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Abstract—The class of geometric deformable models, also restrictivé body scanning methods. In spite of the above-men-
known as level sets, has brought tremendous impact to medical tioned complications, an exploration has begun into obtaining
imagery due to its capability of topology preservation and fast ¢5qier and more accurate software tools for shape recovery in 2-D

shape recovery. In an effort to facilitate a clear and full under- . . .
standing of these powerful state-of-the-art applied mathematical gnd 3-D. This paper is an attempt to survey the latest techniques

tools, this paper is an attempt to explore these geometric methods, in 2-D and 3-D for fast shape recovery based on the. C|aS§ of
their implementations and integration of regularizers to improve deformable models, known as “level sets” or “geodesic active
the robustness of these topologically independent propagating contours/surfaces:.”

curves/surfaces. This paper first presents the origination of level  The application of the level sets in medical image segmenta-
sets, followed by the taxonomy of level sets. We then derive the ;.\ hocame extremely popular because of its ability to capture

fundamental equation of curve/surface evolution and zero-level the t | fsh - dical i R flv. Lachaud
curves/surfaces. The paper then focuses on the first core class € topology of shapes in medical Imagery. kecently, Lachau

of level sets, known as “level sets without regularizers.” This (See [4]-[6]) and Malgouyrest al. [7] showed a relationship
class presents five prototypes: gradient, edge, area-minimization, between topology and isosurface extraction. Malgouyses
curvature-dependent and application driven. The next section al. [7] also recently published an excellent paper on topology
is devoted to second core class of level sets, known as “level setgreservation within digital surfaces. A detailed survey on digital
Wlt_h regularizers.” In th|§ _clas_s, we present four kinds: clus- topology in computer vision, graphics, and image processing
tering-based, Bayesian bidirectional classifier-based, shape-based(CVGIP) can be seen by Kongt al. [8] and also the related

and coupled constrained-based. An entire section is dedicated to .
optimization and quantification techniques for shape recovery research work by Bertalmiet al.[9] and DeCarlet al.[10]. The

when used in the level set framework. Finally, the paper concludes inersity of applicgtiqns of level sets has reached into Sevgral
with 22 general merits and four demerits on level sets and the fields. These applications and their relevant references are listed

future of level sets in medical image segmentation. We present here: 1) geometry: (see Angenettal.[11], Choppet al.[12],
applications of level sets to complex shapes like the human cortex[13] and Sethiaret al.[14]); 2) grid generation: (see Sethiah
acquired via MRI for neurological image analysis. al. [15]); 3) fluid mechanics: (see Muldet al.[16], Sethiaret
Index Terms—Cortex, deformable models, differentialgeometry, al. [17] and Sussmasgt al. [18]); 4) combustion: (see Rhext
front, fuzzy, level sets, propagation, regularization, segmentation, al. [19]); 5) solidification: (see Sethiaet al. [20]); 6) device
stopping forces, topology. fabrication: (see Adalsteinssat al. [21]); 7) morphing: (see
Whitakeret al. [22]-[24]); 8) object tracking/image sequence
I. INTRODUCTION analysis in images: (see the recent work by Mansetiral.

HE ROLE of shape recovery has always been a critic 51-27], F’?“.ag'_o”’*‘ al.[28], [29] and Kornprobset al. [30]); .
. . . . stereo vision: (see the recent work by Faugeras and his
component in two-dimensional (2-D) and three-dimen-

ional (3-D dical i ; + assists | Vi di coworkers at INRIA [31]); 10) shape from shading: (see Kimmel
sr|10na (3 )mﬁ ca |ma%eryksl|3nc§| QSISIiS a:jge)]:m MEdICa; al. [32]-[34]); 11) mathematical morphology: (see Arehart
therapy (see the recent book by Setial. [1] and references et al. [35], Catteet al.[36], Sapiroet al.[37] and Socheet al.

therein). The applications of shape recovery have been [@*8]); 12) color image segmentation: (see Sapital. [39]);

creasing since scanning methods became faster, more accu_{gjes_D reconstruction and modeling: (see Casedies!. [40]

and less artifacted (see [1, Ch. 4] or [2]). The recovery of shapgsy [41]); 14) surfaces and level sets: (see Crepp. [42] and

of the human body is more difficult compared to other imagingimmel et al.[43]); 15) topological evaluations: (see DeCagto

fields. This is primarily due to the Iarge Var|ab|l|ty in Shape%L [10])' and 16) 2-D and 3-D medical image Segmentation: (see

complexity of medical structures, several kinds of artifacts anese works by Malladét al.[44]-[48], [50], [49], Yezziet al.

[51]); gray matter/white matter (GM/WM) boundary estimation

Manuscript received October 3, 2000; revised January 29, 2001 and April®y Gomeset al.[52]; GM/WM boundary estimation with fuzzy

2001. models by Suriet al. [53]; GM/WM thickness estimation by
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S. Singh is with PANN, Department of Computer Science, University of EX29]; & recent survey article on brain segmentation by Stai.
eter, Exeter EX4 4PT U.K. ) o o ) )

S. N. Laxminarayan is with the Department of Biomedical Engineering, New *Scanning ability limited to acquiring in three orthogonal and oblique direc-

Jersey Institute of Technology, Newark, NJ 07102 USA. tions only.
X. Zeng is with R2 Technology, Inc., Los Altos, CA 94022 USA. 2We will interchangably use the phrase “level sets” and “geodesic active con-
Publisher Item Identifier S 1089-7771(02)00028-6. tour/surfaces.”

1089-7771/02$17.00 © 2002 IEEE



SURI et al. SHAPE RECOVERY ALGORITHMS USING LEVEL SETS 9

[57]; application of level sets for cortex unfolding by Faugeragotted line area): 1) without regularizers; and 2) with regular-
and his coworkers from INRIA (see Hermosilt al. [58]); izers. Level sets without regularizers are techniques where the
application of the level set technique in cell segmentation (speopagation force does not utilize the region-based strategy for
Sartiet al.[59]); and Niessert al. [60] for the application of its computation. These forces are constant and do not change.
geodesic active contours for cardiac image analysis. For a @@&metimes they are also called as “level sets stoppers.” Earlier
tailed review of some of these above applications, readers mustearch called these “leakage prevention” techniques because
see the works by Sethiat al. [61], [62] published in 1989 and they tried to prevent any bleeding of boundaries during propa-
1996, respectively, and Kimmet al. [63]. Though these survey gation. These are further classified into five different kinds, de-
publications cover a good collection of level set applicationgending upon the design of the stopping force: 1) gradient-based
with the advancement of image processing technology, theggnning force; 2) edge-based stopping force; 3) area-minimiza-
pub_llcanons fall behind in: 1) _the latest tren_ds, _the so-callefhy_pased stopping force; 4) curvature-based stopping force:
design of the robust propagation forces, which is the crux gfy 5) gpplication-driven level sets. The curvature-dependent
Fh's paper, and 2) not having a proper f(_)cus on the m_ed'(iﬁéss has four sub-classes: 1) plain curvature-based; 2) mean
imaging area. Both these shoricomings will be removed in tmf*rvature flow based with directionality; 3) bubbles; and 4) mor-

paper. Having discussed the importance and application cfwing. Plain curvature based techniques are those which are

level sets, _the paper now presents the place of level sets in @?f\a/en solely by the curvature that is computed using differential
segmentation tree and its taxonomy.

The taxonomy of level sets for segmentation of 2-D and 3. pgometry. Mean curvature flow with directionality-based tech-
medical imagery can be seen in Fig. 1 (top). (For details on s igues are those which use the combination of Euclidean curva-

mentation techniques, readers are referred to exhaustive revié & and dlr.ectlon together to "?‘Ch'e"e the deformat.|on brocess.
by Suriet al. [64] and [57].) Fig. 1 (top) shows the classifica- uch techniques are good for tiny, occluded, and twisted objects
;%e blood vessels. Bubbles are a set of seeds, or fourth-order

tion of 2-D and 3-D segmentation techniques, divided into thr ks, which hrink it di d def
core classes: 1) region-based; 2) boundary/surface-based; a %f s, which grow, shrink, merge, split, disappear, and deform
r the influence of image information such as edges and

fusion of boundary/region-based. The second core class of seg“€ _ " )
mentation is also known as “deformable models” and the thiffjadients to segment objects in images and volumes. Morphing

core class is also called the “fusion of regions with deformabjgchniques are those which undergo shape deformation from one

models.” The deformation process has played a critical role fiftial shape to the target shape driven by the combination of
shape representation. This paper uses “level sets” as its Signed _dlstancg at coordinate transfqrmatlon.and the grad.|ent
to capture deforming shapes in medical imagery. The reseafffthe signed d!stgnge transform funct|on§. This transformation
in deformation started in the late 1980s when the paper callg@Ptures the similarity between user-defined shape and target
“snakes” (the first class of deformable models) was published Bjape.
Terzopoulouset al. [65] and Kasst al. [66]. Since then, there The second core class of level sets uses regularizers or level
has been an extensive burst of publications in the area of pat@ts that derive the propagation force using statistical means
metric deformable models and their improvements, such as b#{ch as region-based strategy. This is further classified into four
loon force and template-based fitting (see all of these referenégges depending upon the design of propagation force. They are:
in by Surietal.[1, Ch. 3and 4]). Discussions on these referencds clustering-based; 2) classification based on Bayesian statis-
are out of the scope of this paper. The second class of deformdisig; 3) shape-based; and 4) constrained coupled level sets where
models is level sets. These deformable models were startedt§y propagation force is derived from Bayesian strategies.
Osher and Sethian [67], which started from Sethian’s Ph.D. dis-Having defined the taxonomy of level sets in medical image
sertation [68]. The fundamental difference between these t&egmentation, the following goals of this paper are presented:
classes is: Parametric deformable curves (active contours) g0 present the tentative taxonomy of level sets and its place
local methods based on an energy-minimizing spline guided #y2-D and 3-D medical image segmentation; 2) To understand
external and image forces which pull or push the spline towalite curve/surface propagation of hypersurfaces based on differ-
features such as lines and edges in the image. These classigipl geometry; 3) To present the mathematical foundations of
active contour models solve the objective function to obtain tigéfferent techniques as discussed in the level set taxonomy [see
goal boundary, if the approximate or initial location of the corFig. 1 (top)]. This also includes a discussion of pros and cons
tour is available. On the other hand, level set methods are ac@feall techniques for curve/surface propagation; 4) To study
contour energy minimization techniques which solve computglifferent kinds of propagating forcesand their fusion in the
tion of geodesics or minimal distance curves. Level set methd@yel set formalism using partial differential equations (PDEs)
are governed by curvature dependent speeds of moving curf@scurve/surface propagation and evolution; 5) To present the
or fronts. Those familiar in the field of active-modeling willstate-of-the-art 2-D and 3-D level set segmentation systems
appreciate these major advantages and superiority of level detsmedical imagery along with their merits and demerits; and
compared to classical deformable models. These will be cdipally, 6) To present the state-of-the-art ready references for
ered in this paper as well. readers interested in further exploring into the field of medical
Geometric deformable modélr level set techniques areimaging segmentation using level sets. Note that the goal of

classified broadly into two classes (see Fig. 1, top, shown s paper is not to discuss the PDE-based image processing
approaches, even though it is closely related (for details on
3We will interchangably use the word “geometric deformable models” or
“level sets” or “geodesic contours” during the course of this paper. 4Also called as regularizers.
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2-D/3-D Medical Image Segmentation Techniques
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Fig. 1. Top: The place of level sets in the medical segmentation tree. Note the classification subtree of geometric deformable models or levat gets (sh
dotted line area). Bottom: Front propagation of #ezo level setFilled circles in figures (B), (C), and (D) show the position of t#exo level curvas the front
propagates. These three projected circles are seen in figure (A).

PDE-based applications to image processing, see the upconmmgyits, the future and conclusions on level sets are discussed in
paper by Surét al.[69] and their references therein). Section VII.
The layout of the remainder of this paper is as follows: Sec-
tion Il presents the introduction to level sets and the derivationl|. CurvE EVOLUTION: ITS DERIVATION, ANALOGIES, AND
of the curve evolution equation. Section Il presents the first THE SOLUTION

core class of level sets, i.e., “level sets without regularizers”Since this paper is focused on level sets, this section first
and their subclassgs. The S?CO”O' corg class of level sgts, breesents the derivation of the fundamental equation of level sets,
“level sets fused with regularizers” for image segmentation, ji$,own as “curve evolution.” Lelf () be the closed interface or
discussed in Section IV. This is the crux of the paper and digynt propagating along its normal direction (see Fig. 1, bottom).
cusses the state-of-the-art method for design of the “propagatifigs closed interfacE(#): [0, co) — %%, can either be a curve
force” used for the deformation/morphing process in 2-D/3-m 2-D space or a surface in 3-D space. The main idea is to rep-
medical imagery. Section V covers numerical methodologies @fsent the fronk'(¢) as thezero level sedf a higher dimensional
level sets using finite differences. Optimization techniques féuinction ¢.

segmentation in the level set framework and shape quantificalet$(x, ¢t = 0), wherer € RY be defined by)(z, t = 0) =

tion technigues are discussed in Section VI. Finally, merits, dé-whered is the signed distance from positierio I'(0) and the
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plus (minus) sign is chosen if the poinis outside (inside) the and mean curvatur€X) are given asA = V¢/|V¢| and
initial front ['(0). Thus an initial function isp(z,t = 0) = H = V.(V¢/|Ve]).

RY — R with the propertyl’(t = 0) = (z|¢(x, t = 0) = 0).

The goal now is to produce an equation for the evolving funé The Eikonal Equation and Its Mathematical Solution

tion ¢(x, t) so thatp always remains zero on the propagating |n this section, the mathematical solution is presented for
interface. Letz(t), ¢t € [0, oo) be the path of a point on the solving the level set function with unity speed. Such a method
propagation front (see Fig. 1, bottom), i.e(f = 0) is a point s needed to compute the “signed distance transform” when the
on the initial frontl’(z = 0) andx, = V (x(¢)) with the vector raw contour crosses the background grid. Consider a case of a
x, normal to the front ak(t). Since the evolving functio is  “front” moving with a velocityV = V(z, ), such thatV’ is
always zero on the propagating front, the((t), ) = 0. By greater than zero. Using Osher—Sethian’s [67] level set equa-

the chain rule tion, consider a monotonically advancing front represented in
N the form: ¢, = V(z, v)||V¢||, whereg, is the rate of change
b + Z bu, x5, =0 (1) of the level set and’ ¢ is the gradient of the. LetT'(z, y) be
= the time at which the front crosses the grid pdint y). In this
_ . _ time, the surfac&(xz, y) satisfies the equatioffVT||.V = 1.
wherez; is thesth component ok. Since By approximatiof the solution to the Eikonal equation is
EN: .. [max(max(D T, 0), —min(D**T, 0))]?
= s + [max(max(D7YT, 0), —min(DH¥T, 0))]?
:((/)azu¢a}27¢w3"'¢wN)'(x1t7x2t7x?’t'”th) :V; (5)
=V(z@®)|Vel ) w

. ) . ._whereV,? is the square of the speed at locati@gn y) and
hence, using (1) and (2), the final curve evolution equation S-+7 D+ D~vT, DT are the backward and forward

given as differences in time, given as
% = V()|V @3) (preg_ Ly 1; — I(x, y)
where¢ is the level set function antf'(x) is the speed with &D™*T = Tz, y) ~ Tz, y - 1)7
which the front (orzero level curvepropagates. This funda- T(x+1,y) — %( (6)
. : . : S Y T, y)
mentat equation describes the time evolution of the level set DT =
function () in such a way that theero level curveof this N T(x, y) —T(x—1, y)
evolving function is always identified with the propagating in- L &D™T = 2 .

terface. The term “level set function” will be interchangably b
used with the term “flow field” or simply “field” during the

. L -0
course of this paper. The above equation is also called a Eule%ﬁrim]. Having discussed the taxonomy of level sets in medical

representation of evolution due to the work of Osher and Seth . . .
[67]. Equation (3) for 2-D and 3-D cases can be generalized Imaging and the fundamental curve/surface evolution equation,

0/at = Vi(z, y)|Vé| andd/at — Vi(z, y, 2)|Ve|, re- € paper now presents the different types of level sets and their

: mathematical formalism along with their merits and demerits.
spectively, where(z, y) and V.(z, y, z) are curvature de- Level sets without regularizers are discussed in Section Ill, and
pendent speed functions in 2-D and 3-D, respectively. 9 '

Three Analogies of the Curve Evolution Equatiot) Note level sets fused with regularizers in the level set framework are

that these equations can be compared with the EucIide%{ﬁcussed in Section IV.
geometric heat equation (see Grayssnal. [70]), given as:
9C/at = kN, wherex is the curvature and/ is the inward
unit normal andC is the curve coordinates. 2) Equation (3) The main characteristic of the level set is its ability to pick up

is also called the curvature motion equation, since the ratetb& desired topology of the shape being segmented. The accu-
change of the length of the curve is a functionagf/dt. 3) racy of the segmentation process depends upon when and where
The above equations can be written in terms of differentitie propagating hypersurface needs to stop. Consider the spe-
geometry using divergence a%p/dt = V.(V¢/|V$|)|V¢|, cial case of a surface moving with a speiéd> 0. Let 7" be
where geometrical properties such as normal curvaffé the time at which the surface crosses a given point. The func-
tion T then satisfiegV7T'|V = 1. This equation simply says
that the gradient of the arrival time is inversely proportional to
the speed of the surface. If the propagating surface needs to stop
070 = V(x)(x — V) @) Cclose to the vicinity of the segmenting topological shape, then
ot the speed of the surface should approximate closely to zero near

wherex was the vector of andy coordinatesy is the signed distance function. the final segmenting shape. This means that gradient values at
The main characteristic of this equation was thandV are orthogonal to each
other (see details by Gomesal, [52]). SNumerical methodologies will be discussed in Section V.

Ef‘here are efficient schemes for solving the Eikonal equation (3).
details, see Sethiaat al. [71], Caoet al.[72] and Cheret

Ill. L EVEL SETS WITHOUT REGULARIZERS FORSEGMENTATION

5Recently, Faugeras and his coworkers from INRIA (see Gahas, [52])
modified (3) into the “preserving distance function” as



12 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 6, NO. 1, MARCH 2002

the final shape boundary (in 2-D) or surface (in 3-D) should be Pros and Cons of Caselles’ WorlAlthough Caselles and
very high (since the speed needed at the boundary is zero). TMadladi’'s work was able to solve this problem, it had the fol-
the accuracy of the segmentation process highly depends on howing weaknesses: 1) The stopping term was not robust and
powerful the gradient values are at the final segmented shagence could not stop the bleeding or leaking of the boundaries.
This means the higher the gradient value, the faster the propagjgThe pulling back feature was not strong. This meant that if
tion of the curve/surface is, which results in a strong clampirige front propagated and crossed the goal boundary, then it could
force. As a result, one has robust and accurate segmentatitot.come back.

Thus the “stopping force” seen for the propagating surface is

strongly dependent upon the gradient change of the final shdpelLevel Sets With Stopping Force Due to Edge Strength

to be segmented. In the next few sections, several kinds of stgfp<.V¢) (Yezzi)

ping forced will be discussed in the class of “level sets without Kichenassamegt al. [74] and Yezziet al. [51] tried to solve

regularizers” or “implicit deformable models.” the above problems by introducing an extra stopping term
The layout of this section is as follows: Section I1I-A presen ype-2), also called the pull back term. This was expressed
the stopping force due to the image gradient. Section lll- athematically as

presents the stopping force due to edge strength. Section IlI-C
presents the stopping force due to area minimization. Sec- 9¢ _
tion 1lI-D presents the stopping force due to mean curvature 9¢ e(x)(r + Vo)l Vel + w SACY)
flow (MCF). Finally, in curvature dependent level sets, we stopping—term—type—2

dlscqss the work.on .1) plgm curvature and 2) mean cunvaifie that(Ve.V¢) denoted the projection of an attractive force
flow integrated with directionality.

vector on the normal to the surface. This force was realized as

the gradient of a potential field This potential fieldc for the

"D and 3-D case was given agx, y) = —|VG, * I(xz, )|

ande(zx, y, 2) = —|VG, = I(z, y, 2)|, respectively. Note that
Using Osher and Sethian’s [67] approach, Caselle[75],  equation (10) is similar to equation (7) given by Malladi in [78].

Choppet al. [42] and Rouyet al.[76] proposed the geometric pMalladi et al calls the equation as an additional constraint on the

active contourss followed by Malladi et al. [77] The model surface motion/)t_ Rewriting [78, eq. (7)] we have

proposed by Caselles and Malladi was based on the following

A. Level Sets With Stopping Force Due to the Image Gradie
(Caselles)

equation: ifp(x, t) was a 2-D scalar function that embedded the D + c(x)(er + Vo) | V| — B(Ve. V) =0 (11)
zero level curvethen the geometric active contour was given by
solving where
i was the edge strength constant;
9¢ - o(x) (K + Vo)| V| @) Vo was a constant (1 as used by Malletial);
ot ~ K was the curvature dependent speed,;
stopping—term—type—1 € was the constant term controlling the curvature
where dependent speed;
x  was the level set curvature: (Ve.V¢) was the same as defined above.
Vo was the constant; Pros and Cons of Kichenassamy et al. [74] and Yezzi et al.’s
¢(x) was the stopping term (type-1) based on the image gl[é_—l] Methods: The weakness of 'Fhe above technique was: 1) It
dient: still suffered from boundary leaking for complex structures, as

and was given as pointed out by Siddiquet al. [79].

_ 1 g C. Level Sets With Stopping Force Due to Area Minimization
) =7 + |V[Gq(x) * I(x)]| ® (siddiqui
Siddiquiet al. [79], [80] then changed Kichenassarayal.
[74] and Yezziet al’s [51] model by adding an extra term to it

Note that (7) is the same as (5) from Mallagli al. [78].
Rewriting (5) from Malladiet al. [78], the stopping force

becomes ¢ Vo
S = Rk + Vo)Vl + (VeVg) +  2xVelVg|
o(x) = oIV GOIGol ©) 2
stopping—term—type—3
(12)

\t/;gherEa \:V?S tf}ethgradiednt c;)nfsttﬁnt ah@[(ll,,t(xg - I(x)] |T"‘r’1"?‘5 where(Vy/2)x(Ve)| V¢| was the area minimizing term and was
€ absolute ot the gradient of the convoluted image. 1S CO|1ﬂ'athematically equal to the product of the divergence of the
volved image was computed by convolving the original ima

by the G ian funct ith a Kk tandard deviat gse'ioppingtermtimesthegradientoftheflow.Thistermprovided
y the t>aussian function with a known standard devialion ,, 5 ygjitional attraction force when the front was in the vicinity

Taking the constant as unity and using the exponential serie%f an edge
one can obtain equation (8) from equation (9). Pros and Cons of the Area Minimization Techniquihe
7Also called the data consistency term in the level set framework. major advantage of this technique was: 1) It performed better

80r the level set or curve evolution equation. compared to the first and second implicit models. The major



SURI et al. SHAPE RECOVERY ALGORITHMS USING LEVEL SETS 13

weaknesses were: 1) The system was not very robust at hamalysis. The modification of this technique will be seenin Sec-
dling the convolutedness of medical shapes. 2) The systéon IV, where four systems are presented with the design of
did not take advantage of the regional neighborhood for tipeopagation forces, a key to the success of robust segmentation.
propagation or evolution of level sets. To some extent, this2) Curvature Dependent Force Integrated with Direc-
weakness was temporarily removed using multiple level setsnality (Lorigo): Recently, Lorigoet al. [81] presented
(see Niessent al.[60]), however this was not a robust solutioran algorithm for brain vessel reconstruction based on curve
to the segmentation of complex shapes such as in brain cortieablution in 3-D, also know as “codimension two” in geodesic
segmentation. active contours. This method used two components: 1) mean
curvature flow (MCF) and 2) the directionality of vessels. The
D. Level Sets With Curvature Dependent Stopping Forces mean curvature flow component was used to derive the Eulerian

The layout of this section is as follows: Plain curvr:lture—driveEQeloresentatlon of the level set equations was the SDT and

9 X L
techniques are presented in Section IlI-D-1. Integrating thévd)(x’ 1,V Z)(Xv t)) are the eigen vaIuTes ogthe projection
. . . . operatorPv,V-¢Pvy, whereP = I — (gq* /|g|*) andg was
directionality into mean curvature flow is presented in Sec- : ; .
. a nonzero vector, then using these eigenvalues, the Eulerian
tion 111-D-2. Note that the work on 3-D bubbles and free form ; ; . : .
deformations will not be discussed in this paper representation of the curve evolution was given by Lorigo as:

: — 2
1) 3-D Geometric Surface-Based Cortical Segmentatléar?)/at MVo(x, 1), Vig(x, 1)). The second component
was the normal of these vessels projected onto the plane and

(Malladi): The dominance of 3-D shape modeling usm%/as given as the product 6f¢ with the projection vectot!.

Geodesics active surfaces started with the UCLA group (S‘?ﬁis projection vector was computed using the Hessian of the

Osher and Sethian [67], Chom al. [3]) and then later used . L . )
. : ntensity image,/ and was given as(g’'/¢)(H(VI/|VI|)),
by the Berkeley Lab (see Malladi and Sethian, [78], [49] vhere g was the edge detector operator. Adding these two

Malladi's method was simply an extension from 2-D to 3-D Ol smponents. the complete level set equation was
equations (7) and (8) and an additional term, the so-called gra- P ' P q

dient of the potential field. Thus, ifl¢p/ 9t = o(x)(k+V0)|V @), ¢ q \v/
wherer is the level set curvaturdj is the constant andx) 5y = V(X 1), V3p(x, 1)+ D x S x n <H—|VI|>
was the stopping term based on image gradient and given as: mean—curvature—force v
e(x) = 1/(1 + |V[G,(x) * I(x)]]). Then Malladi's final Angular—Balloon—force

, - - : (14)
equation for cortical segmentation was: whereD was the directionality term which was the dot product

of V¢ andV I which was the angle between these two vectors.
c(x)(ek +Vo)|[Ve| + BVP.Ve (13) S was the scale term. Note that the second term was like an
> ~- S~ angular balloon force which navigated the deformation process.

Pros and Cons of Lorigo’s Techniquéthe major advan-
where P was the gradient of the potential field given ast@ges of this technique were: 1) The method successfully
Pz, vy, 2) = |(V(G, * I(x, y, z)))|. Note that the term demonstrated the segmentation of these vessels_of the brain.
VP.V¢ denoted the projection of an attractive force on th¢) The method used the directional component in the level
surface normal3 controlled the strength of the attractive forceSet framework, which was necessary for segmenting twisted,
Also note thaty = 1 andx was premultiplied by which con- convoluted and occluded vessels. 3) The technique was used
trolled the mean curvature. The mean curvatuia 3-D was: 0 compute vessel radii, a clinically useful measurement. The
= 1/((¢i+¢5+¢§)3/2)((¢yy+¢ZZ)¢320+(¢m+¢w)¢§+ weaknes_ses of Lorigo’s work were: 1) Not much discussion
(bow + by ) — 2butbyuy + butdodur + Gydoiby.)). So, Was available on the computation of the scale fastop) The
the deformation was focused more on propagation based rggthod has yet to show the analytical model since the output of
curvature rather than on stopping force. the system showed relatively thinner vessels compared to max-
Pros and Cons of Malladi’'s Techniquethe major advan- iImum intensity projection (MIP) and thresholding schemes.

tages of this technique were: 1) This technique was one of theThere was no comparison made between segmented results
firstin the application of level sets in the medical imaging worldnd the ground truth hence, this was not validated. So, we
2) The recent work of Malladit al.[78], [49] applied level sets SaW that the class of “level set without regulizers” primarily
for brain segmentation and showed the speed Mdsg(N), focused on stopping the deformation process by using the
where N was the total number of points in the data set. TH#ta consistency ternz(x), or propagating the deformation
major disadvantages of this technique were: 1) It was not cldjPcess totally based on curvature-dependent speed. None of
from this paper how the value of the arrival tiffievas selected the above methods took advantage of the region-based strategy
to segment the cortex accurately, but their protocol followed® neighborhoods, hence they were not successful in capturing
two-step process. They first reconstructed the arrival time furg@mplex shapes of medical objects/organs such as brain cortex.
tion using the fast marching method (see Setteaal. [71], The next section is focused on (_jemonstratlng the qle5|gn of_ the
[114]). Then, they treated the findl(z, v, z) function as an propagating force based on reglon—s_trategy which is fused into
initial condition to their full model. This meant that they solvedhe level set fundamental model to improve the robustness of
8¢/t = c(x)(er + V)| V| in a few time steps using the finite the segmentation for medical imagery.

difference withe(z, Y, % t=0)=T(z,y, 2).2) The SV_Stem 9The MIP algorithm is a very popular technique. An example can be seen by
was not robust and did not take advantage of the region-baseeet al. [83].

9 _
ot

gradient+curvature+stopper  attractive—force
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IV. LEVEL SETS FUSED WITH REGULARIZERS FOR whereX was the parametric contour andwas the damping
SEGMENTATION coefficient. As seen in (15), the classical energy model con-
%ituted an energy-minimizing spline guided by external and
'g&q\ge forces that pulled the spline toward features such as
ines and edges in the image. The energy-minimizing spline
was named “snakes” because the spline softly and quietly

Suri et al. [55], [56]). The main reason for this was that thénoved while minimizing the energy term. The internal energy

segmentation system took advantage of the local and gIoM’aﬂS. cqmposed of two ter.ms: the f|r§t term was the first-order
ggnvatlve of the parametric curve which acted like a membrane

shape information for pulling and pushing boundaries/surfac dth dt th d derivati fih tri
to capture the topology in the level set framework based e the second term was the second derivative oth€ parametric

PDE. Incorporating such regional-statistics, also known yrve which acted as a thin plate (also cglled the pressure
. : . . .farce). These terms were controlled by elastic constardaad
level sets with regularizers,” makes the overall segmentatio . .
/. The second part of the classical energy model constituted
system more robust and accurate. . :
. . . . .the external force given h¥...(X). This external energy term
This section presents four different medical segmentatig : . . .
. . . epended upon image forces which were a function of image
systems where regularizers are fused with geometric contour . . L .
: . i radient. Parametric snakes had flexibility to dynamically
or geodesic active contours in the level set framework. Set- )
control movements, but there were inherent drawbacks when

tion IV-A presents the derivation of geodesic active contou . .

: : ey were applied to highly convoluted structures, sharp bends
from parametric deformable models. The same section shows . . . )
the desian of the propagation force using fuzz clusterinand corners, or on images with a large amount of noise. Suri

: g propag : . 9 y t al. [1], [2], [64] and [57] tried to preserve the classical
which was later fused in geodesic active contours or level sefs, . .
. ) roperties of these parametric contours but also brought these
Section IV-B presents 3-D constrained level sets where tWo : : .
ometric properties which could capture the topology of

propagating surfaces are coupled by a constraint. The memggﬁvoluted shapes (say, cortical WM and GM). Since the

ology of computing the propagation force using Bayesi rve evolution when embedded with regional statistics was

stapstlcs is shown in Sectlo.n IV-C. Sectlon IV-D presgnts e fundamental equation in the design of a propagation force,
fusion of the shape-based information as a propagating fortﬁ

i the level set f i Finall ; i %s, the derivation will be presented next.
In the level set Tormalism. Finally, a comparison among € pe iy aiion of the Geometric SnakeSince the second

deS|gn_s of d|fferent prgpagatl_on forces and their uses in Ie\fférivative term in (15) did not significantly affect the perfor-
sets will be discussed in Section IV-E. mance! of active geometric snakes (see Casetiesl. [87]),

) ] ) . Suri dropped that term and replaced it with a new pressure
A. 2-D Regional Geometric Contour: Design of Regional  force which was given by, (X). This pressure force was an
Propagation Force Based on Clustering and Its Fusion With otward force which was a function of the unit nornél of the
Geometric Contour (Suri/Marconi) deforming curve. Suri defined the pressure forcefa$X) =

Recently, Suri [2], [55], [56] derived the curve evolutiorw,(X)N(X), thus the new parametric active contour could be

equation by embedding the region statistics into the parametig@ritten by replacing?(82X /ds?) by w,(X)N (X), resulting
classical energy model. This method was in the spirit ofeXu in
al.’s [90] attempt. Part of that derivatiéh will be discussed
here (for details see Suet al.[1]). To start with, the standard
dynamic classical energy model as given by Ketss.[66] was

Fusing regional statistics into parametric or geometr
boundary/surfaces has brought a major success in med1
imaging (see the recent work by Yez al. [88], Guoet al.
[89], Leventonet al. [117], Lorigo et al. [82] and recently by

X 8< 12D, 8
— P

Yo = B 5 ) —wp(X)N(X) +  Fepr(X)

pressure—force  external—force
smoothing—force
X 9 [ X % [ X (16)
Tor T 9s\Yas ] T 952 ﬁﬁ Fear(X) By r.edefining(a/as)(ax/.ajs) to be the curvature, and read-
~ - ~ external—energy justing the terms by defining the constamrts= «/v, V,, =
internal—energy (wp(X)/v)N(X) andV.,s = F..¢ /7, thus (16) was rewritten

(15) as:0X /ot = (ex + V, + Veze. N)N. The above was analo-

10Aubert et al. [91] recently tried to give some remarks between classicegpus to Osher and Sethian’s [67] equation of curve evolution,

snakes (given first by Kasst al. [66]) and geodesic snakes (given first bygiven asd¢/dt = V(x)N, whereN = —(V¢/|V¢|). Note,¢
Caselleset al. [87]). Aubertet al. showed that the above two models are onlyyas the level set function and(,i) was the curvature dependent

valid for curves with a fixed length using the definition that “classical snak ; ;
and geodesic snakes are equivalent, if they have same extremas.” Audlert e§peed with which the front (CZEI’O level curv)apropagated. The

also showed that Mauperthuis’ principle is not enough to show the equivalerf®$pressiorig/dt = V(x)N described the time evolution of
between classical snakes and geodesic snakes. Aebaft mathematically the level set functiong) in such a way that theero level curve

showed that the derivation of the gradient flow from the classical snake and : - : . Lo . _
geodesic snake have different expressions if Casefliaiss definition was used @Fthls evolvmg function was always identified with the propa

for developing the equivalence. Aubeit al. did, however, show equivalence gating interface. ComparingX /ot andd¢/dt = V(x)N, and
between these two energy models to be the same if the following definiti@;sing the geometric property of the curve’s norphakand con-

was u;ed fo_r equivalence: “Two mlnlmlzat_lon_prqblems are equwglent_ if ﬂé‘?gering onIy the normal components of internal and external
direction which locally most decreases a criterion is also a decreasing directjo

for the other criterion and vice versa.” In the forthcoming derivation, Casellefrces,(9/ds)(a(0X /0s)).N = (ar), Suri obtained the level
idea was used for establishing equivalence between parametric and geodesic
models. 11See the previous footnote.



SURI et al. SHAPE RECOVERY ALGORITHMS USING LEVEL SETS 15

(b)

Fig. 2. (a) Results of the superimposition of the ZLC and its level set function using the “fast marching method” in the narrow band (NB). Tubetieconstru
(b) Segmented GM boundary (results, courtesy of Jasjit Suri, Marconi Medical Systems, Inc. For details, see [55] and [56]).

set function §) in the form of a partial differential equation methods, see Berget al. [95], Sethianet al.[96], Tababaiet

(PDE) as al. [97], Huertaset al. [98] and Gacet al.[99]).
Pros and Cons When Clustering Was Used as a Regu-
9% _ (ki + V) V| = Ve . V. (17) larizer: The major advantages of embedding the clustering
ot i « technique as a regularizer in the level set framework were:

Note, V, was considered as a regional force term and w g robust implementation; 2) accurate boundary estimation
v E_pending upon the class chosen; 3) ease of implementation.

mathematically expressed as a combination of the inside-o ) K  thi hod ) he alaorith
side regional area of the propagating curve. This was defin1e— e major weaknesses of this method were: 1) The algorithm

aswr/vR, where R was the region indicator term that fe||Was not fast enough to be implemented for real-time applica-

between zero and one (the design of this propagation force v?mns. 2) The performance of the algorithm depended upon a

be seen in the next section). So, the above derivation showgl p_arameters, such as: the error threshold an(_j the number of
erations. 3) The choice of the initial cluster was important and

that the regional information was one of the factors whicll ded o b cul | d. 4) The alaorith
controlled the speed of the geometric snake or propagati'ﬁ‘f;ne ed to € carelully se ected. 4) ne ag_on_t M was not very
ust to MR images which had spatial variations due to large

curve in the level set framework. A framework in which 49PU o
snake propagated by capturing the topology of the WM/GI\/ﬁQ,F inhomogeneities.
navigated by the regional, curvature, edge and gradient forces, . .
was called regional geometric snakes. Also note that (17) h8g 3-D Constrained Level Sets: Fusion of Coupled Level Sets
three terms: the product efand, V,,, andV..... These three With Bayesian Classification as a Regularizer (Zeng/Yale)
terms were the speed functions which controlled the propaga-Coupled constrained boundary estimation in medical imaging
tion of the curve. These three speed functions were knownlzss been very successful when applying to shape analysis (see
curvature, regional, and gradient speed functions, since tihg derivation in the appendix by Setial.[64], where end dias-
contributed toward the three kinds of forces responsible ftole (ED) and end systole (ES) shapes of the left ventricle (LV)
curve deformation. were subjected to the “coupled constrained principle.” These
1) Design of the Propagation Force Based on Fuzzy Clusenstraints were computed based on eigenvalues). In the level
tering: Having discussed the embedding of the regional-forset framework, Zengt al.[100], [54] recently had put the level
function in the level set framework in the previous section, thiget under constraints in neurological applications. For example,
section now presents how this regional foigewas computed a volume has three tissue types, say T1, T2, and T3, and say
that navigated the deformation process for the final segmentissue T2 was embedded in between tissues T1 and T3. Such
tion of the convoluted topology. As defined previously, the rean example is seen in the human brain where the GM is em-
gional propagation force was mathematically givenag/yR, bedded between the WM and CSF. There is a coupling between
whereR was the region indicator term that fell between zero andM—-GM and GM—-CSF volumes. Zeng’'s method had used con-
one. An example of such a region indicator was from a meratrained level sets in the application of human cortex segmenta-
bership function of the fuzzy classifier. Thus Suri expressed thien from MR images. The proposed coupled level set formula-
region indicator term asR;,,q = 1 — 2u(z, y), whereu(x, y) tion was motivated by the nearly constant thickness of the cor-
was the fuzzy membership function which had a value betweteoal mantle and took this tight coupling as an important con-
zero to one iZ;,,4 was the region indicator function and fell instraint. The algorithm started with two embedded surfaces in
the range between1 to+1. This membership functiom(x, ) the form of concentric sphere sets. The inner and outer surfaces
was computed based on the fuzzy principle (see Berdgk were then evolved, driven by their own image-derived informa-
[93D). tion, respectively, while maintaining the coupling in between
Fig. 3 (left) shows the system used for GM boundary estimdirough a thickness constraint.
tion, whose results can be seen in Fig. 2. Note that the last stag&) Overall Pipeline of Coupled Constrained Level Set Seg-
was the isocontour extraction. This was accomplished usingmentation SystemThe cortical segmentation system based on
isocontour algorithm at subpixel resolution (for details on the$evel sets which was constrained by the coupling between the
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Typical Level Set Segmentation Algorithm 3-D Cortex Segmentation Using Constrained Level Sefs

User Placed Curve MR Brein mge | [ 3D Valume Cuet S (10)
- . 8re Borees
L Tl Eginein 101
Integrated Speed Initial Field in NB
o Copulaion of ew feld

/\ Marching Cubes Tout o Esroaton ™~

New | < o
Increment @ ——ISOM&C% 10) ] Surface

Tube i ¥

T

Renigration 0}

Nomber ZE
} Reinitalized Fidd (10)
! New Field in Narrow Band & Zero-Level-Curve
S ‘Are Speed Equal ?
Zero Level Curve | Cetop >
() (b)

Fig. 3. (a) Typical level set segmentation algorithm. This can be applied for brain segmentation. In such a case, the integrated speed willghaymdigitn

and curvature speed terms. Note: the paradigm uses the fast marching method in the narrow band. (b) Constrained level set application: catiex segment
algorithm. The user first specifies the initial spheres. Using the distance transform based on the shortest distance, the initial field isnethtemeterdw band.

The surface is propagated in the narrow band and the new field distribution is estimated taking the propagation forces into account. Theserfopatsctusiog

the likelihood measure. Using the marching cube algorithmzéne level surfaces computed, also known as isosurface extraction. The surfaces are reinitialized
and the speeds of two new isosurfaces are compared. If they are equal to zero, the system stops the propagation, or else the next round is é¢natedwBefor
field is estimated in the next round, the constrained forces are derived again.

WM-GM and GM—-CSF volumes can be seen in Fig. 3 (rightusing a local likelihood operator based on gray-level informa-
This system will be briefly discussed next, since it has clinicéibn rather than on image gradient alone, which gave the algo-
value in neurological analysis. The input of the system was thighm the ability in capturing the homogeneity of the tissue in-
3-D gray scale volume and the initial spheres. From the graide the volumetric layer. First, the 3-D field distributidmvas
scale volume, the propagating foréesvere computed. This estimated given the initial spher&sFrom the initial field dis-
was called the likelihood function which drove the field distribution, the normals and offsets at every voxel location were
tributions (to be discussed in Section IV-B2). From the initiatomputed using the level set framework. These two offsets to a
concentric spheres, the initial field was computed in the narraventral voxel gave information on the neighboring voxels. The
band. Zencet al. [54] then computed the new field driven byfirst set of voxels belonged to the first distribution, while the
these propagating forces in this narrow band. This was whesecond set of voxel belonged to the second distribution. Next,
Zenget al.ran thecoupled level seequations (to be discussedhe likelihood values were computed using these two distri-
in Section IV-B3). From this new field the new surface was confutions. For the first distribution (here, WM), the WM like-
puted, known as the isosurface, which represented a unisurfilseod probability was computed given a voxel and similarly,
value based on Marching Cubes (see Lorergeh [102]). The the GM likelihood was computed given the second distribution
algorithm performed the reinitialization and was ready to repedtere, GM). Assuming the distributions to be independent, the
the above steps if the external and internal speeds of the sph&d&s-WM likelihood computation was mathematically given as
were not equal to zero. The algorithm used the fast marching

2

method in the narrow band to optimize the performance. Thus g y—wn = H 1 exp <_M>
final representation of the cortical bounding surfaces and an au- gca vV 2mog e
tomatic segmentation of the cortical volume was achieved. The 1 (Lo — pw)?
intermediate and final results of the above coupled constrained ’ H row exp <—T> (18)
level set algorithm can be seen in Fig. 4. The following three weW ! W
sections will discuss each of these components of this pipeliRghere

2) Design of the Propagation Force Based on the Bayesiani andG were the WM and GM regions;
Model: Capturing gray scale edges of the WM/GM interface ;;;, andpu; ~ were mean values of the WM and GM re-
and GM/CSF interface was a very critical component in the gions;

entire system. The image-derived information was obtained by
13Signed distance transform.

12Also known as steering engines or image forces. 14nside and outside spheres.
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Fig. 4. Propagation of the outer and inner bounding surfaces. (a) Embedded sphere sets as initializations shown in unedited 3-D MR brain voteme. (b) Ou
and inner bounding spheres. (c) Intermediate step in GM surface propagation. (d) Intermediate step in WM surface propagation. (e) Final segutieritte:
GMI/CSF surface. (f) Final result of the segmented WM/GM surface (Courtesy of Xiaolan Zeng, R2 Technology, Inc.).

0% ando? were standard deviations of the WM and GMThe coupling between these two surfaces was realized through
regions; propagation speed term&,,; and Fj, which are dependent

I, andi, were the WM and GM pixel intensities. on the distance between the two surfaces and the propagation
Note, the output of the GM-WM likelihood function was theorces computed above. While the distance between the two
image which had edge information about the boundary of tisarfaces was within the normal range, the inner and outer
GM-WM. Similarly, the WM—-CSF likelihood function was ancortical surfaces propagated according to their own image
image which had the WM—-CSF edge or gradient informationfeatures. When the distance started to fall out of the normal

3) Constrained Coupled Level Sets Fused With Bayesieange, the propagation slowed down and finally stopped only
Propagation Forces:The propagation of surfaces toward thavhen the distance was outside the normal range, or the image
final goal surface was performed in the level set frameworfeature was strong enough. A coupled narrow band algorithm
Instead of evolving two surface directly, two level functiongvas customized for the coupled-surfaces propagation. The
whose zero level setorresponding to the cortical boundingcorrespondence between points on the two bounding surfaces
surfaces were calculated. The equations of these evolviiad)s out automatically during the narrow band rebuilding,

surfaces were which was required for surface propagation at each iteration.
This shortest distance-based correspondence was essential in

Pin(t) + Fin|Vthin| = 0 (19) imposing the coupling between two bounding surfaces through

Pout(t) + Fout| Vebour| = 0. the thickness constraint. Once the new field was computed, the
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isosurface was extracted based on the marching cube technighere sgfiz) was 1 ifz > 0 and was-1 if = < 0. The second

(see Lorenseret al. [102]). Having discussed all the stagesnodification was to the data consistency t&frthat changed

of the constrained coupled segmentation system, next will frem the gradient term into the extended gradient term. This

presented in pros and cons. term was changed froe(x) = 1/(1 +|V[G.(x) * I(x)]|) to a
Pros and Cons of Coupled Level Sets Fused With Bayesiaim which was based on the transitional probability of going

Classification: The coupled-surfaces propagation with thérom inside to outside the object to be segmented. This was

level set implementation offered the following advantagegathematically given as:(x) = g[pr(z|I, )], whereg[z]

1) easy initialization;2) computational efficiency (one hour);was1 — 422 if # < 0.5 and wask(1 — z)?, if z > 0.5. The term

3) the ablllty to handle Complex sulcal folds; 4) SimultapT was Computed based on these three paramet@,r$-q(u)

neous “skull-stripping” (delineation of nonbrain tissues) angndy, (v), and mathematically estimated if the probability of a

GM/W M segmentation; 5) ready evaluation of several chagiyel/voxel clas<C belonged to a set inside and outside the ob-

acteristics of the cortex, such as surface curvature and a cort#g@t_ If the clas<” was inside the region, them: was given as

thickness map; 6) integration of efficiency and flexibility o (1 — o)pe(I(2))) /(cupi(I(2)) + (1 — ai)pe (I(x))), while it

level set methods with the power of shape constraint; 7)V\?ds((oci)pi(I(x)))/(ocipi(f(x))+(1 — a;)pe(I(2))) if C was
promise toward the improved accuracy of brain segmentatig(}iside derived from the simple Bayesian rule.

through extensive experiments on both simulated brain imagesbros and Cons of Baillard/Barillot's TechniqueThe major

and real data. The major weaknesses were: 1) The meﬂ%l(?:g/antages of this technique were: 1) The paper was an excel-

did not include a model that dealt with image mhomogenel%nt example of the fusion of region-based information into the

unllkg othgr research such as that of Wellsal. [101]; .2) the boundary/surface. 2) The results were very impressive; how-
technique imposed no constraint to preserve the cortical surface . .

o ._ever, it would have been valuable to see the enlarged version

topology, however it did take advantage of the topological . L

s ) . of the results. 3) The algorithm was adaptive since the data con-

flexibility of level set methods; and 3) the resulting surface.

may not produce a 2-D manifold. Other research work usiﬁ:"g'ftte r:jcy termc((?:)) atr\d th? t‘:’:e? 5|zteﬁ(t) weretgda;_)l_tlr:{ely eSt.'é d
coupled level sets was done by Gonaesl. [52]. ated in every iteration of the front propagation. This provide

a good tradeoff between convergence speed and stability. 4) This

method used stocastic-EM (SEM) instead of expectation-mini-

. . . e : mization (EM), which was a more robust and accurate method

Set With Bayesian-Based Pixel Classification Regularizer A L . .

(Barillot/IRISA) for estimation of probablllty. density functlon .parameters. 5)

The method had been applied to various brain structures and

Baillot et al. [103], [104] and [105] recently designed thep various imaging modalities such as ultrasound. 6) The algo-

brain segmentation system based on the fusion of regigthm hardly needed any tuning parameters and thus it was very

into boundary/surface estimation. This algorithm was quitgficient. Both methods (Suri's and Baillard’s) were designed

similar in approach to Suri's method discussed previously {§ control the propagation force using region-based analysis.

Section IV-A. This algorithm was another instance where t@_jri’s method used regional-force computed using pixel-classi-

propagation forcé’ in the fundamental level set segmentatiofication based on clustering, while Baillaetlal’s method used

equation¢/dt = c(x)(r + Vo)|V¢| was changed into a pixel-classification based on Bayesian-statistics.

regional force. There were in all three changes made to this

equation by Barilloet al. First was in the propagation ford®, D. 2-D/3-D Regional Geometric Surface: Fusion of Level Set

second was in the data consistency term or stopping&€xm  With Global Shape Regularizer (Leventon/MIT)

and the third change was on the step gize These equations

and their !nterpretatlon will be.bnefly discussed next. _.geometric boundary/surface to model the shape in the level
.1)'Defs|gn of the Propagatlon For'c.e Based on P,@bab'"tget framework was done recently by Leventeinal. [117].
Distribution: The key idea was to utilize the probability den-rp g gh this technique did not show the segmentation of the
sity function inside and outside the structure to be segmentediey rather it focused on the segmentation of the subcortical
The pixel/voxel in the ne|ghb9rhood of the segmenting strugyes such as the corpus callosum, and was a good example of
ture was responsible for creating & pull/push force on the prage fysion of the boundary and region-based technique. Lev-
agating front. This was expressed in the form of the probabilightonet al. derived the shape information using maximam
density function to be estimated inside the structpy@y), the  posteriori probability (MAP) and fused that with gradient and
probability density function to be estimated outside the struggrvature driven boundary/surface in the level set framework.
ture,pe (U,) and the prior probability for a voxel to be inside therms MAP mode of shape usetiors in the Bayesian frame-
structure. Note here;> was the intensity value of a voxel atwork from the training data set (analogous to Coatesl’s
location (z, y, z). Using the above concept, this bidirectionaj118] technique). Using (10), the level set curve/surface evo-

C. 3-D Regional Geometric Surface: Fusion of the Level

Another application of the fusion of Bayesian statistics into

propagation force was estimated as: lution was given as
Vo = sgn{ai pi(w) — (1 — a;) pe(u)} (20) 9 _ (x)(k+Vo)|Ve|+  (VeVe) .  (21)
at N——

extra—stopping—term

15Note, this symbol is not to be confused with the membership function used
in Section IV-A. 160r stopping term.
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Note that this equation was exactly the same as (8) used by Legry long for spinal navigation real-time applications. 2) The
entonet al.in [117], whose solution using finite difference wassystem would need training data sets which had to be collected
off-line. 3) This paper did not show results on cortical segmen-

Pt +1) tation which had deep convolutions, large twists and bends. 4)
The performance of systems which had coefficients estimated

= Pp(t)+ 1 x)(k+V0) VY|  + (VeVe) | . from training data off-line and application of these estimated
— ~— coefficients on-line was dependent upon training data and test

Gradient + Curvature—Forces - Image—TForce (22) data sets. The above system was like a first layer of a neural
network (see Suet al.[119]) where the performance was gov-

If [¢*(£) — ¢(t)] represented the optimized shape information &"€d by shapes of training data and tuning parameters of the
time+, then Leventoret al added this term to the above equatiofp@ussian model (see Legal. [120]).

to yield the final evolution equation in the level set framework

as E. Comparison Between Different Kinds of Regularizers

Pt +1)

Having discussed four different kinds of regularizers (or de-
sign of propagating forces), this sub-section presents the com-

=¢t)+ A | ex)(s+ W)V
—_—

Gradient+Curvature—Forces
+ Xfo"(t) — o(1)] -
S——

Global—Shape—Force

+ (Ve Vo)
——

Image—Force

(23)

1)

1) Design of the External Propagation Force Based on
Global Shape InformationThe key to the above model was
the extraction of the shape information from the training
data (called “global shape” information) and fusing with the
local information (gradient and curvature) in the level set
framework based on partial differential equations«lfind 3
represented shape and pose parameters, then the optimized
diap Would be given as theargmax of P(¢*|¢, VI). 2)
This model using Bayes’ rule could be broken down as:
(P(¢la, B)P(V|a, B, 9)P()P(3))/(P(¢, VI)), where
P(«) and P(3) were shape and pose priors. To understand the
computation ofP(«), Leventon tookn-curves, each sampled
N times and each surface was representedbpyThen, the
training setr = {¢;,...¢,}. This mean shape could be
computed agt = (1/n)X¢; and the mean offset map was
b = (¢; — p). Each of this map is a column vector of a
matrix (N x n). If », ¢ represents the rows and columns of the 3)
matrix M, thenM = [¢, .|, where the limitsr and ¢ were:

1 <r < Nandl < ¢ < n. Next, this matrixM undergoes
singular value decomposition (SVD) to decompos& oy T,
Taking k-principal components, that isrows andk-columns,
gave the new matrid. Thus the shape coefficients were
computed asy = U}l (¢ — u). Using the Gaussian distribution,
the priors shape model could be computed as

1 1
Pla)= ————exp| =t 1@).
= T (5%

This equation was used in the computation of optimigédrhe

pose prior was from the uniform distribution. 4)
Pros and Cons of Shape Information Fused in Geometric

Boundary/Surface:The major advantages of this system were:

1) Robustness and successful capture of topology based on the

Bayesian shape information. 2) Shape and pose parameters con-

verged on the shape to be segmented. The major disadvantages

of such a system were: 1) The time taken for such a system was

six minutes (for vertebral segmentation), which was relatively

(24)

parison between them on the following points:

Internal Versus External Propagating Forderimarily

all of the regularizers design the propagating force and
drive the speed term. Suet al's technique designs
the propagation force internal to the level set, while
Leventon’s technique designs the propagation force
externally. The internal propagation force is accurate
and robust since it directly acts on the speed function
compared to the external propagation force. However,
the internal propagation force is more sensitive to the
overall system since these forces are computed directly
based on region-based strategy and acted directly on
speed functions.

Common to All TechniquesSuri’'s method uses
fuzzy clustering, Zeng’'s method uses the constrained
Bayesian approach, Barillot's technique uses plain
Bayesian classification, and Leventon’s technique
uses the global shape-based information using Eigen
analysis based on SVD. All of these techniques had
one objective in common, that is, they were after the
extraction of the shape to be segmented by fusion of
the region-based strategy in the level set framework.
Timings: It is difficult to compare the speed since all
of these four techniques do segmentation of different
organs and volumes, and it also depended on the initial
placement of the contour/surface. Individually, the
claims of each of these techniques had the following
timings: 1) Suri's 2-D GM/WM segmentation tech-
nigues took less than a minute per image. 2) Zeng's
3-D technique took around one hour for cortical
segmentation. 3) Barillot’s 3-D technique took around
two hours for cortical segmentation. 4) Leventon's
3-D technique took six minutes for the complete
vertebrae.

User Interaction:Suri’s technique was automatic ex-
cept for the placement of the initial contour. Zeng’s
method did initialization of sphere sets in white matter,
which was at a minimum. Barillot’s technique also in-
volved minimal interaction. Leventon’s technique used
an off-line method for tracing the boundaries of shapes
which was needed for training data sets. This was time
consuming.



20 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 6, NO. 1, MARCH 2002

5)  Number of Parameters and Adaptability Toward Stefor solving the HJ equation. A finite difference method was in
Size:The number of parameters used in Suri's techlihe conservation form if it could be written as

nique was at a minimum for a particular tissue type for il om o _ o
the MR image (e.g.J1, 7> or PD). The fuzzy clus- Y 7Y (T2 %12 2

. (25)
tering had two parameters, the error threshold and the At Az

tr_lumbe:c of |tertar11t|onts. Th_e techmqtueltwas nkot Stelf'adf%herec was the potential field or the numerical flux, which
|\t/e a_? a;as ) €s ?ﬁ sdlzes v(;/en. L was kep ans hs Lipschitz and consisteft. Thus using the relationship
atunity. 2engs method used a minimum NUMDEr Qoo the level set function, the HJ equation and the
parameters and was also not adaptive; however, the .\ oo 1aw we hav eb(z,t) = [ u(@ t)di. By

: : . - : ; = [ v(@, .
constrained force generation was dynamic. Bariliot ﬁltegration over the monotone numerical scheme and shifting

Dutwas seltadapiive. Leventon's method was not selo % 1/2 107, the HJ formulation vias given asy =
pive. n— Ate(D_¢7, Dyg?), where c(D_¢F, Dog) =

adaptive and used a greater number of parameters C%ﬂ’min(v’? 0))2 4 (max(s", 0))2]1° This equation will be
J? J? '

pared to the other techniques. used in the se . . . )
o B gmentation example in Section V-C, but first, the
6) Stability of the MethodThis factor depended upon 4 atio At/Az, the so-called CFL number, will be discussed.

ratio, the Courant number. (See Section V-B.) No dis-
cussion was given about the CFL number by 3iri g~ Number

al.Barillot did discuss stability issues in which they B ) )
talked about the dynamic nature of the CFL number For the stability of the numerical scheme, it was observed by

that automatically changed to adjust for any instabilourantet al. [107] that a necessary stability condition for any
ties. numerical scheme was that the domain of dependence (DoD) of

each point in thelomain of numerical schenshould include
the DoD of the partial differential equation itself. This condi-
tion was necessary for the stability of the numerical scheme.
The ratioAt/Axz under the limitAz — 0 andAt — 0 is the
The relationship between conservation laws and the evolOFL number, or called the Courant number. This CFL number
tion of curves was introduced in the classic paper by Osher apes determined by the maximal possible flow of information.
Sethian [67]. This paper presented a new formulation for curt@is flow of lines of information depended upon the type of
evolution by considering the evolution of a higher dimensionghe data and was thus called as “characteristics of the PDE.” If
function in which the curve was embedded as a “level set.” Thisese “characteristics” collide, then “shocks” occur. Interested
was a stable and efficient numerical scheme (for the nonconvexders can see the work by Kinga al. [84] on shocks. Re-
Hamiltonian numerical scheme, readers are referred to Osbently, Goldenbergt al.[108] fused the AO® scheme in level
and Shu [106]). sets for numerical stability. The original AOS model was pre-
This section has three parts: 1) Part one (Section V-A) éented by Perona—Malik [109] for nonlinear diffusion in image
the derivation of the finite difference equation in terms of levglrocessing. Interested readers can explore the AOS model and
sets using the Hamilton—Jacobi (HJ) and hyperbolic conseryg-fusion in level sets by Goldenberg.
tion law; 2) Part two (Section V-B) is on the ratidt/ Az, the
so-called CFL numbét; and 3) Part three (Section V-C) con-C. A Segmentation Example Using a Finite Difference Method
sists of the application of the numerical scheme using finite dif- oo speed control functions and their integration in terms of
ference for cortical segmentation. the level set functior to estimate the) over time are presented.
) ) ) _ ~ Thetime steprestrictions for solving the partial differential equa-
A. Hamilton—-Jacobi Equation and Hyperbolic Conservation tjon will not be discussed here (the reader can refer to the work by
Law Osher and Sethiaet al.[67] and the recent work by Barillat
Here, the numerical approximation of the Hamilton—Jacobl. [103]). Using the finite difference method (see also Sethian
formulation of the level set function will be briefly derived.[71] and Rouyet al.[76]), the level set (17) was given in terms
To start with, the hyperbolic conservation law stated that “thef time » as (for details, see Suet al. [S5] and [56])
rate of change of the total amount of substance contained in a L
fixed domainG is equal to the flux of that substance across th€s.y = @x,y = AH{Vieg (2, ¥) + Viraa(@, ¥) = Veur(2, 9)}

V. NUMERICAL METHODOLOGIES FORSOLVING LEVEL SET
FUNCTIONS

boundary ofG.” If v was the density of the substance ghtthe (26)
flux, then the conservation law was mathematically given as:

(d/dt) [, vdzr = — [,,(f, n)dS, wheren was the outward Where

normal toG, dS is the surface element 6. Using vector cal- &% , andgZ were level setfunc-
culus, the differential conservation law wag=+ V.f = 0. The tions at pixel loca-
HJ equation iR ¢ had the formep,+H (¢,1 - . - ¢»q) andin 1-D, tion (z, y) attimes
the HJ equation became the conservation law, and as a result, the n andn + 1;
methodologies used for solving the conservation law were usegky - rical flux becomes continuous flux, ie(p, ..., v) = H(v).

19Note,D_ andD. are the backward and forward difference operator.
17Courant number, named after the author Couedat. [107] 20Additive operator splitting.
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At was the time differ- where ¢ was a fixed constantx™(x, y¥) was the curvature
ence; at a pixel location(x, y) at nth iteration as:x™(z, y) =

Viea(®,4), Vraa(, 4), andVeur(z,) - were the regional, (¢3,¢7 — 20505, + ¢3,62)/ (43 + ¢5)*/?) and D (z, y)
gradient, and cur- andD%(z, y) were defined as

vature speed terms,
respectively. _ DO (z, y) = (pz+1,y) — Pz — Ly))
Now, these terms are presented as under: 1) The regional Y INT

speed term expressed in terms of the level set functignd
(¢) was given asV,e,(z, y) = max(Vy(z, y), )Vt +
min(V,(z, y), 0)V~,wheretermd/,(z, y), Vt andV~ were
givenasV,(z, y) = wr/(YRina(x, ¥)), Rina = 1—2u(zx, y),
Vo =[V, +V,"?andV*t = [V 4 V]2 Thus, to numerically solve (26), all that was needed was: 1)
the gradient speed valués, ¢); 2) the curvature speed at
Vi = [max(D~%(z, y), 0))? + min(D**(z, y), 0))2]  pixel location(xz, v); and 3) the membership functiar{z, v)
V; = [max(D~¥(z, y), 0))2 + min(D+¥(z, y), 0))?] for a particular clgssf(. In the nex.t sectign, how these speeds
control mathematical functions will be discussed and how they
are used to compute the field flow (level set functighijn the

] “narrow band” using the “fast marching method,” also called
whereu(z, y) took a value between zero and one. This coulge “optimization technique.”

be coming from, say, a fuzzy membership function or any other

clustering techniquei;,.; was the region indicator function that V1. OPTIMIZATION AND QUANTIFICATION TECHNIQUESUSED
was in the range betweenl to+1. 2) The gradient speed term, IN CONJUNCTIONWITH LEVEL SETS FAST MARCHING

so-called the edge strength of the object boundaries, was SX[ARROW-BAND. ADAPTIVE ALGORITHMS. AND GEOMETRIC
pressed in terms of the level set functigh) &s ther andy com- ' SHAPE QUANTIFICATION,

ponents of the gradient speed Bs:.a(z, ¥) = Varada (2, ¥) +

y _(d)(x’y""l)_d)(x’y_l))
D%(x, y) = A NEY)

(27)

Varaay(, y), Where The level set method could be computatively very expensive
as the dimensionality of the surface increaseg.isfthe dimen-
( Vrade(z, y) = max(p"(z, y), 0)D*(z, y) sion of the surface, and = 1/6 whereé is the length scale

. i of the computational resolution, then the cost of tracking the
+min(g"(z, y), 0)D(z, ) surface can be reasonably expected to be of the apdef)
Verady(2, y) = max(q"(z, y), 0)D™¥(x, y) ,g) Pertime step. There are two ways by which the speed can be
+min(q"(z, y), 0)DT¥(z, y) (28) improved. One way is by running the level set implementation
n in the narrow band (see Mallaét al. [77]) and the second is
P, y) = Valw.V(Go + 1)) and by using the adaptive mesh technique (see Méhal. [116]).
( ¢"(%, y) = Vy(wV(Go + 1)) These will be discussed in this section. The algorithms in 2-D

will be discussed, but it is straightforward to convert it into 3-D.
wherew, was the weight of the edge and was also a fixed con-

stant.p™(z, y) andq”(z, y) were defined as the andy com- A, Fast Marching Method
ponents of the gradient strength at a pixel locatieny). Note The fast marching method (FMM) was used to solve the

that the regional and edge speed terms depended upon the for- . . -
ward and backward difference operator which was defined I|£r?(0nal Equation (see Adalsteins |.[110}-[112], [123]),

: . or a level set evolution with speed where the sign did not
terms of the level set functiop defined as ; . X
change. Its main usage was to compute the signed distance

. (B, ) — d(z — 1,9)) transform from a given curve (say, one with speed). This
D"z, y) = Y A 9 and signed distance function was the level set function that was
. used in the narrow band algorithm. The FMM can also be
Dte(z, y) = (9= + 172) — ¢(z,y)) used for a simple active contour model if the contour only
x

(29) moved either inward (pressure force in terms of parametric
shakes) or outward (balloon force in terms of parametric

D_y(a:, y) _ (d)(xvy) — d)(xvy - 1))

Ay and shakes). The FMM algorithm consisted of three major stages:
Dz, ) = (P(x,y+1) — pla,y)) i‘)(;nitializqtion stage; 2) tagging stage; and 3) marching stage.
| Ay iscussion on these follows next.

1) Initialization Stage If the curve cuts the grid points ex-
where ¢(z, y), ¢z — 1,9), ¢l + 1, y), ¢z, y — 1), actly, this means that the curve passed through the in-
¢(x, y + 1) were the level set functions at pixel locations tersection of the horizontal and vertical grid lines. If the
(z,y), (x = 1,9), (e +1,y), (z,y — 1), (z, vy + 1), being curve did not pass through the grid points, then it was nec-
the four neighbors ofz, y). 3) The curvature speed term essary to find where the curve intersected the grid lines
expressed in terms of the level set functigf) (vas given as: using the simple method recently developed by Adal-

Veur(@, y) = ex™(@, y)[(D* (2, v))* + (D% (=, ))*]/?, steinssoret al.[111]. The method consisted of checking
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the neighbors (E, W, N, S) of a given central pixel an@riefly, a heap can be viewed as a tree or a corresponding or-
finding 16 different combinations where the given condered array. A binary heap had the property that the value at a
tour could intersect the grid. Since the central pixel coulgiven “child” positionint(:) was always larger than or equal to
be inside or outside, there were 16 positive combinatiotise value at its “parent” positiafint(/2)). The minimum travel
and 16 negative combinations. At the end of this procegane in the heap was stored at the top of the heap. Arranging
the distances of all the grid points were noted which wethe tentative travel time array onto a heap effectively identified
closest to the given curve. and selected the minimum travel time in the array. The min-
2) Tagging StageHere, three sets of grid points were creimum travel time on the heap identified a corresponding min-
ated:accepted setrial setandfar set Theaccepted set imum travel time grid point. Values could be added or removed
were those points which fell on the given curve. All thestom the heap. Adding or removing a value to/from the heap in-
points obviously had a distance of zero. Those points weckided rearranging the array so that it satisfied the heap condi-
tagged as ACCEPTED. If the curve did not pass throudlon (“heapifying the array”). Heapifying an array was achieved
the grid points, then those points were points of the initiaby recursively exchanging the positions of any parent—child pair
ization stage and were tagged as ACCEPTED. ffia¢  violating the heap property until the heap property was satisfied
setincluded all points that were nearest neighbors to tleeross the heap. Adding or removing a value from a heap gener-
point in theaccepted sefThose were tagged as TRIAL.ally has a computational cost of ord®@(log N), whereN was
Then their distance values were computed by solving thige number of heap elements.
Eikonal equation (5). Those points and their distances
were put on the heap. THar setwere grid points which
were neither tagged as ACCEPTED nor TRIAL. ThosE- Narrow-Band Method

were tagged as FAR. They did not affect the distance com- ) ) ] )
putation of trial grid points. These grid points were not put Malladi et al.[77] was one of the beginners who first applied
onto the heap. the narrow banding scheme for medical image segmentation.

3) Marching Stage: Almost all th_e recent _applications u_sing level sets have used
. . narrow banding in their implementations. Below are the steps

a) Here, the grid point (say, P) was popped from thg ¢ were followed for optimization of the level set functién
top of the heap. It should have the smallest distan¢ging narrow banding. The level set function computation was

value among all grid points in the heap. This pointysjemented in the narrow band, given the speed functions.
was tagged as ACCEPTED so that its value would

not change anymore. Heap sort methodology was 1) Narrow-Band and Land Mine Construction

used for bubbling the least distance value on the Here, a narrow band was constructed around the given
heap. curve where the absolute distance value was less than half
b) Four nearest neighbors of the popped point P were  the width of the narrow band. These grid points were put
found. If its tag was ACCEPTED, nothing was onto the list. Now some points in the narrow band were
done; otherwise, the distance was recomputed by ~ tagged as land mines. They were the grid points whose
solving the Eikonal equation (5). If it was FAR, it absolute distance value was less th&i2 and greater
was relabled as TRIAL and was put on the heap.  than((W/2) — A;), whereW was the band-width and
If it is already labeled as TRIAL, its value was up- A; was the width of the land mine points. Note that the
dated in the heap. This prevented the same point formation of the narrow band was equivalent to saying
from appearing twice in the heap. that the first external iteration or a new tube had been

¢) Go back to step 3a) until there were no more points  formed.

in the heap, i.e., all points had been tagged as AC- 2) Internal Iteration for Computing the Field Flo)
CEPTED. This step evolved the active contour inside the narrow

band until the land mine sign changed. For all the itera-
tions, the level set function was updated by solving the
level set equation (26). Now the land mine sign ofdits
was checked. If the sign was changed, the system was
reinitialized, otherwise the loop was continued.
Re-Initialization [Zero Level Curve (ZLC) and Signed
Distance Transform Computation]

This step consisted of two parts: 1) Determination of
the zero level curvegiven the field flow¢. 2) Given the
B. A Note on the Heap Sorting Algorithm zero level curveestimation was done of the signed dis-

tance transform (SDT). Part 1) is also called isocontour

Heap sorting based on the back pointer method was first ap-  extraction since the front in the field flow is estimated
plied by Sethian/Malladi in their work (see Mallaeti al. [49]). which had a value of zero. The modified version of the
Since then, almost all researchers have used this technique in Adalsteinssoret al. [111] algorithm was used for esti-
their implementations. The heap sorting algorithm was basi-  mating the ZLC, however the signs of the field flow were
cally used to select the smallest value (see Sedetiek [115]). needed. In part 2), the fast marching method was run

Note that the above method was an exhaustive search like the
greedy algorithm discussed by Setial.[92]. The superiority

of this method was evidenced by the fact that every visited grid
point was visited no more than four times. The crux of the speed
was due to the sorting algorithm. Satial.used the back pointer 3)
method at the grid or pixel locatiofx, y), similar to the ap-
proach taken by Sethiaet al.[113], [114].
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Fig. 5. (a) Ripples formed during the growth evolutiorzefo level curvesAlso seen is the large capture range of the segmentation scheme along with the shape
change as per the topology. This figure shows superimpositiorzefdlevel seturves (MR Data Set: Courtesy of Marconi Medical Systems, Inc.). (b) Adaptive
mesh refinement. Reprinted with permission of R.B. Milne, Lawrence Berkeley National Laboratory, Berkeley, CA, LBNL-39216, p. 33, 1995.

to estimate the signed distance transform. The signedtie initial contour placement. Bffect of Local NoiseWhen
distance-function was computed for all the points in thilne regional information is integrated into the system, then
computational domain. At the end of step 3), the algdhe local noise or edge will not distract the growth process.
rithm moved to step 1) and the next external iteration washis technique is nonlocal and thus the local noise cannot
started. distract the final placement of the contour or the diffusion
At the end of the process, a ne@ro level curvavas estimated growth process. 3No Need of Elasticity Coefficientdhe
which represented the final object boundary. Note, this tectechnique is not controlled by elasticity coefficients, unlike
nigque was used for all the global information integrated into tHgarametric contour methods. There is no need to fit tangents
system. to the curves and compute normals at each vertex. In this
system, the normals are embedded in the system using the
D. A Note on Adaptive Level Sets Versus Narrow Banding divergence of the field flow. This technique has an ability to

Adaptive level sets were attempted by Milne [116] whilénodel incremental deformations in shape. Sbitability for
working toward the Ph.D. degree. In this method, the resolutidfedical Image Segmentatipiiihis technique is very suitable
of the grid was changed during the marching stage. Fig.fgr medical organ segmentation since it can handle any of the
shows an example where the mesh resolution changed for $¥ities, concavities, convolutedness, splitting or merging. 5)
high curvature zones. This scheme had three major benefft#iding the Global MinimaThere is no problem finding the
1) The algorithm does not need to be re-initializ&l. The local minima or global minima, unlike optimization techniques
computational domain was extended beyond the surface @fParametric snakes. @lormal ComputationThis technique
interest without the incurrence of a performance penalty. Thigs less prone to the normal computational error which is
the boundary conditions were not a serious threat to the stabfsy easily incorporated in classical balloon force snakes for
solution. 3) Adaptive level sets allowed for a nonuniformS€gmentation. 7Automaticity It is very easy to extend this
resolution of the surface itself. This meant one can selectivélyedel from semi-automatic to completely automatic because
redistribute the density of information across the surface. AlRe region is determined on the basis of prior information. 8)
a result, one could match itself to the small scale features |pfegration of Regional StatisticShis technique is based on
the surface. Thus adaptive level sets are more powerful tH&§ Propagation of curves (just like the propagation of ripples in
plain narrow band level set methods. Even though adaptif€ tank or propagation of the fire flames) utilizing the region
level sets had done well compared to narrow band methods, gi@tistics. 9)Flexible Topology This method adjusts to the
application of adaptive level sets in high curvature areas is #§Pological changes of the given shape. Diffusion propagation
very stable. If the interface changed from coarse to fine, thE#thods handle a very natural framework for handling the

stability issues of the propagating fronts are in question (s&¥ological changes (joining and breaking of the curves). 10)
Bergeret al. [94], [95]). Wide ApplicationsThis technigue can be applied to unimodal,

bimodal, and multimodal imagery, which means it can have

2-D AND 3-D LEVEL SETS IN MEDICAL IMAGERY range of applications in 3-D surface modeling. 13peed
of the SystemThis technique implements the fast marching
A. Advantages of Level Sets method in the narrow band for solving the Eikonal Equation

Level set formulation offers a large number of advantagésr computing signed distances. 12xtension The technique
that are as follows: 1Lapture RangeThe greatest advantageis an easy extension from 2-D to 3-D. 1Bjcorporation of
of this technique is that this algorithm increases the captuRegularizing TermsThis can easily incorporate other features
range of the field flow and thereby increases the robustnessfarf controlling the speed of the curve. This is done by adding
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an extra term to the region, gradient and curvature speai asymmetrically situated. Under such conditions, one needs
terms. 14)Handling Corners The system takes care of themultiple initializations of active contours. This means only one
corners easily unlike parametric curves, where it needs spedative contour can be used per objectG3ps in Boundaries
handling at corners of the boundary. I®@solution Changes This is one of the serious drawbacks of the level set method
The technique is extendable to multi-scale resolutions, whiaind has been pointed out by Sidiqqui and Kimia. Due to gaps
means that at lower resolutions, one can compute regioirathe object, the evolving contour simply leaks through gaps.
segmentations. These segmented results can then be used$oa result, objects represented by incomplete contours are
higher resolutions. 1@)lulti-Phase Processing his technique not captured correctly and fully. This is especially prominent
is extendable to multiphase, which means that if there arerealistic images, such as in ultrasound and multi-class MR
multiple level set functions, then they automatically mergand CT images. 4Problems Due to Shock§Shocks are the
and split during the course of the segmentation process. h79pst common problem in level sets. Kimia and co-workers
Surface Tracking Tracking surfaces are implemented usin{B4]-[86] developed such a framework by representing shape
level sets very smoothly. 1&)uantification of 3-D Structures as the set of singularities (so-called shocks) that arise in a
Computation of geometrical computations is done in a naturidh space of shape deformations as classified into four types:
way, for example, one can compute the curvature of 3-D first-order shocks are orientation discontinuities (corners)
surfaces directly while performing normal computations. 1@nd arise from protrusions and indentations; 2) second-order
Integration of Regularization Term#\llows easy integration shocks are formed when a shape breaks into two parts during
of vision models for shape recovery such as in fuzzy clus-deformation; 3) third-order shocks represent bends; and 4)
tering, Gibbs model, Markov Random Fields and Bayesidaurth-order shocks are seeds for each component of a shape.
models (see Paragi@ al.[29]). This makes the system veryThese shocks arise in level sets and can cause sometimes
powerful, robust and accurate for medical shape recovery. 2@yious problems.

Concise DescriptionsOne can give concise descriptions of

differential structures using level set methods. This is because Conclusions and the Future on Level Sets

of background mesh resolution controls. 2)erarchical ~ The class of differential geometry, also called level sets,
RepresentationsLevel set offers a natural scale space fdias been shown to dominate medical imaging in a major
hierarchical representations. 2Rgparameterizatianthere is way. There is still a need to understand how regularization
no need for reparameterization for curve/surface estimatig;}ms can be integrated into level sets to impro\/e medical
during the propagation, unlike in the classical snakes model.segmentation schemes. Even though the application of level
sets has gone well in fields of medical imaging, biomedicine,
fluid mechanics, combustion, solidification, CAD/CAM, object
Even though level sets have dominated several fields wécking/image sequence analysis, and device fabrication,
imaging science, these front propagation algorithms hathas is still far away from achieving stable 3-D and a stan-
certain drawbacks. They are as follows: Ih)tial Placement dard segmentation technique in real-time. By standard, this
of the Contour One of the major drawbacks of parametrieneans that which can segment the 3-D volume with a wide
active contours was its initial placement. It does not have eithariation of pulse sequence parameters. In the near future
enough capture range or enough power to grab the topologiyl be seen the modeling of front propagation that takes into
of shapes. Both of these drawbacks were removed by leaglcount physical constraints of the problem, for example,
sets provided the initial contour was placgdnmetricallywith  minimization of variation geodesic distances, rather than
respect to the boundaries of interest. This ensures that lesihple distance transforms. Also will be seen more incorpo-
sets reached object boundaries almost at the same time.r@ion of likelihood functions and adaptive fuzzy models to
the contrary, if the initial contour is much closer to the firsprevent leaking of curves/surfaces. A good example of the
portion of the object boundary compared to the second portiontegration of low level processes into the evolution process
then the evolving contour crosses over the first portion of thveould be given asd¢/dt = L(x, y)(8o — f15)|V|, where
object boundary. This is because the stop does not turn outlt@:, ) = 1 — max(S1, Sz, Ss, ..., S,), wheres; is the low
be zero. One of the controlling factors for the stop function isvel process from edge detection, optical flow, stereo disparity,
the gradient of the image. The relationship of the stop functidexture, etc. The better th&(z, v), the more robust would be
to the gradient is its inverse, and also depends upon the indle& level set segmentation process. It is also hoped that more
powerm in the ratiol /(1 + |VG, % I(z, y)|™). For stopping papers in level sets will be seen where the segmentation step
the propagation, the denominator should be large, which meaites require a reinitialization stage (see Zkaal. [121] and
image forces due to the gradient should be high. This mediganset al.[122]). It would also, however, be helpful if a faster
index m should be high. In other words, i is high, then triangulation algorithm can be incorporated for isosurface
the gradient is high, which means weak boundaries are mtraction in 3-D segmentation methods.
detected well and will be easily crossed over by the evolving A massive effort has been seen by the computer vision com-
curve. If m is low (low threshold), then the level set will stopmunity to integrate regularization terms to improve robustness
at noisy or at isolated edges. Embedding of the Objectf and accuracy of 3-D segmentation techniques. How curve/sur-
some objects (say, inner objects) are embedded in anotfeare propagation hypersurfaces based on differential geometry
object (the outer object), then the level set will not capture ale used was shown for the segmentation of medical objects
objects of interest. This is especially true if embedded objedts2-D and 3-D. Also shown in this paper is the relationship

B. Disadvantages of Level Sets
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between parametric deformable models and curve evolutiofz1]
framework; incorporation of clamping/stopping forces to
improve the robustness of these topologically independe b2]
curves/surfaces; and finally, state-of-the-art 2-D and 3-D leve
set segmentation systems was presented for medical imagel§?]
With time, more adaptive schemes will be seen buffered with,,,
knowledge-based methods to yield more efficient techniques

for 2-D and 3-D segmentation. (25)
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