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Abstract

In this paper we describe an approach to recognizing poorly textured ob-

jects, that may contain holes and tubular parts, in cluttered scenes under ar-

bitrary viewing conditions. To this end we develop a number of novel com-

ponents. First, we introduce a new edge-based local feature detector that is

invariant to similarity transformations. The features are localized on edges

and a neighbourhood is estimated in a scale invariant manner. Second, the

neighbourhood descriptor computed for foreground features is not affected

by background clutter, even if the feature is on an object boundary. Third,

the descriptor generalizes Lowe’s SIFT method [12] to edges.

An object model is learnt from a single training image. The object is

then recognized in new images in a series of steps which apply progressively

tighter geometric restrictions. A final contribution of this work is to allow

sufficient flexibility in the geometric representation that objects in the same

visual class can be recognized. Results are demonstrated for various object

classes including bikes and rackets.

1 Introduction

Numerous recent approaches to object recognition [2, 12, 14, 15, 13, 20, 24] represent the

object by a set of colour or grey-level textured local patches. They obtain excellent results

for objects which are locally planar and have a distinctive texture [21]. However there are

many common objects where texture or colour cannot be used as a cue for recognition (cf.

figure 1). The distinctive features of such objects are edges and the geometric relations

between them. In this paper we present a recognition approach based on local edge fea-

tures invariant to scale changes. Our goal is to recognize classes of roughly planar objects

of wiry components against a cluttered background. For example, bikes, chairs, ladders

etc.

A very important property of our recognition approach is scale invariance [12, 14].

This enables the recognition of an object viewed from a different distance or with dif-

ferent camera settings. The scale invariance can locally approximate affine deformations,

thereby additionally providing some immunity to out of plane rotations for planar objects.

A second problem area is occlusions and background clutter. These can significantly

change the appearance of features localized on object boundaries. Therefore, it is crucial

to separate the foreground from the background. Since strong edges often appear on the

boundaries they can be used to split the support regions before computing the descriptors.



1.1 Background

Our approach builds on recent object recognition methods. The idea of representing an

object by a collection of local invariant patches (to avoid occlusion problems) can be

traced back to Schmid and Mohr [21], where the patches were based on interest points

and were invariant to rotations. Lowe [12] developed an efficient object recognition ap-

proach based on scale invariant features (SIFT). This approach was recently extended

to sub-pixel/sub-scale feature localization [5]. In the context of scale invariant features

Mikolajczyk and Schmid [14] developed a scale invariant interest point detector.

Recently, many authors developed affine invariant features based on the second mo-

ment matrix [2, 15, 20] or other methods [13, 24]. However, affine invariant features

provide better results than scale invariant features only for significant affine deforma-

tions [15], and are not used here.

The invariance to affine geometric (and photometric transformations) reduces the al-

ready limited information content of local features. Therefore, many authors also use

geometric relations between features to correctly resolve ambiguous matches. A common

approach is to require that the neighbouring matches are consistent with a local estimate

of a geometric transformation [18, 20, 21, 22]. This method has proved very good at

rejecting false matches, and is adopted here.

Edge based method with affine [10] or projective [19] invariance, were successful

in the early nineties, but fell out of favour partly because of the difficulties of correctly

segmenting long edge curves. More recently recognition methods based on the statis-

tics of local edges have been developed by Amit and Geman [1], and Carmichael and

Hebert [7, 8]. The latter successfully detect objects with wiry components in cluttered

backgrounds. However, many positive and negative examples are required to learn the

object shape and background appearance, and there is no invariance to scale. We adopt

a local edge description and incorporate the scale invariance previously only available

to methods based on local appearance patches. The problem of background clutter was

also handled, although manually, in the patch approach proposed by Borenstein and Ull-

man [4] for object segmentation.

Other related approaches using edge information are those of Belongie et al. [3] who

use 2D shape signatures based on edges in the context of shape matching, although scale

invariance and background clutter problems are not addressed in their work, and the pro-

jectively invariant shape descriptor used by Sullivan and Carlsson [25].

1.2 Overview

Section 2 presents the new feature detector and local edge descriptor. Section 3 describes

the two stages of the recognition system: first clustering on a local transformation to re-

duce ambiguity, and then estimating a global (affine) transformation to detect the object

in an image. In more detail, we combine an appearance distance between feature de-

scriptors and local geometric consistency to compute the scores for point matches. The

best matches with relatively few outliers are then used to vote in the Hough space of local

affine transformations. The distinctive clusters in this space are used to detect and localize

the objects. Section 4 gives experimental results.



2 Local features

In the following we describe our feature detector. Our objective is to determine the edge

neighbourhood that is related to the scale of the object. We then show how we deal with

occlusions and background clutter. Finally we present the descriptor that represents the

edge shape in the point neighbourhood.

2.1 Support regions

Edge features. In our task edges of low curvature and their spatial relations are very

characteristic of the object. The widely used Harris [9] and DoG [12] detectors are not

suitable for our purpose as the first one detects corner-like structures and the second one

mostly blobs. Moreover these points are rarely localized on edges, and only accidentally

on straight edges. It is well know that edge features are present at various scales and

can change their appearance at different scales. Figure 1 shows the object and the edges

detected with Gaussian derivatives at σ � 1 and σ � 3. The edges change their locations

due to blurring, and new edges appear at different scales (cf. figure 1(b)(c)). Therefore

it is crucial to build a scale-space representation to capture the possible edge appearance.

To find the local features we first extract edges with a multi-scale Canny edge detector [6]

using Gaussian derivatives at several pre-selected scales, with the scale interval of 1.4.

(a) (b) (c)

Figure 1: (a) Object model. (b) Edges detected at scale σ � 1. (c) Edges detected at scale

σ � 3.

Scale invariance. Having computed edges at multiple scales, our goal is now to deter-

mine the size of the neighbourhood of the edge point that will be used to compute the

descriptor. Several authors use the Laplacian operator for this purpose [11, 12, 14, 20].

Given a point we compute the Laplacian responses for several scales. We then select the

scales for which the response attains an extremum. For a perfect step-edge the scale pa-

rameter for which the Laplacian attains an extremum is in fact equal to the distance to

the step-edge. This is a well known property of the Laplacian and can be proved analyti-

cally [11]. Figure 2(a) shows an example of a step-edge and a sketch of a 2D Laplacian

operator centred on a point near the edge. Figure 2(b) shows the responses of the scale

normalized Laplacian for different parameters σ . The scale trace attains a minimum for σ
equal to the distance to the step-edge. There are several advantages to this approach. The

first one is that we obtain characteristic scale for the edge points. This scale is related to

the object scale and determines the point neighbourhood within which we capture more

signal changes [14]. Figure 3 shows a few examples of point neighbourhoods selected

by the Laplacian operator applied to images of different scale. Note that the feature is

centred on one edge and the selected scale corresponds to the distance from the point to

a neighbouring edge tangent to the circle. The edge neighbourhood is correctly detected



(a) (b) (c) (d)

Figure 2: Scale trace of the Laplacian localized on a 2D ridge. (a) 2D ridge. (b) Sketch

of 2D Laplacian operator. (c) Laplacian localized on one edge. (d) Responses of the

scaled Laplacian operator for the given location. The scale of the extremum response

corresponds to the distance to the other edge.

despite the scale change and different background. A second advantage of this approach

is that points which have homogeneous neighbourhood can easily be identified and re-

jected since they do not attain a distinctive extremum over scale. In this manner many of

the edge points computed over the multiple scales are discarded.

An alternative straightforward method would be to search for tangent neighbouring

edges but we found this approach less stable than the Laplacian scale selection.

(a) (b) (c) (d)

Figure 3: A few points selected by the Laplacian measure centred at the edge points.

(a)(c) Images related by a scale factor of 2. (b)(d) Edges with corresponding regions.

Note that the Laplacian attains an extremum when it finds another edge. The radius of the

circles is equal to the selected σ .

Foreground-background segmentation. In the following we describe a new method

for separating foreground and background. In the context of recognition of objects with

holes and tubular components the background texture can significantly affect the descrip-

tors such that recognition becomes impossible. To reduce the background influence, the

point neighbourhood is divided into two parts separated by a chain of dominant edges,

and descriptors are computed separately for each part as described below. The domi-

nant edges are selected by locally fitting a line to the extracted edges using RANSAC.

Figure 4(a) shows an example of corresponding edge points on different backgrounds.

Figure 4(b) displays the gradient images and figure 4(c)(d) the selected principal edge

with the neighbourhood. The tangent angle φ is used to obtain rotation invariance for the

descriptors.

2.2 Edge Descriptors

A descriptor that captures the shape of the edges and is robust to small geometric and

photometric transformations is needed for this approach. A comparative evaluation of

descriptors in [16] showed that SIFT descriptors [12] perform significantly better than

many other local descriptors recently proposed in the literature. Inspired by this result



(a) (b) (c) (d)

Figure 4: Background foreground segmentation. (a) Point neighbourhood, (b) Gradient

edges. (c)(d) Region parts separated by the dominant edge. φ is the reference angle for

the descriptor.

we extend the SIFT descriptor to represent the edges in the point neighbourhood. For

each region part (cf. figure (a)) we build a 3D histogram of gradient values, for which

the dimensions are the edge point coordinates (x, y) and the gradient orientation. The

histogram bins are incremented by the gradient values at the edge points. The values are

weighted by a Gaussian window centred on the region. The descriptor is built from two

histograms. To compute the first we use a 2
�

2 location grid and 4 orientation planes

(vertical, horizontal and two diagonals, cf. figure (b)). The dimension of this descriptor

is 16. For the second histogram we use a 4
�

4 location grid and 8 orientation planes

(cf. figure (c)). The dimension is 128. These two histograms are used in our coarse-to-

fine matching strategy discussed in the next section. To obtain rotation invariance the

gradient orientation and the coordinates are relative to the principal line separating the

region (cf. figure 3(c)(d)). The descriptor of each region part contains also the points on

the dominant edge. Each region part is described separately but we also use the joint

descriptor to represent the whole region. To compensate for affine illumination changes

we normalize each description vector by the square root of the sum of squared vector

components. The similarity between the descriptors is measured with Euclidean distance.

hor. diag.

diag. vert.

0o 45o 90o 135o

180o 225o 270o 315o

(a) (b) (c)

Figure 5: Edge-based local descriptor. (a) Support region and location grid. (b) Four 2
�

2

orientation planes. (c) Eight 4
�

4 orientation planes.



3 Coarse-to-fine geometric consistency

It is supposed that we have an image of the object we wish to recognize, and our task is

to decide if an object of this class is present in a novel image. The recognition strategy

consists of two main stages aimed at establishing matches between the model and target

(novel) image. The first stage is filtering matches by taking into account the similarity of

their histogram descriptors and the local geometric consistency of a similarity transfor-

mations between spatially neighbouring matches. The second stage is clustering the pose

of the whole object in a coarsely partitioned affine space.

A single descriptor has small discriminatory power but a set of spatially neighbour-

ing features which preserve the geometric relations under arbitrary viewing conditions

can unambiguously identify an object. This property was successfully used in numerous

approaches [5, 20, 21, 22]. Given an object to recognize, we can restrict the transforma-

tions that it can undergo. An affine transformation is a good trade-off for objects which

are roughly planar when seen from a certain distance. The difficulty in estimating the

transformation arises from outliers (edge mis-matches) which can often occur. An affine

transformation can be locally approximated by a similarity, and this transformation re-

quires fewer reliable inliers to compute an estimate. In our approach we can obtain an

estimate of the local similarity with a single correspondence. This is because a single

correspondence provides four constraints: scale change, rotation and translation. Another

problem is that an exhaustive search for the transformation can be very time expensive in

particular with a large number of points. To handle these problems we apply a coarse to

fine strategy which rejects the outliers in successive stages.

Combined histogram distance and similarity constraint measure. In the first stage

we build a 2D matrix where each entry contains a matching score for a pair of descrip-

tors – one from the object model, the other from the target image. This score consists of

two factors. The first factor is the distance between the descriptor vectors. To increase

the computational speed we compute the descriptor distance for every possible pair of

16 dimensional histograms in two images. Note that a point has three descriptors corre-

sponding to the region parts. We use only the minimum distance given by the descriptors

of one point pair. We apply a distance threshold to select the matches processed in the

further stages of the approach. For these matches we compute the distance dE between

the 128 dimensional histograms. The second factor contributing to the matching score

(a) (b)

Figure 6: Voting using neighbouring points. (a) Investigated matches xa, xb, where xa is

in the model image, and xb in the target image. (b) Neighbouring features xi, x j contribute

to the score v
�
xa ✁ xb ✂ (cf. equation 1).

measures the consistency of neighbouring matches to the similarity transformation esti-

mated from the investigated pair of points. This geometric consistency is used to weight



the descriptor distance of every neighbouring point pair. The matched points xa ✁ xb give

a hypothesis of the local similarity transformation between the images, where the scale

change is σa � b � σa

✁
σb and the rotation is φa � b � φa ✂ φb (cf. figure 6). The matching

score for a given pair of points is:

v
�
xa ✁ xb ✂ �

1

1 ✄ dE

�
xa ✁ xb ✂ ✄ ∑

i � j βi jαi j

1 ✄ dE

�
xi ✁ x j ✂ (1)

where α and β are the penalizing functions defined by

αi j �
1

1 ✄ 0 ☎ 1 ✆ φa � b ✂ φi � j ✆ ✁ βi j �✞✝ σa � b ✁ σi � j i f σa � b ✁ σi � j ✟ 1

σi � j ✁ σa � b otherwise

Points xi ✁ x j are spatial neighbours of points xa ✁ xb (cf. figure 6) within a distance 5σa ✁ 5σb

respectively. The larger the difference between the scale and rotation estimated from the

xa ✁ xb and xi ✁ x j pair, the smaller the weighting factors α and β . A neighbouring point

contributes only once in the score for a given pair xa ✁ xb. We use only the pairs of points

which maximise the ratio βi � jαi � j ✁ �
1 ✄ dE

�
xi ✁ x j ✂ ✂ . The pairs such that βi jαi j ✟ 0 ☎ 1 are

not included in the score. We use 1 ✄ dE to avoid zero in the denominator (cf. equation 1),

which can happen when the distance between descriptor vectors equals zero. However,

this is very rare and usually the distances between descriptors are much larger than 1.

Hough transform for affine clustering. In the second stage of our recognition ap-

proach we cluster the object pose using a voting technique in affine space. To localize

the object in a target image we have to find the transformations that relates our model

and the image. Note that there may be several instances of the object, and therefore sev-

eral transformations may be valid. We use the generalized Hough transform to find the

affine transformations between the model and the image. Given the scores computed in

the previous stage we use the best matches to search for affine transformations between

local groups of points. Every three non-collinear pairs of points in a limited region vote

for a local affine transformation. The maximum spatial distance between points is given

by the local scales of the features. We can use a larger distance since the affinity better

approximates the transformations which our object undergoes.

A � R
�
θ1 ✂
✠

s1 0

0 s2 ✡ R
�
θ2 ✂ ✄ ✠ t1

t2 ✡ (2)

We parametrize the transformation space by translations t1 ✁ t2 , rotation θd � θ1 ✂ θ2 as

well as the two scalings s1 ✁ s2. The ratio ☛ s1s2 is the average scale of the object, and

s1

✁
s2 is the aspect ratio. This representation provides a possibility to discretize the scales

within different ranges of values and with different intervals. This is very useful as the

aspect ratio of the object changes less than its scale in real images. The votes in the

transformation space are weighted by the scores obtained in the previous stage. Three

pairs of matches vote for an affine transformation with a weight given by ∑v
�
xa ✁ xb ✂ .

Finally we search for the largest clusters in the voting space. The local maxima indi-

cates the object location. Note that there can be more than one object in the image (cf.

figure 7). We remove the overlapping clusters which appear in the transformation space

at neighbouring scales and rotations.

The coarse bins used in the Hough transform allow intra-class variability in the recog-

nition. This results in coarse accuracy of affine pose estimation, but allows small shift in

relative locations of local features. Thus, a similar object with slightly different geometry

also yields a distinctive cluster in the Hough space.



4 Results

To validate our approach we detect bicycles in cluttered outdoor scenes under wide view-

point changes. Figure 7 shows several detection results. The images contain multiple in-

stances of the object at a different scale, rotation and aspect ratio. We display the matched

features consistent with the estimated affine transformation.

Figure 7(a) displays the features, up to scale 10, which are used to represent the model.

There are approximately 2 500 local features. Figure 7(b) displays partially occluded

object on textured background and shows all the features detected in the image. There are

approximately 10 000 features. Figure 7(c) shows a hyperplane from the Hough space of

affine transformations. The distinctive cluster indicates a scale 1.2, an aspect ratio 0.8,

and rotation of zero. Other clusters in the space are insignificant. There are 386 inliers to

the estimated affine transformation, which are displayed in figure 7(d).

Figures 7(e) and (f) present examples of multiple objects of different scales and small

changes of aspect ratio. The scale changes between the model and the objects in the im-

ages are 1.9, 2.4 and 2.1, 2.2 respectively. Note that the method is not restricted to exactly

the same object. The local edge descriptors convey information about the shape of the

edges and not about their exact appearance in the image. The small differences in tex-

ture appearance between different instances of the object do not influence the descriptors.

The use of local geometric relations between features handles the problem of ambiguous

matches.

Figure 7(g) and (h) displays the objects with out of plane rotations. The average scale

change is 1.3, 1.1 and the aspect ratio is 1.4, 1.1 in images (h) and (i) respectively. In our

experiments with images of bicycles the aspect ratio has varied up to scale 2. This limits

can be exceeded in real images but in this case the planar model is not valid any more

for most of the local features detected on the bicycle. Figure 7(i) shows an example of

recognition of a different object class.

Discussion and conclusions

We have presented an approach to detect a poorly textured object with holes and tubular

components in highly cluttered scenes under arbitrary viewing conditions. The approach

does not require learning many positive and negative examples, although this can improve

the recognition performance. A single view of one positive example was used to build a

generic model. The approach is not limited to the recognition of the same object. This

is possible because we allow for some loss in accuracy in the descriptor representation

and in the affine pose clustering. We have also demonstrated the invariance to affine

transformations due to pose changes.

The edge based descriptor that we have introduced here can be used to complement

texture based patch descriptors so that objects can be represented by an appropriate com-

bination of texture and edge descriptors.

In future work we will extend the learning process to capture more controlled intra-

class variations. We can learn, for example, the variation of the descriptor computed on

the same parts of similar objects. We can also cluster the features into groups and perform

matching between clusters rather than between single features.



(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

Figure 7: Examples of objects correctly recognized in images. (a) Object model, the shape

is learnt from one image and the system recognizes another similar object. (b) All features

detected in the target image, (c) Hyperplane of the Hough space displaying the domi-

nant pose cluster, (d) Inliers to the estimated transformations. (e)(f) Examples with back-

ground clutter and scale changes. (g)(h) Wide viewpoint changes. (i) Another object

model and matched examples.
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