
Shape Representation Using Space Filled

Sub-Voxel Distance Fields

M. W. Jones, R. A. Satherley

Department of Computer Science

University of Wales, Swansea

Singleton Park, Swansea

United Kingdom

fm.w.jones, csrichg@swan.ac.uk

Abstract

Voxelisation is the process of converting a source object

of any data type into a three-dimensional grid of voxel val-

ues. This voxel grid should represent the original object as

closely as possible, although some inaccuracies will occur

due to the discrete nature of the voxel grid representation.

In this paper we report our on-going research into methods

for representing objects as voxelised distance fields, in par-

ticular we report fast methods for accurate distance field

production. A review of current alternative voxelisation

methods is also given.

1 Introduction

The work presented in this paper is closely related to the

field of Volume Graphics [2]. Volume Graphics is an emerg-

ing area of Computer Graphics which is concerned with the

input, storage, construction, modelling, analysis, manipu-

lation, display and animation of spatial objects in a true

three-dimensional form. When comparing Volume Graph-

ics to traditional surface graphics, the relationship has been

likened to the relationship of that between two-dimensional

raster images and vector graphics [16]. The need for the

process of voxelisation is a direct result of the employment

of volume graphics techniques, which in turn offer the ben-

efits of scalable rendering algorithms for extremely large

scenes, visual effects such as fire, fur and roughness (Sec-

tion 4.1) and consistency of rendering (the ability to render

objects of different source types under the same conditions).

Indeed, as mentioned later in this paper, many rendering ef-

fects are only available during volume rendering, and there-

fore employing voxelisation techniques, enables these ef-

fects to be carried out upon the voxelised objects.

In this paper we shall introduce distance fields in sec-

tion 2 and examine alternative methods for voxelisation in

section 3. Section 4 will present Space Filled Distance

Fields in detail. Binary segmentation and sub-voxel seg-

mentation will be examined, and several methods for calcu-

lating the complete distance field will be demonstrated. Full

details of the process for representing objects as distance

fields will be given. Results will show how effective these

methods are, including images and an animation (available

via WWW site). Further work and conclusions are given in

sections 6 and 7.

2 Background

We have previously used distance fields as an intermedi-

ate step to create triangular meshes from contour data [13].

The use of the distance field helped avoid costly and dif-

ficult point correspondence problems – particularly in 1 to

many and many to many branching cases. We discovered

early on that the normals calculated from these distance

fields (using trilinear interpolation within voxel cells) do not

become quantised as they can with other methods, and that

solid objects (obtained from contours or irregular points)

can be represented quite accurately using this method. We

have also used distance fields to voxelise triangular mesh

objects [11]. That previous work described the production

of a shell distance field (also briefly reviewed in this paper),

and an efficient algorithm for measuring the distance of a

point from a triangle (which is somewhat more difficult to

achieve efficiently than one would assume). The work pre-

sented here extends this previous work by generating space-

filled distance fields efficiently, which as mentioned later in

this paper, have many more uses.

A distance field data set D representing a surface S is

defined as: D : R3 ! R and for p 2 R3 ,



D(p) = sgn(p) �min fjp� qj : q 2 Sg

sgn(p) =

�
�1 if p inside

+1 if p outside

where jj is the Euclidean norm

(1)

For each voxel in the three-dimensional grid, the distance

to the closest point on the surface is stored. Additionally,

all voxels inside the object are set to be negative, and all

voxels outside are set to positive. This distance field has

effectively voxelised the object as the original surface can

be displayed by rendering the isosurface of level 0 from D

- i.e. S = fq : D(q) = 0g where q 2 R
3 . Non-integer

grid points can be calculated from surrounding integer grid

points using trilinear interpolation.

This signed distance field has proven to be of use for

many years, and has become widespread for many appli-

cations within the field of graphics in the last few years,

although its use for modelling objects has not been fully ex-

plored. Figure 1 demonstrates the voxelisation of a Rook

chess piece (original object is a triangular mesh). Repre-

senting the object as a distance field compares favourably

with the other representation methods (Section 3).

Figure 1. Rendering of rook voxelised using

(a) 1 regular sample, (b) 7� 7� 7 regular sam
ples (Section 3.1), (c) distance shell

The main drawback of the distance field method is that it

is computationally expensive when a complete space filled

distance field is calculated. For the rook chess piece, the

distance at each voxel (216,000) is evaluated to the clos-

est point on a mesh of about 1500 triangles (taking about

6 minutes). This takes into account very efficient methods

for calculating the distance of a point to a triangle [10], and

using an octree as mentioned in Section 4.4. For another

example it takes approximately 8 hours to convert the UNC

CThead (7 million voxels) into a space filled distance field

(also using acceleration methods such as an octree).

This method, such as it stands, is too computationally ex-

pensive to employ, and therefore we have researched meth-

ods of acceleration which we present in this paper, after ex-

amining alternative methods for voxelisation.

3 Alternative Methods For Voxelisation

3.1 Sampling

The basic method for converting objects is spatial occu-

pancy. A regular grid of voxels is placed over the domain

of the source object, and for each voxel a binary decision

is made as to whether each voxel is inside or on, or out-

side the object [15, 6]. Each data type has been given a

different treatment in the literature which takes advantages

of the source data type to increase the speed of conversion.

The recognised problem with this method is that the repre-

sentation produces a discrete surface which is recognisably

blocky. Simple solutions have been to increase the resolu-

tion of the data set, but this in turn increases the memory

requirements and rendering times. It was identified early on

that the primary cause of the visible artifacts is the recon-

struction of the surface normal from the voxelised data. A

thorough examination of the normals by Höhne et al. [26],

indicated that whilst it is possible to use various sampling

strategies to overcome this problem, it is preferable to have

access to grey-scale data, such as that from CT scan data.

In such datasets we no longer have a binary classification –

each voxel takes a value depending upon its density.

One method by which this can be achieved is by taking

more samples per voxel than just the above mentioned sin-

gle central sample. With oversampling we consider each

cube and sample at several points within the cube. If all

points fall inside the object to be voxelised we can consider

the corresponding voxel to take on the maximum value.

Conversely if all points are outside, it can take on a min-

imum value. Values can be generated between the two val-

ues corresponding to the number of samples inside the ob-

ject, and the number of bits available to represent the object.

Obviously an increase in sample points results an increase

in accuracy, but at a trade-off in an increase of computation.

We must also consider storage. For example we could have

2n samples and store voxel data using n bits per voxel. In

practise 8 bits appears to be a good compromise and can

produce images displaying consistent normals.

Figure 2. Regular 5�5�5 sampling, and 3�3�3

jittering.



Sampling theory [28] suggests that a stochastic sampling

should provide better images as the high frequencies will

be dispersed. Poisson sampling using a minimum distance

constraint (Poisson disk), such that no two points are closer

than a certain distance produces a good distribution for sam-

pling but is expensive to calculate. In this instance the com-

putational expense for calculating a Poisson disk for one

cube and then using the same sampling pattern throughout

the data set would be insignificant compared to the other

operations. A simpler, but not much less effective method,

is that of jittering (Figure 2). Each sample is randomly per-

turbed from its centre on a regular grid, but is still located

within its grid cell. This is simple to calculate (and imple-

ment) as it just involves a random shift of the sample point.

Figure 3. Rendering of spheres using jittered

(left column) and regular sampling (right col

umn). Samples per voxel (from top) 1, 8, 27,
125, 9261.

Figure 3 shows an implementation of regular and jitter

sampling for the case of a sphere, and several samples per

voxel on a sampling grid of 603. Table 1 gives the running

Samples per voxel time (secs.)

1� 1� 1 0.02

2� 2� 2 0.13

3� 3� 3 0.45

5� 5� 5 2.12

21� 21� 21 222.31

Table 1. Computational time for various num
bers of samples per voxel (60�60�60 voxels)

times for each one (all timings are on an 800MHz Athlon).

The artifacts apparent in the image are due to the grey-level

central difference method being used for the calculation of

the normal. Only a 1 voxel layer encodes the surface – all

other voxels are either completely inside the surface or com-

pletely outside, and therefore there is not enough encoded

information to reconstruct the normal accurately using this

method. It is acknowledged that other methods exist for

this [26], but as it was not the main thrust of this work, they

have been omitted.

We can observe that sampling within one slice of a grid

of voxel values is similar to rendering the mesh to a pixel

image. Therefore we can accelerate the voxelisation process

by using hardware renderers to render the triangular mesh

to an image. The image can then be processed to determine

if each pixel was inside or outside the object. Fang [6] has

covered this process for point sampling, but this work could

be easily extended to oversampling by simply increasing the

size of the image, and decreasing the stepping size through

the volume. This is fine in the case of regular sampling, but

jittering presents problems using this method.

Another method by which a grey-level dataset can be

computed is by using a different sampling technique. Wang

and Kaufman [27] volume sample primitives using a spher-

ical volume set at 3 units. Calculating this for arbitrary

objects (e.g. triangular meshes) is difficult, so they have

specific functions to volume sample each kind of primi-

tive (sphere, cone etc.). The method produces values in the

vicinity of the object, and therefore the volume is not space

filled. This has advantages in terms of storage, but disad-

vantages for applications mentioned in Section 4.1. Srámek

and Kaufman [25] identify that a linear density profile in the

vicinity of the surface give the best results. They produce

such a profile using convolution with a box filter. Again

this produces values in the vicinity of the object (whereas

this paper is primarily concerned with space filled voxeli-

sations). Their method may benefit from the improvements

made in this paper (as will become clear later). They sug-

gest a method for voxelising surface represented objects in

which the surface is voxelised using a field, such that a thin

solid is produced during visualisation – e.g. a plane would



become a box. Although the methods of Section 3.3 on-

wards are discussed in the context of solid modelling, they

could be applied to surface representations in a similar man-

ner (i.e. by creating slightly thick objects in place of in-

finitely thin surfaces).

3.2 Implicit Functions

Sampling is a valid method for producing voxelised ob-

jects, but it suffers from resolution problems (blocky im-

ages), and restricted orientation of normals. One class of

object for which this volume sampling is not a problem is

that of implicit functions [14, 8]. For example rendering a

sphere on a grid of 203 can give the top left image in Fig-

ure 4. The grey level normals are calculated using trilinear

interpolation from the 8 normals creating a cube containing

the intersection point with the ray. As can be seen these

normals give a high accuracy for shading. The voxel grid

is calculated by evaluating the function of the implicit sur-

face – in this case f(x; y; z) = x2 + y2 + z2 � r2. Various

other implicit functions have been voxelised and rendered

(also Figure 4), including some which have been genetically

bred [12]. In all cases the normals from such data produce

naturally shaded objects. All images in this paper have been

rendered using direct surface rendering [14]. Most images

in Figures 4–6 take less than a second to render at 300�300

pixels (800Mhz Athlon).

The implicit functions encoded as above can be consid-

ered as space filled voxelisation – there is a value at every

point in the domain of the object. The sampled voxelisa-

tions only produce values in the vicinity of the object and

can be considered to be shell voxelisations. In the next sec-

tions we shall examine distance fields, both in their space

filled and shell incarnations.

Figure 4. Rendering of sphere and other im
plicit functions.

Samples per voxel time (secs.)

1� 1� 1 0.04

7� 7� 7 6.30

Distance shell 7.10

Full distance 230.00

Table 2. Computational time for voxelising

rook (60� 60� 60 voxels)

3.3 Distance Shells [11]

If we are just interested in encoding the surface and do

not need a space filled distance field, we can voxelise the ob-

ject just in the vicinity of the surface. We have called such

a voxelisation a distance shell – the computational expense

is significantly less, and the surface representation is far su-

perior when compared to the oversampling method which

takes an equivalent time (Table 2 and Figure 1).

The shell for which the distance must be calculated is

given by the set of voxels Sn. First we define a segmenta-

tion function f as:

f(v) =

�
1 if v is inside the surface

0 otherwise

where v 2 Z3

(2)

Then for each voxel, v, we add v and v26 (the 26 neigh-

bours of v) to Sv, when f(v) = 1 and 9p such that f(p) =

0 where p 2 v26.

Calculating the distance for these voxels is enough to en-

code the surface – the uncalculated voxels are either inside

the surface, and all their neighbours are inside the surface,

or outside the surface with all their neighbours outside the

surface. Using this shell to render the encoded surface re-

sults in voxels outside this shell Sv being used during nor-

mal calculation when central differences are calculated. To

include all of these additional voxels we create the shell Sn
where for each v 2 Sv we add v and v26 to Sn. Sn now

contains all voxels which are used to display the surface

(including values used just in normal calculation). We have

called the voxels Sn the distance shell of the encoded ob-

ject. The distance shell adequately represents the object,

and is a valid method for voxelising objects where only the

surface needs to be encoded. As a shell voxelisation it ben-

efits from the advantage of requiring less memory to store

(if run length encoding is employed).

Frisken et al. [7] have presented an intermediate repre-

sentation where objects are adaptively sampled – i.e. more

samples are taken in the vicinity of the surface, and less

further away from the surface. Samples are stored in an oc-

tree structure to reduce the amount of storage required (over



using a uniform grid). This representation will reduce cal-

culation time (as less samples are made than a full distance

field), but will result in less accuracy away from the surface.

Essentially their method is the same as a distance shell, with

the added benefit of less accurate distances available away

from the surface, rather than none at all as in the case of the

distance shell.

4 Space Filled Distance Fields

4.1 Overview

We have already demonstrated a simplistic approach to

calculating space-filled distance fields. Such distance fields

offer a powerful method by which objects can be repre-

sented, manipulated and rendered. Animators are inter-

ested in them for collision detection and morphing purposes

and vision and image understanding researchers use them

for skeletonisation, thickening, thinning, shape interpola-

tion and general distance calculations. An example of a

space-filled distance field for the rook is shown in Figure 5.

At a distance of zero we have the original surface, and for

various offsets we obtain the other surfaces as depicted.

Figure 5. Rendering of rook space filled dis

tance field at several different offsets.

It is now being appreciated that these distance fields have

many uses, such as:

� Skeletonisation – Danielsson [5], Paglieroni [19],

Zhou et al. [31] and Zhou and Toga [32] use distance

information to extract the skeletal representation of an

object.

� Machine vision applications (Paglieroni [19]) – In-

cluding, thickening, thinning, correlation, and conver-

gence.

� General distance calculations – e.g. the calculation of

distance to objects or contours and the production of

Voronoi tessellations.

� Shape-based interpolation (Levin [17] and Herman et

al. [9]) – Intermediate slices in scanned data can be

interpolated from distance information. Interpolation

from the original data causes abrupt changes at bound-

ary locations.

� Distance field manipulation [20] – Distance informa-

tion is added to surface models to allow their manipu-

lation. Such manipulations include: interpolation be-

tween two surface models, offset surfaces, blending of

two surface, and surface blurring.

� Volume morphing – A morph between two distance

volumes can be easily created with the use of simple

linear interpolation [1], Figure 6 gives some images

from such a morph. Cohen-Or et al. [4] use distance

fields along with warp functions to create a morph be-

tween two general topological objects.

Figure 6. Simple morph between a sphere and

a CT skull.

Fig. 7 demonstrates the application of hypertexture to

distance fields of triangular mesh objects and the UNC

CThead.

� Accelerating ray tracing – Yagel and Shi [30], Cohen

and Sheffer [3], and Semwal and Kvarnstrom [24] all

use CDT (see later) distance information to accelerate

ray tracing. The general principal behind each method

is to use the distance information to skip over large

empty spaces.

� Hypertextures (Satherley and Jones [23]) – Non-

geometrically definable volume datasets, such as CT

scans, can be converted to distance fields, allowing the

application of Perlin and Hoffert’s hypertexture [21]

effects, Figure 7.

All of the applications listed above require and use a

space-filled distance field. As it is so costly to compute

accurately, a faster (very inaccurate) propagation method

known as a distance transform (DT) is used upon the bi-

nary segmentation of the underlying object.

We will describe this basic method, and place it into con-

text with other methods in our following classification. As

many computer graphics researchers are using the simple

model, the classification serves not only to demonstrate our

own methods, but also to bring other methods to a wider

audience.



Figure 7. Hypertexture applied to the distance
fields for a chess piece, a dodecahedron and

the UNC CThead dataset.

4.2 Classification

In this section we will classify the different available

types of distance fields and indicate computational time and

accuracy. As a rough guide Figure 8 demonstrates the main

classification with the faster less accurate computation to-

wards the left. For the purposes of this paper we will report

our research on the conversion of the UNC CThead into a

distance field. The methods reported have also been applied

to triangular mesh data (Figure 5).

Binary Segmented Distance Shell

Propogate

Chamfer

Distance Field

Chamfer Vector

Distance Field

Vector

Sub-voxel accurate

Propogate

Figure 8. Classification (less accurate, but
faster towards left).

4.3 Binary Segmentation

Almost all previous research has employed a binary seg-

mentation (equation 2) of the surface to be encoded as this

is easier to compute (than the method given in Section 4.4).

After binary segmentation using equation 2, the next stage

is to construct an initial distance field, D using equation 3:

D(p) =

�
0 if f(p) = 1; 9 q 2 p26; f(q) = 0

1 otherwise

where p 2 Z3; and p26 is the set of voxels

which are the 26 neighbours of p

(3)

4.3.1 Distance Field

At this stage we could create a space filled distance field by

carrying out a full distance field calculation:

FOR each voxel v
min=infinity
FOR each voxel c

IF D(c)=0 THEN
dist=|c-v|
min=min(dist,min)

On an 800MHz Athlon this algorithm takes approxi-

mately 2 weeks with no acceleration (such as the use of

octrees). Obviously such a method is too time consuming

and therefore propagation methods (or distance transforms)

have been employed.

4.3.2 Chamfer Distance Transform

The simplest method is the chamfer method: Local dis-

tance propagation (equation 4) is achieved with a number of

passes of a distance matrix, dM . Each pass loops through

each voxel in a certain order and direction according to the

needs of the matrix.

D(x; y; z) = min
��
D(x+ i; y + j; z + k)+

dM (i; j; k)
�
8 i; j; k 2 dM

�

where i; j; k 2 Z

(4)



Chamfer distance transforms propagate local distance by

addition of known neighbourhood values obtained from the

distance matrix, dM , (an example of which is in Figure 9).

Each value in the matrix represents the local distance value.

This matrix is applied in two passes (and not recursively

propagating one distance at a time as some authors have

reported in previous work).

/* Forward Pass */
FOR(z = 0; z < fz; z++)
FOR(y = 0; y < fy; y++)
FOR(x = 0; x < fx; x++)
D(x,y,z) = Eq.4

/* Backward Pass */
FOR(z = fz-1; z � 0; z--)
FOR(y = fy-1; y � 0; y--)
FOR(x = fx-1; x � 0; x--)
D(x,y,z) = Eq.4

3

225

5 5

5

2

22

2

6

6

6

6 6

6

6

65

5 5

5

3 3

33

6

6

65

5

5

5

6

6 5 6

5

656

5 1

3 3

3 3

3

6 5 6

6326

5 2 2 5

63236

6 5 6

5 5

5225

1

1

3 3

1

3 3

3 3

3 3

33

3 3

0

1

1

3

3

3 3

3

3

3

Figure 9. QuasiEuclidean 5 � 5 � 5 chamfer
distance matrix.

The forward pass (using the matrix above and to the left

of the bold line, shown in italic font) calculates the dis-

tances moving away from the surface towards the bottom

of the dataset, with the backward pass (using the matrix be-

low and to the right of the bold line) calculating the remain-

ing distances. This method is computationally inexpensive

since each voxel is only considered twice, and its calcula-

tion depends upon the addition of elements of the matrix to

its neighbours.

This method of distance generation is very inaccurate,

and hence all of the applications that rely on the method

are using inaccurate data. We required distance fields to

produce hypertextured objects, and we found that the best

distance transforms did not produce accurate enough data

for the hypertexture to operate convincingly. This led us to

investigate vector propagation methods.

4.3.3 Vector Distance Transforms (VDTs)

Vector methods [18] store a vector to the closest surface

point at each voxel. These vectors are propagated to neigh-

bouring voxels in a prescribed way similar to the propaga-

tion of distances via the distance matrix. Previous vector

propagation methods operated on a binary segmented data

set (as in Equation 3), and so are attempting to produce a

distance field from an object encoded as Figure 1(a).

VDTs generally require more passes of the distance ma-

trix. During each pass the vector components are added

to the necessary vector position, the distance calculated, a

decision made as to whether any of the new distances are

minimal, and finally the minimal vector is stored.

To allow vector propagation Eqs. 3 and 4 are modified as

shown in Eqs. 5 and 6 respectively.

~V (p) =

8><
>:
(0; 0; 0)

if p 2 S and

9 q 2 p26; q =2 S

(1;1;1) otherwise

(5)

D(p)=min
��~V (x+i;y+j;z+k)+dM(i;j;k)

��
8i; j; k 2 dM , where dM = ( ~Mx; ~My; ~Mz)

(6)

Figure 10 shows the matrix passes employed by our Vec-

tor City VDT.

4.4 SubVoxel Accurate Distance Field

The previous sections dealt with the left hand side of

our classification (Figure 8) and produce distance fields

which poorly approximate the underlying object. Our

main contribution to this area is two-fold – firstly we

use our distance shell Sv of Section 3.3 (Figure 1(c))

as the starting point (although vectors to the closest sur-

face point, rather than the distance to that point are

stored), and secondly, we propagate distances using a

new transform – the Vector City Vector Distance Trans-

form (VCVDT). Complete details and analysis of the

method and its comparison to previous methods can

be found in our report [22] (available on http://www-

compsci.swan.ac.uk/�csmark/voxelisation/). This paper

differs from the report in the fact that it presents the

VCVDT method as being applied to sub-voxel accurate dis-

tances, contains information about using the method for

modelling objects and is intended to present the results to

a different audience.

Our method for modelling objects is to first calculate

vectors for each v 2 Sv (as defined in Section 3.3) to the

closest point on the surface. For triangular mesh objects,

the closest point on the triangle is used. Computational

time can be improved by using an octree to organise the

object – parts of the octree outside the current closest dis-

tance can be ignored (thus reducing the number of triangles

to be considered for each voxel). A new voxel can use its

neighbours closest point as an initial starting point (so that

large amounts of the octree are ignored).

For CT data (or any other non-Euclidean grey-level

data), 8 neighbouring voxels are considered to make a brick

cell. A cell is transverse if at least one voxel is inside the

surface and at least one voxel is outside. For each v 2 Sv



the closest transverse cells are stored in a list (again an oc-

tree and neighbour information is used to speed computa-

tion). Next, each transverse cube in the list is divided into

tetrahedra, and then the closest point is calculated as the

closest point on the triangular tiling of the tetrahedra [20].

This avoids the ambiguous cases present in marching cubes.

The list of cells contains all cells that could contain the clos-

est point – i.e. the furthest point in the closest cell is further

away than the closest point in the furthest cell.

The next stage uses this shell of voxels Sv about the

surface for which vectors to the closest point on the sur-

face are known, and all other voxels in the domain are ini-

tialised to a large value. We consider this voxel grid to be
~V (p) 2 R

3 where p 2 Z
3. The vectors are now propa-

gated (using the VDT method) throughout the volume so

that equation 6 is true (D is the final distance field).

The matrix passes 8 times through the data set as shown

in Figure 10 (our VCVDT), and dM is defined as the vector

values in Figure 10 (for further details see our report [22]).

As an example though, the first forward pass F1 is applied

to each voxel in the direction of increasing x, y and z. The

new vector at the voxel is the minimum of itself, its neg-

ative y neighbour with -1 added to the y component of its

vector, and similar for its negative x and z neighbours. This

small example may seem to indicate no account is taken of

whether we are moving away or towards the surface. In fact

later passes (and the minimum operator) ensure that account

is taken. It may also make obvious the fact that the method

may not give the correct closest voxel. This is true – the

method is an approximation, but as we shall see, it is about

20 times more accurate than previous approximate methods.

Figure 11 shows how the inaccuracies are introduced by the

method. The final distance is set to negative if f(v) = 1, or

positive if f(v) = 0.

(0
,-1

,0
)

(1,0,0)

(0,1,0)(0,1,0)

y

x

y

x

y

x

z

z

z

B1B2

B4

(0,0,0)

y

x

z

B3

Forward Pass Backward Pass

F4

y

z

x

y

z

x

F2

y

z

x

F3

y

z

x

F1

(-1,0,0)

(0,0,-1)

(0
,-1

,0
)

(1,0,0)

(0
,-1

,0
)

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,0)

(1,0,0)(-1,0,0)

(0,-1,0)

(-1
,0

,0
)

(-1
,0

,0
)

Figure 10. Eight pass vectorcity vector dis
tance transform.

correct vector
propogated vector
calculated vector

Figure 11. Incorrect vector propagation.

5 Results

Figure 12 shows several offset surfaces from the CT-

head rendered from the distance field produced from the

distance shell Sv using the above VCVDT vector trans-

form. A full animation can be found at http://www-

compsci.swan.ac.uk/�csmark/voxelisation/. The CThead

distance shell (i.e. accurately measured sub-voxel distances

to the skull for all v 2 Sv) takes 240 secs. Table 3 shows

the additional time required to propagate these vectors (and

calculating the final distances), using our new VCVDT

method, the current best method EVDT [18], and the CDT

method, and compares this to the true calculation. It can be

seen that for just over 4 minutes it is possible to compute the

full distance field to a good accuracy, rather than resorting

to the 8 hour computation. Propagating the shell vectors for

the chess piece to create a complete distance field takes less

than 2 seconds, and in fact Figure 5 was rendered from the

propagated rook distance field. We found that the field was

accurate enough for our purposes (hypertexture – Figure 7),

and the improved accuracy over the CDT method (currently

used by most researchers requiring distances), would have

advantages for all the applications mentioned earlier. Fig-

ure 13 shows a volume graphics scene composed of distance

field encoded chess pieces and rendered using the volume

rendering library – VLib [29].

6 Further Work

We are currently examining a hybrid technique using a

vector transform to direct the correct sub-voxel accurate cal-

culation. We anticipate that this will fall between the cor-

rect true calculation and transformed distance shell interms

of time. The distance field may be 100% accurate, although

this depends upon keeping a large list of candidates (Sec-

tion 4.4, paragraph 3). We are also investigating other ap-

plication areas not already identified in the literature.

7 Conclusions

We have introduced distance fields as a modelling

paradigm and in particular introduced the notions of shell

distance fields and space-filled distance fields. Figure 1



Distance method Time Error range Avg error

min-max per voxel

True Euclidean 8 hrs 0.000–0.000 0.000000

VCVDT 5.470s -0.334–0.334 0.000223

EVDT (previous best) 7.540s -0.518–2.533 0.004761

CDT (3� 3� 3) 4.842s -0.415–11.769 2.196785

CDT (City Block–most common) 1.320 -2.00–76.060 12.269071

Table 3. Comparison of VCVDT with other methods

Figure 12. Rendering of CThead space filled
distance field at different isovalues (offsets).

demonstrated their superiority over sampling methods and

table 2 their comparable execution time for distance shells.

Details for reproducing distance shells are given in 3.3

and 4.4. A case for needing space-filled distance fields was

made in Section 4.1, but computational expense was cited

as a major problem. Section 4.4 builds upon the knowledge

presented in section 4.3 to demonstrate that vector meth-

ods produce fairly accurate distance fields in less time. Our

contribution to that area is a sub-voxel accurate segmenta-

tion and a better vector transform, which we present in this

paper in relation to modelling objects.

We have demonstrated that distance fields can be used

to represent (voxelise) objects, but our overall aim was to

demonstrate to the graphics community that fast, accurate

space filled distance fields can be calculated from distance

shells and thus become a realistic modelling paradigm with

many (already identified) application areas.

Acknowledgements

This work has been undertaken with funding from EP-

SRC, UK, under grants GR/L88238 and GR/R11186.

Figure 13. A Volume Graphics scene using
subvoxel accurate distance field encoded

chess pieces.

References

[1] D. E. Breen, S. Mauch, and R. Whitaker. 3D scan conver-

sion of CSG models into distance volumes. In Proceedings

of the 1998 Symposium on Volume Visualization, ACM SIG-

GRAPH, pages 7–14, October 1998.

[2] M. Chen, A. Kaufman, and R. Yagel, editors. Volume

Graphics. Springer-Verlag, 2000.

[3] D. Cohen and Z. Sheffer. Proximity clouds - an accelera-

tion technique for 3D grid traversal. The Visual Computer,

11:27–38, 1994.

[4] D. Cohen-Or, D. Levin, and A. Solomovici. Three-

dimensional distance field metamorphosis. ACM Transac-

tions on Graphics, 17(2):116–141, Apr. 1998.

[5] P.-E. Danielsson. Euclidean distance mapping. Computer

Graphics and Image Processing, 14:227–248, 1980.

[6] S. Fang and H. Chen. Hardware accelerated voxelisation. In

Volume Graphics, pages 301–315. Springer, 2000.

[7] S. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones.

Adaptively sampled distance fields: A general representa-

tion of shape for computer graphics. In SIGGRAPH Pro-

ceedings on Computer Graphics, pages 249–254, July 2000.



[8] S. F. F. Gibson. Using distance maps for accurate surface

representation in sample volumes. In Proceedings of the

1998 IEEE Symposium on Volume Visualization, pages 23–

30, Oct. 1998.

[9] G. T. Herman, J. Zheng, and C. A. Bucholtz. Shape-based

interpolation. IEEE Computer Graphics and Applications,

12(3):69–79, May 1992.

[10] M. W. Jones. 3D distance from a point to a triangle. Tech-

nical Report CSR-5-95, Department of Computer Science,

University of Wales, Swansea, February 1995.

[11] M. W. Jones. The production of volume data from triangu-

lar meshes using voxelisation. Computer Graphics Forum,

15(5):311–318, December 1996.

[12] M. W. Jones. Direct surface rendering of general and ge-

netically bred implicit surfaces. In Proceedings of 17th An-

nual Conference of Eurographics (UK Chapter) Cambridge,

pages 37–46, April 1999.

[13] M. W. Jones and M. Chen. A new approach to the con-

struction of surfaces from contour data. Computer Graphics

Forum, 13(3):C–75–C–84, September 1994.

[14] M. W. Jones and M. Chen. Fast cutting operations on three

dimensional volume datasets. In Visualization in Scientific

Computing, pages 1–8. Springer-Verlag, Wien New York,

January 1995.

[15] A. Kaufman. An algorithm for 3D scan-conversion of poly-

gons. Proc. of Eurographics ’87, Amsterdam, The Nether-

lands, pages 197–208, August 1987.

[16] A. E. Kaufman. State-of-the-art in volume graphics. In Vol-

ume Graphics, pages 3–28. Springer, 2000.

[17] D. Levin. Multidimensional reconstruction by set-valued ap-

proximation. IMA J. Numerical Analysis, 6:173–184, 1986.

[18] J. C. Mullikin. The vector distance transform in two and

three dimensions. CVGIP: Graphical Models and Image

Processing, 54(6):526–535, 1992.

[19] D. W. Paglieroni. Distance transforms: Properties and ma-

chine vision applications. CVGIP: Graphical Models and

Image Processing, 54(1):56–74, Jan. 1992.

[20] B. A. Payne and A. W. Toga. Distance field manipulation of

surface models. IEEE Computer Graphics and Applications,

12(1):65–71, 1992.

[21] K. Perlin and E. M. Hoffert. Hypetexture. In Proc. SIG-

GRAPH ’89 (Boston, Mass., July 31-August 4, 1989), vol-

ume 23(3), pages 253–262. ACM SIGGRAPH, New York,

July 1989.

[22] R. Satherley and M. W. Jones. Vector-city vector distance

transform. Technical report, University of Wales Swansea,

Singleton Park, Swansea, Feb. 2000. Submitted to Computer

Vision and Image Understanding.

[23] R. Satherley and M. W. Jones. Hypertexturing complex vol-

ume objects. Technical report, University of Wales Swansea,

Singleton Park, Swansea, Oct. February 2001. to appear in

WSCG 2001.

[24] S. K. Semwal and H. Kvarnstrom. Directed safe zones and

the dual extent algorithms for efficient grid traversal dur-

ing ray tracing. In Graphics Interface ’97, pages 76–87,

Kelowna, British Columbia, May 1997.

[25] M. Srámek and A. E. Kaufman. vxt: A class library for

object voxelisation. In Volume Graphics, pages 119–134.

Springer, 2000.

[26] U. Tiede, K. H. Höhne, M. Bomans, A. Pommert,

M. Riemer, and G. Wiebecke. Investigation of medical 3D-

rendering algorithms. IEEE Computer Graphics and Appli-

cations, 10(2):41–53, March 1990.

[27] S. W. Wang and A. E. Kaufman. Volume sampled voxeliza-

tion of geometric primitives. In Proc. Visualization 93, pages

78–84. IEEE CS Press, Los Alamitos, Calif., 1993.

[28] A. Watt and M. Watt. Advanced Animation and Rendering

Techniques. Addison-Wesley, 1996.

[29] A. S. Winter and M. Chen. vlib: A volume graphics library.

2001. Submitted to Volume Graphics 2001.

[30] R. Yagel and Z. Shi. Accelerating volume animation by

space-leaping. In Proceedings of IEEE Visualization ’93,

pages 62–69, Oct. 1993.

[31] Y. Zhou, A. Kaufman, and A. W. Toga. Three-dimensional

skeleton and ceterline generation based on an approximate

minimum distance field. The Visual Computer, 14:303–314,

1998.

[32] Y. Zhou and A. W. Toga. Efficient skeletonization of vol-

umetric objects. IEEE Transactions on Visualization and

Computer Graphics, 5(3):196–209, 1999.


