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Abstract. We present a machine learning approach called shape regres-

sion machine (SRM) to segmenting in real time an anatomic structure
that manifests a deformable shape in a medical image. Traditional shape
segmentation methods rely on various assumptions. For instance, the de-
formable model assumes that edge defines the shape; the Mumford-Shah
variational method assumes that the regions inside/outside the (closed)
contour are homogenous in intensity; and the active appearance model
assumes that shape/appearance variations are linear. In addition, they
all need a good initialization. In contrast, SRM poses no such restrictions.
It is a two-stage approach that leverages (a) the underlying medical con-
text that defines the anatomic structure and (b) an annotated database
that exemplifies the shape and appearance variations of the anatomy. In
the first stage, it solves the initialization problem as object detection and
derives a regression solution that needs just one scan in principle. In the
second stage, it learns a nonlinear regressor that predicts the nonrigid
shape from image appearance. We also propose a boosting regression
approach that supports real time segmentation. We demonstrate the ef-
fectiveness of SRM using experiments on segmenting the left ventricle
endocardium from an echocardiogram of an apical four chamber view.

1 Introduction

Deformable shape segmentation is a long-standing challenge in medical imaging.
Numerous algorithms have been proposed in the literature to tackle the problem,
among which there are three important approaches: the deformable model or
snake [1], the Mumford-Shah variational method [2], and the active appearance
model (AAM) [3].

The deformable model or snake [1] seeks a parameterized curve C(s) that
minimizes the cost function Esnake(C):

Esnake(C) =

∫ 1

0

{−µ|∇I(C(s))|2 + w1(s)|C
′(s)|2 + w2(s)|C

′′(s)|2}ds, (1)

where µ controls the magnitude of the potential, ∇ is the gradient operator,
I is the image, w1(s) controls the tension of the curve, and w2(s) controls the
rigidity of the curve. The implicit assumption of the snake model is that edge
defines the curve due to the use of the gradient operator.
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Fig. 1. Examples of A4C echocardiogram. The expert annotation of the LV endo-
cardium is marked by the green line. The shape is represented by 17 landmarks and
the cubic spline is used for intepolation.

In the Mumford-Shah variational method [2], the minimal partition problem
is mostly studied, where a curve C is sought to minimize the cost function Ems(C):

Ems(C) =

∫

Ωi

|I(x, y) − ui|
2dxdy +

∫

Ωo

|I(x, y) − uo|
2dxdy + µL(C), (2)

where Ωi and Ωo denote the inside and outside regions, respectively, with respect
to the curve C, ui and uo are piecewise constants for the two regions, and L(C)
is the length of the curve. The region homogeneity is assumed here.

The AAM [3] jointly characterizes the appearance I and shape C using a linear
generative model:

C = C̄ + Qca; I = Ī + Qia, (3)

where C̄ is the mean shape, Ī the mean appearance in a normalized patch, and a

is the blending coefficient vector shared by both the shape and appearance. The
model parameter a, along with a similarity transformation parameter, is found
by fitting the AAM to the observed image using the mean square error criterion.

However, the above assumptions are easily violated in practice. Consider the
problem of segmenting the left ventricle (LV) endocardium from an echocardio-
gram of an apical four chamber (A4C) view. The echocardiogram is an ultra-
sound image of human heart and the A4C view is a canonical view in which
all four heart chambers are visible. Fig. 1 presents several A4C examples that
manifest the following facts: (i) The LV endocardium is not defined by the edge.
For example, it cuts the papillary muscle attached to the LV; (ii) The region
homogeneity is severely violated due to ultrasound imaging artifacts and signal
dropouts; and (iii) The shape and appearance variations are hardly linear due
to differences in instrument, patient, and sonograher, respiratory interferences,
unnecessary probe movements, etc. Furthermore, the above three methods need
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a good initialization and different initializations might yield very different results
due to the attraction of local minima.

In this paper, we present a machine learning approach called shape regres-
sion machine (SRM), which poses none of the above restrictions. It deals with
deformable contour not necessarily supported by the edge, allows region inho-
mogeneity, and utilizes nonlinear models to characterize shape and appearance
in a discriminative manner. In addition, it is fully automatic with no manual
initialization and runs in real time. SRM is mostly appropriate for segmenting
an anatomical structure. The core of SRM is to effectively leverage the underly-
ing structural context present in medical images and, using regression, to extract
knowledge from an annotated database that exemplifies the shape and appear-
ance variations. Section 2 depicts the principle of the SRM approach and section
3 elaborates an image-based boosting regression method that underpins SRM.
Section 4 presents the experimental results of segmenting the LV endocardium
from the A4C echocardiogram.

2 Shape Regression Machine

The shape C is represented by two parts: rigid and nonrigid. The rigid transfor-
mation is parameterized by θ and the nonrigid part by S. If the rigid similarity
transformation is used, then the above shape representation reduces to Kendall’s
interpretation. To rigidly align the LV shape in the A4C echocardiogram more
accurately, we use a 5D-parameterization θ = (tx, ty, log(sx), log(sy), α), with
(tx, ty) for translation, α for orientation, and (sx, sy) for scale (or size) in both
x- and y-directions. Due to the multiplicative nature of the scale parameter, we
take the logarithm operator to convert it to additive. Fig. 2(a) illustrates the
meaning of the five parameters.

SRM is a two-stage approach. It first solves the rigid transformation θ as
object detection and then infers the nonrigid part S, both using the machine
learning technique of regression.

2.1 Regression-Based Object Detection

A promising approach to medical anatomy detection is to use the classifier-based
object detection approach like [4]: It first trains a binary classifier, discriminating
the anatomic structure of interest from the background, and then exhaustively
scans the query image for anatomy targets. In [4], the so-called integral image is
proposed to enable real time evaluation of the classifier when applied for search-
ing the translation parameter exhaustively and the scale parameter sparsely. No
orientation is scanned. However, the medical anatomy such as LV often mani-
fests arbitrary orientation and scale. To give an accurate account of orientation
and scale, which is required for subsequent tasks like LV endocardial wall seg-
mentation, the detection speed is sacrificed if a dense set of orientations and
scales is tested. In general, the computational complexity of the classifier-based
approach linearly depends on the image size (for the translation parameter), and



16 S.K. Zhou and D. Comaniciu

the number of tested orientations and scales. Also, multiple integral images ac-
cording to different rotations need to be computed. Therefore, the bottleneck of
the classifier-based detection approach lies in its exhaustive scanning native. To
avoid exhaustive scanning, we propose a regression-based detection approach.
By leveraging the anatomical structure that manifests regularization and con-
text in geometry and appearance, we formulate a novel regression task that, in
theory, necessitates only one scan. Also, we compute only one integral image.

Basic idea. Fig. 2(b) demonstrates the basic idea of the regression-based med-
ical anatomy detection. For illustrative purpose only, we address only the trans-
lation parameter θ as in Fig. 2(b). In other words, we are only interested in
finding the center position θ0 = (tx,0, ty,0) of the LV in an A4C echocardiogram,
assuming that the orientation of the LV is upright and the scale/size of the LV
is fixed. It is straightforward to extend the 2D case to the 5D-parameterization.

(a) (b)

Fig. 2. (a) The regression setting of a 5D parameter space: (tx, ty) is the LV center,
(sx, sy) the LV size, and α the LV angle. (b) A graphical illustration of regression-based
medical anatomy detection based on a 2D translation parameterization.

Suppose that, during running time, we confront an image patch I(θ) centered
at position θ = (tx, ty). If there exists an oracle F1 that does the following: given
an image patch I(θ), it tells the difference vector dθ between the current position
θ and the target position θ0 = (tx,0, ty,0), i.e., dθ = θ0 − θ, then we achieve the
detection using just one scan. In other words, through the oracle that defines a
mapping F1 : I → dθ, the ground truth position θ̂0 is estimated as follows.

dθ = F1(I(θ)), θ̂0 = θ + dθ = θ + F1(I(θ)). (4)

Learning the function F1(I(θ)) is referred to as regression in machine learning.

Does such an oracle F1 exist? Since the anatomic structure of interest is tied
with human body atlas, there is a known number of objects appearing within
geometric and appearance contexts. Often only one object is available. For ex-
ample, in the A4C echocardiogram, there is only one target LV available and its
relation with respect to other structures such as left atrium, right ventricle and
right atrium is geometrically fixed (that is why they are called left/right ven-
tricle/atrium). Also there exists a strong correlation among their appearances.
By knowing where the LA, RV, or RA is, we can predict the LV position quite
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accurately. In principle, by knowing where we are (i.e., knowing θ) and then
looking up the map/atlas that tells the difference to the target (i.e., telling dθ
through the oracle), we can reach the target instantaneously in a virtual world.

Medical atlas is widely used in the literature [5,6]. However, the methods in
[5,6] use the atlas as an explicit source of prior knowledge about the location,
size, and shape of the anatomic structures and deform it to match the image
content for registration, segmentation, tracking, etc. In this paper, we take an
implicit approach, that is, embedding the atlas in a learning framework. After
learning, the atlas knowledge is fully absorbed and the atlas is no longed kept.

How to learn the oracle F1? We leverage machine learning techniques, based
on an annotated database. As in Fig. 3, we first collect from the database input-
output pairs (as many as possible) as training data. By varying the location, we
crop out different local image patches while recording their corresponding differ-
ence vectors. Similarly, for the 5D parameterization, we can extract the training
data. We now confront a multiple regression setting with a multidimensional
output, which is not well addressed in the machine learning literature. In this
paper, we propose the image-based boosting regression (IBR) algorithm to fulfill
the learning task.

(-15,-12) (-3,-8) (-4,-6) (-5,-17)

(-7,-21) (15,16) (15,-6) (17,6)

Fig. 3. Training image examples (generated based on the image in Fig. 2(b)): image I

and its associated rigid transformation parameter dθ = (dx, dy)

Detection algorithm. In theory, only one scan is needed to find the target;
in practice, we conduct a sparse set of random scans and then estimate the
parameter using fusion. Suppose that in total M random samples are scanned
at positions {θ<1>, θ<2>, . . . , θ<M>}. For each θ<m>, we invoke the regressor to
predict the difference parameter dθ<m> and, subsequently, the target parameter
θ<m>
0 as follows:

dθ<m> = F1(I(θ
<m>)), θ<m>

0 = θ<m> + dθ<m>, m = 1, 2, . . . , M. (5)

We also learn a binary classifier (or detector) D that separates the object from
the background and use its posterior probability pd(I) of being positive as a
confidence scorer. After finding the mth prediction θ<m>

0 , we apply the detector
D to the image patch I(θ<m>

0 ). If the detector D fails, we discard the mth sample;
otherwise, we keep the confidence score p<m>

d . This way, we have a weighted set
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Fig. 4. The odd-indexed images show the 100 predicted target outputs (red) and the
even-indexed images show only the predicted target outputs (red) passing the detector.
The green point is the final estimate of the target position, the green curve is the 95%
confidence curve, and the yellow point indicates the ground truth position. Note that
the region bounded the 95% confidence curve on the even-indexed images is significantly
smaller than that on the odd-indexed images.

{(θ<j>
0 , p<j>

d ); j = 1, 2, . . . , J} (note that J ≤ M as samples might be dropped),

based on which we calculate the weighted mean as the final estimate θ̂0

θ̂0 = {
∑

j=1:J

p<j>
d θ<j>

0 }/{
∑

j=1:J

p<j>
d }. (6)

In practice, we stop scanning when J ≥ Jvalid in order to further save compu-
tation. If there is no sample θ<m>

0 passing D, then we use the unweighted mean
of θ<m>

0 as the final estimate.
Combining the regressor and binary detector yields an effective tool for med-

ical anatomy detection; empirical evidence tells that, when compared with the
method using only the regressor, it needs only a smaller number of scans to reach
a better performance. Fig. 4 demonstrates the intuition behind this improvement
using the 2-D translational case. Two example images are shown along with their
M = 100 predicted target positions (the red points). The majority of the predic-
tion is close to the ground truth position (the yellow point) although there are
outliers. Fig. 4 also shows the predicted points passing the detector: All the out-
liers are eliminated, thereby significantly improving the precision of the estimate
as evidenced by the smaller region bounded by the 95% confidence curve.

2.2 Regression-Based Nonrigid Shape Inference

After the first stage that finds the bounding box (parameterized by θ) to contain
the object, we have the object rigidly aligned. In the second stage, we are inter-
ested in inferring the nonrigid part S. In this paper, we assume that S consists of

N landmark points, i.e., S = [x1, y1, . . . , xN , yN ]T. Other shape representations
can be used with no difficulty.

Basic idea. We formulate the nonrigid shape inference again as a regression
problem. In other words, we seek an oracle F2 that tells the shape S based on
the image patch I that is known to contain the object.

S = F2(I). (7)

Does such an oracle F2 exist? Because we deal with one particular anatomic
structure (say LV), it is obvious that a regularity exists in terms of its appearance
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Fig. 5. Training image examples: image I and its associated nonrigid shape S. The first
six images correspond to those in Fig. 1. The image size is 104 by 80.

and shape although the variations in them can be quite significant. Fig. 5 displays
several images with corresponding shapes that are rigidly aligned to the mean
shape. As mentioned earlier, a linear modeling of the appearance and shape is
insufficient. One goal of the paper is to provide a nonlinear modeling of the shape
and appearance.

How to learn the oracle F2? Given an annotated database, we extract corre-
sponding pairs of (already rigidly aligned) shape and appearance as in Fig. 5. We
also slightly perturb the rigid parameter to accommodate imperfect localization
derived from the first stage. We now again confront a multiple regression setting
with a multidimensional output, except that this time the output cardinality is
even higher.

Inference algorithm. To improve robustness, we slightly perturb the bound-
ing box1 to generate K random samples {I<1>, I<2>, . . . , I<K>} and apply
the regressor to obtain shape estimates {S<1>, S<2>, . . . , S<K>}, where S<k> =
F2(I

<k>). We also build a nonparametric density ps(S) based on the prior shape
examples and use it as a confidence scorer. Finally, we output the weighted mean
as the final estimate Ŝ for the shape parameter (we empirically choose K = 10):

Ŝ = {
∑

k=1:K

p<k>
s S<k>}/{

∑

k=1:K

p<k>
s }. (8)

3 Image-Based Boosting Regression

The underpinning of the above two stages of SRM is a regression procedure that
takes an image as input and outputs a multidimensional variable. In this section,
we invoke the influential boosting framework [7,8] to derive a novel regression
algorithm called image-based boosting regression (IBR).

We denote a scalar by a, a column vector by a, and a matrix by A. We also
denote the input by x ∈ Rd, the output by y(x) ∈ Rq , the regression function
by g(x) : Rd → Rq and the training data points by {(xn, yn); n = 1, 2, ..., N}.

1 The perturbation is limited to translation and scaling as they share one integral
image. There is no perturbation in rotation.
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Further, we denote xTx = ‖x‖2 and tr(XTX) = ‖X‖2. In SRM, x is the image I,
y is the difference vector dθ in the first stage and the nonrigid shape parameter
S in the second stage, and the regression function g(x) = F(I) is the oracle.

IBR minimizes the following cost function, which combines a regression output
fidelity term and a regularization term:

J(g) =
∑

n=1:N

{‖y(xn) − g(xn)‖2} + λR(g), (9)

where λ is a regularization coefficient and R(g) is the regularization term that
will be subsequently defined. As in any boosting procedure [7,8], IBR assumes
that the regression output function g(x) takes an additive form:

gt(x) = gt−1(x) + ht(x) =
∑

i=1:t

hi(x), (10)

where each hi(x) : Rd → Rq is a weak learner (or weak function) residing in a
dictionary set H, and g(x) is a strong learner (or strong function).

Boosting [7,8] is an iterative algorithm that leverages the additive nature of
g(x): At iteration t, one more weak function ht(x) is added to the target function
g(x) to maximally reduce the cost function. Because we associate each weak
function with visual features (as shown next), boosting operates as a feature

selector that singles out relevant features to the regression task.

Weak function. We use a bank of over-complete features to represent the image
x. In particular, we use the Haar-like local rectangle features [4], whose rapid
evaluation is enabled by the use of integral image. As shown in [4], (i) it is easy to
construct numerous local rectangle features and (ii) the local rectangle feature,
whose response is normalized by the standard deviation of the image patch, is
relatively robust to appearance variation. Each local rectangle feature f(x; µ)
has its own attribute µ, namely feature type and window position/size.

Based on the local rectangle features, we construct one-dimensional (1D) re-
gression stumps as primitives of the dictionary set H. A regression stump h(x; µ),
illustrated in Fig. 6(a), is defined as

h(x; µ) =
∑

k=1:K

wk [f(x; µ) ∈ Rk] = e(x; µ)Tw, (11)

where [.] is an indicator function and {Rk; k = 1, 2 . . . , K} are K evenly spaced
intervals (except that R1 and RK go to ∞). The interval boundary points are
empirically determined. We first find the minimum and maximum responses for
the feature and then uniformly divide them. In (11), all the weights wk are

compactly encoded by a vector wK×1 = [w1, w2, . . . , wK ]T and the vector e(x; µ)
is some column of the identity matrix: only one element is 1 and others are 0.

A weak function is constructed as a q-dimensional (q-D) regression stump
h(x)q×1 that stacks q different 1D regression stumps, i.e.,

h(x; µ1, . . . , µq) = [h1(x; µ1), ..., hq(x; µq)]
T = [e1(x; µ1)

Tw1, ..., eq(x; µq)
Twq]

T,
(12)
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(a)

(b)

1. Initialization t = 0.

(a) Set λ (the regularization coefficient) and η (the
shrinkage factor).

(b) Set the values related to the stopping criteria:
Tmax (the maximum number of iterations) and
Jmin (the minimum cost function).

(c) Set initial values for t = 0: g
0
(x) = 0 and r0(x) =

y(x).

2. Iteration t = 1, . . . , Tmax

(a) Find the optimal ĥt that solves (13).
(b) Form the new function gt(x) = gt−1

(x) + ηĥt(x).

(c) Evaluate the approximation error rt(x) = y(x) −
gt(x) and the cost function J(gt).

(d) Check convergence, e.g., see if J(gt) < Jmin.

(c)

Fig. 6. (a) Regression stump. (b) Binary decision stump. The regression stump carries
more representational power than the decision stump. (c) The proposed image-based
boosting regression (IBR) algorithm.

where wj is the weight vector for the jth regression stump hj(x; µj). We fur-
ther encode the weights belonging to all regression stumps into a weight matrix

WK×q = [w1, w2, . . . , wq]. A binary decision stump is used in [4]. Fig. 6(a,b) com-
pares the regression and binary decision stumps.

Boosting ridge regression. The model complexity of the regression out-
put function gt(x)=

∑

i=1:t hi(x) now depends on its weight matrices {Wi, i =
1, . . . , t}. We incorporate the ridge regression principle [9] (also known as
Tikhonov regularization) into a boosting framework to penalize overly complex
models. Because boosting regression proceeds iteratively, at the tth boosting iter-
ation, we set up the following ridge regression task that only involves the weight
matrix Wt:

argmin
Wt

{Jt(g) =
∑

n=1:N

{‖rt(xn) − ht(xn)‖2} + λ‖Wt‖
2}, (13)

where rt(xn) = y(xn) − gt−1(xn) is the residual.
As the weight vectors {w1, w2, . . . , wq} in the matrix Wt are associated with q

different local rectangle features, the optimization in (13) implies two subtasks:

1. Given a set of q features with attributes µ1, . . . , µq, respectively, find the

optimal matrix Ŵt(µ1, . . . , µq) and its minimum cost Ĵt(µ1, . . . , µq);
2. Find the optimal set of q features with respective attributes µ̂1, . . . , µ̂q that

minimizes the cost Ĵt(µ1, . . . , µq). This corresponds to feature selection.

However, to transform the above optimization into an efficient implementa-
tion, there is a computational bottleneck: The second subtask necessitates a
greedy feature selection scheme, which is too expensive to evaluate given a large
local rectangle feature pool. In practice, approximate non-greedy solutions [10]
can be derived to speedup the feature selection process; however, this is beyond
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the scope of the paper. Finally, IBR invokes shrinkage [9] to derive a smooth
output: gt(x) = gt−1(x) + ηht(x). Fig. 6(c) summarizes the IBR algorithm.

4 Experimental Results and Discussions

We applied the SRM approach to segmenting the LV endocardium from 2D
echocardiograms. We had in total 527 A4C sequences. Though we had video
sequences, we focused on detecting the LV at the end of diastole (ED) frame,
when the LV dilates to its maximum. We randomly selected 450 ED frames for
training and used the remaining 77 for testing.

4.1 Rigid Object Detection

In this experiment, we tested the first stage of SRM to detect the LV using
the 5-D parameterization. Figure 1 shows six ED images with the unaligned LV
present. The range of the five parameters is empirically found as: tx ∼ [43, 118],
ty ∼ [24, 70], sx ∼ [26, 86], sy ∼ [37, 92] and α ∼ [−25, 35]. We scanned the
image following the above range. The average image size is 111 × 151.

There are several tuning parameters in the IBR algorithm. For the number
of threshold levels K of a weak function, the regularization coefficient λ and the
shrinkage coefficient η, we empirically tested different combinations and decided
to use the following: K = 64, λ = 0.1/K, and η = 0.1. We trained the regressor
based on 450 randomly selected ED frames, each yielding 30 image patches; in
total we had 13,500 training data. It takes more than two days to train the
regressor (on a high-end workstation with four Xeon 3GHz CPUs and 3GB
RAM), which consists of 10,000 local rectangle features or 200 weak functions.
Training the detector D is not straightforward because here the image rotation
is involved. To avoid computing integral images for all rotations, we followed [11]
to train the detector, which is able to simultaneously classify the object as well
as infer its rotation yet using only one integral image.

We implemented three scanning methods: “IBR”, “IBR+Det”, and “Det”.
The “IBR” means that we randomly scanned the image within the prior range
using the learned IBR function and used the unweighted average as the final
estimate of the target position. The “IBR+Det” means that we further equipped
the “IBR” method with the trained detector and used (6) as the final estimate.
We also set Jvalid = 10 to enable early exit when scanning. The “Det” means that
we exhaustively scanned the image within the same range using the detector and
used the parameter that maximizes the detector response as the final estimate.
For the “Det” method, we exhaustively scanned the image every 4 pixels in both
translations and every 4 pixels in both scales.

Table 1(a) compares the three scanning methods2. The error in scale is mea-
sured as sdetected/sgroundtruth − 1. Because we did not observe significant per-
formance difference between training and testing, we pooled them together and

2 To count the number of effective scans in Table 1, we excluded those scans if their
associated image patches have less than 40% of their pixels inside the known fan.
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Table 1. (a) Detection performance comparison of the three methods for the 5-
parameter case. (b) Segmentation performance comparison of four regression methods.

Method IBR IBR+Det Det
# of features 10000 10000+1201 1201
median err. in tx (pixels) 0.32 ± 3.13 0.65 ± 2.07 1.69 ± 3.40
median err. in ty (pixels) 0.67 ± 2.40 1.25 ± 1.95 0.84 ± 3.73
median err. in sx 0.02 ± 0.12 0.04 ± 0.12 0.05 ± 0.17
median err. in sy 0.01 ± 0.08 0.02 ± 0.08 0.04 ± 0.15
median err. in α (degree) −1.76 ± 7.17 −0.98 ± 6.39 0.22 ± 6.74
# of eff. scans 200 38 29383
avg. speed (ms) 704 118 6300

(a)

Method SRM KRR NPR AAM
25% seg. err. (pixels) 1.778 1.695 2.013 2.323
median seg. err. (pixels) 2.207 2.372 2.482 2.734
75% seg. err. (pixels) 2.753 3.347 3.101 4.002
avg. speed (ms) ≤ 1 692 865 30

(b)

jointly reported the results. The speed was recorded on a laptop with a Pentium
2.1GHz CPU and 2GB RAM. The “IBR+Det” achieves appealing detection
performance while running the fastest. It runs about 7 times faster than the
“IBR” method and more than 50 times faster than the “Det” method, while
yielding comparable performance to the “IBR” in terms of bias and improving
the localization precision. The slowest “Det” method does not always yield the
best performance in terms of either bias or variance because it does not exhaust
all possible configurations. Fig. 7(a) shows example images with estimated and
ground truth boxes overlaid.

4.2 Nonrigid Shape Inference

In this experiment, we invoked the complete SRM approach to automatically
delineate the LV endocardium. The above “IBR+Det” algorithm was first used
to locate the LV and then the second stage of SRM was applied. The shape S is
parameterized by 17 landmark points and PCA was used to reduced the shape
dimensionality from 34 to 20. Through random perturbations, we generated
6,750 training data points (one data point is a pair of image and shape) based
on 450 ED frames and trained an IBR model consisting of 20,000 local rectangle
features or 1,000 weak functions.

For comparison, we implemented three other regression methods: “KRR”,
“NPR”, and “AAM” where kernel rigid regression (KRR) and nonparametric
kernel regression (NPR) are two off-the-shelf nonlinear regression methods [9],
and AAM is from [3]. In AAM, the appearance and shape are assumed to be
jointly Gaussian, which amounts to multiple linear regression [9]. The num-
ber of principal components was chosen to keep 95% of the energy in AAM.
When comparing different nonrigid shape regressors, we fixed the detection
part.

To quantify the shape segmentation performance, we measured the average
pixel error for the landmark points:

√

||C1 − C2||2/34. We did this measurement
on the aligned domain of size 104 by 80 to overcome the difference in physical
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(a)

(b)

Fig. 7. (a) The estimated LV box versus the ground truth. The red box is from the
“IBR” method, the green is from the “IBR+Det” method, and the blue is the ground
truth. (b) The inferred LV endocardium versus the ground truth. The red contour is
from the SRM approach and the green is the ground truth.

units of difference images. Table 1(b) shows the error statistics and computa-
tional time (only for the regression part though). We collected the error statistics
for all testing images and reported their 25% percentile, median, and 75% per-
centile. From Table 1(b), we observe that the proposed SRM approach achieves
favorable contour localization performance over other methods while running sig-
nificantly faster. The AAM method that uses linear models performs the worst,
implying the need for nonlinear modeling of the appearance and shape. The
KRR and NPR methods are slow because they require comparing the query im-
age with the whole database, while the IBR absorbs the database knowledge into
the weak functions whose rapid evaluation is guaranteed by using the integral
image. In sum, it takes less than 120ms on the average to automatically localize

the LV endocardium in an A4C echocardiogram with a better accuracy. Fig. 7(b)
visualizes the ground truth and predicted contours.
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5 Conclusion

We have presented a machine learning approach called shape regression machine
for fast medical anatomy detection and segmentation. SRM effectively utilizes
the structural context in medical images with annotations to eliminate unfavor-
able restrictions posed by conventional deformable shape segmentation methods.
In particular, the detection solution in SRM replaces the exhaustive scanning of
the query image required by the classifier-based detector by a sparse scanning
and reaches improved detection accuracy with significantly less computation and
no need for image rotation. In terms of shape inference, the IBR solution in SRM
outperforms other regression methods such as kernel ridge regression, nonpara-
metric kernel regression, and active appearance model. In the future, we will
apply the SRM approach to other medical applications such as organ segmen-
tation from a full body 3D CT scan. We will also address the scalability and
trainability issues related to learning the regression function.
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