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W e  present a technique for constructing shape represen- 
tation from images using free-form deformable surfaces. 
W e  model an object as a closed surface that is deformed 
subject to attractive fields generated by input data points 
and features. Features affect the global shape of the 
surface or unstructured environments. The algorithm is 
general in that it makes few assumptions on the type of 
features, the nature of the data and the type of objects. 
We present results in a wide range of applications: 
reconstruction of smooth isolated objects such as human 
faces, reconstruction of structured objects such as 
polyhedra, and segmentation of complex scenes with 
mutually occluding objects. We have successfully tested 
the algorithm using data from different sensors including 
grey-coding range finders and video cameras, using one 
or  several images. 
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The recovery of object shape from 3D is one of the key 
issues in computer vision. One could define this task as 
the segmentation of a large set of data points into 
shapes corresponding to objects in the scene. Coupled 
with the extraction of objects from a scene is the issue 
of finding an efficient computational representation of 
object shapes. The shape representation should be 
general enough to handle a wide variety of scenes, yet 
simple enough to be usable for other tasks such as 
recognition and manipulation. In other words, the 
shape representation should have enough parameters 
to describe the specificity of the shape, but must have 
as few parameters as possible to be usable, and to be 
robustly extracted from visual data. This conflict can be 
seen as a scale space problem, where one would like to 
find a description fine enough to capture the key details 
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of the shape, but coarse enough to get rid of spurious 
details. 

In this paper we propose an approach that attempts 
to solve this conflict by using the feature/data duality in 
a way similar to the fine/coarse approach. Several 
psychophysical experiments have proved that the hu- 
man eye is able to capture the main shape of an object 
by seeing only a few characteristic elements or features. 
These features can be either geometric (distance 
discontinuities, surface orientation discontinuities, cor- 
ners, minimum of curvature, etc.), or higher level such 
as reflectance properties. While these features capture 
most of the shape information, it is difficult without 
a priori knowledge to build a full reconstruction of 
the object. 

Several solutions have been proposed. Besl and Jain’ 
built curvature-based object representations by clas- 
sifying surfaces according to the sign of their principal 
curvatures. Pentland and Sclasoff’ presented a 
physically-based algorithm to recover a model in a 
unique manner from a set of features and vibration 
modes. In this approach, the key is to find the correct 
features, thus restraining the algorithm to either 
smooth or structured shapes. Another approach is to 
use both sets, according to geometric properties (sym- 
metry, connexity, etc.), and in a second stage models 
are fit to the segmented parts. This idea of hierarchical 
representation was initiated by Marr and Nishihara3 
and pushed further by the seminal ACRONYM4 vision 
system by using generalized cylinders. Pentland’s 
‘representation by parts’ using deformed 
superquadrics’. ‘, proved to have some successful 
results, but encounters some limitations. While the 
feature grouping requires some accurate feature extrac- 
tion and hi h level reasoning, the fitting of 
superquadricsf7 to the range data has some unstable 
behaviour, due to its non-linear nature, and is suitable 
for only smooth and simple shapes. 

Those techniques attempt to represent all shapes 
with a set of elementary shapes (superquadrics, 
generalized cylinders, parametric patches, etc.) that 
can be described by a few parameters. This is clearly 
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. beneficial from the point of view of object recognition 
which amounts to manipulating analytical equations of 
the elementary shapes. In practice, however, it  restricts 

-considerably the class of objects and scenes to which 
the techniques can be applied. More general represen- 
tations could be obtained by adding degrees of freedom 
to the elementary shapes (e.g. adding tapering and 
bending to superquadrics). However, the non-linear 
fitting algorithms involved in the recovery of such 
shapes become rapidly computationally expensive and 
numerically difficult. Furthermore, most of those 
techniques assume a pre-segmentation of the scene into 
regions corresponding to individual objects in order to 
successfully carry out the surface fitting algorithm. In 
realistic situations, this pre-segmentation is however a 
difficult task due to noise and occlusions. 

To address those problems, Terzopoulos and 
Witkin'.' proposed the concept of deformable contours 
and deformable surfaces that are subject to forces 
generated by image elements. Given a tube initialized 
around the line of symmetry of an object, the surface is 
deformed by a potential field computed from an 
intensity image, until it matches the main shape of the 
object. While this work demonstrates that free-form 
surfaces can be used to efficiently represent a wide 
variety of objects, i t  still constraints the object to be 
both symmetric and smooth, and it does not address the 
local minima problem. Because the deformation of the 
surface occurs only locally, the surface has to be 
initialized close to the final position. Terzopoulos and 
Metaxas" combined the elementary shape and the 
deformable surface approaches to gain a local/global 
representation. 

Our approach is to use a free-form representation in 
order to retain the generality of the shape, and to use a 
local/global deformation scheme in order to get a 
robust shape extraction. Given an observed scene, a 
surface is initialized in the vicinity of detected features, 
The surface is then deformed subject to forces gener- 
ated by features and data points. The forces generated 
by data points control local shape, while forces 
generated by features control global shape. A smooth- 
ness energy is added to the deformation equations to 
take into account the fact that data and features may be 
>parse and noisy. Clearly, such free-form surfaces can 
-epresent a large class of objects since few constraints 
ire put on the resulting shape. Furthermore, the 
ilgorithm must be robust enough so that it  does not 
.equire a precise segmentation of the scene as an 
nput. 

JEFORMABLE SURFACES 
n this section we describe the deformation scheme that 
s used to model different objects in a scene. We use a 
ree-form representation which means that the surface 
,'is defined in terms of parametric equations. Since the 
urface is deformed during the algorithm, the surface is 
larametrized with three parameters ( u ,  v ,  t ) ,  where ( u ,  
) correspond to the spatial parameters, and r corres- 
onds to the time parameter. By using explicit time 
ependance, we can model the surface as a mechani- 
11 system, and therefore use the classical Lagrangian 
quation to formulate the deformation process. Let (0, 
j ,  k) be a frame of 9t3, (I be a connected open set of 

'?A2, then the surface S ( t )  at time t ,  r E [0, To] is defined 
by: 

(P (u ,  v ,  1) E %t))  - 
The use of a parametric form of S(t )  has several 
advantages over an explicit form z = f ( x ,  y): first, it 
allows a viewpoint independent representation of the 
object. In other words, the representation of the object 
is independent of the frame associated with the sensor 
that delivered the range data. Bolle and Vemuri" 
pointed out the importance of viewpoint invariance for 
surface reconstruction methods in order to build 
models suitable for recognition tasks. In particular, this 
invariance is essential in order to perform fusion of data 
from different sensors: we will give several examples of 
object modelization using several range finders. 
Second, the parametric form allows one to handle 
objects that do not have a planar topology. We will use 
surfaces that are topologically equivalent to a sphere, 
but other topology could be used without modification 
of the algorithm. 

Given an initial surface S(t = 0), different actions 
force the surface to deform until it matches the shape of 
the object. The deformation process is ruled by the 
equations of motion derived from the laws of classical 
mechanics and that involve three types of forces: 
external, internal and inertial forces. 

External forces: are generated by input data points 
and input features. External forces apply deformations 
that bring the surface as close as possible to the data 
corresponding to the object. Their influence is both 
local and global: local in order to get a faithful model of 
the object and global in order to avoid the local minima 
problem, and therefore to increase the robustness of 
the algorithm. The local influence is provided by the 
range data available for the scene while the global 
influence is exclusively provided by feature points. 
Those feature points are points of the scene that 
contains some high level information which reveals the 
existence of the object. This information can be of 
geometric nature (discontinuities, jumps, . . .), of 
reflectance nature (intensity discontinuity) or of any 
other depending on the sensors available. Those points 
are first computed, clustered into segments and then 
are used by the deformation program. 

Because of the global deformation entailed by 
features, we do not need to predefine a complete 
mapping between data and surface points as was 
required in earlier work on surface reconstruction. This 
mapping assumes an initial segmentation of the object 
from the scene and above all requires the surface to be 
initially very close to the solution. 

Internal forces: are generated by the surface itself as 
it is deformed. The inclusion of internal forces ensures 
that the surface will not tear apart, fold onto itself, or 
exhibit high curvature points or sharp discontinuities in 
curvature. The other role of internal forces is to 
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provide constraints in regions in which little or no data 
is available. This is similar to the regularization 
approach to surface reconstruction from sparse 
data"*I2. The standard way of defining internal forces 
is to define the corresponding energy as the integral 
over the surface of the magnitude of the first and 
second  derivative^'^-'^ which characterize the surface 
smoothness. The relative importance of external and 
internal forces is a trade-off between accuracy and 
smoothness. High internal forces generate a very 
smooth surface that may be far from the input data. 
Low internal forces allow the surface to fit the data 
closely but they also allow the surface to fit any noise in 
the data. 

Inertial forces: are generated by the motion of the 
surface as it evolves over time assuming that the surface 
has a non-zero mass. Inertial forces are necessary to 
model the deformable surface as a dynamic mechanical 
system. 

In this section we first describe the components of the 
three types of energy and the equations of motion, then 
describe in detail how each energy is computed in the 
case of a continuous deformable surface. We then 
describe the computation of the energies and the 
implementation of the equations of motion in the case 
of a discrete deformable surface. 

General equations of motion 

The internal and external energies involved in the 
deformation of the surface are: 

0 Smoothness energy Esmoorhness: the smoothness 
energy is related to the geometric property of the 
surface. The smoothness energy is internal in that 
it  depends only on the shape of the surface in the 
vicinity of each point. 

0 Featicre energy Efearure: the feature energy quanti- 
fies the interaction between the features and the 
surface; its magnitude is a function of the distance 
between surface point and feature and of time t .  

0 Data energy E d a r a :  the data energy quantifies the 
effect of data points on the surface. 

To calculate the equilibrium position of the surface 
using mechanical systems theory, we need to introduce 
two additional inertial energy terms: 

0 Kinetic energy T a mass p is associated with each 
data point thus generating a kinetic energy term. 
Unlike other dynamic splines**9, our scheme uses 
explicitly the kinematic energy to link the defor- 
mation of the surface with the minimization of 
energy. 

0 Raleigh Dissipation energy D :  the dissipation term 
is added to simulate the exchange of energy 
between the dynamic surface and a virtual 
medium in which it evolves. This damping term is 
added to avoid cases in which the surface oscillates 
around an equilibrium position. 

Following the equations of mechanics and the principle 

of least actionI6, the surface reaches a stable equili- 
brium when the Lagrangian of the system reaches a 
minimum. The Lagrangian of the system is: 

L = T -  ESmoorhness- EFearurt-  EDaro 

Using the calculus of variations, the condition for which 
L f u ,  v ,  t )  is minimum is (similar to Terzopoulas et a/.'): 

a2 a 
at2 at 

p . - r ( u ,  V ,  t ) = - k -  -T(u, V ,  t ) +  

FSmoorhness -k Femure -/- FDara 

where r (u ,  v ,  t )  is the position vector of a point P ( u ,  v ,  
t )  on the surface, p is the mass density of the surface 
and k is the damping factor. 

Smoothness energy 

We use the bivariate generalized spline functionals of 
the first and second order as a smoothness measure'.". 
The first order is a measure of the distance discon- 
tinuities, while the second order is a measure of the 
surface orientation discontinuities. Denoting partial 
derivatives by subscripts (e.g. r,, = (d /du)r (u ,  v ,  t ) ) ,  
the energy is defined by: 

The corresponding force is therefore: 

where AI, , .  denotes the Laplacian operator with respect 
to ( u ,  v). The coefficients a I  and cr2 control the 
relative smoothness of the surface. 

Feature energy 

Because every feature contributes to the global defor- 
mation of the surface, our approach is to link every 
feature to every point of the surface (see Figure 1). 
Therefore, if Ejearure is the energy between a point on 
the surface and the feature number i ,  the total feature 
energy of the surface is: 

Our algorithm satisfies two requirements: 

0 The initial surface can be 'far' from the object. 
0 The points are going to concentrate toward the 

features. Because regions that enclose features are 
very important to describe the object (edges in a 
polyhedron, eyes and nose for a human face, . . .), 
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Feanrrc be attracted by the feature, as t increases. Therefore 
the influence of the features becomes smaller during 
the deformation. 

In order to avoid any discontinuity, we use a 
formulation that acts smoothly when D(Feature, P )  is 
close to Dref(t). In the current implementation, we 
model features as 3D line segments. We denote the 
midpoint of the segment by F,, and its length by 1,. With 
these notations, the energy field generated by feature i ,  
E&ure, (see Figure 5(b)) is: 

where: 

"3 
cigure I .  Links between features and surface points 

our scheme is therefore able to render a model 
that has the same hierarchical description. 

To get both global and local deformations is hard 
,ecause the two types of deformation, feature and 
Jata, should be balanced. If only feature deformation 
.vere applied one would get a surface that connects the 
'eatures with mostly planar surfaces in between 
Tecause of the smoothness constraint. On the contrary, 
n the case of data deformation, one would get a surface 
hat would faithfully follows the shape of the object 
mly where the surface is close enough initially (see 
'igure 2). 

Our solution is to change the relative influence of 
loth types of deformations over time: initially, the 
urface is mostly influenced by feature forces, therefore 
noving toward its global shape; then the feature forces 
lecrease and the surface is deformed locally so that it 
moothly interpolates the shape of the object. To 
ichieve this shift over time, the expression of Efeoture is 
lefined as follows: let the distance between the feature 
:nd the point P on the surface be D(Feature, P )  and let 
I reference distance be Dref(t)  at time t :  

0 if D(Feature, P )  > Dref(t) then the feature does not 

0 if D(Feature, P )  < Drer(f) then the feature attracts 
attract the point P :  E)eulurc = cste. 

. . 
the point P .like a spring: E/errrurc = cs t e . [D  
(Feature, P)]* .  

ly setting Dref(t) = Dd- (To - t ) ,  this reference dis- 
ince decreases linearly from D& to 0 which means that 
point of the surface has to get closer and closer to 

U ( x )  is a function that is quadratic if x <  1 ,  constant 
if x > 1 and a cubic polynomial if x is close to 1 (see 
Figure 3a). Therefore U ( x )  is C' continuous, 
leading to an expression of the force that is Co 
continuous. 
(1 PF,(I represents the distance between the 
point P ( u ,  v) of the surface and the feature 
segment of middle point F,. Other feature repre- 
sentations can be used in the same framework by 
replacing this term by the appropriate value 
D(Feature, P ) .  For example, for a point feature it 
would be the distance between surface point and 
feature point. 
DA is the distance between the feature and the 
centre of the surface at its initial position. If the 
surface is initialized as a sphere, it is the distance 
to the centre of the sphere. 

Figure 4 shows how the potential field vanes over time 
in the case of four coplanar features. The centre of the 
surface does not coincide with the centre of gravity of 
the features in this example. 

From the definition of feature energy, the force 
generated by the feature i at surface point P at time f is 
the opposite of the gradient of E~eulUre, i.e.: 

where dU/dx is the derivative of U ( x )  see Figure 3c. 
Figures 3a and c show the variation of the energy and 

force with respect to time, and how this force varies 
with respect to time and distance D(Feature, P ) ;  there 
is no singularity when t is close to To. By continuity, we 
can set Efeurure(t = to) = cste and Ffeurure(t = TO) = 0. 

Forces from each feature may be weighted to reflect 
the relative importance of different types of features. 

' Feature 
a b C d 

igure 2 .  (a)  Object with its features (normal discontinuties); (b) surface initialization; (C) final shape if feature 
?formation is predominant; (d )  final shape if data deformation is predominant 
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Figirrc 3. (a)  C i t r ~ v  U (x): (h) etdiitiori of E,C.,lUrCI as n fitrictiori of tirile arid distarice 6c t~*eet i  siirfiicc poirit a t d  
feotiitc; (c) ciirtqe F = dU/dx(x); (d)  et-olirtioti of F,C.lIurC 

Data energy 

Theoretically, a surface point is subject to forces from 
all the data points. However, for computational 
reasons we take into account only the closest data 
point. For every point P of the surface, the closest data 
point is denoted by c d a f a .  Since data information is 
used only for local deformation, the corresponding 
force should decrease sharply with distance. Therefore, 
a gravity-type field where the energy decreases with the 
inverse of the distance is appropriate for this type of 
deformation. But to avoid the singularity when the 
distance is null, Cd, , ,  acts like a spring when the point 
P ( u ,  v) is close to c d a f a .  If Edara is the data energy of a 
point P(u,  v) of the surface: 

maximum expected object size. The corresponding 
force is K: 

where dWldx is the derivative function of W ( x )  (see 
Figure 6 ) .  It can be noticed that for x>2 the force is 
very small which means that if 11 P c d a r , ) 1 > 2 .  K the 
action of the data point is negligible. 

Implementation 

llpcdara 11  . We have assumed so far that our model is a continuous 
Edara= w( ) surface topologically equivalent to a sphere para- 

meterized in (u ,  v ,  t). In practice, however, we can 
manipulate only discrete surfaces. This raises the 
problem of the parameterization of such surfaces and, 
in particular, the impossibility to map a sphere into a 
square in a uniform way. To avoid creating poles, we 
adopt the tesselated icosahedron as a structure. Each 

W ( x )  is a function that is quadratic if ( x <  1) and in I / r  if 
( x >  l ) ,  (see Figure 7). K is a normalizing constant that 
has the dimension of a distance. Intuitively, K repre- 
sents the range of the influence of the data on the sur- 
face. In practice, K is chosen small compared to the 
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.------ 
Features Figure 4. (a) Features and 

initial position of the sur- 
face; (b) initial potential 
field; (c) intermediate 
potential field; (d )  final e 
potential field 

?/ 
0 Initial 

es~imate of the contour 
a 

C 

Figure 5 (left). Curve W(x). Figure 6 (right). Curve dWl 
d x ( 4  

3 5  

b 

d 

. 5  

2 

deformed by applying repeatedly the equation of 
motion at each node. Forces Fdoro and Ffeorure are 
computed at each node independently in a parallel 
manner. Fsmoorhness is computed by approximating the 
first and second derivatives of the surface by finite 
differences. The most expensive part of the algorithm is 
the computation of the closest data point Cd,,, used in 
the computation of FdOca. It is theoretically in O(/rn), 

face of the icosahedron is subdivided to yield arbitary 
resolution of the parameter space. The number of faces 
of the tessellation is 20N2 ,  where N is the density of the 
subdivision. Typically we use N = 5 yielding a decom- 
position of the parameter space into 500 faces (see 
Figure 7). We use the centre of each triangle as a node, 
every node having therefore three neighbours. If we 
write I: as the position of the node i at the time t ,  then 
the discrete version of the motion equation is: 

f : + ,  = f : + ( l  - k ) * ( f ; - f ; - , )  t 
n 

Fsmoorhness Fdoro -k Fieomre 
I = o  

The surface is initialized as a sphere at t = O  and is Figure 7. Tessellated icosahedron 
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a b C d 

Figure 8. (a) Intensity image; (b) 
features extracted f rom intensity image; (c) 
range data with features; (d )  initial sphere 
(cross-section); (e) reconstruction of the face 
using only contour features; ( f )  reconstruc- 
tion of the face using intensity features; ( g )  
wireframe display corresponding to Figure 8 
(e); (h )  wireframe display corresponding to 
Figure 8 (fl 
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where 1 is the number of data points and m the number 
o n  nodes. In practice, some precomputations and 
assumptions allow us to improve this computational 
time greatly. The algorithm is otherwise linear in the 
number of features and the number of iterations. Due 
to its highly parallelizable nature, substantial speed-ups 
can be achieved. 

Several parameters must be set to apply the motion 
equation. The parameter settings in the current imple- 
mentation are: 

0 Radius and centre of initial sphere: the determina- 
tion of centre and radius of the initial sphere 
depend on the nature of the data. The initializa- 
tion procedure is described in the next section for 
each type of data. 

0 Number of iterations, To: because To is explicitly 
used for the computation of the feature force, it 
has an influence on the recovery of the object. 
The larger To, and the smaller the detormation 
due to the feature being between two iterations, 
the smoother the  final shape is. 
Smoothness coefficient al  and a2: the smooth- 
ness coefficients should be between 0 and 1 with 
a1  >a2. Actual 'good' values have to be deter- 
mined empirically. We use a l  =0.75 and a2= 
0.4 in our experiments. 

0 Damping factor k :  the damping factor should be 
close to (but lower than) 1 to ensure smooth 
deformation of the surface over time and to avoid 
oscillations. We use k = 0.9. 

0 Normalizing factor K:  K depends on the environ- 
ment. It is computed as one-fifth of the radius of 
the largest object expected in a scene for a given 
application. The algorithm is robust with respect 
to K so that a rough estimkte of object size is 
sufficient. 

EXPERIMENTAL RESULTS 

In this section we present experimental results obtained 
by applying the deformable surface algorithm to real 
image data. We present two sets of results. The first set 
is obtained using range data from a light-stripe range 
finder. The second set of experiments involves the 
recovery of three-dimensional objects from intensity 
images. The goal of those experiments is to validate the 
claim that the algorithm is independent of the nature of 
the data. 

Range data 

For our experiments with range data, we use a 
commercial light-stripe range-finder that consists of a 
camera and a projector that projects patterns through a 
LCD board''. The sensor processes the images of the 
patterns using standard light-striping goemetry. It 
delivers a set of four images of 240 rows by 256 
columns, one intensity image and three images of the 
three coordinates of every pixel with respect to a 
reference frame. Several sensors can be used at once to 
yield multiple views of a scene. A calibration procedure 
is used to express all data points coordinates with 
respect to a single world-centred frame. We conducted 
the experiments with either single views or multiple 

views. Using multiple views demonstrates that the 
algorithm is completely independent of an image- 
centred reference frame. In particular, it does not use 
the grid structure of the image or the uniform sampling 
of pixels in the image, and therefore can be used with 
non-imaging sensors that measure non-uniform sparse 
data. This is a major difference with other reconstruc- 
tion algorithms that use the image grid as a discretiza- 
tion of the surface. 

We analyse the experiments in a simple to complex 
fashion. Our first experiment addresses the case of a 
single image of an isolated smooth object, a human 
face, which includes small local shape features (nose, 
lips, . . .). The second experiment uses a natural 
environment made of sand and pebbles, and demons- 
trates the ability to deal with data from multiple sensor, 
and to handle arbitrary reference frames. The third 
experiment demonstrates how the algorithm can be 
used to segment a scene into individual object models. 

Human face 
A human face is a good example of a complex object 
with parts of very distinct nature: the forehead and jaws 
areas are of little interest for face recognition, whereas 
eyes, nose, mouth and chin are the main characteristics 
of a face. We would like a surface reconstruction 
algorithm to smooth the input data and generate a 
compact representation of the face while keeping an 
accurate description of the areas of interest. Figure 8a 
shows the intensity image, and Figure 8b shows the 
range data of a face; the data corresponding to the hair 
of the person is removed because the sensor generates 
extremely noisy measurements there. Only a partial 
view of the face is available because of self-occlusions. 
For example, the left part of the nose is not visible. In a 
first experiment, we consider as features only the 
boundary of the face. Using this minimum information, 
the surface is initialized as a sphere roughly tangent to 
the face (see Figure 8d). The resulting shape is 
displayed in two manners: Figure 8g is the triangular 
mesh of points, while Figure 8e is a shaded display 
obtained from ray-tracing. While the overall shape of 
the face was found, important facial features such as 
nose, mouth and eyebrow were smoothed. 

To avoid this smoothing effect it is necessary to tag 
the eye, nose and mouth as being important features. 
The thresholding of the magnitude of an edge detector 
on the intensity image provides a way to extract those 
features (see Figure 8c). The result of the final recovery 
is shown in Figure 8f and h: this time the nose, eyebrow 
and mouth are clearly visible and the left part of the 
nose was interpolated. This experiment clearly dernon- 
strates how fine details as well as general shape can be 
recovered due to the combination of feature and data 
forces. 

Stacked pebbles 
The generality of our approach makes it particularly 
well-suited for unstructured environments in which 
there are few constraints on object shapes. The scene 
we use in this example consist in a set of stone pebbles 
that are lying on top of sand. In order to have more 
reliable data and features, we took three range images 
from three different viewpoints (see Figure 9a). The 
features are of three natures: distance discontinuities, 
surface orientation discontinuities and shadow bound- 
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aries. Shadows are parts of the scene that are visible 
from the camera but are not illuminated by the 
projector. Shadows are used here as clues for the 
presence of an object since a shadow is created by an 
object occluding the light coming from the projector. 
The feature segments are shown in Figure 9b. The 
figure demonstrates that using classical feature-based 
segmentation techniques would be a very challenging 
task. 

The segmentation proceeds by selecting a shadow 
region, starting with the largest in the image. Using the 
geometry of the sensors as computed from an off-line 
calibration procedure, a point that is assumed to be 

Figure 9. (a) 3 0  view of range data from three 
different views; (b)  3 0  view of feature segments; 
(c) cross-section of the initial sphere; (d )  surface 
after 15 iterations; (e) surface after 45 iterations; 
(f) surface after 75 iterations; (g) final shape after 
150 iterations; (h)  using surface models for man- 
ipulation 

inside the object is selected based on the position of the 
shadow in the image. The centre of the initial sphere is 
initialized at this point, its radius is initialized to a 
constant value that is the average size of the expected 
objects. Figure 9c displays the initial sphere. Only data 
points and features that are less than a fixed distance 
away from the starting point are taken into account in 
the computation of the forces. Figures 9d-g show the 
shape as it evolves from the initial sphere to the final 
model. By merging multiple views of the scene, we 
were able to faithfully extract a model of the pebble 
without any a priori segmentation. 

This application to the segmentation of natural 
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a b 

Figure IO.  (a) First range image with features; 
(b )  second range image with features; (c,d,e)  
initialization, range data and features in the 
region of influence of the first cube; ( f )  first 
cube reconstructed by the deformable surface; 
(g) second cube; (h) third cube; (i) reconstruc- 
tion of the scene 

d 

e 

;cenes is part of an operational system that automati- 
:ally picks up pebbles in a cluttered natural 
:nvironment”. The discrete surfaces extracted from 
-ange images are fed to a program that computes the 
>table grasp positions for a three-finger grippei?’. A 
nanipulator executes the grasping. Figure 9h shows the 
;ripper picking up a pebble in a typical environment. 

Stacked cubes 
To investigate further the ability of the algorithm to 
3erform segmentation and surface reconstruction, we 
Jesigned a simple scene with three overlapping cubes. 
Using simple objects of known shapes such as cubes 
illows us to compare the resulting segmentation and 
-econstruction with the actual scene more easily. 
-1gures 10a and b show two opposite views of a scene 
vhere one cube is in balance between two adjacent 
:ubes; the squares drawn corresponds to the region 
ised for the recovery of the first cube. The range data 
ind features that are enclosed in that region are 
lisplayed in Figures 10d and e ,  as well as the initial 
7osition of sphere (see Figure 1Oc). The model extrac- 
ion is applied successively to the three cubes (Figures 
Of-h), and a reconstruction of the scene is displayed in 
.igure 1Oi. The algorithm is clearly able to autornatic- 
Ily discard features and data that are not consistent 
bith the surface. Among the three reconstructed 
hapes, the second seems to be the best (see Figure 
Og), mostly because i t  is not occluded by any other 
ube. On the contrary, the third cube (see Figure 10h) 
\as one face that is poorly recovered because there are 

-. 

_. 
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no features and data points corresponding to this face 
of the cube. Therefore all visible parts were correctly 
extracted. 

Intensity images 
The next results concern the very under-constraint 
problem of extracting a three dimensional shape 
information from a contour of an intensity image. 
Terzopoulos9 proved that the use of a free form 
representation is particularly well-suited for this task, 
since only weak assumptions are required to extract 
models. Given a rough axis of symmetry for each 
contour, he was able to infer the three dimensional 
shape of the object by propagating the symmetry 
constraint through the surface. Our scheme is more 
general because no axis of symmetry is needed so that 
objects that are non-symmetric and non-convex can be 
recovered. If we denote by (xy)  the plane of the 
intensity image, and by z the axis perpendicular to 
the image, then we first initialize the model as a 
superquadrics, and we apply deformations from data 
and features such that these deformations occur only in 
the (xy )  plane. In other words, every point of the 
surface keeps its coordinate z constant during the 
deformation. Therefore the choice of the initial surface 
sets the constraints on the model such as symmetry, 
elongation, and roundness. 

We show an example of such reconstruction by using 
an intensity image of a tape dispenser (see Figure l l a ) .  
From this intensity information, we extract the contour 
by thresholding the image magnitude of an edge 
detector. The contour is then used both as a set of 
feature segments that will globally deform the surface, 

and as set of data points that will locally deform the 
surface (see Figure l lb ) .  We display the initial position 
of the surface (see Figure l l c )  which can be far from 
the object. As initial shape, we choose three different 
types of superquadrics. Superquadrics are generalized 
ellipsoids whose shapes are controlled by two para- 
meters and E ~ .  The equation of the superquadrics 
is: 

= 1  

By setting = 1, a l  =az  and by choosing e1 = 
0.5, 1.0 and 2.0 we get the shapes shown in Figure 13. 

= O S  is well suited for the reconstruction of man- 
made objects, with sharp edges, while & ]  = 1.0, a 
sphere, is better for symmetrical objects and =2.0 
can be used for elongated objects. In fact, E~ = 1.0 is a 
good approximation of the symmetry-seeking shapes. 
To reconstruct the tape dispenser with a realistic height 
in comparison with its longitudinal dimensions, we 
chose a3 = 0 . 2 a l .  Figures l l d  and e show an inter- 
mediate step and the final convergence of the surface. 
Figures 12a-c present the three reconstructed objects. 
The side views allows us to see how the reconstructed 
surface is influenced by the initial profile z = f ( x ,  y ) .  

For each contour an infinite number of models can 
be extracted by choosing a different initial surface. An 
important feature of this algorithm is that during the 
deformation, it conserves the symmetry with respect 
the image plane (xy)  or with respect an axis in the 
image plane. By choosing an initial shape symmetric 
with respect to (xy)  the resulting model is guaranteed 
to satisfy the same property. A more general scheme 

d 

Figure 11. (a) Intensity image of the tape dispenser; (b) potential field created by the edges; (c) initialization; (d)  
intermediate position; (e) final position 
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Figure 12. (a)  Front and side view and of the object using a profile with E l  = I ;  (b) front and side view and of the 
object using a profile with E~ = 0.5; (c)  front and side view and of the object using a profile with = 2 

Figure 13. Different types of superquadrics that are used 
for the initialization of the surface 

would be to add other geometric constraints such as the 
xojected contour of the object from different view- 
Joints or surface normals obtained from shape from 
I hading. 

JONC LUS ION 
We have designed and implemented an algorithm that 
‘onstructs 3D shape representations from observed 
lata. Initial experiments show that we are able to 
epresent a large class of objects from input data with 
ew assumptions on the nature of the data and without 
equiring perfect segmentation as an input. Based on 
he experiments, the algorithm has the following 
haracteristics: 

e Physically-based algorithm: the dynamics of the 
deformation is modelled by the Lagrangian equa- 
tions of mechanical systems. As demonstrated in 

previous works, using physically based procedures 
provides better control on the stability and con- 
vergence of the algorithm. 

0 Enhanced shape description: our algorithm 
enables us to describe hierarchically the input data 
between two classes, data points and features, 
according to their influence on the overall shape 
of the object. Our algorithm creates models that 
respect the same hierarchy since regions corres- 
ponding to feature points are better described 
than region of data points. 

0 Stability: because the algorithm uses both features 
and data, it  is less sensitive to spurious features, 
noisy data or missing data. Moreover, an approxi- 
mate partition of data and features into regions 
of interest is sufficient to extract the shape of an 
object. Therefore, our algorithm performs a seg- 
mentation by discarding the features and data that 
is incompatible with the current shape of the 
surface. This is in sharp contrast with other 
techniques that require the observed scene to be 
already segmented into regions corresponding 

0 
exactly to individual objects. 
Generality: the algorithm makes few assumptions 
on data and observed objects. The only require- 
ment is that some features can be extracted from 
input data, and that the minimum and maximum 
sizes of the object expected in a typical scene are 
known. We have successfully applied the algor- 
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ithm to the reconstruction of smooth isolated 
objects such as human faces, to the reconstruction 
of structured objects such as polyhedra, and to the 
segmentation of complex scenes with mutually 
occluding objects. We have tested the algorithm 
using data from different sensors including grey- 
coding and laser range finders and video cameras, 
using one or several images. 

The algorithm has some limitations as demonstrated in 
the experiments. First, it tends to smooth the sharpest 
features such as the corners of a polyhedron. The 
smoothing of surface normal discontinuities is a well 
known problem in surface reconstruction techniques”. 
This can be avoided by decreasing the smoothness 
parameters al  in the vicinity of such a discontinuity. 
Second, it generates a surface even where no data is 
available by interpolating from regions where data is 
available. A mechanism should be added to attach a 
degree of confidence on each part of the surface, this 
number being low when the part was interpolated and 
high when the model is very close to the data. This 
number can further be used as uncertainty measure for 
high level modules such as recognition. 

We intend to extend the current applications by using 
additional data such as surface from shape from 
shading, or sparse 3D points from stereo, and by using 
additional feature types such as point features, planar 
patches, and corners. Future work concentrates on the 
use of the techniques presented in this paper in 
comprehensive robotics systems. We have already used 
deformable surfaces in a system for manipulating 
objects in natural environments using a three-finger 
gripper. We are currently using those techniques in a 
landmark mapping and recognition system for auton- 
omous navigation. 
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Abstract 
We present a technique for constructing shape representatinn 

from images using free-form deformable surfaces. We madei an 
object as a closed surface that is deformed subject to attractive 
fields generated by input data points and features. Features affect 
:he global shape of the suqace while data poims control its local 
shape. Our approach is used to segment objects even in cluttered 
or unrtructured environment. The algorithm is general in that it 
makes fm assumptions on the type of features, the mure  of the 
data ana' the type of objects. We present results in a wide range of 
applications: reconrtruction of smooth isolated objects such as 
h u m  faces, reconstruction of structured objects such arpolyhe- 
dra, and segmentation of compler scenes with mutually occluding 
objects. We have succesqfully tested the algorithm wing &a 
from different semors including grey-coding range finders and 
video cameras, using one or several images. 

1 Introduction 
The recovery of object shape from 3D data is one of the key 

issues in vision. One could define this task as the segmentation of 
a large set of data points into shapes corresponding to objects in 
the scene. The shape representation should be general enough to 
handle a wide variety of scenes yet simple enough to be usable 
for other tasks such as recognition and manipulation. In other 
words. the shape representation should have enough parameters 
to describe the specificity of the shape but must have as few pa- 
rameters as possible to be usable and to be robustly extracted 
from visual data. This contradiction is similar to the scale space 
problem, where one would like to find a description fine enough 
to capture the key details of the shape, but coarse enough to get 
rid of spurious data. 

In this paper, we propose an approach that attempts to solve 
rhis conflict by using the feature / data duality in a way similar to 
the fine I coarse approach. Several psychophysical experiments 
have proved that the human eye is able to capture the main shape 
of an object by seeing only a few characteristic elements or fea- 
tures. These features can be either geometric (distance disconti- 

1.ThisrrsurchwassupponcdbyNASAundcrGrvltNAGW-1175mdbyDARPA 
rhrough M A  ~ m b c r 4 5 7 6  monitored by the air Force Avionics Labonmy under 
conincl F33615-87-C-1499. The views and conclusions c m r a h d  in chis document 
arc those of the aurhm and shmld nor be intcrprctuj as rrpnscnring the politics of 
SASA. DARPA. or ~ 5 e  US govcmmmr 

CH2983-5./91~0000!0467/$01 .OO 9 1991 IEEE 
467 

nuities, surface orientation discontinuities, comers, minimum of 
cuxvature, etc.) or higher level such as reflectance properties. 
While these features capture most of the shape information, it is 
difficult without a priori knowledge to construct a full reconstruc- 
tion of the object. however. 

Several solutions have been proposed. Besl and Jain[2] 
built curvature-based object representations by classifying sur-  
faces according to the sign of its principal curvatures. Pent- 
land[l5] presented a physically-based algorithm. to recover in a 
unique manner a model from a set of features and a set of vibra- 
tion modes. Another approach is to use both features and range 
data in separate stages. In a first stage, features are grouped into 
hierarchical sets, according to geometric properties (symmetry, 
connexity, etc.) and in the second stage models are fit to the seg- 
mented parts. This idea of hierarchical representation was initiat- 
ed by Marr and Nishihara[ 111 and pushed further by the seminal 
ACRONYM[4] vision system by using generalized cylinders. 
Pentland[l3][ 141's "Representation by parts" using deformed su- 
perquadrics, proved to have some successful results but encoun- 
ters some limitations[6]. While the feature grouping requires 
some accurate feature extraction and high level reasoning, the fit- 
ting of superquadrics[ 13][21] to range data has some unstable be- 
havior. due to its non-linear nature, and is suitable for only 
smooth and simple shapes. 

Those techniques attempt to represent all shapes by using a 
set of elementary shapes (superquadrics, generalized cylinders, 
parametric patches, etc.) that can be described by a few parame- 
ters. This is clearly beneficial ffom the point of view of object 
recognition which amounts to manipulating analytical equations 
of the elementary shapes. In practice, however, it restricts consid- 
erably the class of objects and scenes to which the techniques can 
be applied. More general representations could be obtained by 
adding degrees of freedom to the elementary shapes (e.g., adding 
tapering and bending to supaquadrics). However, the non-linear 
fitting algorithms involved in the recovery of such shapes become 
rapidly computationally expensive and numerically unstable. 
Furthermore, most of those techniques assume that the observed 
scene is first segmented in regions corresponding to individual 
objects. The shape extraction algorithms are then applied to each 
object. However, accurately segmenting a scene is a hard prob- 
lem in itself. 

To address those problems, Terzopoulos and Wit- 
kin[l0][17][18](20] proposed the concept of deformable conmum 
or surfaces that are subject to forces generated by image elements 
such as edgels. This work demonstrated that free-form shapes are 
powerful tools for shape representation. However, to perform 


