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Abstract—The class of geometric deformable models, also
known as level sets, has brought tremendous impact to medical
imagery due to its capability of topology preservation and fast
shape recovery. In an effort to facilitate a clear and full under-
standing of these powerful state-of-the-art applied mathematical
tools, this paper is an attempt to explore these geometric methods,
their implementations and integration of regularizers to improve
the robustness of these topologically independent propagating
curves/surfaces. This paper first presents the origination of level
sets, followed by the taxonomy of level sets. We then derive the
fundamental equation of curve/surface evolution and zero-level
curves/surfaces. The paper then focuses on the first core class
of level sets, known as “level sets without regularizers.” This
class presents five prototypes: gradient, edge, area-minimization,
curvature-dependent and application driven. The next section
is devoted to second core class of level sets, known as “level sets
with regularizers.” In this class, we present four kinds: clus-
tering-based, Bayesian bidirectional classifier-based, shape-based
and coupled constrained-based. An entire section is dedicated to
optimization and quantification techniques for shape recovery
when used in the level set framework. Finally, the paper concludes
with 22 general merits and four demerits on level sets and the
future of level sets in medical image segmentation. We present
applications of level sets to complex shapes like the human cortex
acquired via MRI for neurological image analysis.

Index Terms—Cortex, deformable models, differential geometry,
front, fuzzy, level sets, propagation, regularization, segmentation,
stopping forces, topology.

I. INTRODUCTION

T HE ROLE of shape recovery has always been a critical
component in two-dimensional (2-D) and three-dimen-

sional (3-D) medical imagery since it assists largely in medical
therapy (see the recent book by Suriet al. [1] and references
therein). The applications of shape recovery have been in-
creasing since scanning methods became faster, more accurate
and less artifacted (see [1, Ch. 4] or [2]). The recovery of shapes
of the human body is more difficult compared to other imaging
fields. This is primarily due to the large variability in shapes,
complexity of medical structures, several kinds of artifacts and
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restrictive1 body scanning methods. In spite of the above-men-
tioned complications, an exploration has begun into obtaining
faster and more accurate software tools for shape recovery in 2-D
and 3-D. This paper is an attempt to survey the latest techniques
in 2-D and 3-D for fast shape recovery based on the class of
deformable models, known as “level sets” or “geodesic active
contours/surfaces.”2

The application of the level sets in medical image segmenta-
tion became extremely popular because of its ability to capture
the topology of shapes in medical imagery. Recently, Lachaud
(see [4]–[6]) and Malgouyreset al. [7] showed a relationship
between topology and isosurface extraction. Malgouyreset
al. [7] also recently published an excellent paper on topology
preservation within digital surfaces. A detailed survey on digital
topology in computer vision, graphics, and image processing
(CVGIP) can be seen by Konget al. [8] and also the related
research work by Bertalmioet al.[9] and DeCarloet al.[10]. The
diversity of applications of level sets has reached into several
fields. These applications and their relevant references are listed
here: 1) geometry: (see Angenentet al. [11], Choppet al. [12],
[13] and Sethianet al. [14]); 2) grid generation: (see Sethianet
al. [15]); 3) fluid mechanics: (see Mulderet al. [16], Sethianet
al. [17] and Sussmanet al. [18]); 4) combustion: (see Rheeet
al. [19]); 5) solidification: (see Sethianet al. [20]); 6) device
fabrication: (see Adalsteinssonet al. [21]); 7) morphing: (see
Whitakeret al. [22]–[24]); 8) object tracking/image sequence
analysis in images: (see the recent work by Mansouriet al.
[25]–[27], Paragioset al. [28], [29] and Kornprobstet al. [30]);
9) stereo vision: (see the recent work by Faugeras and his
coworkers at INRIA [31]); 10) shape from shading: (see Kimmel
et al. [32]–[34]); 11) mathematical morphology: (see Arehart
et al. [35], Catteet al. [36], Sapiroet al. [37] and Sochenet al.
[38]); 12) color image segmentation: (see Sapiroet al. [39]);
13) 3-D reconstruction and modeling: (see Caselleset al. [40]
and [41]); 14) surfaces and level sets: (see Choppet al.[42] and
Kimmelet al.[43]); 15) topological evaluations: (see DeCarloet
al. [10]); and 16) 2-D and 3-D medical image segmentation: (see
these works by Malladiet al. [44]–[48], [50], [49], Yezziet al.
[51]); gray matter/white matter (GM/WM) boundary estimation
by Gomeset al. [52]; GM/WM boundary estimation with fuzzy
models by Suriet al. [53]; GM/WM thickness estimation by
Zenget al.[54]; leaking prevention in fast level sets by Suriet al.
[55]; a recent survey article on brain segmentation by Suriet al.

1Scanning ability limited to acquiring in three orthogonal and oblique direc-
tions only.

2We will interchangably use the phrase “level sets” and “geodesic active con-
tour/surfaces.”
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[57]; application of level sets for cortex unfolding by Faugeras
and his coworkers from INRIA (see Hermosilloet al. [58]);
application of the level set technique in cell segmentation (see
Sartiet al. [59]); and Niessenet al. [60] for the application of
geodesic active contours for cardiac image analysis. For a de-
tailed review of some of these above applications, readers must
see the works by Sethianet al. [61], [62] published in 1989 and
1996, respectively, and Kimmelet al.[63]. Though these survey
publications cover a good collection of level set applications,
with the advancement of image processing technology, these
publications fall behind in: 1) the latest trends, the so-called
design of the robust propagation forces, which is the crux of
this paper; and 2) not having a proper focus on the medical
imaging area. Both these shortcomings will be removed in this
paper. Having discussed the importance and application of
level sets, the paper now presents the place of level sets in the
segmentation tree and its taxonomy.

The taxonomy of level sets for segmentation of 2-D and 3-D
medical imagery can be seen in Fig. 1 (top). (For details on seg-
mentation techniques, readers are referred to exhaustive reviews
by Suri et al. [64] and [57].) Fig. 1 (top) shows the classifica-
tion of 2-D and 3-D segmentation techniques, divided into three
core classes: 1) region-based; 2) boundary/surface-based; and 3)
fusion of boundary/region-based. The second core class of seg-
mentation is also known as “deformable models” and the third
core class is also called the “fusion of regions with deformable
models.” The deformation process has played a critical role in
shape representation. This paper uses “level sets” as its tool
to capture deforming shapes in medical imagery. The research
in deformation started in the late 1980s when the paper called
“snakes” (the first class of deformable models) was published by
Terzopoulouset al. [65] and Kasset al. [66]. Since then, there
has been an extensive burst of publications in the area of para-
metric deformable models and their improvements, such as bal-
loon force and template-based fitting (see all of these references
in by Suriet al.[1, Ch. 3 and 4]). Discussions on these references
are out of the scope of this paper. The second class of deformable
models is level sets. These deformable models were started by
Osher and Sethian [67], which started from Sethian’s Ph.D. dis-
sertation [68]. The fundamental difference between these two
classes is: Parametric deformable curves (active contours) are
local methods based on an energy-minimizing spline guided by
external and image forces which pull or push the spline toward
features such as lines and edges in the image. These classical
active contour models solve the objective function to obtain the
goal boundary, if the approximate or initial location of the con-
tour is available. On the other hand, level set methods are active
contour energy minimization techniques which solve computa-
tion of geodesics or minimal distance curves. Level set methods
are governed by curvature dependent speeds of moving curves
or fronts. Those familiar in the field of active-modeling will
appreciate these major advantages and superiority of level sets
compared to classical deformable models. These will be cov-
ered in this paper as well.

Geometric deformable models3 or level set techniques are
classified broadly into two classes (see Fig. 1, top, shown in

3We will interchangably use the word “geometric deformable models” or
“level sets” or “geodesic contours” during the course of this paper.

dotted line area): 1) without regularizers; and 2) with regular-
izers. Level sets without regularizers are techniques where the
propagation force does not utilize the region-based strategy for
its computation. These forces are constant and do not change.
Sometimes they are also called as “level sets stoppers.” Earlier
research called these “leakage prevention” techniques because
they tried to prevent any bleeding of boundaries during propa-
gation. These are further classified into five different kinds, de-
pending upon the design of the stopping force: 1) gradient-based
stopping force; 2) edge-based stopping force; 3) area-minimiza-
tion-based stopping force; 4) curvature-based stopping force;
and 5) application-driven level sets. The curvature-dependent
class has four sub-classes: 1) plain curvature-based; 2) mean
curvature flow based with directionality; 3) bubbles; and 4) mor-
phing. Plain curvature based techniques are those which are
driven solely by the curvature that is computed using differential
geometry. Mean curvature flow with directionality-based tech-
niques are those which use the combination of Euclidean curva-
ture and direction together to achieve the deformation process.
Such techniques are good for tiny, occluded, and twisted objects
like blood vessels. Bubbles are a set of seeds, or fourth-order
shocks, which grow, shrink, merge, split, disappear, and deform
under the influence of image information such as edges and
gradients to segment objects in images and volumes. Morphing
techniques are those which undergo shape deformation from one
initial shape to the target shape driven by the combination of
signed distance at coordinate transformation and the gradient
of the signed distance transform functions. This transformation
captures the similarity between user-defined shape and target
shape.

The second core class of level sets uses regularizers or level
sets that derive the propagation force using statistical means
such as region-based strategy. This is further classified into four
types depending upon the design of propagation force. They are:
1) clustering-based; 2) classification based on Bayesian statis-
tics; 3) shape-based; and 4) constrained coupled level sets where
the propagation force is derived from Bayesian strategies.

Having defined the taxonomy of level sets in medical image
segmentation, the following goals of this paper are presented:
1) To present the tentative taxonomy of level sets and its place
in 2-D and 3-D medical image segmentation; 2) To understand
the curve/surface propagation of hypersurfaces based on differ-
ential geometry; 3) To present the mathematical foundations of
different techniques as discussed in the level set taxonomy [see
Fig. 1 (top)]. This also includes a discussion of pros and cons
of all techniques for curve/surface propagation; 4) To study
different kinds of propagating forces4 and their fusion in the
level set formalism using partial differential equations (PDEs)
for curve/surface propagation and evolution; 5) To present the
state-of-the-art 2-D and 3-D level set segmentation systems
for medical imagery along with their merits and demerits; and
finally, 6) To present the state-of-the-art ready references for
readers interested in further exploring into the field of medical
imaging segmentation using level sets. Note that the goal of
this paper is not to discuss the PDE-based image processing
approaches, even though it is closely related (for details on

4Also called as regularizers.
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Fig. 1. Top: The place of level sets in the medical segmentation tree. Note the classification subtree of geometric deformable models or level sets (shown in
dotted line area). Bottom: Front propagation of thezero level set. Filled circles in figures (B), (C), and (D) show the position of thezero level curveas the front
propagates. These three projected circles are seen in figure (A).

PDE-based applications to image processing, see the upcoming
paper by Suriet al. [69] and their references therein).

The layout of the remainder of this paper is as follows: Sec-
tion II presents the introduction to level sets and the derivation
of the curve evolution equation. Section III presents the first
core class of level sets, i.e., “level sets without regularizers”
and their subclasses. The second core class of level sets, i.e.,
“level sets fused with regularizers” for image segmentation, is
discussed in Section IV. This is the crux of the paper and dis-
cusses the state-of-the-art method for design of the “propagating
force” used for the deformation/morphing process in 2-D/3-D
medical imagery. Section V covers numerical methodologies of
level sets using finite differences. Optimization techniques for
segmentation in the level set framework and shape quantifica-
tion techniques are discussed in Section VI. Finally, merits, de-

merits, the future and conclusions on level sets are discussed in
Section VII.

II. CURVE EVOLUTION: ITS DERIVATION, ANALOGIES, AND

THE SOLUTION

Since this paper is focused on level sets, this section first
presents the derivation of the fundamental equation of level sets,
known as “curve evolution.” Let be the closed interface or
front propagating along its normal direction (see Fig. 1, bottom).
This closed interface , can either be a curve
in 2-D space or a surface in 3-D space. The main idea is to rep-
resent the front as thezero level setof a higher dimensional
function .

Let , where be defined by
, where is the signed distance from positionto and the
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plus (minus) sign is chosen if the pointis outside (inside) the
initial front . Thus an initial function is:

with the property: .
The goal now is to produce an equation for the evolving func-
tion so that always remains zero on the propagating
interface. Let , be the path of a point on the
propagation front (see Fig. 1, bottom), i.e., is a point
on the initial front and with the vector

normal to the front at . Since the evolving function is
always zero on the propagating front, thus . By
the chain rule

(1)

where is the th component of . Since

(2)

hence, using (1) and (2), the final curve evolution equation is
given as

(3)

where is the level set function and is the speed with
which the front (orzero level curve) propagates. This funda-
mental5 equation describes the time evolution of the level set
function ( ) in such a way that thezero level curveof this
evolving function is always identified with the propagating in-
terface. The term “level set function” will be interchangably be
used with the term “flow field” or simply “field” during the
course of this paper. The above equation is also called a Eulerian
representation of evolution due to the work of Osher and Sethian
[67]. Equation (3) for 2-D and 3-D cases can be generalized as:

and , re-
spectively, where and are curvature de-
pendent speed functions in 2-D and 3-D, respectively.

Three Analogies of the Curve Evolution Equation:1) Note
that these equations can be compared with the Euclidean
geometric heat equation (see Graysonet al. [70]), given as:

, where is the curvature and is the inward
unit normal and is the curve coordinates. 2) Equation (3)
is also called the curvature motion equation, since the rate of
change of the length of the curve is a function of . 3)
The above equations can be written in terms of differential
geometry using divergence as: ,
where geometrical properties such as normal curvature

5Recently, Faugeras and his coworkers from INRIA (see Gomeset al., [52])
modified (3) into the “preserving distance function” as

@�

@t
= V (x)(x� �r�) (4)

wherexwas the vector ofx andy coordinates,� is the signed distance function.
The main characteristic of this equation was that� andV are orthogonal to each
other (see details by Gomeset al., [52]).

and mean curvature are given as: and
.

A. The Eikonal Equation and Its Mathematical Solution

In this section, the mathematical solution is presented for
solving the level set function with unity speed. Such a method
is needed to compute the “signed distance transform” when the
raw contour crosses the background grid. Consider a case of a
“front” moving with a velocity , such that is
greater than zero. Using Osher–Sethian’s [67] level set equa-
tion, consider a monotonically advancing front represented in
the form: , where is the rate of change
of the level set and is the gradient of the . Let be
the time at which the front crosses the grid point . In this
time, the surface satisfies the equation: .
By approximation6 the solution to the Eikonal equation is

(5)

where is the square of the speed at location and
, , , are the backward and forward

differences in time, given as

(6)

There are efficient schemes for solving the Eikonal equation (3).
For details, see Sethianet al. [71], Caoet al. [72] and Chenet
al. [73]. Having discussed the taxonomy of level sets in medical
imaging and the fundamental curve/surface evolution equation,
the paper now presents the different types of level sets and their
mathematical formalism along with their merits and demerits.
Level sets without regularizers are discussed in Section III, and
level sets fused with regularizers in the level set framework are
discussed in Section IV.

III. L EVEL SETS WITHOUTREGULARIZERS FORSEGMENTATION

The main characteristic of the level set is its ability to pick up
the desired topology of the shape being segmented. The accu-
racy of the segmentation process depends upon when and where
the propagating hypersurface needs to stop. Consider the spe-
cial case of a surface moving with a speed . Let be
the time at which the surface crosses a given point. The func-
tion then satisfies . This equation simply says
that the gradient of the arrival time is inversely proportional to
the speed of the surface. If the propagating surface needs to stop
close to the vicinity of the segmenting topological shape, then
the speed of the surface should approximate closely to zero near
the final segmenting shape. This means that gradient values at

6Numerical methodologies will be discussed in Section V.
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the final shape boundary (in 2-D) or surface (in 3-D) should be
very high (since the speed needed at the boundary is zero). Thus
the accuracy of the segmentation process highly depends on how
powerful the gradient values are at the final segmented shapes.
This means the higher the gradient value, the faster the propaga-
tion of the curve/surface is, which results in a strong clamping
force. As a result, one has robust and accurate segmentation.
Thus the “stopping force” seen for the propagating surface is
strongly dependent upon the gradient change of the final shape
to be segmented. In the next few sections, several kinds of stop-
ping forces7 will be discussed in the class of “level sets without
regularizers” or “implicit deformable models.”

The layout of this section is as follows: Section III-A presents
the stopping force due to the image gradient. Section III-B
presents the stopping force due to edge strength. Section III-C
presents the stopping force due to area minimization. Sec-
tion III-D presents the stopping force due to mean curvature
flow (MCF). Finally, in curvature dependent level sets, we
discuss the work on 1) plain curvature and 2) mean curvature
flow integrated with directionality.

A. Level Sets With Stopping Force Due to the Image Gradient
(Caselles)

Using Osher and Sethian’s [67] approach, Caselleset al.[75],
Choppet al. [42] and Rouyet al. [76] proposed the geometric
active contours8 followed by Malladi et al. [77]. The model
proposed by Caselles and Malladi was based on the following
equation: if was a 2-D scalar function that embedded the
zero level curve, then the geometric active contour was given by
solving

(7)

where
was the level set curvature;
was the constant;
was the stopping term (type-1) based on the image gra-
dient;

and was given as

(8)

Note that (7) is the same as (5) from Malladiet al. [78].
Rewriting (5) from Malladi et al. [78], the stopping force
becomes

(9)

where was the gradient constant and was
the absolute of the gradient of the convoluted image. This con-
volved image was computed by convolving the original image
by the Gaussian function with a known standard deviation.
Taking the constant as unity and using the exponential series,
one can obtain equation (8) from equation (9).

7Also called the data consistency term in the level set framework.
8Or the level set or curve evolution equation.

Pros and Cons of Caselles’ Work:Although Caselles and
Malladi’s work was able to solve this problem, it had the fol-
lowing weaknesses: 1) The stopping term was not robust and
hence could not stop the bleeding or leaking of the boundaries.
2) The pulling back feature was not strong. This meant that if
the front propagated and crossed the goal boundary, then it could
not come back.

B. Level Sets With Stopping Force Due to Edge Strength
(Yezzi)

Kichenassamyet al. [74] and Yezziet al. [51] tried to solve
the above problems by introducing an extra stopping term
(type-2), also called the pull back term. This was expressed
mathematically as

(10)

Note that denoted the projection of an attractive force
vector on the normal to the surface. This force was realized as
the gradient of a potential field. This potential field for the
2-D and 3-D case was given as:
and , respectively. Note that
equation (10) is similar to equation (7) given by Malladi in [78].
Malladiet al.calls the equation as an additional constraint on the
surface motion . Rewriting [78, eq. (7)] we have

(11)

where
was the edge strength constant;
was a constant (1 as used by Malladiet al.);
was the curvature dependent speed;
was the constant term controlling the curvature
dependent speed;
was the same as defined above.

Pros and Cons of Kichenassamy et al. [74] and Yezzi et al.’s
[51] Methods: The weakness of the above technique was: 1) It
still suffered from boundary leaking for complex structures, as
pointed out by Siddiquiet al. [79].

C. Level Sets With Stopping Force Due to Area Minimization
(Siddiqui)

Siddiqui et al. [79], [80] then changed Kichenassamyet al.
[74] and Yezziet al.’s [51] model by adding an extra term to it

(12)
where was the area minimizing term and was
mathematically equal to the product of the divergence of the
stopping term times the gradient of the flow. This term provided
an additional attraction force when the front was in the vicinity
of an edge.

Pros and Cons of the Area Minimization Technique:The
major advantage of this technique was: 1) It performed better
compared to the first and second implicit models. The major
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weaknesses were: 1) The system was not very robust at han-
dling the convolutedness of medical shapes. 2) The system
did not take advantage of the regional neighborhood for the
propagation or evolution of level sets. To some extent, this
weakness was temporarily removed using multiple level sets
(see Niessenet al. [60]), however this was not a robust solution
to the segmentation of complex shapes such as in brain cortical
segmentation.

D. Level Sets With Curvature Dependent Stopping Forces

The layout of this section is as follows: Plain curvature-driven
techniques are presented in Section III-D-1. Integrating the
directionality into mean curvature flow is presented in Sec-
tion III-D-2. Note that the work on 3-D bubbles and free form
deformations will not be discussed in this paper.

1) 3-D Geometric Surface-Based Cortical Segmentation
(Malladi): The dominance of 3-D shape modeling using
Geodesics active surfaces started with the UCLA group (see
Osher and Sethian [67], Choppet al. [3]) and then later used
by the Berkeley Lab (see Malladi and Sethian, [78], [49]).
Malladi’s method was simply an extension from 2-D to 3-D of
equations (7) and (8) and an additional term, the so-called gra-
dient of the potential field. Thus, if: ,
where is the level set curvature, is the constant and
was the stopping term based on image gradient and given as:

. Then Malladi’s final
equation for cortical segmentation was:

(13)

where was the gradient of the potential field given as:
. Note that the term

denoted the projection of an attractive force on the
surface normal. controlled the strength of the attractive force.
Also note that and was premultiplied by which con-
trolled the mean curvature. The mean curvaturein 3-D was:

. So,
the deformation was focused more on propagation based on
curvature rather than on stopping force.

Pros and Cons of Malladi’s Technique:The major advan-
tages of this technique were: 1) This technique was one of the
first in the application of level sets in the medical imaging world.
2) The recent work of Malladiet al. [78], [49] applied level sets
for brain segmentation and showed the speed was ,
where was the total number of points in the data set. The
major disadvantages of this technique were: 1) It was not clear
from this paper how the value of the arrival timewas selected
to segment the cortex accurately, but their protocol followed a
two-step process. They first reconstructed the arrival time func-
tion using the fast marching method (see Sethianet al. [71],
[114]). Then, they treated the final function as an
initial condition to their full model. This meant that they solved

in a few time steps using the finite
difference with . 2) The system
was not robust and did not take advantage of the region-based

analysis. The modification of this technique will be seen in Sec-
tion IV, where four systems are presented with the design of
propagation forces, a key to the success of robust segmentation.

2) Curvature Dependent Force Integrated with Direc-
tionality (Lorigo): Recently, Lorigo et al. [81] presented
an algorithm for brain vessel reconstruction based on curve
evolution in 3-D, also know as “codimension two” in geodesic
active contours. This method used two components: 1) mean
curvature flow (MCF) and 2) the directionality of vessels. The
mean curvature flow component was used to derive the Eulerian
representation of the level set equation. Ifwas the SDT and

are the eigen values of the projection
operator: , where and was
a nonzero vector, then using these eigenvalues, the Eulerian
representation of the curve evolution was given by Lorigo as:

. The second component
was the normal of these vessels projected onto the plane and
was given as the product of with the projection vector .
This projection vector was computed using the Hessian of the
intensity image, and was given as: ,
where was the edge detector operator. Adding these two
components, the complete level set equation was

(14)
where was the directionality term which was the dot product
of and which was the angle between these two vectors.

was the scale term. Note that the second term was like an
angular balloon force which navigated the deformation process.

Pros and Cons of Lorigo’s Technique:The major advan-
tages of this technique were: 1) The method successfully
demonstrated the segmentation of these vessels of the brain.
2) The method used the directional component in the level
set framework, which was necessary for segmenting twisted,
convoluted and occluded vessels. 3) The technique was used
to compute vessel radii, a clinically useful measurement. The
weaknesses of Lorigo’s work were: 1) Not much discussion
was available on the computation of the scale factor. 2) The
method has yet to show the analytical model since the output of
the system showed relatively thinner vessels compared to max-
imum intensity projection (MIP)9 and thresholding schemes.
3) There was no comparison made between segmented results
and the ground truth hence, this was not validated. So, we
saw that the class of “level set without regulizers” primarily
focused on stopping the deformation process by using the
data consistency term, , or propagating the deformation
process totally based on curvature-dependent speed. None of
the above methods took advantage of the region-based strategy
of neighborhoods, hence they were not successful in capturing
complex shapes of medical objects/organs such as brain cortex.
The next section is focused on demonstrating the design of the
propagating force based on region-strategy which is fused into
the level set fundamental model to improve the robustness of
the segmentation for medical imagery.

9The MIP algorithm is a very popular technique. An example can be seen by
Suri et al. [83].
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IV. L EVEL SETS FUSED WITH REGULARIZERS FOR

SEGMENTATION

Fusing regional statistics into parametric or geometric
boundary/surfaces has brought a major success in medical
imaging (see the recent work by Yezziet al. [88], Guo et al.
[89], Leventonet al. [117], Lorigo et al. [82] and recently by
Suri et al. [55], [56]). The main reason for this was that the
segmentation system took advantage of the local and global
shape information for pulling and pushing boundaries/surfaces
to capture the topology in the level set framework based on
PDE. Incorporating such regional-statistics, also known as
“level sets with regularizers,” makes the overall segmentation
system more robust and accurate.

This section presents four different medical segmentation
systems where regularizers are fused with geometric contour
or geodesic active contours in the level set framework. Sec-
tion IV-A presents the derivation of geodesic active contours
from parametric deformable models. The same section shows
the design of the propagation force using fuzzy clustering,
which was later fused in geodesic active contours or level sets.
Section IV-B presents 3-D constrained level sets where two
propagating surfaces are coupled by a constraint. The method-
ology of computing the propagation force using Bayesian
statistics is shown in Section IV-C. Section IV-D presents the
fusion of the shape-based information as a propagating force
in the level set formalism. Finally, a comparison among the
designs of different propagation forces and their uses in level
sets will be discussed in Section IV-E.

A. 2-D Regional Geometric Contour: Design of Regional
Propagation Force Based on Clustering and Its Fusion With
Geometric Contour (Suri/Marconi)

Recently, Suri [2], [55], [56] derived the curve evolution
equation by embedding the region statistics into the parametric
classical energy model. This method was in the spirit of Xuet
al.’s [90] attempt. Part of that derivation10 will be discussed
here (for details see Suriet al. [1]). To start with, the standard
dynamic classical energy model as given by Kasset al.[66] was

(15)

10Aubert et al. [91] recently tried to give some remarks between classical
snakes (given first by Kasset al. [66]) and geodesic snakes (given first by
Caselleset al. [87]). Aubertet al. showed that the above two models are only
valid for curves with a fixed length using the definition that “classical snakes
and geodesic snakes are equivalent, if they have same extremas.” Aubertet al.
also showed that Mauperthuis’ principle is not enough to show the equivalence
between classical snakes and geodesic snakes. Aubertet al. mathematically
showed that the derivation of the gradient flow from the classical snake and the
geodesic snake have different expressions if Caselleset al.’s definition was used
for developing the equivalence. Aubertet al. did, however, show equivalence
between these two energy models to be the same if the following definition
was used for equivalence: “Two minimization problems are equivalent if the
direction which locally most decreases a criterion is also a decreasing direction
for the other criterion and vice versa.” In the forthcoming derivation, Caselles’
idea was used for establishing equivalence between parametric and geodesic
models.

where was the parametric contour andwas the damping
coefficient. As seen in (15), the classical energy model con-
stituted an energy-minimizing spline guided by external and
image forces that pulled the spline toward features such as
lines and edges in the image. The energy-minimizing spline
was named “snakes” because the spline softly and quietly
moved while minimizing the energy term. The internal energy
was composed of two terms: the first term was the first-order
derivative of the parametric curve which acted like a membrane
and the second term was the second derivative of the parametric
curve which acted as a thin plate (also called the pressure
force). These terms were controlled by elastic constantsand

. The second part of the classical energy model constituted
the external force given by . This external energy term
depended upon image forces which were a function of image
gradient. Parametric snakes had flexibility to dynamically
control movements, but there were inherent drawbacks when
they were applied to highly convoluted structures, sharp bends
and corners, or on images with a large amount of noise. Suri
et al. [1], [2], [64] and [57] tried to preserve the classical
properties of these parametric contours but also brought these
geometric properties which could capture the topology of
convoluted shapes (say, cortical WM and GM). Since the
curve evolution when embedded with regional statistics was
the fundamental equation in the design of a propagation force,
thus, the derivation will be presented next.

Derivation of the Geometric Snake:Since the second
derivative term in (15) did not significantly affect the perfor-
mance11 of active geometric snakes (see Caselleset al. [87]),
Suri dropped that term and replaced it with a new pressure
force which was given by: . This pressure force was an
outward force which was a function of the unit normal,of the
deforming curve. Suri defined the pressure force as:

, thus the new parametric active contour could be
rewritten by replacing by , resulting
in

(16)
By redefining to be the curvature, and read-
justing the terms by defining the constants ,

and , thus (16) was rewritten
as: . The above was analo-
gous to Osher and Sethian’s [67] equation of curve evolution,
given as: , where . Note,
was the level set function and was the curvature dependent
speed with which the front (orzero level curve) propagated. The
expression described the time evolution of
the level set function () in such a way that thezero level curve
of this evolving function was always identified with the propa-
gating interface. Comparing and , and
using the geometric property of the curve’s normaland con-
sidering only the normal components of internal and external
forces, , Suri obtained the level

11See the previous footnote.
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(a) (b)

Fig. 2. (a) Results of the superimposition of the ZLC and its level set function using the “fast marching method” in the narrow band (NB). Tube reconstruction.
(b) Segmented GM boundary (results, courtesy of Jasjit Suri, Marconi Medical Systems, Inc. For details, see [55] and [56]).

set function ( ) in the form of a partial differential equation
(PDE) as

(17)

Note, was considered as a regional force term and was
mathematically expressed as a combination of the inside-out-
side regional area of the propagating curve. This was defined
as , where was the region indicator term that fell
between zero and one (the design of this propagation force will
be seen in the next section). So, the above derivation showed
that the regional information was one of the factors which
controlled the speed of the geometric snake or propagating
curve in the level set framework. A framework in which a
snake propagated by capturing the topology of the WM/GM,
navigated by the regional, curvature, edge and gradient forces,
was called regional geometric snakes. Also note that (17) had
three terms: the product ofand , , and . These three
terms were the speed functions which controlled the propaga-
tion of the curve. These three speed functions were known as
curvature, regional, and gradient speed functions, since they
contributed toward the three kinds of forces responsible for
curve deformation.

1) Design of the Propagation Force Based on Fuzzy Clus-
tering: Having discussed the embedding of the regional-force
function in the level set framework in the previous section, this
section now presents how this regional forcewas computed
that navigated the deformation process for the final segmenta-
tion of the convoluted topology. As defined previously, the re-
gional propagation force was mathematically given as: ,
where was the region indicator term that fell between zero and
one. An example of such a region indicator was from a mem-
bership function of the fuzzy classifier. Thus Suri expressed the
region indicator term as: , where
was the fuzzy membership function which had a value between
zero to one. was the region indicator function and fell in
the range between1 to 1. This membership function
was computed based on the fuzzy principle (see Bezdeket al.
[93]).

Fig. 3 (left) shows the system used for GM boundary estima-
tion, whose results can be seen in Fig. 2. Note that the last stage
was the isocontour extraction. This was accomplished using an
isocontour algorithm at subpixel resolution (for details on these

methods, see Bergeret al. [95], Sethianet al. [96], Tababaiet
al. [97], Huertaset al. [98] and Gaoet al. [99]).

Pros and Cons When Clustering Was Used as a Regu-
larizer: The major advantages of embedding the clustering
technique as a regularizer in the level set framework were:
1) robust implementation; 2) accurate boundary estimation
depending upon the class chosen; 3) ease of implementation.
The major weaknesses of this method were: 1) The algorithm
was not fast enough to be implemented for real-time applica-
tions. 2) The performance of the algorithm depended upon a
few parameters, such as: the error threshold and the number of
iterations. 3) The choice of the initial cluster was important and
needed to be carefully selected. 4) The algorithm was not very
robust to MR images which had spatial variations due to large
RF inhomogeneities.

B. 3-D Constrained Level Sets: Fusion of Coupled Level Sets
With Bayesian Classification as a Regularizer (Zeng/Yale)

Coupled constrained boundary estimation in medical imaging
has been very successful when applying to shape analysis (see
the derivation in the appendix by Suriet al.[64], where end dias-
tole (ED) and end systole (ES) shapes of the left ventricle (LV)
were subjected to the “coupled constrained principle.” These
constraints were computed based on eigenvalues). In the level
set framework, Zenget al. [100], [54] recently had put the level
set under constraints in neurological applications. For example,
a volume has three tissue types, say T1, T2, and T3, and say
tissue T2 was embedded in between tissues T1 and T3. Such
an example is seen in the human brain where the GM is em-
bedded between the WM and CSF. There is a coupling between
WM–GM and GM–CSF volumes. Zeng’s method had used con-
strained level sets in the application of human cortex segmenta-
tion from MR images. The proposed coupled level set formula-
tion was motivated by the nearly constant thickness of the cor-
tical mantle and took this tight coupling as an important con-
straint. The algorithm started with two embedded surfaces in
the form of concentric sphere sets. The inner and outer surfaces
were then evolved, driven by their own image-derived informa-
tion, respectively, while maintaining the coupling in between
through a thickness constraint.

1) Overall Pipeline of Coupled Constrained Level Set Seg-
mentation System:The cortical segmentation system based on
level sets which was constrained by the coupling between the
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(a) (b)

Fig. 3. (a) Typical level set segmentation algorithm. This can be applied for brain segmentation. In such a case, the integrated speed will have regional, gradient
and curvature speed terms. Note: the paradigm uses the fast marching method in the narrow band. (b) Constrained level set application: cortex segmentation
algorithm. The user first specifies the initial spheres. Using the distance transform based on the shortest distance, the initial field is estimatedin the narrow band.
The surface is propagated in the narrow band and the new field distribution is estimated taking the propagation forces into account. These forces are computed using
the likelihood measure. Using the marching cube algorithm, thezero level surfaceis computed, also known as isosurface extraction. The surfaces are reinitialized
and the speeds of two new isosurfaces are compared. If they are equal to zero, the system stops the propagation, or else the next round is iterated. Before the new
field is estimated in the next round, the constrained forces are derived again.

WM–GM and GM–CSF volumes can be seen in Fig. 3 (right).
This system will be briefly discussed next, since it has clinical
value in neurological analysis. The input of the system was the
3-D gray scale volume and the initial spheres. From the gray
scale volume, the propagating forces12 were computed. This
was called the likelihood function which drove the field dis-
tributions (to be discussed in Section IV-B2). From the initial
concentric spheres, the initial field was computed in the narrow
band. Zenget al. [54] then computed the new field driven by
these propagating forces in this narrow band. This was where
Zenget al. ran thecoupled level setequations (to be discussed
in Section IV-B3). From this new field the new surface was com-
puted, known as the isosurface, which represented a unisurface
value based on Marching Cubes (see Lorensenet al.[102]). The
algorithm performed the reinitialization and was ready to repeat
the above steps if the external and internal speeds of the spheres
were not equal to zero. The algorithm used the fast marching
method in the narrow band to optimize the performance. Thus a
final representation of the cortical bounding surfaces and an au-
tomatic segmentation of the cortical volume was achieved. The
intermediate and final results of the above coupled constrained
level set algorithm can be seen in Fig. 4. The following three
sections will discuss each of these components of this pipeline.

2) Design of the Propagation Force Based on the Bayesian
Model: Capturing gray scale edges of the WM/GM interface
and GM/CSF interface was a very critical component in the
entire system. The image-derived information was obtained by

12Also known as steering engines or image forces.

using a local likelihood operator based on gray-level informa-
tion rather than on image gradient alone, which gave the algo-
rithm the ability in capturing the homogeneity of the tissue in-
side the volumetric layer. First, the 3-D field distribution13 was
estimated given the initial spheres.14 From the initial field dis-
tribution, the normals and offsets at every voxel location were
computed using the level set framework. These two offsets to a
central voxel gave information on the neighboring voxels. The
first set of voxels belonged to the first distribution, while the
second set of voxel belonged to the second distribution. Next,
the likelihood values were computed using these two distri-
butions. For the first distribution (here, WM), the WM like-
lihood probability was computed given a voxel and similarly,
the GM likelihood was computed given the second distribution
(here, GM). Assuming the distributions to be independent, the
GM–WM likelihood computation was mathematically given as

–

(18)

where
and were the WM and GM regions;
and were mean values of the WM and GM re-

gions;

13Signed distance transform.
14Inside and outside spheres.
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(a) (b)

(c) (c)

(e) (f)

Fig. 4. Propagation of the outer and inner bounding surfaces. (a) Embedded sphere sets as initializations shown in unedited 3-D MR brain volume. (b) Outer
and inner bounding spheres. (c) Intermediate step in GM surface propagation. (d) Intermediate step in WM surface propagation. (e) Final result of thesegmented
GM/CSF surface. (f) Final result of the segmented WM/GM surface (Courtesy of Xiaolan Zeng, R2 Technology, Inc.).

and were standard deviations of the WM and GM
regions;

and were the WM and GM pixel intensities.
Note, the output of the GM–WM likelihood function was the
image which had edge information about the boundary of the
GM–WM. Similarly, the WM–CSF likelihood function was an
image which had the WM–CSF edge or gradient information.

3) Constrained Coupled Level Sets Fused With Bayesian
Propagation Forces:The propagation of surfaces toward the
final goal surface was performed in the level set framework.
Instead of evolving two surface directly, two level functions
whosezero level setcorresponding to the cortical bounding
surfaces were calculated. The equations of these evolving
surfaces were

(19)

The coupling between these two surfaces was realized through
propagation speed terms and which are dependent
on the distance between the two surfaces and the propagation
forces computed above. While the distance between the two
surfaces was within the normal range, the inner and outer
cortical surfaces propagated according to their own image
features. When the distance started to fall out of the normal
range, the propagation slowed down and finally stopped only
when the distance was outside the normal range, or the image
feature was strong enough. A coupled narrow band algorithm
was customized for the coupled-surfaces propagation. The
correspondence between points on the two bounding surfaces
falls out automatically during the narrow band rebuilding,
which was required for surface propagation at each iteration.
This shortest distance-based correspondence was essential in
imposing the coupling between two bounding surfaces through
the thickness constraint. Once the new field was computed, the



18 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 6, NO. 1, MARCH 2002

isosurface was extracted based on the marching cube technique
(see Lorensenet al. [102]). Having discussed all the stages
of the constrained coupled segmentation system, next will be
presented in pros and cons.

Pros and Cons of Coupled Level Sets Fused With Bayesian
Classification: The coupled-surfaces propagation with the
level set implementation offered the following advantages:
1) easy initialization;2) computational efficiency (one hour);
3) the ability to handle complex sulcal folds; 4) simulta-
neous “skull-stripping” (delineation of nonbrain tissues) and

segmentation; 5) ready evaluation of several char-
acteristics of the cortex, such as surface curvature and a cortical
thickness map; 6) integration of efficiency and flexibility of
level set methods with the power of shape constraint; 7) a
promise toward the improved accuracy of brain segmentation
through extensive experiments on both simulated brain images
and real data. The major weaknesses were: 1) The method
did not include a model that dealt with image inhomogeneity,
unlike other research such as that of Wellset al. [101]; 2) the
technique imposed no constraint to preserve the cortical surface
topology, however it did take advantage of the topological
flexibility of level set methods; and 3) the resulting surface
may not produce a 2-D manifold. Other research work using
coupled level sets was done by Gomeset al. [52].

C. 3-D Regional Geometric Surface: Fusion of the Level
Set With Bayesian-Based Pixel Classification Regularizer
(Barillot/IRISA)

Baillot et al. [103], [104] and [105] recently designed the
brain segmentation system based on the fusion of region
into boundary/surface estimation. This algorithm was quite
similar in approach to Suri’s method discussed previously in
Section IV-A. This algorithm was another instance where the
propagation force in the fundamental level set segmentation
equation was changed into a
regional force. There were in all three changes made to this
equation by Barillotet al.First was in the propagation force,
second was in the data consistency term or stopping term,
and the third change was on the step size. These equations
and their interpretation will be briefly discussed next.

1) Design of the Propagation Force Based on Probability
Distribution: The key idea was to utilize the probability den-
sity function inside and outside the structure to be segmented.
The pixel/voxel in the neighborhood of the segmenting struc-
ture was responsible for creating a pull/push force on the prop-
agating front. This was expressed in the form of the probability
density function to be estimated inside the structure, , the
probability density function to be estimated outside the struc-
ture, and the prior probability for a voxel to be inside the
structure. Note here,15 was the intensity value of a voxel at
location . Using the above concept, this bidirectional
propagation force was estimated as:

sgn (20)

15Note, this symbol is not to be confused with the membership function used
in Section IV-A.

where sgn was 1 if and was if . The second
modification was to the data consistency term16 that changed
from the gradient term into the extended gradient term. This
term was changed from to a
term which was based on the transitional probability of going
from inside to outside the object to be segmented. This was
mathematically given as: , where
was if and was , if . The term

was computed based on these three parameters:,
and , and mathematically estimated if the probability of a
pixel/voxel class belonged to a set inside and outside the ob-
ject. If the class was inside the region, then was given as

, while it
was if was
outside, derived from the simple Bayesian rule.

Pros and Cons of Baillard/Barillot’s Technique:The major
advantages of this technique were: 1) The paper was an excel-
lent example of the fusion of region-based information into the
boundary/surface. 2) The results were very impressive; how-
ever, it would have been valuable to see the enlarged version
of the results. 3) The algorithm was adaptive since the data con-
sistency term ( ) and the step size ( ) were adaptively esti-
mated in every iteration of the front propagation. This provided
a good tradeoff between convergence speed and stability. 4) This
method used stocastic-EM (SEM) instead of expectation-mini-
mization (EM), which was a more robust and accurate method
for estimation of probability density function parameters. 5)
The method had been applied to various brain structures and
to various imaging modalities such as ultrasound. 6) The algo-
rithm hardly needed any tuning parameters and thus it was very
efficient. Both methods (Suri’s and Baillard’s) were designed
to control the propagation force using region-based analysis.
Suri’s method used regional-force computed using pixel-classi-
fication based on clustering, while Baillardet al.’s method used
pixel-classification based on Bayesian-statistics.

D. 2-D/3-D Regional Geometric Surface: Fusion of Level Set
With Global Shape Regularizer (Leventon/MIT)

Another application of the fusion of Bayesian statistics into
geometric boundary/surface to model the shape in the level
set framework was done recently by Leventonet al. [117].
Though this technique did not show the segmentation of the
cortex, rather it focused on the segmentation of the subcortical
area such as the corpus callosum, and was a good example of
the fusion of the boundary and region-based technique. Lev-
entonet al. derived the shape information using maximuma
posterioriprobability (MAP) and fused that with gradient and
curvature driven boundary/surface in the level set framework.
This MAP mode of shape usedpriors in the Bayesian frame-
work from the training data set (analogous to Cooteset al.’s
[118] technique). Using (10), the level set curve/surface evo-
lution was given as

(21)

16Or stopping term.
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Note that this equation was exactly the same as (8) used by Lev-
entonet al. in [117], whose solution using finite difference was:

(22)

If represented the optimized shape information at
time , then Leventonet al.added this term to the above equation
to yield the final evolution equation in the level set framework
as

(23)

1) Design of the External Propagation Force Based on
Global Shape Information:The key to the above model was
the extraction of the shape information from the training
data (called “global shape” information) and fusing with the
local information (gradient and curvature) in the level set
framework based on partial differential equations. Ifand
represented shape and pose parameters, then the optimized

would be given as the of .
This model using Bayes’ rule could be broken down as:

, where
and were shape and pose priors. To understand the

computation of , Leventon took -curves, each sampled
times and each surface was represented by. Then, the

training set . This mean shape could be
computed as and the mean offset map was

. Each of this map is a column vector of a
matrix ( ). If represents the rows and columns of the
matrix , then , where the limits and were:

and . Next, this matrix undergoes
singular value decomposition (SVD) to decompose to .
Taking -principal components, that is-rows and -columns,
gave the new matrix . Thus the shape coefficients were
computed as: . Using the Gaussian distribution,
the priors shape model could be computed as

(24)

This equation was used in the computation of optimized. The
pose prior was from the uniform distribution.

Pros and Cons of Shape Information Fused in Geometric
Boundary/Surface:The major advantages of this system were:
1) Robustness and successful capture of topology based on the
Bayesian shape information. 2) Shape and pose parameters con-
verged on the shape to be segmented. The major disadvantages
of such a system were: 1) The time taken for such a system was
six minutes (for vertebral segmentation), which was relatively

very long for spinal navigation real-time applications. 2) The
system would need training data sets which had to be collected
off-line. 3) This paper did not show results on cortical segmen-
tation which had deep convolutions, large twists and bends. 4)
The performance of systems which had coefficients estimated
from training data off-line and application of these estimated
coefficients on-line was dependent upon training data and test
data sets. The above system was like a first layer of a neural
network (see Suriet al. [119]) where the performance was gov-
erned by shapes of training data and tuning parameters of the
Gaussian model (see Leeet al. [120]).

E. Comparison Between Different Kinds of Regularizers

Having discussed four different kinds of regularizers (or de-
sign of propagating forces), this sub-section presents the com-
parison between them on the following points:

1) Internal Versus External Propagating Force: Primarily
all of the regularizers design the propagating force and
drive the speed term. Suriet al.’s technique designs
the propagation force internal to the level set, while
Leventon’s technique designs the propagation force
externally. The internal propagation force is accurate
and robust since it directly acts on the speed function
compared to the external propagation force. However,
the internal propagation force is more sensitive to the
overall system since these forces are computed directly
based on region-based strategy and acted directly on
speed functions.

2) Common to All Techniques:Suri’s method uses
fuzzy clustering, Zeng’s method uses the constrained
Bayesian approach, Barillot’s technique uses plain
Bayesian classification, and Leventon’s technique
uses the global shape-based information using Eigen
analysis based on SVD. All of these techniques had
one objective in common, that is, they were after the
extraction of the shape to be segmented by fusion of
the region-based strategy in the level set framework.

3) Timings: It is difficult to compare the speed since all
of these four techniques do segmentation of different
organs and volumes, and it also depended on the initial
placement of the contour/surface. Individually, the
claims of each of these techniques had the following
timings: 1) Suri’s 2-D GM/WM segmentation tech-
niques took less than a minute per image. 2) Zeng’s
3-D technique took around one hour for cortical
segmentation. 3) Barillot’s 3-D technique took around
two hours for cortical segmentation. 4) Leventon’s
3-D technique took six minutes for the complete
vertebrae.

4) User Interaction:Suri’s technique was automatic ex-
cept for the placement of the initial contour. Zeng’s
method did initialization of sphere sets in white matter,
which was at a minimum. Barillot’s technique also in-
volved minimal interaction. Leventon’s technique used
an off-line method for tracing the boundaries of shapes
which was needed for training data sets. This was time
consuming.
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5) Number of Parameters and Adaptability Toward Step
Size:The number of parameters used in Suri’s tech-
nique was at a minimum for a particular tissue type for
the MR image (e.g., , or ). The fuzzy clus-
tering had two parameters, the error threshold and the
number of iterations. The technique was not self-adap-
tive as far as the step sizes went. It was kept constant
at unity. Zeng’s method used a minimum number of
parameters and was also not adaptive; however, the
constrained force generation was dynamic. Barillot’s
method had also a minimum number of parameters
but was self-adaptive. Leventon’s method was not self-
adaptive and used a greater number of parameters com-
pared to the other techniques.

6) Stability of the Method:This factor depended upon a
ratio, the Courant number. (See Section V-B.) No dis-
cussion was given about the CFL number by Suriet
al.Barillot did discuss stability issues in which they
talked about the dynamic nature of the CFL number
that automatically changed to adjust for any instabili-
ties.

V. NUMERICAL METHODOLOGIES FORSOLVING LEVEL SET

FUNCTIONS

The relationship between conservation laws and the evolu-
tion of curves was introduced in the classic paper by Osher and
Sethian [67]. This paper presented a new formulation for curve
evolution by considering the evolution of a higher dimensional
function in which the curve was embedded as a “level set.” This
was a stable and efficient numerical scheme (for the nonconvex
Hamiltonian numerical scheme, readers are referred to Osher
and Shu [106]).

This section has three parts: 1) Part one (Section V-A) is
the derivation of the finite difference equation in terms of level
sets using the Hamilton–Jacobi (HJ) and hyperbolic conserva-
tion law; 2) Part two (Section V-B) is on the ratio , the
so-called CFL number17 ; and 3) Part three (Section V-C) con-
sists of the application of the numerical scheme using finite dif-
ference for cortical segmentation.

A. Hamilton–Jacobi Equation and Hyperbolic Conservation
Law

Here, the numerical approximation of the Hamilton–Jacobi
formulation of the level set function will be briefly derived.
To start with, the hyperbolic conservation law stated that “the
rate of change of the total amount of substance contained in a
fixed domain is equal to the flux of that substance across the
boundary of .” If was the density of the substance andthe
flux, then the conservation law was mathematically given as:

, where was the outward
normal to , is the surface element of . Using vector cal-
culus, the differential conservation law was: . The
HJ equation in had the form: and in 1-D,
the HJ equation became the conservation law, and as a result, the
methodologies used for solving the conservation law were used

17Courant number, named after the author Courantet al. [107]

for solving the HJ equation. A finite difference method was in
the conservation form if it could be written as

(25)

where was the potential field or the numerical flux, which
was Lipschitz and consistent.18 Thus using the relationship
between the level set function, the HJ equation and the
conservation law, we have: . By
integration over the monotone numerical scheme and shifting
from to , the HJ formulation was given as:

, where
.19 This equation will be

used in the segmentation example in Section V-C, but first, the
ratio , the so-called CFL number, will be discussed.

B. CFL Number

For the stability of the numerical scheme, it was observed by
Courantet al. [107] that a necessary stability condition for any
numerical scheme was that the domain of dependence (DoD) of
each point in thedomain of numerical schemeshould include
the DoD of the partial differential equation itself. This condi-
tion was necessary for the stability of the numerical scheme.
The ratio under the limit and is the
CFL number, or called the Courant number. This CFL number
was determined by the maximal possible flow of information.
This flow of lines of information depended upon the type of
the data and was thus called as “characteristics of the PDE.” If
these “characteristics” collide, then “shocks” occur. Interested
readers can see the work by Kimiaet al. [84] on shocks. Re-
cently, Goldenberget al.[108] fused the AOS20 scheme in level
sets for numerical stability. The original AOS model was pre-
sented by Perona–Malik [109] for nonlinear diffusion in image
processing. Interested readers can explore the AOS model and
its fusion in level sets by Goldenberg.

C. A Segmentation Example Using a Finite Difference Method

Here, speed control functions and their integration in terms of
the level set function to estimate the over time are presented.
The time step restrictions for solving the partial differential equa-
tion will not be discussed here (the reader can refer to the work by
Osher and Sethianet al. [67] and the recent work by Barillotet
al. [103]). Using the finite difference method (see also Sethian
[71] and Rouyet al. [76]), the level set (17) was given in terms
of time as (for details, see Suriet al. [55] and [56])

(26)

where
and were level set func-

tions at pixel loca-
tion at times

and ;

18Numerical flux becomes continuous flux, i.e.,c(v; . . . ; v) = H(v).
19Note,D andD are the backward and forward difference operator.
20Additive operator splitting.
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was the time differ-
ence;

, , and were the regional,
gradient, and cur-
vature speed terms,
respectively.

Now, these terms are presented as under: 1) The regional
speed term expressed in terms of the level set function
( ) was given as:

, where terms , and were
given as: , ,

and

(27)

where took a value between zero and one. This could
be coming from, say, a fuzzy membership function or any other
clustering technique. was the region indicator function that
was in the range between1 to 1. 2) The gradient speed term,
so-called the edge strength of the object boundaries, was ex-
pressed in terms of the level set function () as the and com-
ponents of the gradient speed as:

, where

and

(28)

where was the weight of the edge and was also a fixed con-
stant. and were defined as the and com-
ponents of the gradient strength at a pixel location . Note
that the regional and edge speed terms depended upon the for-
ward and backward difference operator which was defined in
terms of the level set function defined as

and

and
(29)

where , , , ,
were the level set functions at pixel locations

, , , , , being
the four neighbors of . 3) The curvature speed term
expressed in terms of the level set function () was given as:

,

where was a fixed constant, was the curvature
at a pixel location at th iteration as:

and
and were defined as

and

(30)

Thus, to numerically solve (26), all that was needed was: 1)
the gradient speed values ; 2) the curvature speed at
pixel location ; and 3) the membership function
for a particular class . In the next section, how these speeds
control mathematical functions will be discussed and how they
are used to compute the field flow (level set function,) in the
“narrow band” using the “fast marching method,” also called
the “optimization technique.”

VI. OPTIMIZATION AND QUANTIFICATION TECHNIQUESUSED

IN CONJUNCTION WITH LEVEL SETS: FAST MARCHING,
NARROW-BAND, ADAPTIVE ALGORITHMS, AND GEOMETRIC

SHAPE QUANTIFICATION

The level set method could be computatively very expensive
as the dimensionality of the surface increases. Ifis the dimen-
sion of the surface, and where is the length scale
of the computational resolution, then the cost of tracking the
surface can be reasonably expected to be of the order
per time step. There are two ways by which the speed can be
improved. One way is by running the level set implementation
in the narrow band (see Malladiet al. [77]) and the second is
by using the adaptive mesh technique (see Milneet al. [116]).
These will be discussed in this section. The algorithms in 2-D
will be discussed, but it is straightforward to convert it into 3-D.

A. Fast Marching Method

The fast marching method (FMM) was used to solve the
Eikonal Equation (see Adalsteinssonet al. [110]–[112], [123]),
or a level set evolution with speed where the sign did not
change. Its main usage was to compute the signed distance
transform from a given curve (say, one with speed1). This
signed distance function was the level set function that was
used in the narrow band algorithm. The FMM can also be
used for a simple active contour model if the contour only
moved either inward (pressure force in terms of parametric
snakes) or outward (balloon force in terms of parametric
snakes). The FMM algorithm consisted of three major stages:
1) initialization stage; 2) tagging stage; and 3) marching stage.
A discussion on these follows next.

1) Initialization Stage: If the curve cuts the grid points ex-
actly, this means that the curve passed through the in-
tersection of the horizontal and vertical grid lines. If the
curve did not pass through the grid points, then it was nec-
essary to find where the curve intersected the grid lines
using the simple method recently developed by Adal-
steinssonet al. [111]. The method consisted of checking
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the neighbors (E, W, N, S) of a given central pixel and
finding 16 different combinations where the given con-
tour could intersect the grid. Since the central pixel could
be inside or outside, there were 16 positive combinations
and 16 negative combinations. At the end of this process,
the distances of all the grid points were noted which were
closest to the given curve.

2) Tagging Stage: Here, three sets of grid points were cre-
ated:accepted set, trial set andfar set. Theaccepted set
were those points which fell on the given curve. All these
points obviously had a distance of zero. Those points were
tagged as ACCEPTED. If the curve did not pass through
the grid points, then those points were points of the initial-
ization stage and were tagged as ACCEPTED. Thetrial
setincluded all points that were nearest neighbors to the
point in theaccepted set. Those were tagged as TRIAL.
Then their distance values were computed by solving the
Eikonal equation (5). Those points and their distances
were put on the heap. Thefar setwere grid points which
were neither tagged as ACCEPTED nor TRIAL. Those
were tagged as FAR. They did not affect the distance com-
putation of trial grid points. These grid points were not put
onto the heap.

3) Marching Stage:

a) Here, the grid point (say, P) was popped from the
top of the heap. It should have the smallest distance
value among all grid points in the heap. This point
was tagged as ACCEPTED so that its value would
not change anymore. Heap sort methodology was
used for bubbling the least distance value on the
heap.

b) Four nearest neighbors of the popped point P were
found. If its tag was ACCEPTED, nothing was
done; otherwise, the distance was recomputed by
solving the Eikonal equation (5). If it was FAR, it
was relabled as TRIAL and was put on the heap.
If it is already labeled as TRIAL, its value was up-
dated in the heap. This prevented the same point
from appearing twice in the heap.

c) Go back to step 3a) until there were no more points
in the heap, i.e., all points had been tagged as AC-
CEPTED.

Note that the above method was an exhaustive search like the
greedy algorithm discussed by Suriet al. [92]. The superiority
of this method was evidenced by the fact that every visited grid
point was visited no more than four times. The crux of the speed
was due to the sorting algorithm. Suriet al.used the back pointer
method at the grid or pixel location , similar to the ap-
proach taken by Sethianet al. [113], [114].

B. A Note on the Heap Sorting Algorithm

Heap sorting based on the back pointer method was first ap-
plied by Sethian/Malladi in their work (see Malladiet al. [49]).
Since then, almost all researchers have used this technique in
their implementations. The heap sorting algorithm was basi-
cally used to select the smallest value (see Sedwicket al.[115]).

Briefly, a heap can be viewed as a tree or a corresponding or-
dered array. A binary heap had the property that the value at a
given “child” position was always larger than or equal to
the value at its “parent” position . The minimum travel
time in the heap was stored at the top of the heap. Arranging
the tentative travel time array onto a heap effectively identified
and selected the minimum travel time in the array. The min-
imum travel time on the heap identified a corresponding min-
imum travel time grid point. Values could be added or removed
from the heap. Adding or removing a value to/from the heap in-
cluded rearranging the array so that it satisfied the heap condi-
tion (“heapifying the array”). Heapifying an array was achieved
by recursively exchanging the positions of any parent–child pair
violating the heap property until the heap property was satisfied
across the heap. Adding or removing a value from a heap gener-
ally has a computational cost of order , where was
the number of heap elements.

C. Narrow-Band Method

Malladi et al. [77] was one of the beginners who first applied
the narrow banding scheme for medical image segmentation.
Almost all the recent applications using level sets have used
narrow banding in their implementations. Below are the steps
that were followed for optimization of the level set function
using narrow banding. The level set function computation was
implemented in the narrow band, given the speed functions.

1) Narrow-Band and Land Mine Construction
Here, a narrow band was constructed around the given

curve where the absolute distance value was less than half
the width of the narrow band. These grid points were put
onto the list. Now some points in the narrow band were
tagged as land mines. They were the grid points whose
absolute distance value was less than and greater
than , where was the band-width and

was the width of the land mine points. Note that the
formation of the narrow band was equivalent to saying
that the first external iteration or a new tube had been
formed.

2) Internal Iteration for Computing the Field Flow( )
This step evolved the active contour inside the narrow

band until the land mine sign changed. For all the itera-
tions, the level set function was updated by solving the
level set equation (26). Now the land mine sign of its
was checked. If the sign was changed, the system was
reinitialized, otherwise the loop was continued.

3) Re-Initialization [Zero Level Curve (ZLC) and Signed
Distance Transform Computation]

This step consisted of two parts: 1) Determination of
the zero level curvegiven the field flow . 2) Given the
zero level curve, estimation was done of the signed dis-
tance transform (SDT). Part 1) is also called isocontour
extraction since the front in the field flow is estimated
which had a value of zero. The modified version of the
Adalsteinssonet al. [111] algorithm was used for esti-
mating the ZLC, however the signs of the field flow were
needed. In part 2), the fast marching method was run
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(a) (b)

Fig. 5. (a) Ripples formed during the growth evolution ofzero level curves. Also seen is the large capture range of the segmentation scheme along with the shape
change as per the topology. This figure shows superimposition of 6zero level setcurves (MR Data Set: Courtesy of Marconi Medical Systems, Inc.). (b) Adaptive
mesh refinement. Reprinted with permission of R.B. Milne, Lawrence Berkeley National Laboratory, Berkeley, CA, LBNL-39216, p. 33, 1995.

to estimate the signed distance transform. The signed-
distance-function was computed for all the points in the
computational domain. At the end of step 3), the algo-
rithm moved to step 1) and the next external iteration was
started.

At the end of the process, a newzero level curvewas estimated
which represented the final object boundary. Note, this tech-
nique was used for all the global information integrated into the
system.

D. A Note on Adaptive Level Sets Versus Narrow Banding

Adaptive level sets were attempted by Milne [116] while
working toward the Ph.D. degree. In this method, the resolution
of the grid was changed during the marching stage. Fig. 5
shows an example where the mesh resolution changed for the
high curvature zones. This scheme had three major benefits:
1) The algorithm does not need to be re-initialized.2) The
computational domain was extended beyond the surface of
interest without the incurrence of a performance penalty. Thus
the boundary conditions were not a serious threat to the stable
solution. 3) Adaptive level sets allowed for a nonuniform
resolution of the surface itself. This meant one can selectively
redistribute the density of information across the surface. As
a result, one could match itself to the small scale features of
the surface. Thus adaptive level sets are more powerful than
plain narrow band level set methods. Even though adaptive
level sets had done well compared to narrow band methods, the
application of adaptive level sets in high curvature areas is not
very stable. If the interface changed from coarse to fine, then
stability issues of the propagating fronts are in question (see
Bergeret al. [94], [95]).

VII. M ERITS, DEMERITS, THE FUTURE AND CONCLUSIONS OF

2-D AND 3-D LEVEL SETS IN MEDICAL IMAGERY

A. Advantages of Level Sets

Level set formulation offers a large number of advantages
that are as follows: 1)Capture Range: The greatest advantage
of this technique is that this algorithm increases the capture
range of the field flow and thereby increases the robustness of

the initial contour placement. 2)Effect of Local Noise: When
the regional information is integrated into the system, then
the local noise or edge will not distract the growth process.
This technique is nonlocal and thus the local noise cannot
distract the final placement of the contour or the diffusion
growth process. 3)No Need of Elasticity Coefficients: The
technique is not controlled by elasticity coefficients, unlike
parametric contour methods. There is no need to fit tangents
to the curves and compute normals at each vertex. In this
system, the normals are embedded in the system using the
divergence of the field flow. This technique has an ability to
model incremental deformations in shape. 4)Suitability for
Medical Image Segmentation: This technique is very suitable
for medical organ segmentation since it can handle any of the
cavities, concavities, convolutedness, splitting or merging. 5)
Finding the Global Minima: There is no problem finding the
local minima or global minima, unlike optimization techniques
of parametric snakes. 6)Normal Computation: This technique
is less prone to the normal computational error which is
very easily incorporated in classical balloon force snakes for
segmentation. 7)Automaticity: It is very easy to extend this
model from semi-automatic to completely automatic because
the region is determined on the basis of prior information. 8)
Integration of Regional Statistics: This technique is based on
the propagation of curves (just like the propagation of ripples in
the tank or propagation of the fire flames) utilizing the region
statistics. 9)Flexible Topology: This method adjusts to the
topological changes of the given shape. Diffusion propagation
methods handle a very natural framework for handling the
topological changes (joining and breaking of the curves). 10)
Wide Applications: This technique can be applied to unimodal,
bimodal, and multimodal imagery, which means it can have
multiple gray level values in it. These methods have a wide
range of applications in 3-D surface modeling. 11)Speed
of the System: This technique implements the fast marching
method in the narrow band for solving the Eikonal Equation
for computing signed distances. 12)Extension: The technique
is an easy extension from 2-D to 3-D. 13)Incorporation of
Regularizing Terms: This can easily incorporate other features
for controlling the speed of the curve. This is done by adding
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an extra term to the region, gradient and curvature speed
terms. 14)Handling Corners: The system takes care of the
corners easily unlike parametric curves, where it needs special
handling at corners of the boundary. 15)Resolution Changes:
The technique is extendable to multi-scale resolutions, which
means that at lower resolutions, one can compute regional
segmentations. These segmented results can then be used for
higher resolutions. 16)Multi-Phase Processing: This technique
is extendable to multiphase, which means that if there are
multiple level set functions, then they automatically merge
and split during the course of the segmentation process. 17)
Surface Tracking: Tracking surfaces are implemented using
level sets very smoothly. 18)Quantification of 3-D Structures:
Computation of geometrical computations is done in a natural
way, for example, one can compute the curvature of 3-D
surfaces directly while performing normal computations. 19)
Integration of Regularization Terms: Allows easy integration
of vision models for shape recovery such as in fuzzy clus-
tering, Gibbs model, Markov Random Fields and Bayesian
models (see Paragioset al. [29]). This makes the system very
powerful, robust and accurate for medical shape recovery. 20)
Concise Descriptions: One can give concise descriptions of
differential structures using level set methods. This is because
of background mesh resolution controls. 21)Hierarchical
Representations: Level set offers a natural scale space for
hierarchical representations. 22)Reparameterization: There is
no need for reparameterization for curve/surface estimation
during the propagation, unlike in the classical snakes model.

B. Disadvantages of Level Sets

Even though level sets have dominated several fields of
imaging science, these front propagation algorithms have
certain drawbacks. They are as follows: 1)Initial Placement
of the Contour: One of the major drawbacks of parametric
active contours was its initial placement. It does not have either
enough capture range or enough power to grab the topology
of shapes. Both of these drawbacks were removed by level
sets provided the initial contour was placedsymmetricallywith
respect to the boundaries of interest. This ensures that level
sets reached object boundaries almost at the same time. On
the contrary, if the initial contour is much closer to the first
portion of the object boundary compared to the second portion,
then the evolving contour crosses over the first portion of the
object boundary. This is because the stop does not turn out to
be zero. One of the controlling factors for the stop function is
the gradient of the image. The relationship of the stop function
to the gradient is its inverse, and also depends upon the index
power in the ratio . For stopping
the propagation, the denominator should be large, which means
image forces due to the gradient should be high. This means
index should be high. In other words, if is high, then
the gradient is high, which means weak boundaries are not
detected well and will be easily crossed over by the evolving
curve. If is low (low threshold), then the level set will stop
at noisy or at isolated edges. 2)Embedding of the Object: If
some objects (say, inner objects) are embedded in another
object (the outer object), then the level set will not capture all
objects of interest. This is especially true if embedded objects

are asymmetrically situated. Under such conditions, one needs
multiple initializations of active contours. This means only one
active contour can be used per object. 3)Gaps in Boundaries:
This is one of the serious drawbacks of the level set method
and has been pointed out by Sidiqqui and Kimia. Due to gaps
in the object, the evolving contour simply leaks through gaps.
As a result, objects represented by incomplete contours are
not captured correctly and fully. This is especially prominent
in realistic images, such as in ultrasound and multi-class MR
and CT images. 4)Problems Due to Shocks: Shocks are the
most common problem in level sets. Kimia and co-workers
[84]–[86] developed such a framework by representing shape
as the set of singularities (so-called shocks) that arise in a
rich space of shape deformations as classified into four types:
1) first-order shocks are orientation discontinuities (corners)
and arise from protrusions and indentations; 2) second-order
shocks are formed when a shape breaks into two parts during
a deformation; 3) third-order shocks represent bends; and 4)
fourth-order shocks are seeds for each component of a shape.
These shocks arise in level sets and can cause sometimes
serious problems.

C. Conclusions and the Future on Level Sets

The class of differential geometry, also called level sets,
has been shown to dominate medical imaging in a major
way. There is still a need to understand how regularization
terms can be integrated into level sets to improve medical
segmentation schemes. Even though the application of level
sets has gone well in fields of medical imaging, biomedicine,
fluid mechanics, combustion, solidification, CAD/CAM, object
tracking/image sequence analysis, and device fabrication,
this is still far away from achieving stable 3-D and a stan-
dard segmentation technique in real-time. By standard, this
means that which can segment the 3-D volume with a wide
variation of pulse sequence parameters. In the near future
will be seen the modeling of front propagation that takes into
account physical constraints of the problem, for example,
minimization of variation geodesic distances, rather than
simple distance transforms. Also will be seen more incorpo-
ration of likelihood functions and adaptive fuzzy models to
prevent leaking of curves/surfaces. A good example of the
integration of low level processes into the evolution process
would be given as: , where

, where is the low
level process from edge detection, optical flow, stereo disparity,
texture, etc. The better the , the more robust would be
the level set segmentation process. It is also hoped that more
papers in level sets will be seen where the segmentation step
does require a reinitialization stage (see Zhaoet al. [121] and
Evanset al. [122]). It would also, however, be helpful if a faster
triangulation algorithm can be incorporated for isosurface
extraction in 3-D segmentation methods.

A massive effort has been seen by the computer vision com-
munity to integrate regularization terms to improve robustness
and accuracy of 3-D segmentation techniques. How curve/sur-
face propagation hypersurfaces based on differential geometry
are used was shown for the segmentation of medical objects
in 2-D and 3-D. Also shown in this paper is the relationship
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between parametric deformable models and curve evolution
framework; incorporation of clamping/stopping forces to
improve the robustness of these topologically independent
curves/surfaces; and finally, state-of-the-art 2-D and 3-D level
set segmentation systems was presented for medical imagery.
With time, more adaptive schemes will be seen buffered with
knowledge-based methods to yield more efficient techniques
for 2-D and 3-D segmentation.
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