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This paper presents a novel isogeometric inverse Finite Element Method (iFEM) formulation, 

which couples the NURBS-based isogeometric analysis (IGA) together with the iFEM 

methodology for shape sensing of complex/curved thin shell structures. The primary goal is to 

be geometrically exact regardless of the discretization size and to obtain a smoother shape 

sensing even with less number of strain sensors. For this purpose, an isogeometric Kirchhoff-

Love inverse-shell element (iKLS) is developed on the basis of a weighted-least-squares 

functional that uses membrane and bending strain measures consistent with the Kirchhoff-

Love shell theory. The novel iKLS element employs NURBS not only as a geometry 

discretization technology, but also as a discretization tool for displacement domain. Therefore, 

this development serves the following beneficial aspects of the IGA for the shape sensing 

analysis based on iFEM methodology: (1) exact representation of computational geometry, (2) 

simplified mesh refinement, (3) smooth (high-order continuity) basis functions, and finally (4) 

integration of design and analysis in only one computational domain. The superior capabilities 

of iKLS element for shape sensing of curved shells are demonstrated by various case studies 

including a pinched hemisphere and a partly clamped hyperbolic paraboloid. Finally, the 

effect of sensor locations, number of sensors, and the discretization of the geometry on solution 

accuracy is examined.  

I. Introduction 
 

 Over the last few decades, Structural Health Monitoring (SHM) has become a key technology of the future 

aerospace structures to achieve significant improvement in safety, reliability, and affordability. A typical SHM system 

provides real-time vehicle health information via sensors and software to mitigate accidents due to failure and achieve 

safe landing. The inverse Finite Element Method (iFEM) is a state-of-the-art methodology originally introduced by 

Tessler and Spangler [1, 2] for real-time reconstruction of full-field structural displacements in plate and shell 

structures that are instrumented by strain sensors. This inverse problem, commonly known as shape sensing, is the 

most crucial component of a typical SHM system. Since the first publication of iFEM algorithm [1, 2], many different 

numerical and experimental studies have been devoted to expand the horizon of the iFEM methodology in the 

literature. For instance, Tessler and Spangler [3] developed a three-node inverse shell element (iMIN3) utilizing 

lowest-order anisoparametric C
0
-continuous shape functions and adopting the kinematic assumptions of the Mindlin’s 

plate theory. More recently, Kefal and co-workers [4] have recently formulated a four-node quadrilateral inverse-shell 

element, iQS4, based upon a weighted-least-squares functional. This new element includes hierarchical drilling 

rotation degrees-of-freedom (DOF) and further extends the practical usefulness of iFEM for shape-sensing analysis 

of large-scale structures. Moreover, Gherlone and co-workers [5] formulated a robust inverse frame element that uses 

kinematic assumptions of Timoshenko beam theory including stretching, bending, transverse-shear and torsion 

deformation modes. Furthermore, Cerracchio et al. [6] has recently improved the original iFEM formulation Tessler 

and Spangler [1, 2] by adding the kinematic assumptions of recently developed Refined Zigzag Theory [7] in order to 

perform SHM of multi-layered composite and sandwich structures. Apart from theoretical developments, Kefal and 

Oterkus [8] performed shape-sensing of a longitudinally and transversely stiffened plate as a fundamental application 

of the iFEM framework to SHM of marine structures. Similarly, Kefal and Oterkus [9] presented a more sophisticated 

application of iFEM to marine structures namely displacement and stress monitoring of a chemical tanker based on 

iFEM algorithm. More recently, Kefal and Oterkus [10] have demonstrated the application of the iFEM methodology 
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for monitoring multi-axial deformations and stresses of a Panamax containership advancing in beam sea waves. All 

these investigations have so far proved that the iFEM framework is an accurate, robust, and fast shape- and stress-

sensing algorithm 

 Moreover, isogeometric analysis (IGA) originally introduced by Hughes et al. [11], presents smooth function 

spaces such as Non-Uniform Rational B-spline (NURBS) to numerically solve a number of engineering problems. 

Recently, IGA received a great deal of attention from both academy and industry (e.g., refer to [12]) due to the high-

order continuity ( , 0)p
C p >  provided by NURBS in both geometric domain and physical simulation. In fact, a 

smoother shape sensing can be obtained based on the iFEM framework, if the shape functions ensure a high-order 

continuity throughout the element interior and edge interface. Therefore, the main and novel aim of this study is to 

carry out a better shape sensing analysis of aerospace structures by coupling the NURBS-based IGA together with the 

iFEM methodology. For this purpose, a rotation-free isogeometric inverse-shell element is developed based on the 

kinematic assumptions of the Kirchhoff-Love plate/shell theory and this inverse-shell element labelled as iKLS. The 

shape sensing capability of the iKLS element is validated by solving two numerical examples, namely pinched 

hemisphere and partly clamped hyperbolic paraboloid. Finally, the effect of sensor locations, number of sensors and 

the discretization of the geometry on solution accuracy is examined. 

 

II. Rotation-free isogeometric inverse-shell element formulation 
 

 A novel isogeometric Kirchhoff-Love inverse-shell element, labeled iKLS, is developed on the basis of iFEM 

least-squares formulation. This development couples the NURBS-based IGA together with the iFEM methodology 

for shape sensing analysis of thin shell structures such as aerospace structures. In the following formulation, Greek 

indices take the values of 1 and 2 while the Latin indices range from 1 to 3. The convective coordinates are 
1 2 3

[ ]
Tβ β β=β  where αβ  denotes in-plane coordinates and 

3β  defines thickness direction of the shell. The 

iKLS element has a uniform shell thickness 3
[ , ]h hβ ∈ − +  and the material points located at the mid-surface of the 

shell are described as 3
0β = . The parametric coordinates [ ]

Tξ η ζ=ξ  used to define the NURBS basis functions 

are associated with the convective coordinates β  as physical space. The necessary position vectors to develop the 

iKLS formulation, translation degree-of-freedoms (DOFs) of 
th
i  control point 

1 2 3( , , )i i i
d d d , and displacement vector 

components 
1 2 3( , , )v v v  are demonstrated in Figure 1. 

 

 

Figure 1. (a) iKLS element. (b) Translational DOFs of 
th
i  control point. 

 

 The position vector to a material point on the mid-surface of the iKLS element can be described by the finite sum 

of NURBS element basis functions as 

1 2( , ) ( , )
i i i i

i i

R Rβ β ξ η≡ = ≡∑ ∑x x B B  (1) 



 

American Institute of Aeronautics and Astronautics 
 

 

3 

where 
i
R  is the NURBS basis functions and 

i
B  are the coordinates of the control points that defines the physical 

geometry of the iKLS element. The covariant base vectors of mid-surface 
α
a  can be obtained in reference 

configuration by taking the partial derivatives of x  with respect to convective coordinates αβ  as 

1 2

,( , )
i i

i

Rα α αα
β β

β

∂
≡ = =

∂
∑

x
a a B  (2) 

Using the basis vectors 
α
a , a unit-magnitude vector field (the director vector) that is perpendicular to the tangent 

plane of any point belongs to mid-surface can be defined as 

1 2 1 2

1 2

( , )β β
×

≡ =
×

a a
F F

a a
 (3) 

Then, the position vector x , the director vector F , and the thickness direction convective coordinate 
3β  can be 

utilized to define a position vector to an arbitrary material point of the shell body in the reference configuration as 

1 2 3 1 2 3 1 2( , , ) ( , ) ( , )β β β β β β β β≡ = +X X x F   (4) 

The displacement vector v  representing the displacement field between reference and current configurations of the 

shell body can be defined as  

1 2 1 2 1 2 1 2

1 2 3( , ) [ ( , ) ( , ) ( , )]Tv v vβ β β β β β β β≡ =v v  (5a) 

and the same NURBS basis functions used for the physical geometry discretization can be utilized to express the 

displacement field as 

1 2( , ) ( , ) i i

i i

i i

R Rβ β ξ η≡ = ≡∑ ∑v v d d   (5b) 

where 
1 2 3

[ ]
i i i i T

d d d=d  is the translational DOFs of each control point that are used to define the local basis 

functions the iKLS element. According to the Kirchhoff-Love hypothesis as the director vector F  remains normal to 

the mid-surface, deformation of any arbitrary point in the shell body can be defined from a linearized rotation θ  of 

the director vector F  as [13] 

( )1 2 3 3( , , )β β β β≡ = + ×u u v θ F  (6a) 

where the rotation vector θ  represents an element of tangent space spanned by in-plane base vectors 
α
a  and can be 

defined as 

1 2

1 1 2 2 ,2 1 ,1 2( , ) ( ) ( )β β φ φ≡ = + ≡ ⋅ − ⋅θ θ φ φ v F φ v F φ  (6b) 

1 2

α

α
=

×

a
φ

a a

 (6c) 

where 
α
φ  is the director of rotation angles αφ . It is important to note that, the difference vector ×θ F  represents the 

difference between the director of the reference and current configuration of the shell body. For small deformations, 

the linearized three-dimensional Green-Lagrange strain in curvilinear coordinates can be defined as 

i j

ij
ε= ⊗ε G G   (7a) 

with 

, ,

1
( )
2

ij i j j i
ε = ⋅ + ⋅u G u G   (7b) 

where 
i

G  is the contravariant base vectors of the shell and 
ij

ε  is the Green-Lagrange strain tensor coefficients. The 

individual components of Green-Lagrange strain tensor coefficients 
ij

ε  can be computed as 
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( )( )3

11 ,1 1 ,1 ,1 1 ,1
ε β= ⋅ + ⋅ + × ⋅v a v F F a θ  (8a) 

( )( )3

22 ,2 2 ,2 ,2 2 ,2
ε β= ⋅ + ⋅ + × ⋅v a v F F a θ  (8b) 

( ) ( )( )3

12 12 ,1 2 ,2 1 ,1 ,2 ,2 ,1 2 ,1 1 ,2
2ε γ β= = ⋅ + ⋅ + ⋅ + ⋅ + × ⋅ + × ⋅v a v a v F v F F a θ F a θ  (8c) 

3
0

i
ε =  (8d) 

For the sake of brevity, the non-zero Green-Lagrange strain tensor coefficients of iKLS element can be written in a 

compact vector form as  

11

3

22

12

( ) ( )e e m e b e

ε
ε β ζ
γ

⎧ ⎫
⎪ ⎪ ≡ + ≡ +⎨ ⎬
⎪ ⎪
⎩ ⎭

e d k d B d B d  (9a) 

1 2
[ ]cp

Ne T
=d d d d  (9b) 

where ( )ee d  is the membrane strains associated with stretching of the mid-surface, ( )ek d is the bending curvatures, 

e
d  is translational DOF of all the control points, and the superscript 

cp
N  is total number of control points. The matrices 

m
B  and 

b
B , given in Eq. (9a), contain the derivatives of the NURBS shape functions corresponding to membrane 

and bending actions of the iKLS element, respectively.  

 Discrete in-situ strain measurements obtained from on-board sensors are the fundamental input of the iFEM 

formulation. To calculate membrane and bending section strains experimentally, the in-situ strain rosettes should be 

located on top and bottom surfaces of the iKLS element, as shown in Figure 2. 

 

 
Figure 2. Discrete surface strains measured by strain rosettes within iKLS element at 1 2( , , )

i i i
hβ β≡ ±X X  

locations. 

 

 The experimentally measured (in-situ) membrane section strains 
i

ε
e  and curvatures 

i

ε
k  that correspond to their 

analytic counterparts, ( )ee d  and ( )ek d  given by Eq. (9a), can be determined from the measured surface strains at 
s
N  

discrete locations 1 2( , , )
i i i

hβ β≡ ±X X  ( 1,..., )
s

i N=  located within the element. These in-situ section strains are 

computed as follows [1, 2] 

( )
1

2
i i i

ε + −
= +e ε ε  (10a) 

and 

( )
1

2
i i i

h

ε + −
= −k ε ε  (10b) 

where 
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11 22 12
[ ]

T

i i
ε ε γ+ + + +

=ε  (10c) 

and 

11 22 12
[ ]

T

i i
ε ε γ− − − −

=ε  (10d) 

are the measured surface strains, with the superscripts ‘+’ and ‘–’ denoting the quantities that correspond to the top 

and bottom surface locations, respectively.  

 The iFEM formulation reconstructs the deformed shape of a discretized structure by minimizing a least-squares 

functional with respect to the nodal DOF of the entire discretization. For an individual iKLS element, this functional, 

( )eΦ d , accounts for the membrane and bending deformations and can be expressed as  

2 2

( ) ( ) ( )e e eε ε
Φ = − + −d e d e k d k  (11a) 

The squared norms expressed in Eq. (11a) can be written in the form of the normalized Euclidean norms as 

2 2

1

1
( ) ( )

s
N

e e

i i

is A

dA
N

ε ε

=

⎡ ⎤− ≡ −⎣ ⎦∑∫e d e e d e  (11b) 

and 

2
2 2

1

(2 )
( ) ( )

s
N

e e

i i

is A

h
dA

N

ε ε

=

⎡ ⎤− ≡ −⎣ ⎦∑∫k d k k d k  (11c) 

where A  represents the mid-plane area of the element. Minimizing the iFEM least-squares functional, given by Eq. 

(11a), with respect to the nodal displacement DOF gives rise to 

( )
( ) 0

e

e e e e

e
δ

∂Φ
Φ ≡ = − =

∂

d
d Γ d Ε

d
 (12a) 

or simply 

e e e
=Γ d Ε  (12b) 

where 
e
Γ  is the local left-hand-side matrix, 

e
Ε  is the local right-hand-side vector that is a function of the measured 

strain values, and 
e
d  is translational DOF of all the control points that are the unknowns in the analysis. The element 

e
Γ  matrix can be explicitly written in terms of the matrices 

m
B  and 

b
B  as 

2( ) (2 ) ( )e m T m b T b

A

h dA⎡ ⎤= +⎣ ⎦∫Γ B B B B  (12c) 

The 
e
Ε  vector is a function of the number of strain sensors within the element as well as the measured section-strain 

values, and is given as 

2

1

1
( ) (2 ) ( )

s
N

e m T b T

i i

is A

h dA
N

ε ε

=

⎡ ⎤= +⎣ ⎦∑∫Ε B e B k  (12d) 

 Once the element matrix equations are established, the element contributions to the global linear equation system 

of the discretized structure can be evaluated. After that, the resulting system of equations can be reduced to well-

conditioned system of equations by prescribing problem-specific displacement boundary conditions. The solution of 

this system of equations provides the deformed structural shape at any real-time. 

 

III. Numerical results 
 

The pinched hemisphere 

 The pinched hemisphere problem proposed and studied by many researchers [14, 15] is solved here as a 

benchmark problem. The hemispheric shell is subjected to the four different concentrated loads as shown in Figure 3. 
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The prescribed boundary conditions are the minimum required to prevent rigid body motions. In other words, the apex 

of the hemisphere along Z-direction needs to be fixed in order to eliminate the rigid body motion. Linear, elastic and 

isotropic material properties E and v, magnitude of the concentrated force F, radius of the hemisphere R, and thickness 

of the hemisphere 2h are given in Figure 3. This problem is challenging in terms of demonstrating bending capability 

of the iKLS element because it exhibits almost none of membrane strains. Moreover, doubly curved geometry and 

point loading make this problem highly sensitive to locking phenomena. By utilizing the advantage of symmetry, only 

one quarter of the structure is modelled and symmetry constraint and loading boundary conditions are applied. The 

quantity of interest is 
A

U , i.e., the displacement along the direction of the loading F at point A (refer to Figure 3). The 

associated reference solution is given as 0.0924 m
A

U =  in [14, 15]. 

 

 
Figure 3. Pinched hemisphere. 

 

 An accurate reference solution is established by performing a convergence study using direct FEM analysis. The 

most refined mesh consisted of 7500 uniformly distributed rectangular elements, possessing 45906 DOF. The value 

of the displacement at point A is found as 0.0921 m
A

U =  from the high-fidelity FEM analysis, which is in a fairly 

well agreement with the reference solution. Therefore, the FEM deflections and rotations are used to calculate the 

simulated strain-sensor strains. In the current iFEM analysis, five different iKLS discretization are generated by 

uniformly dividing edges of one quarter of the hemisphere into 2, 4, 6, 8, and 10 segments, respectively. In each iKLS 

mesh, two strain rosettes are placed at the centroid of each iKLS element, one on the top and the other on the bottom 

surface. According to this arrangement of strain sensors, all of the iKLS elements are installed with strain sensors for 

each iFEM analysis. An example of strain rosette configuration for 4 segments per edge is illustrated for the iKLS 

discretization in Figure 4.  

 

 
Figure 4. Discretization (4 segments per edge) of one-fourth of the hemisphere using iKLS elements with top- 

and bottom-surface strain rosettes per each element. 
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 Once the iFEM analyses are performed using iKLS model, the same shape sensing analyses are also conducted 

using the iQS4 element [4] in order to make a clear comparison between iKLS and iQS4 elements. The 
A

U  

displacement results are plotted with respect to the number of sensors on the each edge, as depicted in Figure 5. This 

result clearly demonstrates the greater shape sensing accuracy of the iKLS element in comparison to iQS4 element. 

In fact, using iKLS element allows us to improve the accuracy of shape sensing analysis even if a very coarse mesh 

(with a low number of strain-sensors) is used for the analysis. This is due to the fact that the polynomial degree of the 

NURBS can be elevated without changing the location of knots, hence the number of elements will remain unchanged. 

This feature of the NURBS basis function can be exploited for obtaining more accurate results. 

 

 
 

Figure 5. 
A

U  displacement result comparison between iKLS and iQS4 elements. 

 

 The contour plots of the U displacement are depicted in Figure 6 where contour plots for iFEM analysis are 

graphically almost identical to those of FEM analysis. Moreover, the percent difference between iFEM and FEM 

predictions for maximum value of the U displacement is approximately 5.8% (refer to Figure 6). These observations 

confirm the superior bending capability of the iKLS element, even if a low-fidelity discretization (4 segments per 

edge) with few number of sensors (i.e., 16 2 32× =  strain rosettes in total) is used in the shape sensing analysis. 

Remarkably, these predictions demonstrate the high quality precision of isogeometric iFEM solutions for shape 

sensing analysis of a complex and doubly curved geometry. 

 

     

Figure 6. Contour plots of U  displacement for iKLS model depicted in Figure 4; comparison between high-

fidelity FEM and iFEM analyses. 

 

A partly clamped hyperbolic paraboloid 

 According to Bathe and co-workers [16], partly clamped hyperbolic paraboloid problem is an excellent test for 

locking in bending-dominated situations. Therefore, shape sensing of the hyperbolic paraboloid is performed using 
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the iKLS element in order to better assess the capability of the iKLS element against the locking phenomenon. The 

mid-surface of the hyperbolic paraboloid is defined as 

2 2
Z X Y= − , ( ) [ ], / 2; / 2X Y L L∈ −  (13) 

It is very straightforward to construct this surface using second order B-splines. As depicted in Figure 7, the shell is 

clamped from the edge located at 2X L= −  and a gravitational load of g is applied. Linear, elastic and isotropic 

material properties and exact geometry of the shell is also given in Figure 7. Utilizing the symmetry of the problem, 

only one half of the shell is modelled for the computation and relevant symmetry constraint boundary conditions are 

applied. The quantity of interest is 
A

W , i.e., the vertical displacement along Z-direction at point A which is the midpoint 

of the edge located at 2X L= + , as shown in Figure 7. The associated reference solution is found as 

6.3941 mm
A

W = − in [16].  

 

 
Figure 7. Hyperbolic paraboloid. 

 

 A convergence study was performed using direct FEM analysis and an accurate reference solution is established 

for simulating sensor strains. The highest fidelity mesh has 22500 uniformly distributed rectangular elements and 

136806 DOF. The high-fidelity FEM analysis predicts this vertical displacement as 6.4061 mm
A

W = −  which agrees 

well with its associated reference solution [16]. In the following iFEM analysis, this problem is analyzed using five 

different iKLS discretization where edges of the geometry are uniformly divided into 2, 4, 6, 8, and 10 segments, 

respectively. Similar to the previous case study (hemisphere problem), each iKLS element has two strain rosettes in 

each iKLS model. Therefore, five different iFEM analysis of the paraboloid are performed considering all the iKLS 

elements installed with strain sensors. To give an example of strain rosette configurations, an iKLS model with 6 

segments per edge is presented in Figure 8. 

 

 
Figure 8. Discretization (6 segments per edge) of half of the hyperbolic paraboloid using iKLS elements with 

top- and bottom-surface strain rosettes per each element. 
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 Apart from the iKLS/iFEM analysis, the same shape sensing analyses of the hyperbolic paraboloid are also 

conducted using the iQS4 models with same number of strain sensors per edge. As depicted in Figure 9, the 
A

W  

displacement results obtained using iKLS and iQS4 elements are compared for varying number of sensors. 

Remarkably, this result validates the superior shape sensing capability of the iKLS element. 

 

 
Figure 9. 

A
W  displacement result comparison between iKLS and iQS4 elements. 

 

 Furthermore, in Figures 10, contour plots of W  displacements are compared between the iFEM and high-fidelity 

FEM analyses. In these figures, the iFEM contours correspond to the iFEM analysis that uses the iKLS model (6 

segments as presented in Figure 8) with 36 2×  strain rosettes in total. The percent difference between the iFEM and 

FEM for the maximum values of the W  displacement is only 4.1% (refer to Figure 10). As can be seen from these 

plots, both the iFEM and direct FEM contours are graphically indistinguishable. These results demonstrate the superior 

bending predictions of iKLS element, especially considering the low-fidelity mesh used in the iFEM analysis. 

 

     

Figure 10. Contour plots of W  displacement for iKLS model depicted in Figure 8; comparison between high-

fidelity FEM and iFEM analyses. 

 

IV. Conclusions 
 

 This paper focuses on the shape sensing of complex shell structures by coupling the NURBS-based IGA together 

with the iFEM methodology. An isogeometric Kirchhoff-Love inverse-shell element (iKLS) is developed for the 

numerical implementation of the proposed coupling between IGA and iFEM (isogeometric iFEM methodology). The 

presented iKLS formulation is applicable to perform shape-sensing analyses of complex thin plate and shell structures 

by using the strain data obtained from randomly distributed sensors on the structure. The bending capability of the 

iKLS element is examined by carrying out two numerical simulations including a pinched hemisphere and a partly 

clamped hyperbolic paraboloid. As a result, the bending efficiency of iKLS element has been justified even using the 

low-fidelity iKLS discretization. It has been demonstrated that the iKLS element has the advantage for shape sensing 
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of complex shell structures in comparison to iQS4 element. Moreover, it has been confirmed that even with a very 

coarse mesh (with a low number of strain-sensors), the iKLS element provides improved results by increasing the 

polynomial degree of the NURBS shape function without changing the location of knots. This feature can be exploited 

in the future to obtain more accurate shape sensing results for different type of elements that will be developed based 

on the proposed coupling.  
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