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Shape Signatures is a new computational tool that is being evaluated for applications in computational
toxicology and drug discovery. The method employs a customized ray-tracing algorithm to explore the
volume enclosed by the surface of a molecule and then uses the output to construct compact histograms
(i.e., signatures) that encode for molecular shape and polarity. In the present study, we extend the
application of the Shape Signatures methodology to the domain of computational models for cardiotoxicity.
The Shape Signatures method is used to generate molecular descriptors that are then utilized with widely
used classification techniques such as k nearest neighbors (k-NN), support vector machines (SVM), and
Kohonen self-organizing maps (SOM). The performances of these approaches were assessed by applying
them to a data set of compounds with varying affinity toward the 5-HT2B receptor as well as a set of
human ether-a-go-go-related gene (hERG) potassium channel inhibitors. Our classification models for
5-HT2B represented the first attempt at global computational models for this receptor and exhibited average
accuracies in the range of 73-83%. This level of performance is comparable to using commercially
available molecular descriptors. The overall accuracy of the hERG Shape Signatures-SVM models was
69-73%, in line with other computational models published to date. Our data indicate that Shape Signatures
descriptors can be used with SVM and Kohonen SOM and perform better in classification problems
related to the analysis of highly clustered and heterogeneous property spaces. Such models may have
utility for predicting the potential for cardiotoxicity in drug discovery mediated by the 5-HT2B receptor
and hERG.

Introduction

The heart is a highly complex structure that ensures the
survival of the organism. Consequently, xenobiotic-mediated
interference with its role in homeostasis can have catastrophic
effects manifesting in cardiotoxicity. For example, interference
with ion homeostasis by channel (1) or exchanger blockade (2),
altered coronary blood flow, oxidative stress, organellar dys-
function, and apoptosis are all potential mechanisms of car-
diotoxicity (3). Two different proteins, namely, the 5-HT2B

receptor and the human ether-a-go-go-related gene (hERG)1

potassium channel, have raised particular concern primarily due
to their association with cardiac valve disease or potassium
channel blockade, respectively. Unintended activity at these two

proteins independently by several drugs resulting in toxicity has
prompted their withdrawal from the market by the FDA. An
area of considerable interest in drug discovery research is the
computational modeling of toxicity-related proteins to identify
such potential problems as early as possible (4), especially as
currently there are no X-ray structures for these proteins.

Serotonin is found in many physiological systems from the
central nervous system to the intestinal wall and, in concert with
its many receptors, plays a major regulatory function in
cardiovascular morphogenesis. The 5-HT2 receptor family of
G-protein-coupled receptors including 5-HT2B is expressed in
cardiovascular, gut, and brain tissues as well as human carcinoid
tumors (5). In recent years, this receptor has been implicated in
valvular heart disease defects, caused by the now FDA-banned
“fen-phen” and pergolide (6–9). The primary fenfluramine
metabolite, norfenfluramine, potently stimulates 5-HT2B (10, 11).
Computational modeling of this receptor has been very limited
to date but is urgently needed to proactively identify drugs that
may bind this receptor.

Numerous classes of drugs have been shown to prolong the
QT interval, which reflects a slowing of repolarization of the
ventricular myocardium (12, 13), where excessive prolongation
can lead to the potentially life-threatening ventricular tach-
yarrhythmia, torsade de pointes. In cardiac tissue, inhibition of
potassium channels is associated with QT interval prolongation
(14, 15). The most common potassium channel linked to drug-
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induced QT interval prolongation is also responsible for the rapid
component of the delayed rectifier potassium current (IKr). The
focus of considerable research is hERG, which is believed to
encode the protein that underlies the delayed rectifier potassium
current IKr (16, 17), and many drugs associated with QT interval
prolongation have been found to block hERG (18–20). Several
drugs have been withdrawn from the market in the past decade
due to cardiovascular toxicity associated with undesirable
blockade of this channel. Since 2002, there have been numerous
studies that have described individual three-dimensional (3D)
quantitative structure-activity relationship (QSAR) models,
statistical models, or pharmacophores for hERG (21–34). These
different studies and others have encompassed a wide set of
data generation and modeling techniques as well as an array of
molecules for model building and testing as recently reviewed
(35). There are some gross similarities in the suggested
requirements for hERG inhibitors, namely, the requirement for
hydrophobic features surrounding a positive ionizable/basic
nitrogen feature. However, depending on the molecules and
techniques used for model building, the pharmacophore or
descriptors suggested may vary widely.

The focus to date has been primarily on individual hERG
models of a “global” nature consisting of structurally diverse
molecules across therapeutic targets (antipsychotics, antihista-
mines, antibiotics, etc.) although “local” models have also been
generated around narrow structural series (24). These ligand-
based computational models, along with a growing number of
homology models (36, 37), have provided insights that comple-
ment experimental studies such as site-directed mutagenesis
(38, 39). We recently illustrated for the first time the comparison
of multiple modeling approaches including Kohonen maps,
Sammon maps, and recursive partitioning with the same training
set, to assess whether one or a combination of approaches is
preferable (40). All hERG models were assessed with a sizable
external data set of published molecules and exhibited good
predictivity. In addition, it was found that a structural similarity
measure provides a valuable means to limit extrapolations far
beyond the training set of the quantitative recursive partitioning
model. The descriptors selected for the qualitative mapping
methods provide further insight into the structural features of
hERG inhibitors when compared with those generated by other
available methods, suggesting that molecular shape or topologi-
cal characteristics are also important for hERG inhibitors. Drugs
for noncardiovascular indications that interact with either 5-HT2B

or hERG are undesirable. Although there has been considerable
modeling of hERG within pharmaceutical companies and less
so for 5-HT2B, there is an unmet need for a computational
platform that focuses on identifying molecules that bind to either
of these proteins with affinity that may be clinically significant.

A new approach has recently been proposed that utilizes
molecular shape-dependent signatures as the basis for molecular
recognition (41). The Shape Signatures method employs a
customized ray-tracing algorithm to explore the volume enclosed
by the surface of a molecule, then uses the output to construct
compact histograms (“shape signatures”) that encode for mo-
lecular shape, polarity, and other biorelevant properties (Figures
1 and 2). The method has already proven successful for a
number of drug discovery programs when used for database
similarity searching (41–45) and has several advantages over
other approaches (Table 1). The goals of the present study were
to extend the Shape Signatures tool into the domain of
toxicology modeling. More specifically, we demonstrate that
Shape Signatures can be employed to generate ensembles of
3D molecular descriptors useful for classifying compounds with

respect to their experimentally tested activity at the 5-HT2B

receptor and the hERG channel. These models were also tested
against more traditional classification models with two-
dimensional (2D) molecular descriptors. Our aim is to develop
practical and accessible models that reliably predict whether a
molecule is likely to exhibit cardiotoxicity mediated via these
two proteins.

Experimental Procedures

Data Acquisition. A database of >130 unique molecules was
assembled for which patch clamp data for the hERG channel were
available (40). Following the analysis of Ekins and co-workers,
we selected 39 strong binders (IC50 < 1µM) and 44 weak binders
(IC50 > 10µM) (40). In the case of 5-HT2B, the recent annotation
of a database of binding information (Ki) for receptors (http://
kidb.cwru.edu/) provided 182 molecules with documented binding
properties (46). Among them, 116 compounds with Ki e 100 nM
were designated “active”, while 66 other compounds with low
affinity (Ki g 1µM) were “nonactive”. The full lists of compounds
for each target class are available in the Supporting Information.
The associated libraries of Shape Signatures required for classifica-
tion were generated using the procedure outlined below.

Shape Signatures Method. In the Shape Signatures method, 3D
molecular features, such as overall molecular shape and distribution
of charges, are encoded in the form of the 1D and 2D dimensional
histograms. The structure-related properties are regarded as key
indicators of ligand-receptor molecular recognition and, thus, to
the relative biological activity of the compound. These histogram-
based fingerprints (“signatures”) have been used to compare the
query molecule with other druglike compounds from precomputed
databases. Shape similarity between the two molecules is then
assessed by comparing their 1D signatures (Figures 1b and 2b).
Matching the 2D signatures of the two compounds compares their
overall molecular shapes and molecular electrostatic potentials
(MEP) (Figures 1c and 2c). The closest matches are retrieved for
further analysis. The process is fast and efficient, and the method
benefits from its ability to capture the true 3D structure of the
molecules without atom-based alignment of the molecules (43, 44).

A detailed description of the Shape Signatures technique can be
found in the original publication (41), and we only briefly highlight
the major steps of the algorithm. These descriptors are similar to
the PEST shape/property descriptors described previously by
Breneman et al. (47, 48). The procedure starts by generating a 3D
structure of the molecule under investigation using CORINA
(developed by J. Gasteiger et al., Molecular Networks GmbH,
Nägelsbachstrasse 25, 91052 Erlangen, Germany; http://www.mol-
net.de), followed by computing partial charges for each atom using
the Gasteiger-Marsili scheme (49). A solvent-accessible surface
(SAS) is then constructed around the molecule, and the triangulated
representation of this surface is subsequently generated by the
SMART algorithm (50). Next, the ray-tracing process is initiated
inside the cavity bound by the SAS, which encompasses the
molecule. The ray is propagated from a randomly chosen point on
the interior lining of the molecular compartment. As it strikes the
opposite side, it is reflected and propagates in the direction
determined by the law of optical reflection. As the ray bounces
back and forth inside the enclosed molecular compartment, it
generates a path composed of a number of straight line segments
joined by the reflection points. For each reflection point, two
quantities are calculated and stored in memory: the value of the
truncated Coulomb potential at this geometric point created by the
nearest atomic charges and the combined length of the incident
and reflected ray segments. Given a sufficient number of reflections
(100000 in this study), the trajectory of the ray will eventually
explore the entire volume of the molecule. To prevent trapping of
light inside some tight and unusually shaped parts of the molecular
compartment, the ray-tracing procedure is periodically stopped and
reinitiated from a different randomly selected point on the inner
surface. At the end of the run, all recorded ray segments are binned
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by their length in a 1D histogram with the predefined bin width of
0.5 Å (Figures 1b and 2b). Simultaneously, a second histogram is
also constructed; this one bins records by values of the MEP with
a step of 0.05 e/Å and the associated total length of the two path
segments joined by the reflection point, resulting in a 2D histogram
(41) (Figures 1c and 2c). Both histograms are properly normalized.
The first histogram encodes exclusively for the shape characteristics
of the molecule (it represents the probability distribution of finding
a ray segment of a particular length inside the SAS surrounding
the molecule), whereas the second histogram reflects both the
molecular shape and the 3D arrangement of atomic charges in this
molecule (it expresses a joint probability distribution of finding a
particular value of MEP with a certain length of the two ray
segments connected by the reflection point). Once calculated, the
resultant Shape Signatures fingerprints can be employed in a variety
of problems in drug discovery and computational toxicology, which
require matching chemical structures based on their shapes and
polarities.

Shape Signatures Molecular Descriptors. For every molecule
in this study, the heights of the corresponding normalized 1D and
2D shape signature bins comprise the sets of distinct molecular

descriptors related to this particular structure. Consequently, each
chemical has two sets of continuous descriptors: one based
exclusively on molecular shape and the other reflecting both
molecular shape and polarity. It is important to emphasize that
although these features are pieces of 1D and 2D shape signatures,
they are inherently 3D molecular descriptors since they encode for
the 3D arrangements of atoms and atomic charges in a molecule.
We also note that for all classification runs based solely on Shape
Signatures, no additional descriptors were appended to the input
Shape Signatures data vectors. As will be discussed later in the
text, a mixed descriptor scheme with some combination of the
traditional commercially available 2D descriptors [e.g., those in
Molecular Operating Environment (MOE), Montreal, Canada:
Chemical Computing Group Inc.] and the Shape Signatures-derived
3D descriptors seems an interesting continuation of the reported
analysis in the future.

As a preliminary test, we used the suggested descriptor allocation
scheme to cluster 22 bioactive compounds from our in-house
libraries. The set included 10 nuclear receptor (five estrogen receptor
and five androgen receptor) binders, five Pfmrk kinase inhibitors,
and seven tubulin ligands. Clustering was based on molecular shape

Figure 1. One-dimensional (1D) and 2D shape signatures of pergolide, a 5-HT2B active (strong binder, Ki ) 14 nM). (a) Chemical structure. (b)
1D (shape only) signature histogram. (c) 2D (shape and polarity) signature plot.
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captured by the 1D Shape Signatures histograms, used simple
Euclidean distances as similarity scores, and was performed by
constructing and analyzing Kohonen self-organizing maps (SOM)
(51). The results obtained (data not shown) indicated that structures
from different target families occupied distinct regions of the SOM,
and with only two clear misclassifications for the 22 molecules.
These misclassifications were genistein [a frequent hitter (52–54)]
and raloxifene, which was observed to lie closer to the androgen
receptor molecules rather than the estrogen receptor compounds
(55). Encouraged by these preliminary findings, we decided to build
classification models for the 5-HT2B receptor and hERG potassium
channel data sets.

Classification Procedures. We have investigated descriptors
derived from the Shape Signatures representations using different
classifier algorithms. For a simple classifier, we chose the k-nearest
neighbors (k-NN) algorithm (56), which is very easy to implement.
Despite its simplicity, this method has been shown to produce
acceptable results for many applications (57–59). In this method,
each query molecule from a given test set is compared in turn with
all compounds in the training data set with known class affiliations,
and similarity scores are calculated for every pair. The comparison

is made between the corresponding 1D and 2D shape signatures of
the two molecules, and we utilize the �-square measure (56), widely
employed for comparing discrete distributions, to compute similarity
scores. At the end of each run, the entire training set is rank ordered
with those more similar (to the query) structures being placed at
the top of the list. The decision on which class a given query
structure shall belong to is made based on a majority vote of its k
nearest, that is, k most similar, neighbors. For highly unbalanced
data sets, the weights of the neighbors are adjusted according to
their class prior probabilities. For an unbalanced data set, k-NN
with a straightforward majority vote will favor assignment to the
larger of the two classes as the size of the NN list grows. To avoid
such a situation, we need to adjust the majority vote rule accordingly
(or equivalently assign different weights to molecules on the NN
list belonging to different classes). It is therefore customary to vary
k within some range, depending on the size of the training set, in
search of the value with maximum prediction accuracy.

The support vector machine (SVM) method, based on the
principle of structural risk minimization (60, 61), is a relatively
recent addition to the family of supervised classification methods
[discussed in detail in a recent book chapter (62)]. This technique

Figure 2. 1D and 2D shape signatures of melatonin, a 5-HT2B nonactive (weak binder, Ki ) 12900 nM). (a) Chemical structure. (b) 1D (shape
only) signature histogram. (c) 2D (shape and polarity) signature plot.
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has already gained recognition as one of the most robust and
efficient classifiers (21, 56–58, 63). It can tackle nontrivial problems
by projecting the original descriptor vectors to a higher dimensional
feature space where a clearer division between the two classes of
data becomes feasible. In such a high-dimensional feature space, a
linear SVM routine is applied next to optimally position the
separating hyperplane between the instances from the two classes
(62). Minimization of the expected generalization error for the test
data sets is achieved by finding a separating hyperplane with the
maximal margin. Computationally, the transformation into a higher
dimensional feature space is implicit as only the distances between
the pairs of the transformed data are needed for training and these
are computed using the predefined kernel functions K, the associated
parameters for K, and the original input descriptor vectors. As such,
this approach is less likely to suffer from “data overfitting” and
can successfully handle situations involving hundreds or many
thousands of descriptors. We used a well-tested and freely available
program LIBSVM (C-SVM) (64). We worked with the radial basis
function kernel, whose parameter γ and the penalty term C were
determined in each case via a grid search procedure utilizing 5-fold
cross-validations.

The data sets ultimately used in this study included 83 chemicals
for the hERG potassium channel and 182 chemicals for 5-HT2B

receptor. For each of these data sets, a pair of 1D and 2D shape
signatures was constructed according to the procedure detailed
above. There are on average about 20-60 nonzero bins/descriptors
for the 1D (shape only) Shape Signatures histograms. For the 2D
histograms (shape and polarity), this number is significantly higher,
on the order of several hundred. Consequently, to avoid overfitting
in the latter case, we applied the unsupervised forward selection
(UFS) method of Livingstone and co-workers (65) to reduce the
dimensionality of the problem. The UFS scheme, which was
designed to eliminate redundancy and diminish multicollinearity
of the input data, has been demonstrated to be fairly successful for
a number of QSAR studies (65). The algorithm consists of two
major steps. While processing the original descriptor data matrix
(responses are not included), the routine first excludes descriptor
columns with small standard deviations (ε < εmin) as contributing
no significant information. It then analyzes the reduced data matrix,
selects two least correlated descriptor columns, and rejects those
with high pairwise correlation coefficients (R2

> Rmax
2). The list

of the selected descriptors is augmented by the column that has
the smallest squared multiple correlation coefficient. This step is
performed repeatedly, producing a growing list of nominated
descriptor columns, which survive the rejection filter based on the
squared multiple correlation coefficient with the columns picked
in the previous step. The procedure stops when the list of columns
is fully exhausted. For our experiments, we used the code available

from Whitley et al. (65), with the default parameter settings for
εmin and Rmax

2 as 0.0005 and 0.99, respectively.
Neural Network Modeling Using Self-Organizing Kohonen

Maps. As we have described previously (40, 66), the general idea
behind Kohonen maps (51) is to map a set of vectorial samples
onto a 2D lattice in a manner that preserves the topology of the
original space. Kohonen maps belong to a class of neural networks
known as competitive learning or self-organizing networks. The
Kohonen map consists of artificial neurons that are characterized
by weight vectors with the same dimensionality as the descriptor
set. The neurons are connected by a distance-dependent function.
In an unsupervised training algorithm, the neurons self-organize
until their pairwise neighborhoods represent the correct topology
of the original data set. Kohonen maps have recently been applied
to successfully model cytochrome P450-mediated drug metabolism
(67, 68) and hERG inhibition (40). The generation of the Kohonen
SOMs (51) was conducted using the Smart Mining software v1.01
(ChemDiv, Inc., San Diego, CA, www.chemosoft.com). A 7 × 7
node architecture was chosen to provide the studied molecules with
the optimal distribution space. The 5-HT2B data set included 140
compounds (77% of the entire database) denoted as a “training”
set (89 active and 51 nonactive) and 42 compounds (23% of the
entire database) denoted as a “test” set (27 active and 15 nonactive).
In total, 182 compounds (100%) were used for generation and
validation of the SOMs. Similar to the SVM analysis, Kohonen
networks were constructed using 102 2D Shape Signatures descrip-
tors computed for each molecule in the set. The training parameters
for the SOM were as follows: The classical algorithm based on
the incremental learning method was applied for generation of the
Kohonen maps, the neurons were studied using the normal
distribution law encoded by the Gaussian probability function, the
initial distribution of synaptic weights was randomly assigned, the
number of interactions for the training runs was 3000, the starting
adjustment radius for the training runs was 4, and the initial learning
rate factor was 0.5. We have used 30 randomizations of the input
training set for the Kohonen map generation. After the SOMs were
generated, we studied the distribution of active and nonactive
compounds within the best mapping. The resulting maps are shown
in Figure 3.

Model Testing. To carefully evaluate the performance of each
Shape Signatures/classifier combination applied to the hERG or
5-HT2B data, three different types of statistical testing were
undertaken. For the Shape Signatures paired with the SVM
approach, we conducted straightforward 10-fold cross-validations
on the entire data sets and subjected the systems to a series of leave-
N-out runs. The leave-N-out tests were designed as follows. For
either target, N compounds from the original data set were randomly
picked to represent the hold-out test set, and the rest of the data

Table 1. Comparison of Several Key Performance Measures for Traditional Descriptor-Based QSAR Approaches (1D, 2D, and
3D QSAR) vs Shape Signatures

asset
traditional descriptor-based

QSAR approaches
Shape Signatures

speed ��� ���
accuracy �� ��
scalability � ���

model requires reformulation
as new data added

no reformulation needed as
new data added

coverage � ���
descriptors must be available

for chemical species
always works, i.e., organics, inorganics,

organometallics, ions, etc.
sensitivity � ��

global model, lacks sensitivity (can also
be used for local models)

local model, enhanced sensitivity

domain applicability � ���
model very sensitive to chemical (sub)

structure of training set
much less sensitive to chemical (sub) structure

of training set
interoperability �� ���

integration with other QSAR
models requires reformulation

fully compatible with
other methods

ease of use �� ���
preprocessing of queries

requires time and know-how
no preprocessing, extremely

simple to use
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constituted the training set for this particular data partition. The
selection was carried out to approximately preserve the correct
proportion of active and nonactive structures in both sets. In
particular, for hERG, N ) 20 (24% of the data set) with 10 active
and 10 nonactive, and for 5-HT2B, N ) 42 (23% of the data set)
including 27 active and 15 nonactive molecules. Each classification
algorithm was then trained on the training set and applied to predict
class attributes of the compounds in the test set. Next, a set of
statistical indicators of prediction accuracy were computed and
stored. To obtain better statistical estimates, the described procedure
was repeated 30 times, each time with a different composition of
the test and training sets. For each target, the reported final statistical
measures were averaged over the indicated number of repetitions.

Model Statistics. A broad spectrum of statistical indicators is
available for assessing the performance of a given classification
model (56). In this study, we report the most commonly encountered
measures for estimating prediction accuracy of a classifier: sensitiv-
ity (SE), specificity (SP), and overall accuracy (Q). These quantities
are defined in terms of the numbers of true positives (tp) and false
positives (fp), indicating strong binders to either hERG or 5-HT2B

in our case, and the numbers of true negatives (tn) and false
negatives (fn), that is, presumably nonactive compounds. Sensitivity,
SE ) tp/(tp + fn), then expresses the prediction accuracy for
molecules with high affinity to the considered targets, whereas
specificity reflects the prediction accuracy for weak binders: SP )

tn/(tn + fp). We also tabulate the overall prediction accuracy defined
as Q ) (tp + tn)/(tp + fp + tn + fn). In addition, following Ung
et al. (58), we report the values of Matthew’s correlation coefficient
(69) C ) [tp × tn - fp × fn]/[(tp + fn)(tp + fp)(tn + fp)(tn +

fn)]1/2, which is another measure of the overall prediction perfor-
mance. This indicator has interesting properties: For a perfect
classifier (fp ) fn ) 0), C ) 1.0, while for random performance

(resulting in tp ≈ fp and tn ≈ fn on average), C ≈ 0. A negative
value of C would imply worse than random performance.

Results

hERG Models. An initial evaluation of the Shape Signatures
descriptors was performed with the hERG data set. The results
of various classification schemes applied to discriminate between
strong and weak blockers of hERG are summarized in Table 2.
All of the reported models perform substantially better than
random. The UFS-SVM model with shape and charge descrip-
tors appears to perform slightly better than the k-NN models.
The average prediction accuracy for the external test sets varies
from 66 to 74%, which is comparable to the 70-85%
established by summarizing the results of other predictive
modeling studies of hERG reported in the literature (35).

5-HT2B Models. Our evaluation of the 5-HT2B data is shown
in Table 3. As a direct comparison with Shape Signatures
descriptors, we have used a set of 184 2D molecular descriptors
available in MOE. The initial data matrix for these descriptors
was also processed by the UFS algorithm (described above),
and the resulting ensemble of 73 2D MOE descriptors was used
for final calculations. Both of the UFS-SVM models with Shape
Signatures or MOE descriptors perform similarly in terms of
model statistics resulting in prediction accuracies of 87% after
10-fold cross-validation (Table 3). We have also used UFS with
SOM and the Shape Signatures descriptors. Among 30 ran-
domizations used in the SOM, the average percentage of
correctly predicted compounds belonging to both classes
included in the training set was 85% for active compounds and

Figure 3. Separate distribution of 5-HT2B active (a) and nonactive (b) compounds within the Kohonen network (the best randomization). Darker
intensities relate to more molecules in that area. The data have been smoothed for presentation purposes.

Table 2. Classification of hERG Active and Nonactive Compounds Using Shape Signatures Descriptors with Different Methods

leave-20-out testingd

classification methoda descriptorsb 10-fold cross-validationc (%) SE (%) SP (%) Q (%) C

SVM shape only 77 70 68 69 0.390
UFS-SVM shape + charges 78 73 74 74 0.488
k-NN (k ) 7) shape only 68 79 53 66 0.343
k-NN (k ) 3) shape + charges 69 79 56 67 0.367

a The specified values of k for k-NN classifications are those that yield the maximum average overall prediction accuracies Q for the leave-20-out
experiments. b “Shape only” label descriptor sets derived from the 1D Shape Signatures histograms, and “shape + charges” designates descriptors sets
based on the 2D Shape Signatures histograms. c This column lists prediction accuracies estimated from 10-fold cross-validations performed on the entire
data set. d The tabulated values of SE, SP, Q, and C are averaged over 30 different hold-out test sets.
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86% for nonactive compounds. The average percentage of
correctly predicted compounds from the test set was 78% for
active compounds and 54% for nonactive compounds. On
average, 5% of the tested compounds were assigned to the
“unclassified” class. The ratio of correctly predicted compounds
from both tested groups (active and nonactive) was in general
well-balanced for the training sets (Figure 4a). At the same time,
a clear bias toward better prediction accuracy for active
structures was observed for the internal test sets (Figure 4b).
One possible reason for such bias is an increased dissimilarity
and smaller number of nonactive compounds in the training set
as compared to active compounds. Therefore, the training results
are statistically less significant for the nonactive subset.

Discussion

Computational Methods. Several ligand-based and structure-
based computational methods exist that implicitly or explicitly
include some representation of molecular shape. The program
UCSF DOCK (70, 71) packs spheres into a protein receptor
site; candidate ligands can then be evaluated for shape compat-
ibility with the site by checking for containment within the array
of spheres. Comparative molecular field analysis (72) (CoMFA)
represents the shape of molecules implicitly by mapping steric
and electrostatic fields on a 3D grid that surrounds the molecule;
biological activity is then correlated with variations of the fields
at the grid points. Essentially all automated docking programs
implicitly represent molecular shape via some form of energy
calculations. Inasmuch as shape is directly related to molecular
structure, tools that employ pharmacophore models (e.g.,

Catalyst, UNITY, etc.) represent molecular shape via interatomic
distance constraints. The aforementioned shape-based methods,
although invaluable, demand considerable computation involv-
ing either energy or distance-geometry calculations. Moreover,
the matching of a compound to a receptor site or pharmacophore
model typically involves some sort of simulation (genetic
algorithm, Monte Carlo method, etc.) for generating orientations
and configurations of the ligand. CoMFA requires manual
alignment of the series of molecules, a highly subjective process
that effectively limits the number of compounds to ≈150. When
the goal is to screen large vendor or legacy databases of
compounds, such methods may lead to prohibitive computational
costs. What is needed is a method that can rapidly compare
shapes of large databases of compounds to each other, or to a
receptor site, with a minimum of computation, without requiring
explicit 3D representation of shape and without actual
ligand-receptor docking. This is just the sort of method
embodied in Shape Signatures descriptors used for QSAR, which
has several advantages over traditional molecular descriptor-
based QSAR methods (Table 1).

hERG Models. While there have been many models for this
potassium channel, our goal in this study was to use hERG as
a test case to evaluate Shape Signatures descriptors with different
classifier algorithms. A qualitative comparison of our hERG
results with those extracted from other studies reported to date
(35) suggests that the differences may be insignificant. Overall,
in this study, the prediction accuracies of SVM based methods
outperform the k-NN models. Although k-NN models yield
better selectivity rates, this is achieved at the expense of much

Table 3. Classification of 5-HT2B Active and Nonactive Compounds Using Shape Signatures or MOE Descriptors with Different
Methods

leave-42-out testingd

classification methoda descriptorsb 10-fold cross-validationc (%) SE (%) SP (%) Q (%) C

SVM shape only 80 81 59 73 0.424
UFS-SVM shape + charges 87 91 69 83 0.638
UFS-SVM MOE (2D) 87 91 70 84 0.640
UFS-SOMe shape + charges 86 78 54 70 0.345
k-NN (k ) 3) shape only 69 86 46 72 0.352
k-NN (k ) 1) shape + charges 74 93 53 79 0.527

a The specified values of k for k-NN classifications are those that yield the maximum average overall prediction accuracies Q for the leave-42-out
experiments. b “Shape only” labels descriptor sets derived from the 1D Shape Signatures histograms, and “shape + charges” designates descriptors sets
based on the 2D Shape Signatures histograms. c This column lists prediction accuracies estimated from 10-fold cross-validations performed on the entire
data set. d The tabulated values of SE, SP, Q, and C are averages over 30 different hold-out test sets. e On average, one active and one nonactive
molecule were unclassified.

Figure 4. Prediction accuracy for 5-HT2B active and nonactive compounds, from the training (a) and test (b) sets used in the Kohonen network
(SOM).
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lower specificity values. In particular, k-NN classifiers suffer
from a large number of false positive predictions and, thus, are
less selective than the procedures that use SVM. We found that
regardless of the classifier employed, the models based on the
2D Shape Signatures (shape and charge) are slightly more
accurate than those derived from the 1D signatures (shape). This
implies that for better selectivity, one may need to incorporate
the polarity of the molecules into the model. This observation
is consistent with the notion that the hERG channel can
accommodate inhibitors of different size and shape. This may
also relate to the position of the basic N atom found in many
hERG inhibitors and suggested to be important in many of the
published pharmacophores. Ekins et al. previously used a single
external set of 21 compounds (seven active and 14 nonactive)
to test their classification models based on Kohonen and
Sammon mapping techniques (40). For Kohonen SOM, they
obtained SE ) 86%, SP ) 79%, and Q ) 81%, and for Sammon
mapping, they reported SE ) 86%, SP ) 100%, and Q ) 95%.
These results are better than the average values obtained over
the series of 30 leave-20-out experiments tabulated in Table 2.
However, if we turn to some of the best-performing UFS-SVM
models in our study, these models yield SE ) 80-90%, SP )

80-100%, and Q ) 85-95%, which is comparable to the
Sammon mapping model previously described (40).

5-HT2B Models. Our results with the 5-HT2B classification
models are the major focus of this study and are the first
classification models for this receptor to be reported to date.
Previous computational modeling of 5-HT2B has encompassed
a traditional QSAR study, which used a small number of
tetrahydro-�-carboline derivatives as antagonists with the rat
5-HT2B contractile receptor in the rat stomach fundus (73). A
3D QSAR with GRID-GOLPE using 38 (aminoalkyl)benzo and
heterocycloalkanones as antagonists of the human receptor
resulted in poor model statistics possibly due to the limited range
of activity measured and the complexity of the functional
response (74). Homology models based on the bacteriorhodopsin
as well as rhodopsin X-ray structures have been used for the
mouse and human 5-HT2B receptor and combined with site-
directed mutagenesis. The models based on bacteriorhodopsin
proved more reliable and confirmed an aromatic box hypothesis
for ligand interaction along transmembrane domains 3, 6, and
7 with serotonin (75). A more recent 5-HT2B homology model
with the rhodopsin-based model of the rat 5-HT2A together with
molecular dynamics simulations was used to determine the sites
of interaction for norfenfluramine. Site-directed mutagenesis
showed that Val 2.53 was implicated in high affinity binding
through van der Waals interactions and the ligand methyl groups
(76).

We have found in this study that, similar to the hERG
modeling described previously, for 5-HT2B, SVM generally
outperforms k-NN methods (Table 3). Interestingly, the same
observation has been documented in a number of classification
studies across different classes of protein targets (57, 58). In
comparison to the results with the hERG data set (Table 2), for
5-HT2B, we were able to achieve generally better overall
prediction accuracies for the test sets within the range of
72-84%. Among the models based on Shape Signatures
descriptors, the UFS-SVM procedure is again the best. On
average, these models compare well with SVM classifications
paired with the traditional 2D molecular descriptors computed
with MOE. This observation further validates the applicability
of the Shape Signatures-derived molecular descriptors. The 2D
Shape Signatures classifiers appear superior to the models based

on the 1D histograms, indicating that molecular polarity is likely
necessary for generating more accurate predictions for 5-HT2B.

The results presented in Table 3 also demonstrate that the
prediction accuracies achieved in the Kohonen modeling experi-
ments (86% prediction accuracy estimated from 10-fold cross-
validations), in general, were similar to those observed in the
best UFS-SVM models (87%) and better than in k-NN models
(74%), when the same 102 “shape + charges” descriptors were
used. The iterative methods based on vector quantization
algorithms, such as SVM and Kohonen SOM, perform better
in classification tasks related to analysis of highly clustered and
heterogeneous property spaces. Classification results certainly
vary from one classifier to another, but if several different
classification models using the same collection of molecular
descriptors produce consistent results, it would certainly add to
the credibility of the utilized descriptor set. We found that the
average statistics produced for either hERG or 5-HT2B by k-NN,
SVM, and SOM models are generally consistent overall,
indicating that the Shape Signatures histograms constitute a
useful set of new molecular descriptors for these types of
classification problems. Their utility likely also rests in their
ability to reliably capture the shape and charge requirements
for molecules to fit to these proteins.

To further investigate the utility of the shape signatures-based
molecular descriptors, we evaluated the SVM and SOM models
with an additional external test set (77). This set included 20
compounds with documented activities toward 5-HT2B: six
active and 14 nonactive molecules. We attempted to classify
compounds in this data set using models built on the original
data set of 182 5-HT2B molecules, which are described in Table
3. As before, all calculations were performed using the set of
102 2D Shape Signatures descriptors. The best UFS-SVM and
SOM models yielded SE ) 33%, SP ) 71%, and Q ) 60%.
This prediction accuracy is lower than the corresponding values
reported in Table 3 for the original data set, especially for the
SVM models. The reason for this may be 2-fold. First, with
the current settings, Shape Signatures may not perform well in
separating close structural analogues in an external test set.
However, the use of alternative descriptors, such as the
electrotopological indices (calculated using the SmartMining
program), led to similar prediction accuracy on the same test
set. Second, and probably the most important point to consider,
is that the compounds in the external test set may lie outside
the chemical space occupied by the structures from the original
182 molecules data set. Indeed, similarity measures in the form
of Euclidean distances, calculated using the ChemoSoft software
between pairs of molecules, suggest significant structural
differences between the original data set (182 structures) and
the external test set (data not shown).

A major objective of the reported study was to thoroughly
examine the quality of a novel set of molecular descriptors
derived from the associated molecular Shape Signatures previ-
ously used as a virtual screening tool for drug discovery (41–45).
These descriptors are inherently 3D and fundamentally different
from other 2D/3D descriptor collections normally used in
predictive QSAR modeling (1, 78). We have therefore extended
the Shape Signatures methodology in the form of molecular
classifiers for computational toxicology. Practical classification
models for the 5-HT2B receptor and the hERG potassium
channel have been constructed and validated. Our classification
models for 5-HT2B offer the potential to predict cardiotoxicity
earlier in drug discovery. In the case of 5-HT2B, we report the
first Shape Signatures-SVM-based classification models, which
exhibit average accuracies in the range of 73-83%. These
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findings are comparable with the results of the SVM classifica-
tion using traditional 2D molecular descriptors available in the
commercially available software MOE, which was also per-
formed in this study. Further research is currently underway in
our laboratories to examine the combination of Shape Signature
histograms with traditional 2D descriptors (such as from MOE)
to assess whether this improves the models. For hERG, the
prediction accuracy is comparable with the results of alternative
computational models published to date. Altogether, our study
demonstrates that the reported classification models perform well
in discriminating between hERG and 5-HT2B active and
nonactive molecules and could be applicable to other protein
targets. We also note that, as with any molecular descriptors
and algorithms used for QSAR to date, it is important to
understand the chemical space covered in both the training and
the test sets for optimal predictions (i.e., the applicable prediction
space). Our results certainly attest to the notion that molecular
shape and polarity are indeed key characteristics that regulate
molecular activity toward specific protein targets. Given the
simplicity, physical transparency, and applicability of the Shape
Signatures representation, this method encodes these main
features in a compact and practical form. Because the procedure
obviates direct 3D molecular alignment or grid generation [as
in CoMFA and comparative molecular similarity analysis
(CoMSIA) etc.], the algorithm is also relatively fast and efficient.
Models based on Shape Signatures histograms can therefore
accommodate structurally diverse compounds; once generated,
they can be used for a variety of tasks that require molecular
recognition, and no model refitting is necessary in going from
one problem to another (Table 1). We are currently using Shape
Signatures to aid in drug discovery projects while also evaluating
the Shape Signatures descriptors for other physicochemical
properties, as we believe this approach is generally applicable.
Overall, we conclude that the Shape Signatures method offers
a novel practical approach to classifying compounds with respect
to their potential for cardiotoxicity. Further future studies will
use these 5-HT2B models for mining databases to identify
additional compounds for in vitro testing to prospectively
validate them, a strategy that we have successfully undertaken
for transporters (79, 80).
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Table 1. A list of hERG compounds. 

 

Index Compound Name log10 IC50 (µM) 

1 astemizole -3.04 

2 desmethylastemizole -3 

3 cisapride -2.174 

4 dofetilide -1.92 

5 sertindole -1.83 

6 lidoflazine -1.79 

7 tolteridone -1.77 

8 E-4031 -1.74 

9 BRL 32872 -1.7 

10 haloperidol -1.57 

11 norastemizole -1.56 

12 droperidol -1.49 

13 MK499 -1.49 

14 thioridazine -1.479 

15 pimozide -1.26 

16 N-desbutylhalofantrine -1.14 

17 ziprasidone -0.9 

18 ebastine -0.85 

19 verapamil -0.84 

20 risperidone -0.829 

21 LY97241 -0.82 

22 domperidone -0.79 

23 loratadine -0.76 

24 clomiphene -0.74 

25 halofantrine -0.708 

26 terfenadine -0.67 

27 amsacrine -0.67 

28 olanzapine -0.63 

29 terikalant -0.6 

30 mesoridazine -0.495 

31 quinidine -0.495 

32 clozapine -0.49 

33 mizolastine -0.455 

34 propafenone -0.36 

35 satitoxin -0.32 

36 bepridil -0.26 

37 doxazosin -0.23 

38 azimilide -0.22 

39 ondansetron -0.09 

40 carvedilol 1.02 

41 2-hydroxymethylolanzapine 1.06 

42 dolasetron 1.083 

43 vardenafil 1.1 

44 olanzapinedesmethyl 1.15 
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45 diltiazem 1.23 

46 terazosin 1.24 

47 sparfloxacin 1.25 

48 pilsicainide 1.3 

49 chlorpheniramine 1.32 

50 fexofenadine 1.33 

51 diphenhydramine 1.43 

52 cetirizine 1.48 

53 naringenin 1.56 

54 grepafloxacin 1.64 

55 tamoxifen 1.65 

56 nifedipine 1.7 

57 EDDP 1.7 

58 meperidine 1.87 

59 glyburide 1.87 

60 clenbuterol 1.9 

61 propranolol 1.9 

62 DW286a 1.94 

63 disopyramide 1.96 

64 epinastine 2 

65 tadalafil 2 

66 gatifloxacin 2.11 

67 clozapineNox 2.12 

68 methyecgonidine 2.23 

69 lamotrigine 2.36 

70 trimethoprim 2.38 

71 phenytoin 2.38 

72 nicotine 2.39 

73 lidocaine 2.42 

74 codeinenew 2.48 

75 prulifloxacin 2.52 

76 oleandomycin 2.53 

77 glimepiride 2.7 

78 levofloxacin 2.96 

79 ciprofloxacin 2.98 

80 morphinenew 3 

81 phenobarbital 3.48 

82 4AP 3.64 

83 sulfamethoxazole 4 
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Table 2. A list of 5-HT2B compounds. 

 

Index Compound Name log10 Ki (nM) 

1 LY266097 -0.70 

2 aripiprazole -0.44 

3 methylergonovine -0.33 

4 RS127445 -0.16 

5 5,6-difluoroindol-methylethylamine   -0.01 

6 LSD -0.01 

7 lisuride 0.03 

8 cabergoline 0.07 

9 metergoline 0.10 

10 SB215505 0.17 

11 cyproheptadine 0.19 

12 LY53857 0.20 

13 methiothepin 0.26 

14 amesergide 0.29 

15 SB221284 0.39 

16 YM 348 0.40 

17 ergotamine 0.42 

18 mesulergine 0.47 

19 ritanserin 0.52 

20 1-nitropropane 0.56 

21 LY193525 0.59 

22 
5-Methoxy-1-[[4-methyl-3-(4-methyl-3-pyridyl)phenyl]carbamoyl]-6-

trifluoromethylindoline 
0.60 

23 S33526 0.61 

24 ro-60-0175 0.63 

25 methysergide 0.63 

26 
1-[[2-Chloro-3-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline   
0.70 

27 
5-Methoxy-1-[[4-methyl-3-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline 
0.70 

28 norfluoxetine 0.70 

29 1-Butylpsilocin   0.76 

30 
5-Methoxy-1-[[5-(4-methyl-3-pyridyl)-3-pyridyl]carbamoyl]-6-

trifluoromethylindoline   
0.80 

31 terguride 0.85 

32 RWAY - 0.86 

33 
5-Methylthio-1-[[3-(3-pyridyl)phenyl]carbamoyl]-6-

trifluoromethylindoline   
0.90 

34 5-Methoxy-1-[[3-(3-pyridyl)phenyl]carbamoyl]-6-trifluoromethylindoline 0.90 
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35 
5-Methoxy-1-[[5-fluoro-4-methyl-3-(3-pyridyl)phenyl]carbamoyl]-6-

trifluoromethylindoline   
0.90 

36 
1-[[2,3-Dihydro-7-(3-pyridyl)benzofuran-5-yl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline 
0.90 

37 Ro600869 0.90 

38 LSD, 2-bromo 0.92 

39 clozapine 0.92 

40 4-Fluoro-3-(2-dimethylaminoethyl)indole 0.92 

41 5-methoxy-tryptamine 0.93 

42 5-hydroxytryptamine 0.94 

43 ATC0175 0.99 

44 
5-Methoxy-1-[[5-(4-pyridyl)-3-pyridyl]carbamoyl-6-

trifluoromethylindoline   
1.00 

45 
5-Methoxy-1-[[5-(3-pyridyl)-3-pyridyl]carbamoyl]-6-

trifluoromethylindoline 
1.00 

46 
5-Methoxy-1-[[6-(3-pyridyl)-3-pyridyl]carbamoyl]-6-

trifluoromethylindoline   
1.00 

47 
5-Methoxy-1-[[4-(3-pyridyl)phenyl]carbamoyl]-6-trifluoromethylindoline 

 
1.00 

48 
1-[[5-Ethyl-3-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline   
1.00 

49 
1-[[3-Fluoro-5-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindolin 
1.00 

50 5-hydroxy-alpha-methyl-tryptamine 1.00 

51 mianserin 1.04 

52 5-fluorotryptamine 1.04 

53 LY86057 1.09 

54 
5-Methoxy-1-[[3-(2,4-dimethyl-3-pyridyl)phenyl]carbamoyl]-6-

trifluoromethylindoline   
1.10 

55 
5-Methoxy-1-[[4-(4-pyridyl)phenyl]carbamoyl]-6-trifluoromethylindoline 

 
1.10 

56 5-chlorotryptamine 1.11 

57 5-bromotryptamine 1.14 

58 pergolide 1.15 

59 
1-[[4-Methoxy-3-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline   
1.20 

60 
5-Methoxy-1-[[5-phenyl-3-(3-pyridyl)phenyl]carbamoyl]-6-

trifluoromethylindoline   
1.20 

61 Ro600332 1.20 

62 
5-Methoxy-1-[[3-(2-methyl-3-pyridyl)phenyl]carbamoyl]-6-

trifluoromethylindoline   
1.20 

63 rauwolscine 1.29 

64 
1-[[5-Bromo-3-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline 
1.30 

65 xanomeline 1.30 

66 
5-Methoxy-1-[[2-[(3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-

trifluoromethylindoline   
1.30 

67 (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane 1.30 
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68 VER5593 1.32 

69 SB206553 1.35 

70 (+/-)-1-(2,5-dimethoxy-4-tert-butylphenyl)-2-aminopropane 1.39 

71 5-Methoxy-1-[(5-phenyl-3-pyridyl)carbamoyl-6-triflouromethylindoline 1.40 

72 
5-Methylthio-1-[[3-(4-pyridyl)phenyl]carbamoyl]-6-

trifluoromethylindoline   
1.40 

73 
1-[[4-Chloro-3-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline   
1.40 

74 nor -d fenfluramine 1.43 

75 risperidone 1.47 

76 dihydroergotamine 1.48 

77 mCPP 1.48 

78 1-(2,5-dimethoxy-4-n-hexylphenyl)-2-aminopropane DOHx 1.48 

79 roxindole 1.49 

80 6-Cl-5-F, 1-(1-indolinyl)-2-propylamines   1.49 

81 (+/-)-1-(2,5-dimethoxy-4-chlorophenyl)-2-aminopropane 1.50 

82 DOBz 1.54 

83 (+/-)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane 1.55 

84 5-F-6-I, 1-(1-indolinyl)-2-propylamines   1.58 

85 1-Methylpsilocin   1.58 

86 VER3323 1.58 

87 BRL15572 1.60 

88 
1-[[4-tert-Butyl-3-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline   
1.60 

89 ORG37684 1.63 

90 BW723c86 1.67 

91 pipamperone 1.68 

92 VER5384 1.69 

93 1-(3-(trifluoromethyl)phenyl)piperazine TFMPP 1.69 

94 
5-Methoxy-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-

trifluoromethylindoline   
1.70 

95 nor fenfluramine 1.72 

96 6-Cl, 1-(1-indolinyl)-2-proylamines   1.73 

97 (+/-)-1-(2,5-dimethoxy-4-propylphenyl)-2-aminopropane 1.74 

98 bromocryptine 1.75 

99 pirenperone 1.79 

100 9-hydroxyrisperidone 1.79 

101 6-Ets-5-F, 1-(1-indolinyl)-2-propylamines   1.79 

102 cisapride 1.79 

103 
5-Methoxy-1-[[5-(4-fluorophenyl)-3-pyridyl]carbamoyl]-6-

trifluoromethylindoline   
1.80 

104 l-norfenfluramine 1.81 

105 tryptamine 1.83 

106 quipazine 1.83 

107 SCH23390 1.85 

108 trazodone 1.89 
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109 RU24969 1.92 

110 5-F-6-F3C, 1-(1-indolinyl)-2-propylamines   1.94 

111 6-MeS, 1-(1-indolinyl)-2-propylamines   1.95 

112 ORG12962 1.96 

113 SB204741 1.98 

114 
1-[[5-(2,6-Difluorophenyl)-3-pyridyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline   
2.00 

115 
5-Methyl-1-[[2-{(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-

trifluoromethylindoline   
2.00 

116 
6-Chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-

pyridyl]carbamoyl]indoline   
2.00 

117 GR218231 3.00 

118 MDL100907 3.01 

119 1-(2,5-dimethoxyphenyl)-2-aminopropane 3.02 

120 SR46349B 3.03 

121 spiperone 3.05 

122 piribedil 3.08 

123 haloperidol 3.08 

124 LY314228 3.08 

125 4-Hydroxygramine   3.09 

126 4-Hydroxy-1-methylgramine 3.09 

127 SB277011A 3.11 

128 SB224289 3.13 

129 SL650155 3.19 

130 SB216641 3.20 

131 valdecoxib 3.26 

132 RS102221 3.27 

133 
(R)-4-Methyl-1-(2-(1-(naphthalene-1-sulfonyl)-piperidin-2-yl)-ethyl)-

piperidine(10)  
3.30 

134 
1-[[2-Fluoro-5-(3-pyridyl)phenyl]carbamoyl]-5-methoxy-6-

trifluoromethylindoline 
3.30 

135 6,7-dihydroxy-N,N-dimethyl-2-ammotetralin TL99 3.31 

136 duloxetine 3.32 

137 pindolol +/- 3.34 

138 LY320951 3.47 

139 8-OH-DPAT 3.50 

140 MDL11939 3.50 

141 ropinirole 3.58 

142 fenfluramine 3.62 

143 S32504 3.66 

144 SB258719 3.70 

145 fluoxetine 3.70 

146 fenfluramine + 3.71 

147 d-fenfluramine 3.74 

148 1-Methylpsilocybin  3.74 

149 4-Hydroxy-3-(2-[N-1,2,3,4 tetrahydroquinolino]ethyl)indole 3.75 
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150 fenfluramine - 3.76 

151 MDMA S+ 3.78 

152 3-(2-Dimethylaminoethyl)-6-hydroxyindole   3.80 

153 5-hydroxy-N-acetyltryptamine 3.85 

154 LY335102 3.90 

155 paroxetine 4.00 

156 phentermine 4.00 

157 pramipexole 4.00 

158 talipexole 4.00 

159 salvinorinA 4.00 

160 valeryl salicylate   4.00 

161 naproxen sodium 4.00 

162 diclofenac sodium 4.00 

163 acetylsalicylic acid 4.00 

164 nimesulide 4.00 

165 ibuprofen 4.00 

166 meloxicam sodium 4.00 

167 celecoxib 4.00 

168 etoricoxib 4.00 

169 parecoxib 4.00 

170 sibutramine 4.00 

171 naproxen  4.00 

172 rofecoxib 4.00 

173 methylphenidate 4.00 

174 BTS54505 4.00 

175 piroxicam 4.00 

176 
N,N,N-trimethyl-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane 

iodide QDOB 
4.00 

177 N-(4-Acetamidophenyl)indomethacinamide   4.00 

178 SB269970 4.00 

179 venlafaxine 4.00 

180 ketorolac tris  4.00 

181 melatonin 4.11 

182 sumatriptan 4.26 


