lengths and  the angles are w ithin  certain  

thresholds, th e  model segm ent is said to  be com patible w ith  the  Scene segm ent, 

and  their o rien tation  difference is stored  in an a rray  know n as a  d isparity
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array. Since segm ents of an object are arranged sequentially along the object 

contour, segm ents between the model and the scene are likely to  be m atched in 

a sequence. T he longest consecutive sequence of m atching segm ents between 

the  m odel and the scene corresponds to  the longest com patible consecutive 

diagonal en tries of the d isparity  array  th a t  have sim ilar orientation differences. 

A transfo rm ation  th a t  aligns the model segm ents w ith the m atched scene 

segm ents is evaluated. Applying th is transform ation  to  the model segments, 

d isparity  values based on the segm ent positions and orientations are updated  

and stored in the  disparity  array . T he final m atches between the  model and 

the  scene segm ents are determ ined by finding the  longest cOnipatible 

consecutive diagonal entries of the  new disparity  array.

P ric e ’s procedure is simple, b u t n o t com putationally  efficient since every 

en try  of th e  d isparity  a rray  has to  be considered for the  sta rting  location of the 

longest sequence. Furtherm ore, the  technique is sensitive to  scale variations 

because th e  feature  value, such as the  length of a  line segm ent, used in th is 

technique is inherently  scale dependent.

B hanu  and  M ing [Bha87] im prove upon P rice ’s approach by using th e  

sam e d isparity  a rray  b u t w ith a  different m atching process. T he m atch in g  

process first applies the  K -m ean  clustering algorithm  iteratively  on the  

d isparity  a rray  un til the  optim al num ber of clusters is found. I t then  checks for 

th e  elem ents of each cluster th a t  are in a  sequential order, and  finds the  

sequences. Several heuristics are included to  determ ine the  sequences. The 

process then  clusters the  sequence averages using the sam e clustering algorithm  

described above. T he cluster which contains the  largest num ber of sequences 

determ ines the  final m atches between the  model and  the  scene segm ents. A  

confidence value which is the  ratio  of th e  cum ulative length of the  segm ents in 

the  final m atching  to  th e  to ta l length of all segm ents of the  model is evaluated 

to  verify th e  final m atching.

T he approach  is capable of recognizing occluded objects. However, it 

suffers th e  sam e sensitivity to  scale variations. Though it is com putationally  

m ore efficient th a n  P rice ’s approach, it  rem ains com putationally  expensive 

because o f th e  iterative na tu re  of th e  algorithm .

A yache and  Faugeras [Aya86] develop a  m ethod know n as H Y PER  

(HYpotheses P red ic ted  and E valuated  Recursively) to  recognize and  position 

2-D objects. T he shape features of an  object are th e  line segm ents of the  

approxim ated  polygon of th e  object. T he longest m odel segm ents are called th e  

“ privileged” segm ents. A  hypothesis is m ade by m atching a  “ privileged” model 

segm ent w ith  a  scene segm ent based on some com patib ility  criteria. T he two
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segm ents are com patible if .(I) the  included angles of the segments m ade w ith  

their respective preceding segm ents are approxim ately equal to  each other, and

(2) the  ra tio  between the  lengths of the  two segments is close to an a pnort 

estim ated  scale factor. Such criteria  will usually generate m any hypotheses. 

The num ber of hypotheses is reduced by lim iting the num ber of “privileged” 

model segm ents and selecting only the best few hypotheses for fu rth er 

processing. A coordinate transfo rm ation  including translation , ro tation, and 

scaling tak ing  the “ privileged” m odel segm ent onto th e  scene segm ent is 

estim ated. Based on a  m atched  pair between a “privileged” model segm ent 

and a  scene segm ent, additional segm ents between the model and the  scene 

having a  sm all dissim ilarity m easure are m atched. The dissim ilarity m easure 

betw een a  m odel and a scene segm ent is a  weighted sum  of the differences of 

th e  orien tations, lengths, and  the  Euclidean distance between th e  two 

segm ents. F or each additional m atched pair, the  coordinate transform ation is 

u pda ted  by a  K alm an filter, and  a  quality  m easure which accounts for the  

relative length of th e  m odel segm ents th a t  have been identified is com puted. 

T he m atching  process ends when a  large enough num ber of hypotheses have 

been evaluated , or w hen a  very high quality m easure of a  hypothesis is 

reached. T he  hypothesis having th e  highest quality m easure is finally 

reexam ined using the  last estim ated  param eters of the  coordinate 

transfo rm ation  as th e  in itial estim ation. Using these param eters as the initial 

estim ates o f th e  coordinate transform ation , the  process is repeated un til it 

converges. T he reexam ined hypothesis is finally validated or rejected based on 

its quality  m easure.

T he shape m easures (the com patib ility  m easure and  the  dissim ilarity 

m easure) used in th is approach  are n o t unique} i.e., segments th a t are locally 

different could yield sim ilar shape m easures. Unless an estim ate of the  scale 

factor based on a priori knowledge is provided, the  approach is sensitive to  

scale varia tions. T he iterative n a tu re  of th is approach also m akes it 

com putationally  expensive.

Koch and  K ashyap [Koc87] use a  hypothesis generation and verification 

approach , a  concept sim ilar to  [Bol82], to  solve the  p artia l recognition problem . 

However, th e  shape features, th e  shape m easures, and the m atching m ethod are 

different from  those of [Bol82]. E ach  object is first approxim ated by a  polygon 

from  w hich corner points are ex tracted . According to  [Koc87], a  corner defines 

a  group of line segm ents centered a t  a  com er vertex. T o m atch  two corners, 

th e  polygon fragm ents associated w ith each corner are first quantized in to  a  

sam e num ber of points. T hen  a  coordinate transform ation  consisting of
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ro tation  and transla tion  th a t  minimizes the squared error between the points of 

the polygon fragm ents is determ ined. The resulting m inim um  Squared error is 

the shape m easure used to  indicate the dissim ilarity between the tw o corners. 

It involves the first-order, second-order, and cross m om ents of the polygon 

fragm ents of the two corners. These m om ents can however be com puted by 

using the vertices of the polygon fragm ents, and thus a  large am ount of 

com putation is reduced.

T he hypothesis generation involves two steps. The first step determ ines 

the com patibility  of the m atches between the model and the  scene corners. 

Iyfatches th a t  are considered com patible m ust satisfy certain constraints. T he 

final hypothesis is reached by growing a cluster around a good m atch . The 

resulting cluster is a  group of m atches between the  model and the  scene 

corners. T he least squared coordinate transform ation th a t  transform s a  group 

of model corner points onto a group of scene corner points in a  least squares 

sense is also obtained. To verify the hypothesis th a t  the model is in the  scene, 

the  hypothesized m odel polygon is applied w ith the above least squared 

coordinate transform ation . The m atch error of the hypothesis is th e  difference 

between th e  area enclosed by the  scene polygon and the  area enclosed by the  

scene polygon unioned w ith the transform ed model polygon. A  large m atch  

error results in the  rejection of the hypothesis while a  small one results in th e  

acceptance of the  hypothesis. T he algorithm  has assum ed th a t  the  m odel and 

the  scene are of the  sam e scale. I t  is sensitive to  scale variations because the  

least squared error between a  model and a  scene polygon will depend on the  

scale of bo th  the  m odel and  the scene polygons.

T urney  et al. [Tur85] employ a  tem plate m atching algorithm  to  recognize 

partially  occluded objects. T he tem plate  of an  object is its boundary . I t is 

subdivided in to  subtem plates which are portions of the object boundary . E ach  

subtem plate  is associated w ith a  value known as its significant value which 

indicates the  im portance of th e  subtem plate. A  subtem plate  having a  high 

significant value is considered as a  distinctive feature. M atching is done by 

cross-correlating each subtem plate  w ith  the scene boundary  in th e  angle versus 

arc length space. T he angle a t  a  boundary pixel is the  angle o f the  tan g en t a t 

th a t  pixel. A  m atching coefficient which indicates th e  goodness of m atch  

betw een a  scene boundary  segm ent and a  subtem plate is com puted. T his 

coefficient is w eighted by the  significant value of the  subtem plate.

T his algorithm  can recognize a  partially  occluded object provided th a t  the  

d istinctive boundary  segm ents associated w ith the  object is no t occluded. A
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object tem plate. Again, m atching in the angle versus arc length space is 

sensitive to  scale variations.

In con trast to  T urney et o/.’s use of distinctive features, Knoll and Jain  

[Kno86] em phasize features th a t  are common to  several objects to  hypothesize 

fo r object identities and orientations. A list is associated w ith each feature  

th a t  indicates where it occurs in each model. W hen a m atch  of a  feature  w ith 

the scene is found, models having such a feature are hypothesized for their 

identities and orientations from  the feature’s list. Each of these hypotheses is 

then  tested  and verified. Knoll and Jain call th is approach the  feature indexed 

hypotheses m ethod.

T he features used are fixed length boundary segm ents of an object. T he 

shape m easure betw een tw o features is the  sum  of the  point-wise Euclidean 

distances betw een the tw o appropriately aligned boundary  segm ents. The 

hypothesis tes t involves a  variation of tem plate m atching and the  use of several 

heuristics. A score is generated for each hypothesis test. A  negative score 

indicates a  negative evidence of the hypothesis. The hypothesis having th e  

highest score is the  m ost confident hypothesis.

T h is approach alleviates the problem  of having distinctive features 

occluded. If th e  num ber of m atches per feature can be controlled, the  

recognition tim e can be m ade proportional to  the square root of the  size of the  

m odel set. However, th is num ber is usually difficult to  determ ine especially 

when objects are occluded in which case features m ay disappear or m ultip ly . 

Since th e  features are fixed length boundary segm ents and  their num ber is 

restricted , th is approach is also sensitive to  scale variations.

G orm an and  M itchell [Gor88] represent an  object contour by breaking the  

con tour in to  contour segments. The break points of th e  contour are  the  

vertices which result from  a polygonal approxim ation of th e  contour. E ach 

contour segm ent is a  portion o f the object contour and consists of th ree 

consecutive vertices. I t begins from  a vertex which is considered as th e  first 

vertex and  then  ends a t  the  th ird  vertex along the  object contour. T he fea tu re  

values of each contour segm ent are the  Fourier coefficients derived from  

tracing  along th e  segm ent from  the beginning to  the end and then  back to  the  

beginning o f the  segm ent. The shape m easure between a  m odel and  a  scene 

contour segm ent is the  norm  squared distance between the  F ourier coefficients 

o f th e  tw o segments. An inter-segm ent distance tab le  m easuring th e  norm  

Squared distances between the  model and the  scene contour segm ents is 

constructed . T he row index of the table indicates a  model segm ent, and  the



column index indicates a  scene segm ent. E n try  (i, j )  is referred to  as the  i th  

row and the j th  column en try  of the table. I t stores the norm  squared distance 

between the  Fourier coefficients of the  »th model segm ent and the J th  scene 

segm ent. T he table is augm ented by repeating the rows.

A  backw ard dynamic program m ing procedure is used to  determ ine the  

m inim um  distance pa th  starting  from  the first column to  the  last colum n of 

the  augm ented table. An en try  along the m inim um  distance p a th  th a t  results 

from a diagonal transition corresponds to  a  m atch between the  m odel and the  

scene segm ent, indicated by the row and the column index of the  en try . They 

use a criterion for pa th  completeness requiring th a t  the  p a th  m ust m ake use of 

all scene segments. This m eans th a t  the  p a th  m ust traverse th rough every 

column of the table, from  the  first column to  the  last colum n of the table. 

This criterion seems inadequate for tw o reasons. F irst, the  scene m ay consist of 

more th an  one object overlapping each other, and hence has m ore segm ents 

th an  the  model. Second, the  scene m ay also have only one o b jec t being 

occluded and have less segm ents th an  the  model. Therefore, th e  p a th  shou ld  

no t necessarily m ake use of all scene segments. In addition, if th e  first segm ent 

of th e  scene contour does n o t m atch  w ith any segm ent o f th e  m odel, the  

m inim um  distance p a th  m ay be swayed from  the  p a th  of tru e  m atches 

resulting in false m atches. However, th is approach is n o t sensitive to  scale 

variations because the Fourier coefficients have been norm alized

4 .3 .  L a n d m a r k - B a s e d  S h a p e  R e c o g n i t i o n  — L a n d m a r k  M a t c h in g ,

L o c a t io n  E s t i m a t i o n ,  a n d  M a t c h in g  V e r i f i c a t io n

O ur shape recognition algorithm  is based on an approach  th a t  is 

com pletely different from  the  above m ethods. W e use different shape features, 

a  different shape measure, and  a  different feature m atching  algorithm . O ur 

shape features of an object are the  landm arks associated w ith  th e  object. In 

C hapter 3, we have presented two m ethods of ex tracting  landm arks. Instead 

of evaluating m any feature values in order to  characterize th e  sim ilarity  

between tw o line segments, we use sphericity to  discrim inate th e  dissim ilarity  

betw een tw o landm arks. Sphericity has been discussed in detail in C hap ter 2, 

and  has been shown to  be translation , ro tation , and  scale invarian t. I t  is a Ign 

relatively robust w ith respect to  distortion. In con trast to  all th e  above 

m ethods except [Gor88], our approach is no t sensitive to  scale varia tions. O ur 

feature  m atching algorithm  is no t iterative. W e use an algorithm  which we call 

H O PPIN G  dynam ic program m ing which switches betw een a  forw ard and  a 

backw ard dynam ic program m ing procedure to  perform  the  landm ark  m atching
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task . Before we describe our m atching procedure, we shall first discuss 

properties of dynam ic program m ing in the next section.

4 .3 .1 .  D y n a m ic  P r o g r a m m in g

Dynam ic program m ing has found applications in m any areas. It is the  

study of m ultistage decision processes. Dreyfus and Law [Dre77] have concisely 

described dynamic program m ing  as follows:

“Dynam ic program m ing is an optim ization procedure th a t  is 
particu larly  applicable to  problem s requiring a  sequence of 
interrelated decisions. E ach decision transform s th e  cu rren t
situation  in to  a  new situation . A  sequence of decisions, w hich in tu rn  
yields a  sequence of situations, is sought th a t  maxim izes (or 
minimizes) some m easure of value. T he value of a  sequence of 
decisions is generally equal to  th e  sum  of the  values of th e  individual 
decisions and  situations in the sequence.”

W e shall illustrate the  concept of a  m ultistage decision process w ith  a  

simple classical example. W e consider a  p a th  problem  shown in Figure 4.1a. 

L etters {A , B , • • • , /}  denote the  nam es of the  cities. T he num ber along the  

line joining tw o cities indicates th e  distance betw een th e  tw o cities. T he 

problem  is to  find the  shortest p a th  traveling from  city A  to  city  I .  T o trave l 

from  city  A  to  city J , we have to  pass th rough  several in term ediate  cities. 

E ach of these in term ediate cities can be th o u g h t of as th e  s ta te  of the  overall 

process a t  an  in term ediate stage. Since there  are m ore th a n  one city th a t  is 

reachable from  a given city, a  decision of which city to  reach has to  be m ade a t  

each stage. Consequently, th is process is called a  m ultistage decision process. 

W e need a policy  of m aking decisions a t  each stage so as to  achieve the  shortest 

p a th  betw een city A  and  city I .  Such a  policy m ust satisfy th e  principle o f 

optim ality  [Bel65]:

“An optim al policy has th e  p roperty  th a t  w hatever th e  in itial s ta te  
and initial decision are, th e  rem aining decisions m ust constitu te  an 
optim al policy w ith regard  to  th e  s ta te  resulting from  th e  first 
decision.” /  ' ■

The above p a th  problem  can be m athem atically  fo rm ulated  as follows:

L et S  =  { A , B , • • •  , / }  be th e  s ta te  space,

s,- £  S  be the state a t which the process is a t the i  th  stage, 

S0 S = A b e th e s ta te a tth e in itia ls ta g e ,

Sb s= I  be the  s ta te  a t  th e  final stage.

W e w an t to  determ ine th e  m ultistage decision process {s0, S1, • • • , sn )  such 

th a t  th e  to ta l distance from  stage S0 to  sn is m inim um .
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D enote R d  as the m inim um  distance p a th  from  D  to  I ,  and 

d ( A , D ) as the distance between A  and D .

Using the  principle of optim ality , we reach the  following recursive: solution for 
the shortest p a th  problem :

min
d ( A ,  D)+Rd  

d{ A,  B  )+Rb  ’

m in '
d{D,  E)+R e  

d( D,  G)+Rg Rb m in '
d { B f C )A R c  

d ( B ,  E )AR e

R p  =  d{F,  I )  , R H = d { H ,  I )

The above form ulation is known as a  backward dynam ic program m ing 

procedure [Dre77] since the  m ultistage decision process is determ ined by 

working backw ard from  the  destination point to  the  sta rtin g  poin t. T he 

shortest p a th  using th is form ulation is shown in F igure 4.1b. T he fea ture  

m atching  procedure of [Gor88] is such a  procedure where the  s ta rtin g  po in t 

and the  destination  po in t can be any  po in t in the  first and  the  last colum n,

respectively, of the ir augm ented inter-segm ent distance table.

W e can paraphrase  th e  reverse version of th e  principle of o p tim ality  as 
follows:

“ A n optim al policy has th e  p roperty  th a t  w hatever the final s ta te  and  final 

decision are, the  decisions th a t  have been m ade so far w ith  regard to  th e  s ta te  

p rio r to  th e  final decision m ust constitu te  an  optim al policy.”

A  different form ulation of the  above p a th  problem  can be obtained  using the  

reverse version of the  principle of optim ality . Using the  sam e no ta tions as 

above except th a t  Rd  now denotes the  shortest distance p a th  from  A  to  D ,  we 

reach ano ther recursive solution to  the  problem :

m in
d[F , I)+Rp  

d( H,  I ) A R B ’

m in
d ( C ,  F )+ R c  

d{ E,  F)AR e
R e m in '

d ( E ,  H)AR e  

d ( G ,  H)AR g  ’
9
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(a)

F igure 4.1. A n exam ple of a  classical shortest p a th  problem , (a) A  shortest 
p a th  problem , (b) T he shortest p a th  shown by arrows results 
from  a backw ard  dynam ic program m ing procedure, (c) The shor
tes t p a th  show n by arrow s results from  a forw ard dynam ic pro
gram m ing procedure.
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Rb  =  d ( A , B )  , R b  = d [ A , D ) .

Th is form ulation is known as a forward  dynam ic program m ing procedure 

[Dre77] since the m ultistage decision process is determ ined by working forw ard 

from  the  sta rting  poin t to  the destination point. The shortest distance p a th  

using th is form ulation is shown in Figure 4.1c.

In general, each form ulation yields a different solution. The backw ard 

dynam ic program m ing is usually applied when only the destination po in t is 

available, while the forw ard dynam ic program m ing is applied when only the  

sta rting  point is available. W hen both  the sta rting  and the destination po in t 

a re  known* either backw ard or forw ard procedure can be applied.

4 .3 ,2 .  L a n d m a r k  M a t c h i n g  b y  H o p p in g  D y n a m ic  P r o g r a m m in g

Q ur problem  of m atching landm arks of a  model to  those of a  scene is 

equivalent to  th a t  of m atching tw o sequences of landm arks associated w ith  the  

model and  the  scene.

k e t {(*1, I/i)» (I 2> ^2)» * ‘ * > (xn> yn )} Ije the  coordinates of a  sequence of 

landm arks associated w ith a  model, and

u i)* (u 2> »2)» ' ***.> (um> )} be the  coordinates of a  sequence of 

landm arks associated w ith a  scene.

N ote th a t  n is the  num ber of model landm arks, and  m  is th e  num ber of Scene 

landm arks. T he subscripts denote the  order o f the  la n d m a r k s . T he goodness 

of m atch  between th e  »th model landm ark  and the  j t h  s c e n e  la n d m a r k  is 

given by th e  Sphericity (Equation 2.13) derived from  a  triangu lar 

transform ation  m apping {(*t- i ,  y.-i)> (*, , V i l  fo + i .  to

{(uy_i, («y, Uy), (uy+1, wy+1)}. A t the  end points, w hen  »=1, *—I is

replaced by n ; when j = l ,  j —I is replaced by m ; when I - T t i * -4-1 is replaced 

by 0; when i= m , * + l  is replaced by 0. These replacem ents are to  account for 

th e  periodic arrangem ent of the  landm arks. A  m apping is said to  be 

orien ta tion  or sense reversing  [0 ’N66] if th e  Jacobian of th e  m apping is 

negative. T o account for th e  sense of a  m apping, we negate the  value o f the  

Sphericity if th e  triangu la r transform ation  is sense reversing. T hus, the  

sphericity  deriVed from  m apping th e  i th  m odel landm ark  to  th e  j t h  scene 

landm ark  having a  value close to  I implies th a t  these tw o landm arks are 

locally sim ilar.

A  tab le  Of com patib ility  is constructed between the  sequence o f m odel 

landm arks and  the sequence of scene landm arks. T he row index indicates a  

model landm ark  while th e  colum n index indicates a scene landm ark . E n try
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. (», j )  is referred to  as the i th  row and the j th  column entry  of the table. The 

( i, j ) en try  of the table is the sphericity value of the triangular transform ation 

m apping the  i th  model landm ark and its two adjacent landm arks to  the j t h  

scene landm ark  and its tw o respective ad jacen t landm arks. Consider a  simple 

exam ple of a scene where there  are two objects overlapping each o ther as 

shown in F igure 4.2. T he extracted  landm arks in the scene are based on the 

cardinal cu rva tu re  points using oj=20. A table of com patibility between the 

wire strip p er (Figure 3.38) and the scene (Figure 4.2) is shown in Figure 4.3a. 

Since the  landm arks of an object are obtained by tracing sequentially along 

the object boundary , it  is likely th a t  m atches between the model and scene 

landm arks correspond to  a  sequence of high-valued entries th a t  are diagonal to  

each o ther in the table. This sequence will correspond to  a  p a th  in the  table. 

A bru te-force approach  of finding such a sequence is im practical. W e will 

instead form ulate  a  dynam ic program m ing procedure to  achieve th is 

m atching.

O ur m atching  procedure is slightly sim ilar to  the feature m atching 

algorithm  of [Gor88]. As m entioned earlier, Gorm an and M itchell [Gor88] use 

a  backw ard  dynam ic program m ing procedure to  find a m inim um  distance 

p a th  from  the  first colum n to  th e  last column of the ir augm ented in ter

segm ent d istance tab le. T heir assum ption th a t  the  p a th  m ust m ake use of all 

the  scene fea tures is inadequate because the  scene m ay have extraneous or 

missing features due to  occlusion. Instead of th is assum ption, we shall only 

require th a t  our p a th  covers th e  range of e ither all the  model landm arks or all 

the  scene landm arks; i.e., th e  p a th  traverses through either all the  rows or all 

the  colum ns of the  tab le  of com patibility . Unlike the shortest p a th  problem , 

neither th e  sta rtin g  po in t nor the  destination point of a  p a th  which 

corresponds to  a sequence of m atches between the scene and  model landm arks 

are know n. I t  is no t a priori  know n how m any landm arks of a  m odel will 

m atch  w ith  those of a  scene. Instead  of having a  starting  and  a  destination 

poin t, a  support entry , which is an  en try  in the table th a t  provides strong 

evidence o f a  tru e  m atch  betw een a  model and  a scene landm ark, is used to  

guide th e  m atching  process. T his evidence is strong if the  en try  as well as its 

diagonal neighboring entries have sphericity  values close to  I . T h a t is, the  

m odel landm ark  and  its  neighboring landm arks m atch well locally w ith the  

scene landm ark  and  its neighboring landm arks. Denote s ( i , j ) a s  the  

sphericity  value a t  th e  (*, j )  en try  of the  table. The ( i, j )  en try  of the  tab le  is 

said to  be the  su p p o rt en try  of the tab le  if the  sum

*(*—1> j — l ) + s ( i ,  i ) + s ( t + l ,  / + I )  is m axim um . In the example shown in
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F igure 4.2. A  scene w hich consists of a  wire stripper and  a  wrench overlap
ping each other. E ach scene landm ark is labeled and  indicated by 
an “ X .”
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Figure 4.3. A n example of perform ing the  landm ark m atching task  betw een 
th e  wire stripper and the scene shown in F igure 4.2. (a) T he 
tab le  of com patibility, (b) T he result of perform ing hopping 
dynam ic program m ing using (3, 12) as the support en try , (c) T he 
resulting p a th  indicated by l ’s is the  m axim um  value p a th .
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F igure 4.3a, the  support en try  can either be entry  (3, 12) or (4, I). Since the  

!sphericity is a  local sim ilarity m easure between a model and a scene landm ark , 

the  overall goodness of m atch between the m ode! and the scene is determ ined 

by the  sum  of the sphericity values of those landm arks th a t m atch  w ith each 

other. T he sequence of m atches should correspond to a  pa th  in the tab le  th a t  

■passes th rough  the support en try  and maximizes the sum  of the sphericity  

values of the p a th  with the following two constraints:

(1) A model landm ark cannot m atch w ith m ore than  one scene landm ark .

(2) A scene landm ark cannot m atch w ith m ore th an  one model landm ark:

By the above two constraints, a  vertical or a horizontal transition  of th e  p a th  

should no t be considered as a  m atch between the model and  th e  scene 

landm ark.

Unlike backw ard or forward dynam ic program m ing, we w an t to  search 

for a p a th  th a t  passes through the  support en try , ra ther th an  from  a  s ta rtin g  

poin t to  a  destination point, or vice versa. Since the backw ard procedure is 

applicable when the destination point is available, and the forw ard procedure 

is applicable when the starting  poin t is available, the  support en try  can be 

trea ted  bo th  as a  starting  and a  destination point. T h a t is, we w ork bo th  

forw ard and  backw ard from  the support en try .

Denote (k ,  I) as th e  support entry ,

■ «*(*» i )  as the accum ulated sum  of the  sphericity values from  (Ik, /)  to  

(», j )  en try  in the  backw ard procedure, and

<*/(* , j )  as the accum ulated sum  of the  sphericity values from  (k ,  I) to  

(*, j )  en try  in the  forw ard procedure.

T reating  the  support en try  as the  destination point, we have the  following set 

of transition  rules for the backw ard procedure:

(1) a6( i - l , j - l )  = m a x { o i ( i , j ) + s ( » —l , j —l) ,a 4 (« ~ l,y ) ,a t ( i ,y —1)}

(2) at ( j - l , / )  = m a x { s  (»',/), s ( i  - I , /)}

(3) ab(k,  j - 1 ) =  max{«(fc, j ) , s ( k , j —1)}

(4) ab(k , l )  =  s ( k , l ) .

A  diagonal transition  according to  Rule (I)  implies a  possible m atch  betw een 

the  (i l ) th  model and the  ( j  —T )th scene landm ark, and  hence the  sphericity  

value a t  (i l , j —I) is added to  the  accum ulated sum  of sphericity  values a t  

( i ,  j )  to  produce the accum ulated sum  of sphericity value a t  ( i —l , j —I). Since 

a  horizontal or a  vertical transition  does no t constitu te  a  m atch , the  

accum ulated sum  of sphericity values rem ains the sam e as before the
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trans ition . Rules (2) and (3) are th e  boundary  conditions. Rule (4) is th e  

in itial condition. To account for the  periodic na tu re  of the  landm arks we are  

m atching, when »—I <  I, the  value of t —I is replaced by n + t —I; w hen 

j —I  <  1» th e  value of j —I is replaced by m + j —I.

T rea ting  the support en try  as the starting  point, we have the  following 

set of transition  rules for the forw ard procedure:

(1) af { i + l , j + l )  =  max{a/ ( ^ y ) + s ( t+ l ,y + l ) ,o / ( t+ l ,y ) ,o / ( ^ j + l ) }

(2) a f ( i + l , l )  =  m ax { s(i,/) ,s (» -fl,/)}

(3) af ( k , j + l )  =  m a .x { s{ k , j ) , s ( k , j + l ) }

(4) af (k , l )  = s ( k , l ) .

A gain, according to  Rule (I), a  diagonal transition  implies a  possible m atch  

betw een th e  ( i + l ) th  model and  the  ( j + l ) t h  scene landm ark , and hence th e  

accum ulated sum  of sphericity values a t (* + l, j ’+ l )  is obtained by the sum  of 

the sphericity value a t (t -f-1, j  + l )  and the  accum ulated sum  of sphericity  

value a t ( t , j ) .  Likewise, Rules (2) and (3) are the  boundary  conditions, and 

Rule (4) is the  initial condition. To account for the  periodic n a tu re  of the  

landm arks we are m atching, when t+ 1  >  n , the  value of j+ 1  is replaced by 

t + l —n; when y+1  >  m , the value of y+ 1  is replaced by y + l —m .

How do we switch between the  forw ard and  the backw ard procedure? 

T aking  a  forw ard and a backw ard step alternately  is n o t a good stra tegy  

because m atches are not usually equally divided between th e  forw ard and  the  

backw ard p a th . Let (t, J) en try  be where the  backw ard procedure has reached 

a t th e  present stage, and (*, j )  en try  be where the  forw ard procedure has 

reached a t  th e  present stage. W e define the  backw ard average sphericity  value 

a t  en try  (», j )  as ab(t, J) divided by the  num ber of transitions m ade by th e  

backw ard procedure traversing from  en try  (k , /) to  en try  (t, j )  of the  tab le. 

Sim ilarly, we define the forw ard average sphericity value a t  en try  (V, j )  as 

Of{i, j )  divided by the num ber of transitions m ade by the forw ard procedure 

traversing  from  en try  (k,  I) to  en try  (i , j )  of the  table. T he procedure which 

has a  larger average sphericity proceeds one stage. T h a t is, if the  backw ard 

average sphericity  value a t  en try  (7, j )  is larger th an  the  forw ard average 

sphericity  value a t en try  th e  backw ard procedure will proceed to  en try

(»—I, j —l); otherwise, the  forw ard procedure will proceed to  ( t+ 1 , j ’+ l ) .  In  

o th e r words, the  procedure th a t  has a  m ore prom ising p a th  of m atches 

proceeds one stage. The algorithm  continues in th is fashion un til th e  com bined 

p a th  of bo th  the  forward and th e  backw ard procedures covers the  range of 

e ither all th e  model landm arks or all th e  scene landm arks. T he com bined p a th
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is called the maxim um  value path. Because of th e  periodic na tu re  of the  

landm arks we are m atching, e ither p a th  can w rap  around  the  table. W e call 

this popping dynam ic program m ing (HD P ). C ontinuing from  th e  earlier 

example, and using en try  (3, 12) as the sup p o rt en try , HDP yields th e  result 

shown in F igure 4.3b. E ach en try  of the upper left portion  of th e  tab le  

represents the sum  of the  sphericity values a t  th a t  en try  resulting from  the  

backw ard dynam ic program m ing procedure. Likewise, each en try  of the  lower 

right portion of the tab le  represents th e  sum  of the  sphericity  values a t  th a t  

entry resulting from  the  forw ard dynam ic program m ing procedure. T he 

resulting m axim um  value p a th  is shown in F igure 4,3c.

A fter determ ining the pa th , several heuristics are  used to  fu rther refine 

the m atches between the model and the  scene landm arks along the  p a th . 

From  the two constraints m entioned earlier, entries along the  p a th  th a t  resu lt 

from horizontal or vertical transitions cannot be considered as m atches. Only 

entries along the p a th  th a t  result from  diagonal transitions are considered as 

possible m atches. Since each en try  is a sphericity  value, it indicates the  

sim ilarity between a modal and  a  scene landm ark; a  sm all value signifies th a t  

these two landm arks do no t m atch well locally w ith  each other. Such an en try , 

if included as a  m atch , will also in troduce error in th e  estim ation of the  

location of the object in th e  scene. W e thus require th a t  the  entries along the  

path, m ust be above a certain threshold to  be considered as possible m atches, 

A threshold of 0.7 is used as it provides reasonably good results. In the  above 

example shown in F igu re  4.3, entries (2, 11), (3, 12), (4, I), (5, 2) are  

considered as possible m atches. Isolated entries th a t  have been considered as 

possible m atches so far are then  elim inated because they  are no t locally

supported by their neighbors. A t th is point, entries along the  p a th  th a t  are 

considered as m atches m ust be sequences consisting of a t  least tw o consecutive 

diagonal entries. The exam ple shown in Figure 4.3 does n o t have any isolated

entry, and  hence entries considered as m atches rem ain  th e  same. Since the  

sphericity value of each en try  is derived from  m apping  a  m odel landm ark  and 

the ad jacent landm arks to  a  scene landm ark  and th e  ad jacen t landm arks, a  

high sphericity value th a t  is close to  I no t only indicates th a t  th e  m odel and 

the scene landm ark m atch  well locally w ith  each o ther b u t also implies th a t  

their two respective ad jacen t landm arks m atch  well w ith  each o ther. T he final

step is to  check the values of the  en tries th a t  are considered as m atches along 

th e  p a th . K the  en try  has a  value th a t  is g reater th a n  0.85, its ad jacen t 

diagonal entries will also be considered as m atches. In  F igure 4.3, since all 

entries th a t  a re  considered as m atches betw een th e  m odel and  th e  scene
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landm arks have sphericity  value greater th a n  0.95, the ir respective ad jacen t 

diagonal entries are considered as m atches. T hus, entries (I, 10) and (6, 3) are 

also considered as m atches; they  are ad jacen t to  entries (2, 11) and  (5 ,2 ), 

respectively. In th is exam ple, model landm arks I, 2, 3, 4, 5, and 6 m atch  w ith  

Scene landm arks 10, 11, 12, I , 2, and  3, respectively.

T he overall m atching scheme between a sequence of model landm arks and 

a sequence of scene landm arks can be sum m arized by the  following:

(1) C onstruct the  tab le  of com patib ility  betw een the  sequence of m odel 

landm arks and the  sequence of scene landm arks.

(2) F ind  the support en try .

(3) Perform  HDP by sw itching betw een backw ard and forw ard dynam ic 

program m ing. T he backw ard procedure trea ts  th e  support en try  as a  

destination point and  traces backw ard using the  set of transition  rules 

described earlier. T he forw ard procedure trea ts  the  support en try  as a 

sta rtin g  point and  advances forw ard using the set of transition  rules also 

described earlier. A t each stage, the  procedure having a  larger average 

sphericity  proceeds one stage. The procedure stops when; the com bined 

p a th  of bo th  the  backw ard and the  forw ard procedure covers the range of 

e ither all the  m odel landm arks or all the  scene landm arks, i.e., e ither all 

th e  rows or all the  colum ns of the  table. T he resulting p a th  is know n as 

the  m axim um  value p a th .

(4) F ind  the  entries along the  m axim um  value p a th  th a t  result from  diagonal 

transitions and are greater th an  0.7. These entries are considered as 

possible m atches betw een the  m odel and  the  scene landm arks indicated 

by the indices of the  entries.

(5) Isolated entries having  no ad jacen t diagonal entries are nullified.

(6) Check for entries th a t  have sphericity  values greater th an  0.95. T he 

im m ediate ad jacen t diagonal entries of such high valued entries are then  

considered as m atches.
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4 .3 .3 .  L o c a t io n  E s t i m a t i o n  a n d  M a t c h in g  V e r i f i c a t io n

A fter determ in ing th e  landm arks of a  model th a t  m atch  well w ith those of 

scene landm arks by HDP discussed in th e  previous section, we shall next 

estim ate th e  location of the  m odel object in the scene, and  verify w hether the  

hypothesis th a t  th is m odel object is in the scene is true. Location of the  object 

in the  scene is estim ated  by finding a  coordinate transform ation  consisting of 

translation , ro tation , and  scaling th a t  m aps th e  m atched landm arks of the 

model to  the  corresponding m atched scene landm arks in a  least squares sense. 

A  score based on the  least squared error of the m apping is used to quantify  the

overall goodness of m atch  betw een th e  model and the scene.

Let k  be the num ber of pairs of the model and scene landm arks th a t  

m atch  w ith  each other,

( (1 I? y.i)> (x 2> V2% > (xk) I/*)} be the  coordinates of the  set of
m atched m odel landm arks, and

{(«1, V 1 ) ,  (u 2, u2), ,  ( u * » u*)} be the  coordinates of the  set of the

corresponding m atched  scene landm arks.

We w ant to  find a coordinate transform ation ,
■

a  b
- - - -

U

U
—

—b a

X

y
+

e

f
(4.1)

w ith the  scale factor =  \ / ( a 2 +  b 2) ,
' L

, the  angle of ro ta tion  =  ta n ” ^ —) ,
JX

the  transla tion  coefficients =  ^ , 

such th a t

€

k

E
t-1

(4.2)

where eu. — lu ,-—u,-| = I a x f- 4 - 6 y f- +  c — tt , | 

ev: =  Ivl -U 1I =  I—6x,- +  ay, +  /  -  v-|

is m inim ized. N ote th a t  c is the  least squared e rro r of the  transform ation . By 

finding th e  p a rtia l derivatives of E quation  4.2 w ith  respect to  each coefficient 

o f th e  coordinate transfo rm ation  described by E quation  4.1, we can ob tain  the 

following coefficients of th e  least squares coordinate transform ation:
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1—1

S  (w .1*-+V1-J/,) 

»-l 
k

u,-y,-- V t- I1-)

1-1
k

E  u t
i= i 

k

E  « r
,= i

w here T

E ( z ,- 2+y,-2) o  E  i,- E  Vi .

» = i  t = i  » - i

o ■£(**+»,■*) E f t  - E 1.
T = I  « = 1  » = 1

E  *,• E » .-  k  0
1 = 1  T = I

E y ,-  - E * , -  o *
T = I  « = 1

C ontinuing from  the  earlier exam ple, th e  wire stripper is m apped into the  

scene, as shown in F igure 4.4, by th e  least squared coordinate transform ation  

derived from  th e  m atching pairs of landm arks between the  model and the  

scene.. N ote th a t  if a prion ' knowledge of th e  scale of the  object in the  scene is 

available, th e  scale factor derived from  the least squared coordinate 

transfo rm ation  can be used as an  additional param eter for verifying the m atch.

T he above least squared error only quantify  how well a  portion  of the  

m odel landm arks m atch  w ith  the  corresponding scene landm arks. A  small error 

indicates th a t  th e  portion  of th e  m odel landm arks m atch  well w ith  the  

corresponding scene landm arks. I t  does no t, however, account for the  overall 

goodness of m atch . To account for th e  overall goodness of m atch  between the  

model and  th e  scene, we use th e  following heuristic m easure which penalizes 

incom plete m atching  of the  landm arks of the  model:

for k  >  3, 

for k  =  0,1,2.

where n  is the  to ta l num ber of landm arks of the  model,

(4,3)



1 2 1

F igure 4.4. T he result of m apping the  wire stripper in to  the scene by  the  
least squared coordinate transform ation.
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k  is th e  num ber of the  model landm arks th a t  m atch w ith the  scene 

landm arks, and

, i.e., 7  is th e  normalized least squared error.
(scale factor)

T he heuristic m easure, 7,  which can be regarded as the error m easure for the  

overall goodness of m atch  betw een the  model and scene, is referred to  as the  

match error. If only one or tw o model landm arks m atch w ith those in the  

scene, th e  least squared error is always zero because there always exists a 

coordinate transform ation  th a t  perfectly m aps a  set of one or two points into 

ano ther set. W e consider such cases where only two or less model landm arks 

m atch  w ith  those in the scene as undeterm ined cases; i.e., these cases have 

insufficient evidence of m atch  betw een the model and the scene. Thus, in

E quation  4.3, we have e' =  oo w hen k =0,1,2, and we use
n —2 

k - 2
instead of — .

k

N ote th a t  when k —n,  e' =7 ;  i.e., no penalty  is added to  the norm alized least 

squared error when all model landm arks m atch w ith those in the scene. The
k —2

penalty  is higher if k is sm aller. According to  [Gal68], i f -----— is considered as
Tl ■

the  p robab ility  of the event th a t  k  of the  ft model landm arks m atch  w ith those 

T l  —2
in the  scene, log2(-------) can be in terpreted  as the uncertain ty  or the  self-

. k —2
Ti —2

information  of the  event. T he term , (———), in front of the self-inform ation
k ~~2

can be th o u g h t of as the penalty  incurred per am ount of uncertain ty .

In the  earlier example, since all m odel landm arks m atch w ith those in the  

scene, th e  m atch  error value of 0.62 is the  same as the norm alized least squared 

error. T he hypothesis of the  m odel in the  scene is finally determ ined by the  

value of the  m atch  error — a sm all erro r verify the  hypothesis while a  large 

e rro r nullify th e  hypothesis. T he decision stra tegy  of the landm ark-based shape 

recognition is thus a  thresholding operation. If a m atch error is above a 

threshold , th e  m atch  is considered correct; otherwise, the  m atch  is considered 

incorrect. In our study, th is threshold  is set empirically.

4 . 3 .4 .  C o m p u t a t i o n a l  C o m p le x i t y  o f  H o p p in g  D y n a m ic  P r o g r a m m in g

In th e  landm ark  m atching task , we first determ ine the  support en try  of 

th e  tab le  of com patibility . F rom  earlier discussion, the  support en try  is the  one 

w here th e  sum  of the  en try  an d  its tw o im m ediate ad jacent diagonal entries is 

m axim um . If th e  tab le  has n m odel landm arks and m scene landm arks, it  will 

require 3nm  additions and  nm  com parisons to  determ ine the  support entry .
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To determ ine the com putational complexity of H D P, we shall determ ine 

the com plexity of both the forward and the backw ard procedures. Consider a  

4X4 tab le  w ith row indices I, 2, 3, and 4, and column indices I , 2, 3, and  4. I t  

requires 9 additions and 24 comparisons to  find the  accum ulated sum  of 

sphericity values for each en try  of the table using the forw ard procedure o f 

HDP. These num bers for additions and comparisons are determ ined by th e  

transition  rules of the forward procedure (see-Section 4.3.2). N ote th a t  each 

move according to  Rule (I) requires I addition and 2 comparisons, R ule (2) I 

comparison, Rule (3) I  comparison, and Rule (4) which is the  initial condition 

requires no com putation. In this example of the table, en try  (I, I) is the  initial 

condition. E ntries along the first row of the table are determ ined by transition  

Rule (3), and entries along the first column by transition  Rule (2). Besides the  

initial entry , there are 3 entries along the first row as well as along the  first 

column of the table, and thus it requires 6 comparisons to  determ ine the  

accum ulated sum  of sphericity values for these entries. The rem aining 9 (3X3) 

entries which are determ ined by transition Rule (I) require 9 additions and  18 

comparisons. Thus, a to ta l of 9 additions and 24 com parisons are required. 

Generalizing this analysis, we can conclude th a t  if the  tab le  is n X n , it will 

require 2 (n —I) comparisons to  determ ine the values for entries along th e  first 

row and the first column, and ( n - 1 ) 2 additions and 2 ( n - l ) 2 com parisons for 

the rem aining entries; a  to ta l o f ( n —I)2 additions and  2 n ( n —I) com parisons. 

By the same reasoning, the  backward procedure has the  sam e com putational 

com plexity as the forw ard procedure.

Let N = m in (n , m ) denote the m inim um  between the  num ber of m odel 

landm arks and the  num ber of scene landm arks. Since HDP stops when the  

range of either all the  model landm arks or all the  scene landm arks is covered, 

only an N X N  portion of the n X m  tab le  of com patibility will be used in the  

procedure. O f the N X N  portion of the table, the  upper left portion, which we 

denote as having a  size of p X p ,  results from  the backw ard procedure, and  the  

lower fight portion of size (N —p + l)X (N —p-f-1) from  th e  forw ard procedure. 

The com putational complexity is proportional to  the  to ta l num ber of entries 

th a t  are covered by HDP. The to ta l num ber of entries is p 2+ ( N —p + 1 )2.

By finding the derivative of the to ta l num ber of entries w ith  respect to  p ,

th e  value of p = - ^ -1 yields the least num ber of entries. In th is case, w hen N

is odd, by adding the  num ber of com putations required for bo th  th e  forw ard 

and  backw ard procedures of HDP, a  to ta l o f
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—( N —I)2 add itions and ( N 2- I )  comparisons 
2

(4.4)

are required. If N  is even, the  complexity is least expensive when one

procedure covers (
N + l

)2 and the o ther (
N + l

)2, where is the  ceiling

operator, i.e., the  smallest integer greater th an  or equal to the argum ent, and 

Î. J is the  floor operator, i.e., the  largest integer less th an  or equal to  the  

argum ent. In th is case, HDP requires

(----— N + l )  additions and N 2 comparisons .
2

(4 .5 )

The com putation is the  m ost expensive when the procedure covers all N X N  

entries, in which case it requires

( N —I )2 additions and 2N ( N - I )  comparisons . (4.6)

This happens when either only a forw ard or only a backw ard procedure is 

used.

T he sp litting  of the N X N  table into a  portion governed by  the  forw ard 

procedure and  the  other by the backw ard procedure is problem  dependent. 

The com putational complexity of HDP is thus bounded betw een the am ount of 

com putation  defined by Equation 4.6 and  th a t of E quation  4.4 or 4.5. 

A dditional com putational overhead is required by HDP to  decide to  which 

procedure to  switch. This overhead requires N  comparisons and  N  divisions. 

E ach  division is used to  calculate the  average sphericity value m entioned in 

Section 4.3.2. In general, as will be seen in examples presented in the  next 

section and the  next chapter, each object is usually represented by no m ore 

th an  100 landm arks. I t is thus com putationally  inexpensive to  determ ine 

m atches betw een landm arks of a model and a  scene.

4 ;4 . E x p e r im e n t a l  R e s u l t s

W e shall present three examples of a  scene which contain  overlapping 

tools. F u rth e r experim ental results which takes into account the  effect of noise 

and  larger occlusion will be discussed in the  next chapter.

Consider again the  scene shown in F igure 4.2, the  results of perform ing 

th e  landm ark  m atching task  between th e  scene and each of the  m odels show n 

in Figures 3.34-3.38 are sum m arized in T able 4.1. Models th a t  m atch  well w ith  

the  objects in th e  scene are those w ith the  sm allest m atch  errors. T hough  th e



Tab le 4.1.
The Summary^of the  results of m atching a 

library  of objects w ith the  scene shown in F igure 4.2

Models Model figure 

num bers

T otal

N um ber o f 

Model land

m arks

N um ber of 

m atched 

model land

m arks

M atch E rro r

wrench 3.35 6 6 1.98

needle-nose plier 3.36 4 2 OO *

wire cu tter 3.34 6 ' 5 ■ ' 7.39

specialty plier 3.37 6 2 OO

wire stripper 3.38 6 '■■■ 6 0.62

wire cu tter is no t in the  scene, the  m atch  error betw een th e  wire cu tte r and  the  

scene is quite small. This is because the  scene contains the  wire stripper, and 

the relative positions of the landm arks of the wire s tripper are sim ilar to  those 

of the wire cu tter. Figures 4.5-4.7 show the  results of m apping  o ther models 

into the scene.

Figure 4.8 shows another exam ple of a  scene in w hich th e  landm arks are 

extracted based on the  cardinal curvature  points using u>=20. Using the  sam e 

library of models as the previous exam ple, the  results of m atching  each m odel 

w ith the scene are sum m arized in T able 4.2. Again, m odels th a t  m atch  well 

w ith the objects in the  scene are those w ith  the  sm allest m atch  errors. The 

results of m apping the tw o correctly m atched models in to  th e  scene are shown 
in Figures 4.9-4.10.

The last example of a  scene is shown in F igure 4.11, w here th e  landm arks 

are obtained by the  curvature  guided polygonal approxim ation using u/»10, 

and a  collinear factor of 15. A  lib rary  o f models in w hich landm arks are 

obtained by th e  sam e m ethod and using th e  sam e param eters are  shown in 

Figuros 3.13-3.17. E ach of th e  models and  the  scene contains m ore landm arks 

th an  the  previous examples. T he results of m atching are sum m arized in T able

4.3. Note again th a t  correct m atches betw een the  m odels and  th e  scene have 

the  sm allest m atch errors. Figures 4.12-4.15 show the  results of m apping some
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of the  models into the scene. N ote th a t  some of the  objects in the  scene 

contains extraneous and missing landm arks due to  occlusion.

4 .6 .  S u m m a r y

W e have reviewed recent w ork on p a rtia l shape recognition, and com pared 

it w ith  our approach. O ur approach  is unique and efficient — we use landm arks 

as the  shape features, sphericity  as a  shape m easure, and  hopping dynam ic 

program m ing for m atching the  landm arks. Instead  of com puting several 

feature values to  quantify th e  sim ilarity  betw een tw o features, we use a  single 

shape m easure, sphericity, w hich is easy to  com pute. T he landm ark  m atching 

task  is com putationally  less expensive th a n  o ther fea ture  m atching  tasks which 

involve iterative procedures. W e have presented some experim ental results. 

F u rth e r  experim ental results will be presented in the  next chapter.

T able  4.2.
The sum m ary of the  results of m atching a 

library of objects w ith  th e  scene shown in F igure 4.8.

Models Model figure 

num bers

T ota l

N um ber of 

Model land

m arks

N um ber of 

m atched  

m odel land

m arks

M atch E rro r

w rench 3.35 6 5 2.89

needle-nose plier 3.36 4 3 14.97

wire cu tter 3.34 6 3 8.01

specialty plier 3.37 6 6 2.16

wire stripper 3.38 6 3 11.65
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T ab le  4.3.
T h e s u m m a ry o f tb e r e s u l ts o fm a tc h in g a  

library  of objects With the scene shown in F igure 4.11.

Models Model figure 

num bers

T otal

N um ber of

Model

landm arks

N um ber of 

m atched 

model 

landm arks

M atch E rro r

w rench 3.13 10 7 . . 1.11

needle-nose plier 3.14 10 8 3.72

wire cu tte r 3.15 12 11 1.28

specialty plier 3.16 8 3 10.23

wire stripper 3.17 10 2 ■ OO
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F ig u re  4 .5 . T h e  re s u lt  o f  m a p p in g  th e  w re n ch  in to  th e  scene show n in  F ig u re
4.2 .
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F ig u re  4 .6 . T h e  resu lt o f  m a p p in g  th e  w ire  cu tter  in to  th e  scen e  sh o w n  in  
F ig u re  4 .2 .



F ig u re 4.7.

130

T h e  re su lt o f  m a p p in g  th e  sp ec ia lty  p lie r  in to  th e  scene sh o w n  in

F ig u re  4.2.
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F ig u re  4 .8 . A  scen e  w h ich  co n sists  o f  a  .sp e c ia lty  p lier  an d  a  w ren ch  

o verla pp in g  each  o th er. E ach  scen e  la n d m a rk  is la b e led  a n d  
in d ica ted  b y  an “ X .”
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F ig u re  4 .9 . T h e  re su lt o f  m a p p in g  th e  w re n ch  in to  th e  scene  sh o w n  in  F ig u re

4.8 .
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I

F ig u re  4 .1 0 . T h e  re su lt o f  m a p p in g  th e  sp e c ia lty  p lie r  in to  th e  scene  sh o w n  in
F ig u re  4.8.
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F ig u re  4 .1 1 . A  scen e  w h ich  co n sists o f  a  w ire  cu tter , a  w ren ch , a n d  a  n eed le -  
n o se  p lier ov erla pp in g  ea ch  o th er . E a ch  scen e  la n d m a rk  is la b e led  

a n d  in d ica ted  b y  an  “ X .”



F igure 4.12. T he result of m apping th e  w rench in to  th e  scene shown in Figure 
4.11.
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F ig u re  4 .13 . T h e  re su lt o f  m a p p in g  th e  need le -n o se  p lie r  in to  th e  scene show n

in  F ig u re  4 .11 .
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F ig u re  4 .14 . T h e  re s u lt  o f  m a p p in g  th e  w ire  c u t te r  in to  th e  scene sh o w n  in

F ig u re  4 .11.
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F ig u re  4 .15 . T h e  re su lt o f  m a p p in g  th e  sp ec ia lty  p lie r  in to  th e  scene sh o w n  in
F ig u re  4.11.
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C H A P T E R  5

F U R T H E R  E X P E R IM E N T A L  R E S U L T S

5.1 . I n t r o d u c t io n

In Chapters I through 4, we have presented the overall scheme along w ith 

some experim ental results of landm ark-based shape recognition. In th is 

chapter, we shall present fu rther experim ental results to  dem onstrate  the  

effectiveness of the approach w ith respect to noise and larger occlusion. Four 

examples will be studied. An example on noise effects will be presented in 

Seictiqn 5.2, two examples on larger occlusion will be presented in Section 5.3, 

and one example on the combined effects of noise and occlusion will be 

presented in Section 5.4. W e shall sum m arize the chap ter in Section 5.5.

5 .2 . E x p e r im e n ts  w ith  N o isy  D a ta

We consider an image of a spacecraft shown in Figure 5.1a. The gray level 

value of the object region is 160, and the background is 96. T he silhouette  of 

the spacecraft is shown in Figure 5.1b, the  contour in F igure 5.1c, and  the  

landm arks in Figure 5.1d. The landm arks are extracted  based on the  cardinal 

curvature points using u  =  20. W e shall consider the image shown in F igure 

5.1a as the image of a model object. T o sim ulate the effects of noisy da ta , a  

zero m ean i.i.d. Gaussian random  variable is added to  each pixel of the  

noiseless image. The noisy image is then  thresholded a t  128. T he contours of 

the resulting regions in the  thresholded image are traced , and  the  longest 

contour from  which landm arks are extracted is used to  represent th e  object 

contour in the noisy image. T he landm arks are also ex tracted  based on the  

cardinal curvature points. W e shall consider the  noisy image as th e  image o f a  

scene. Note th a t  no a ttem p t has been m ade to  clean the  noisy image.

Denote <? as the standard  deviation of the  Gaussian random  variables. T he 

signal to  noise ratio  (SNR)  of the  noisy image is defined as:
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F igure 5.1. Experim ents w ith noisy data : noiseless case, (a) A 256X256 gray 
level image of a  spacecraft, (b) The silhouette of the  spacecraft, 
(c) The contour of the  spacecraft, (d) L andm arks of the  space
craft based on the  cardinal curvature  points. E ach landm ark  is 
labeled and indicated by an “ X .”



W  ( d )

F igtire 5.2. E xperim ents w ith  noisy data: SN R =O dB . (a) The noisy image of 
the  spacecraft having a SN R =O dB  . (b) T he result of threshold
ing the noisy image, (c) The corresponding object contour in the  
noisy image, (d) E x tracted  landm arks. E ach landm ark  is labeled 
and indicated by an “ X .”
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F ig u re  5.3. E x p e rim e n ts  w ith  no isy  d a ta :  S N R = 3dB . (a) T h e  no isy  im age  o f
th e  sp a c e c ra f t h a v in g  a  S N R =  3dB  . (b) T h e  re s u lt  o f th re sh o ld 
ing th e  no isy  im age , (c) T h e  c o rre sp o n d in g  o b je c t c o n to u r  in  th e

no isy  im age , (d ) E x tra c te d  la n d m a rk s . E a c h  la n d m a rk  is labeled

a n d  in d ic a te d  b y  a n  “ X .”



F ig u re  5 .4 . E x p e rim e n ts  w ith  no isy  d a ta :  S N R = 6 d B . (a) T h e  no isy  im age  o f
th e  s p a c e c ra f t h a v in g  a  S N R =  6dB  . (b) T h e  re su lt o f th re sh o ld 
ing  th e  no isy  im age, (c) T h e  co rre sp o n d in g  o b je c t c o n to u r  in th e
no isy  im age , (d ) E x tra c te d  la n d m a rk s . E a c h  la n d m a rk  is labeled

a n d  in d ic a te d  by  an  “ X .”



(C) - V . ..

F igure 5.5. E xperim ents w ith noisy data : S N R =IO dB . (a) T he noisy image 
of the spacecraft having a SN R = IO dB  . (b) T he result of thres
holding the noisy image, (c) T he corresponding object contour in 
the noisy image, (d) E x tracted  landm arks. Each landm ark is 
labeled and indicated by an “ X.”
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F igure 5.6. T he results of m apping the model in to  the scopes w ith 
SNR==O, 3, 0, 10 dB are shown in (a), (b), (c), and (dj, respec
tively.
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SNR =  20log—  dB ,
<7

where 64 is the difference between the gray level values of the object region 

and the background.

Images having SN R’s of 0 dB, 3 dB, 6 dB, and 10 dB are shown in Figures 

5.2a, 5.3a, 5.4a, and 5.5a, respectively. Their corresponding thresholded images 

are shown in Figures 5.2b, 5.3b, 5.4b, and 5.5b, respectively; their 

corresponding object contours are shown in Figures 5.2c, 5.3c, 5.4c, and 5.5c, 

respectively; their corresponding extracted landm arks are shown in Figures 

5.2d, 5.3d, 5.4d, and 5.5d, respectively. Notice th a t when the SNR is low, the 

landm ark extractor produces m any erroneous and extraneous landm arks. As 

com pared to  the model which has only 7 landm arks, 33 landm arks are 

extracted from the scene which has a SNR =  0 dB. The m atch error betw een 

the model and the 0 dB scene is 36.53. The result of m apping the model 

contour in to  the scene is shown in Figure 5.6a. The m atch errors between the  

model and the scenes w ith SNR =  3 dB, 6 dB, and 10 dB are 45.13, 2.55, and 

0.66, respectively. The results of m apping the model contour in to  these scenes 

are shown in Figure 5.6b, 5.6c, and 5.6d, respectively.

As seen from these experiments, when too m any erroneous landm arks 

occur and the sequential order of the landm arks is lost, the  local structures of 

the scene landm arks become completely different from  those of th e  model 

landm arks. In this case, the  landm ark m atching task fails to  determ ine the  

correct m atches. As com pared w ith the model landm arks, when a p a rt of the  

sequential order of the landm arks in the scene is still preserved, although there  

m ay have m inor distortion in the landm ark locations, the  landm ark m atching 

task  can successfully detect correct m atches. In Figures 5.2d and 5.3d, th e  

sequential order of the scene landm arks is totally  lost as com pared w ith th a t  of 

the  model, and  hence the m atching task fails. In Figure 5.4d, the  locations of 

the landm arks along the object contour in the scene deviate a  small am ount 

from  those of the model landm arks. In addition, p a rt of the  sequential order of 

the  landm arks of the object in the  scene has also been rearranged by tw o 

extraneous landm arks. However, the  m atching task can still correctly m atch  

m odel landm arks 6, 7, I , 2, and 3 w ith scene landm arks 8, 9, I , 2, and  3, 

respectively, yielding a sm all m atch error. It is seen from  these experim ents 

th a t  the  sequential order of the  landm arks is im portan t to  the m atching task , 

b u t m inor distortion in landm ark locations does no t significantly degrade the  

perform ance.



5 .3 . E x p e r im e n ts  w ith  O c c lu s io n

In C hapter 4, we have considered scenes th a t comprise of a t m ost three 

overlapping objects. Before we consider more com plicated scenes, we shall 

expand the library of model objects. In addition to  the set of tools discussed in 

C hapter 3, we shall include the spacecraft, and the outlines of some islands 

shown in Figures 5.7-5.12. The islands, which are not m an-m ade, have 

interesting and complicated shapes. Figures 5.7-5.12 show the silhouettes and 

the corresponding landm arks of the islands of Borneo, H alm ahera, Luzon, 

M indanao, New Guinea, and Sulawesi, respectively. The landm arks of the  

islands are extracted based on the cardinal curvature points, and the 

corresponding range of to values th a t  can be used for extracting landm arks of 

each island are sum m arized in Table 5.1. Notice th a t  the  outlines of the 

islands are very curvy, and the corresponding range of co values th a t  can be 

used for extracting their landm arks are sm aller than  those of the tools.

Table 5.1.
Range of to values used to  obtain  the landm arks of the additional 
objects of the enlarged library based on cardinal curvature  points

Models Figures Range o f to

spacecraft 5.1d 19.5-25.5

Borneo 5.7b 19.5-24

H alm ahera 5.8b 20-23

Luzon 5.9b 14-19.5

M indanao 5.10b 17.5-21.5

New Guinea 5.11b 18-21

Sulawesi 5.12b 19.5-29

JTjgpre 5.13 shows an example of a  scene which consists of fppr objects 

overlapping each other. Com pared to  their respective models, th e  wire s tripper 

has been scaled by an area factor of 0.6, and the island of New G uinea by an 

area factor of 1.4. T he spacecraft has been ro tated  by 4 5 0 . L andm arks in the  

scene are extracted based on the  cardinal curvature  points using to=2Q. 

Com pared to  their respective model landm arks, one ou t of six o f the landm arks
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of the wire stripper, one out of seven of the landm arks of the spacecraft, one 

out of nine of the landm arks of Sulawesi, and five ou t of eleven of the 

landm arks of New Guinea are missing. W ith  respect to  each model, those 

landm arks in the scene not belonging to  the model are considered as 

extraneous landm arks. The results of m atching each model object of the  

library with the scene are sum m arized in Table 5.2. Notice th a t  the  models 

th a t correctly m atch the scene have the sm allest m atch errors. A lthough the 

scene does not contain the wire cu tter, the  m atch  error between the wire cu tte r 

and the scene is quite small. This is due to  the  fact th a t  the  scene contains the  

wire stripper and the relative locations of the landm arks of the  wire cu tte r are 

quite similar to  those of the wire stripper. The landm arks of the  wire cu tte r 

are thus m atched w ith those of the wire stripper in the scene. F igures 5.14-5.17 

show the results of m apping the models th a t  correctly m atch  w ith the  scene 

back into the scene.

Figure 5.18 shows a more com plicated scene which consists of six 

overlapping objects. Com pared to  their respective models, the  specialty plier 

has been ro tated  by 20° and scaled by an area  factor of 0.5. T he wrench and 

H alm ahera has been rotated  by 9 0 ° ; the  spacecraft has been ro ta ted  by 180 ° . 

Luzon has been scaled by an area factor of 1.4, and Borneo has been ro ta ted  

by 90 ° and scaled by an area factor of 0.6. The landm arks in the  scene are 

also extracted based on cardinal curvature  points using u*=20. C om pared to  

their respective model landm arks, th ree o u t of six of the  landm arks of the  

specialty plier, one out of six of the landm arks of the wrench, tw o o u t of seven 

of the landm arks of the spacecraft, tw o o u t of eight of th e  landm arks of 

H alm ahera, five ou t of eighteen of the  landm arks of Luzon, an d  th ree  o u t of 

seven of the landm arks of Borneo are missing. Again, w ith  respect to  each 

model, those landm arks in the  scene no t belonging to the m odel are considered 

as extraneous landm arks. T he results of m atching each model object of the  

library w ith the  scene are sum m arized in T able 5.3. Also note th a t  th e  models 

th a t  correctly m atch the  scene have the  sm allest m atch  errors. F igures 5.19- 

5.24 show the  results of m apping the  m odels th a t  correctly m atch  w ith  the  

scene back into the  scene.



5 .4 . E x p e r im e n ts  o n  T h e  C o m b in e d  E ffe c ts  o f  N o ise  a n d  O c c lu s io n

In th is section, we shall investigate the  effectiveness of o u r landm ark  

m atching task  w ith  regard  to  th e  com bined effects of noise and  occlusion. W e 

consider a  scene w hich consists o f th ree  overlapping objects, as shown in Figure 

5.25a. C om pared to  th e ir respective models, the  needle-nose plier has been 

scaled b y  an  area factor of 0.3, and  th e  spacecraft has been ro ta ted  b y  90 ° and 

,scalediby an area factor of 0.6. F igure 5.25b shows the  landm arks in  th e  scene 

th a t  are ex tracted  based on th e  cardinal curvature  points using oJ=20. 

A lthough all the  landm arks of th e  needle-nose plier appear in th e  scene, p a rt o f  

the ir sequential order is lost due to  occlusion. Six o u t of the  seven landm arks of 

th e  spacecraft appear in th e  scene, b u t only three (17, 18, 19) are in the  correct 

sequential order. Nine o u t of th irteen  landm arks of M indanao are in correct 

sequential order. T he results of m atching  each model object of the  library  w ith 

the  scene are sum m arized in T able  5.4. T he results of m apping some of the 

models in to  th e  scene are shown in Figures 5.26-5.27.

T he  effect of noise is sim ilarly sim ulated as in Section 5.2. The o b jec t 

contour and  th e  landm arks of a  noisy image are sim ilarly obtained as described 

in Section 5.2. T he image of th e  scene having a 0 dB SNR is shown in Figure 

5.28a; th e  corresponding ex tracted  landm arks are shown in Figure 5.28b. 

T able 5.5 sum m arizes th e  results of m atching each m odel object of the  library  

w ith  th e  scene. N ote th a t  th e  sequential order of the  landm arks in th e  scene 

com pared to  those of th e ir respective models is to ta lly  rearranged. All the  

resulting m atches are e ither incorrect or undeterm ined. T he image w ith a  3 dB 

SNR is shown in F igure 5.29a; th e  corresponding extracted  landm arks are 

shown in F igure 5.29b. T he results of m atching each m odel object of th e  

lib rary  w ith  the  scene having a  SNR =  3dB are sum m arized in T able 5.6. 

Again, th e  sequential o rder of th e  landm arks in the  scene com pared to  the  

respective m odel landm arks is lost. Only th e  m atch  betw een M indanao and  the  

scene has a  sm aller error, and  th e  rest are e ither m ism atched or undeterm ined. 

Im ages w ith  6 dB and  10 dB SNR along w ith  rela ted  experim ental results are 

shown in Figures 5.30-5.35. T he experim ental results are sum m arized in Tables 

5.7 and  5.8. W hen th e  sequential order of th e  landm arks in th e  scene is no t 

severly rearranged com pared to  those of th e  respective models, p a tc h e s  arc 

correctly determ ined yielding sm all m atch  error values.
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5 .5 .  D i s c u s s i o n  a n d  S u m m a r y

T he above experim ents have dem onstrated  th a t  our landm ark m atching  

task can handle occlusion reasonably well. W hen experim enting w ith  the effects 

of noise, we have no t included any preprocessing to  enhance the landm ark 

Ix trac tid n  task . The perform ance of the  m atching task  could improve 

significantly if the  landm arks in noisy images can be extracted more 

accurately. I t is difficult to  theoretically  analyze the perform ance of our 

landm ark  m atching m ethod which is, in m any cases, problem  dependent. The 

perform ance depends on the  quality  of the  extracted landm arks, and the 

num ber of correct landm arks in the  scene th a t  are detectable. From  C hapter 4, 

the  m atch  error is undefined if less th an  th ree landm arks of a model are 

correctly m atched w ith the  scene landm arks. Therefore, when m atching

landm arks of a model w ith those of a  scene, a t  least th ree landm arks in a scene 

th a t  correspond to  the model m ust be detectable. In addition, p a rt of the 

sequential order of the detectable landm arks m ust be preserved. From  the  

above experim ents, it is safe to  say th a t  an  object in a scene can be recognized 

as long as m ore than  half of its landm arks in the  scene can be detected in the 

correct sequential order. I t is also im p o rtan t to  note th a t  th e  distortion in the  

landm ark  locations does not degrade the  m atching perform ance as m uch as the  

d isto rtion  in the  sequential o rder of the  landm arks.



151

F igure 5.7. The silhouette and  the extracted  landm arks of the island of 
Borneo are shown in (a) and (b), respectively. E ach landm ark  is 
labeled and indicated by an “ X .”

F ig u re  5 .8 . T h e  s ilh o u e tte  a n d  th e  e x tra c te d  la n d m a rk s  o f  th e  is lan d  o f
H a lm a h e ra  a re  show n  in  (a) a n d  (b ), re spec tive ly . E a c h

la n d m a rk  is labeled  an d  in d ic a te d  b y  an  “ X .”
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(a) (b)

F igure 5.9. T he silhouette and  the  extracted  landm arks of the  island of 
Luzon are shown in (a) and (b), respectively. E ach landm ark is 
labeled and indicated by an “ X .”

F ig u re  5 .10 . T h e  s ilh o u e tte  a n d  th e  e x tra c te d  la n d m a rk s  o f  th e  is lan d  o f
M in d a n a o  a re  sh o w n  in  (a ) a n d  (b ), re spec tive ly . E a c h  la n d m a rk

is lab e led  a n d  in d ic a te d  b y  a n  “ X .”

)
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. (a ) (b)

F igure 5.11. T he silhouette and the extracted landm arks of the island of New 
Guinea are shown in (a) and (b), respectively. Each landm ark is 
labeled and indicated by an “ X.”

F ig u re  5.12. T h e  s ilh o u e tte  a n d  th e  e x tra c te d  la n d m a rk s  o f  th e  is land  o f
S ulaw esi a re  show n in (a) a n d  (b), respec tive ly . E a c h  la n d m a rk

is labe led  a n d  in d ic a ted  by  an  “ X .”



F igure 5.13. A scene which consists of four overlapping objects. Each scene 
landm ark  is labeled and indicated by an “ X .”
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Tab le 5.2.
T h e s u m m a ry o f th e re s u l ts o fm a tc h in g a  

library of objects w ith the scene shown in Figure 5.13.

Models

 ̂ • •; . ' .

Model figure 

num bers

T otal 

num ber of 

model 

landm arks

N um ber of 

the  model 

landm arks 

th a t  m atch  

w ith  the 

scene

M atch E rro r

wrench 3.35 . 6 2 OO

needle-nose plier 3.36 4 2 OO

wire cu tter 3.34 6 5 7.56

specialty plier 3.37 6 3 53.93

wire stripper 3.38 6 6 2.49

Borneo 5.7b 7 O OO

H alm ahera 5.8b 8 4 18.22

Luzon 5.9b 18 2 OO

M indanao 5.10b 13 '' 3 42.94

New G uinea 5.11b 11 6 5.49

Sulawesi 5,12b '9 8 0.34

spacecraft 5.1d 7 6 0.93
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F ig u re  5.14. T h e  re su lt o f  m a p p in g  th e  w ire  s tr ip p e r  in to  th e  scene sh o w n  in
F ig u re  5.13.
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F ig u re  5,15. T h e  re s u lt  o f  m a p p in g  N ew  G u in e a  in to  th e  scene  sh o w n  }n
F ig u re  5.13.
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F ig u re  5 .16 . T h e  re s u lt  o f  m a p p in g  S u law esi in to  th e  scene  show n  in F ig u re
5.13.
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F ig u re  f , J 7 .  T h e  re su lt o f  m a p p in g  th e  sp a c e c ra f t in to  th e  scene s h o w n  in
F ig u re  5 .13.
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35 27

F igure  5.18. A  scene w hich consists of six overlapping objects. Each scene 
landm ark  is labeled and indicated by an “ X .”



T ab le  5.3.
The sum m ary of the  results of m atching h 

library of objects w ith th e  scene shown in Figiire 5.18.

Models Model figure T ota l

■ - - • v" ■

N um ber of M atch E rro r

. .I''.-;- num bers num ber of the model

X.-"- model landm arks

; I : . ; . . ■ landm arks th a t m atch

w ith the. ...
scene . : .' ■' . .

wrench 3.35 6 ... ’ 4' ...I". 0.74

needle-nose plie# 3.36 4 0 CX)

wire cu tter 3.34 6 2 OO

specialty plier 3.37 6 3 7.89

wire stripper 3.38 6 2 OO /

Borneo 5.7b 7 5 11.75

H alm ahera 5.8b 8 6 0.57

Luzon 5.9b 18 14 0.78

M indanao 5.10b 13 3 54.59

New Guinea 5.11b 11 4 77.81

Sulawesi 5.12b 9 4 18.08

spacecraft 5 .id 7 5 0.55
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F igure 5.19. T he result of m apping the  wrench into the scene shown in Figure
5.18.
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F ig u re  5 ,20 . T h e  re su lt o f  m a p p in g  th e  sp ec ia lty  p lie r  in to  th e  scene  s h o w n  in
F ig u re  5.18.



F igure 5.21. The result of m apping Borneo in to  the  scene shown in F igure 

' 5.18.
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F ig u re  5.22. T h e  re su lt o f  m a p p in g  H a lm a h e ra  in to  th e  scen e  sh o w n  in  F ig u ra
■' 5.18.
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F igure 5.23. T he result of m apping Luzon in to  the scene shown in F igure 5.18.



T he resu lt of m apping th e  spacecraft in to  the  scene shown in 
F igure 5.18.
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F igure 5.25. Experim ents on the combined effects of noise and occlusion: 
noiseless case, (a) A scene which consists of three overlapping 
objects, (b) E x tracted  scene landm arks. Each landm ark is labeled 
and  indicated by an “ X .”



Tab le 5.4.
T he sum m ary of the  results of m atching  a 

library  of objects w ith  th e  scene shown in F igure 5.25b.

Models Model figure 

num bers

T ota l 

num ber of 

model 

landm arks

N um ber of 

th e  m odel 

landm arks 

th a t  m atch  

w ith  the  

scene

M atch E rro r

Wrench 3.35 6 2 O O

needle-nose plier 3.36 4 4 0.24

wire cu tter 3.34 6 ■ ' 2 O O

specialty plier 3.37 6 ; 2 O O

wire stripper 3.38 6 4 13.96

Borneo 5.7b 7 2 O O

H alm ahera 5.8b 8 2 O O

Luzon 5.9b 18 4 261.62

M indanao 5.10b 13 10 1.40

New G uinea 5.11b 11 2 O O

Sulawesi 5.12b 9 3 140.39

spacecraft 5 .id 7 3 8.22
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W

0> )

F igure 5.26. The results of m apping the  needle-nose plier and Luzon into the  
scene (Figure 5.25b) are shown in (a) and (b), respectively.
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(a )

0»)

F igure 5.27. m e  results ol m apping M indanao and the spacecraft « 
scene (Figure 5.25b) are shown in (a) and (b), respectively.
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( a )

(b)

F igure 5.28. Experim ents on the  com bined effects of noise and occlusion: 
SN R=O dB. (a) The noisy image of F igure 5.25a having 
SN R=O dB. (b) T he corresponding ex tracted  landm arks from  
(a). Each landm ark  is indicated by an “ X .”



173

Tab le 5.5.
T he sum m ary of the  results of m atching a 

library  of objects w ith the  scene shown in F igure 5.28b.

Models Model figure 

num bers

T ota l 

num ber of 

model 

landm arks

N um ber of 

the model 

landm arks 

th a t  m atch  

w ith the 

scene

M atch E rro r

w rench 3.35 6 0 ° o

needle-nose plier 3.36 4 3 10.78

w ire cu tte r 3.34 6 0 O O

specialty plier 3.37 6 0 O O

w ire stripper 3.38 6 0 O O

Borneo 5.7b 7 3 34.28

H alm ahera 5.8b 8 3 38.63

Luzon 5.9b 18 7 51.33

M indanao 5.10b 13 6 54.32

New G uinea 5.11b 11 4 8.89

Sulawesi 5.12b 9 4 54.68

spacecraft 5.1d 7 2 O O
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F igure 5.29. E xperim ents on the com bined effects of noise and occlusion: 
S N R = 3dB. (a) T he noisy image of Figure 5.25a having 
S N R = 3 d B . (b) The corresponding extracted landm arks from  
(a). Each landm ark  is indicated by an “ X .”
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Tab le 5.6.
T he sum m ary of the results of m atching a 

lib rary  of objects w ith the  scene shown in Figure 5.29b.

Models Model figure 

num bers

T otal 

num ber of 

model 

landm arks

N um ber of 

the model 

landm arks 

th a t  m atch  

w ith the 

scene

M atch E rro r

wrench 3.35 6 2 O O

needle-nose plier 3.36 4 0 O O

wire cu tter 3.34 6 0 O O

specialty plier 3.37 6 0 O O

wire stripper 3.38 6 3 78.17

Borneo 5.7b 7 3 14.42

H alm ahera 5.8b 8 2 O O

Luzon 5.9b 18 4 604.01

M indanao 5.10b 13 6 18.09

New G uinea 5.11b 11 3 116.42

Sulawesi 5.12b 9 3 71.35

spacecraft 5. Id 7 4 16.08
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F igure 5.30. E xperim ents on the  com bined effects of noise and occlusion: 
S N R = 6 d B . (a) The noisy image of Figure 5.25a having 
S N R = 6 d B . (b) The corresponding extracted landm arks from  
(a). Each landm ark  is indicated by an “ X .”



Tab le 5.7.
The sum m ary of the results of m atching a  

library  of objects w ith the scene shown in Figure 5.30b.

M odels
. > .

: . 'I-. ■ ; ' .

Model figure 

num bers

T otal 

num ber of 

model 

landm arks

Num ber of 

the model 

landm arks 

th a t m atch 

w ith the 

scene

M atch E rro r

; : '

■wrench 3.35 6 0 OG

needle-nose plier 3.36 4 3 2.92

wire cu tter 3.34 6 3 62.56

specialty plier 3.37 6 2 OO

wire stripper 3.38 6 4 7.75

Borneo 5.7b 7 3 121.68

H alm ahera 5.8b 8 3 158.96

Luzon 5.9b 18 3 41.83

M indanao 5.10b 13 6 14.47

New G uinea 5.11b 11 3 20.70

Sulawesi 5.12b 9 2 OO

spacecraft 5 .Id 7 3 17.02
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(a)

(b)

F ig u re  5 .31 . T h e  re su lts  o f  m a p p in g  th e  need le-nose  p lie r a n d  M in d a n a o  in to
th e  scene (F ig u re  5 .30b) a re  sh o w n  in  (a) a n d  (b), re sp ec tiv e ly .
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F ig u re  5.32. T h e  re su lt o f m ap p in g  th e  sp a c e c ra f t in to  th e  scene sh o w n  in
F ig u re  5 .30b.
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F igure 5.33. Experim ents on the  com bined effects of noise and  occlusion: 
SN R =IO dB  (a) The noisy image of Figure 5.25a having 
SN R =IO dB . (b) T he corresponding extracted  landm arks from  
(a). Each landm ark is indicated by an “ X .”
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Tab le 5.8.
The sum m ary of the results of m atching a 

library of objects w ith the scene shown in  Figure 5.33b.

Models Model figure 

num bers

T otal 

num ber of 

model 

landm arks

N um ber of 

th e  model 

landm arks 

th a t  m atch 

w ith  the  

scene

M atch E rro r

wrench 3.35 6 2 OO

needle-nose plier 3.36 4 4 0.48

wire cu tter 3.34 6 2 OO

specialty plier 3.37 6 3 18.48

wire stripper 3.38 6 4 15.34

Borneo 5.7b 7 2 OO

H alm ahera 5.8b 8 2 OO

Luzon 5.9b 18 4 460.50

M indanao 5.10b 13 10 1.78

New Guinea 5.11b 11 2 OO

Sulawesi 5.12b 9 3 128.62

spacecraft 5 .Id 7 3 18.18
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(a)

. P > )

F ig u re  5 .34 . T h e  re su lts  o f  m a p p in g  th e  need le -nose  p lie r  a n d  M in d a n a o  in to
th e  scene (F ig u re  5 .33b) a re  sh o w n  in (a) a n d  (b ), re sp ec tiv e ly .
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F ig u re  5.35. T h e  re su lt o f  m a p p in g  th e  s p a c e c ra f t in to  th e  scene show n in
F ig u re  5 .33b .
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C H A P T E R  6

C O N C L U S IO N S  A N D  R E C O M M E N D A T IO N S

W e have presented and discussed the overall scheme of 2-D Iandm ark- 

based shape recognition. Sphericity has been used as a shape m easure to 

indicate the sim ilarity between two sets of landm arks. It has been shown to 

have the desirable properties of a shape measure. We have also developed two 

m ethods of extracting high curvature  points along object contours. For 

illustrative purposes, these high curvature  points are used as our landm arks. 

O bjects in a  scene are then recognized by m atching landm arks of models w ith 

those in the scene. W e have developed an algorithm  which is known as hopping 

dynam ic program m ing to  perform  the landm ark m atching task . The feasibility 

of the  landm ark-based approach has been dem onstrated  through extensive 

experim ental results.

The landm ark-based approach is capable of achieving both  global and 

p artia l shape recognition. It is com putationally  inexpensive. T he entire  object 

contour or silhouette of an object is n o t needed for th is approach to  achieve 

recognition. For each model object, it is only necessary to  arrange and store 

the  coordinates of the corresponding landm ark locations in a sequential order. 

I t th u s requires only a small am ount of memory.

A  challenging extension of the  present work is to  consider three- 

dim ensional (S-D) landm ark-based shape recognition. E ach 3-D object is 

represented by the  landm arks of the  object in a  3-D space. T he shape of the  

object is characterized by the 3-D geometric structu res am ong the  landm arks 

of the  object. Sphericity, which is defined no t only in 2-D space, can also be 

used as § shape m easure in the  3-D case. Instead of using the  sphericity of a 

triangu lar transform ation , we use the  ' sphericity  of a  te trahedral 

transform ation  which m aps a  set of four 3-D points to  ano ther set of four 3-D 

points. A  te trahed ral transform ation  m aps a  te trahedron  to  ano ther 

te trahed ron . T he sphericity derived from  the m apping of a  te trahedron  to  

ano ther te trahedron  will indicate the sim ilarity  between the  two te trahed ra . A
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value of I indicates th a t the two te trah ed ra  are similar. Recall th a t HDP has 

m ade use of the sequential arrangem ent of the landm arks to  achieve the  

landm ark  m atching task. If the sequential order of the landm arks in the 3-D 

space can be preserved, HDP can also be used to achieve the landm ark  

m atching task . W hen the order of the landm arks is not known, we conjecture 

th a t  it is possible to construct a graph based on the sphericity values of 

te trah ed ra l transform ations m apping model landm arks to scene landm arks. 

This graph will reflect the  com patibility  of the geometric structures between 

the model and the scene landm arks. It is worth pursuing the concept of this 

struc tu red  graph to achieve 3-D landm ark-based shape recognition,
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A  D E T A IL E D  P R O O F  O F  L E M M A  2 .36

L e m m a  2 .36  If W  is a non-central B eta random  variable, w ith 2, 2 degrees 

of freedom, and the noncentrality , p, th a t is, f w (w)  = 0 (w ; l ,I,p) , 

then

E ( W )  =  I -  i  +  - L _ - L e-,.

f  />! P2

E ( W 2) =  I -  ^  +  4 ( 1  - I  +
P P2 P P

V c r ( W )  =  - ^ ( 1  -  S- -  - i -  +  2 e - " ( l  +  -  +  - L  +  ~ ) )  .
P P P2 P p2 p2 ’’

P r o o f :  By m aking use of Theorem  2.33, Lem m a 2.35, and the m om ents of a

Poisson random  variable, we have

i

E ( W )  =  J w f w(u;) dw

i

J w 0 (w ,l , \ ,p )  dw 
o

By Theorem  2.33,

I

- / •
0

S  r r£-0(w ,\+ j,  i )

J = O  J -

S
y-o

j  1

e I  WP{W’0+jA)<fo
J 1 o
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By Lemma 2.35,

a;
V

;=0

pL  i ± i

P  2 + j

L et z = j  +  2,

A .'

V

J=O

CC

V

1=2

( z - l ) 2 epjlPjl
z!

OC

V
I=O

(* —2z+ 1 )— :
e ~ V

i!
-  t~ f

Using the m om ents of a Poisson random  variable with param eter p, 

E ( W ) =  i - l  +  - L - ± e - f  . (A .l)
P pl pl . ■

Note th a t  m om ents of a  Poisson random  variable can be obtained by 

using the m om ent generating function of the Poisson random  variable.

Similarly,

E { W 2) =  E  

y-o

j  f  '

w 20 ( w ; l + j , l ) d w
J 1 o

O O

E
y-o

~,>pL i ±1

P  i + 3

I 00

P y-  o
( > + l ) 2( j + 2 ) c

0 + 3 )!

7 ?
P I *3

(*—2)2( i —
j !
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I
5»'2+8«—4)e i ' iL

I !
+  4 e ~ ' ’

(A.2)

T he variance is obtained by using Equations A .I and A.2: 

Var { W)  =  E { W 2) -  { E { W y f

+  2e~ ''(l +  -  +  - T  
P P2

□
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