
In the proceedings of the Pacific Graphics 2003, Canmore, Canada, Oct. 2003 

 1 

Shape-Similarity Comparison of 3D Models 
Using Alpha Shapes 

 
Ryutarou Ohbuchi, Tsuyoshi Takei 

ohbuchi@acm.org, f8058@kki.yamanashi.ac.jp 
Interdisciplinary Graduate School of Medicine and Engineering,  
University of Yamanashi, 4-3-11 Takeda, Yamanashi-shi, Japan 

 
Abstract 

As the number of in-house and public-domain 3D shape 
models increase, importance of shape-similarity based 
search and retrieval for 3D shapes models has increased 
rapidly. In this paper, we describe our preliminary 
findings in applying a multiresolution analysis technique 
to the task of shape similarity comparison of polygon soup 
models. We used the 3D alpha shapes algorithm to create a 
multiresolution hierarchy of shapes from the given 3D 
model. We then applied a (single resolution) shape 
descriptor to each of the models at multiple resolution 
levels to derive a multiresolution shape descriptor. 
According to our evaluation experiments, the retrieval 
performance of our multiresolution descriptor 
outperformed its single resolution counterpart, proving the 
effectiveness of the basic approach. 
Keywords: content-based search and retrieval, geometric 
modeling, 3D alpha shapes, polygon soup.  

1.  Introduction  

Proliferation of 3D models prompted development of 
the technology for effective content-based search and 
retrieval of three-dimensional (3D) models. A 3D model 
could be searched by textual annotation by using a 
conventional text-based search engine. This approach 
wouldn’t work in many of the application scenarios. The 
annotations added by human beings depend on language, 
culture, age, sex, and other factors. It is also very difficult 
to describe by words shapes that are not in the well-known 
shape or semantic categories. It is thus necessary to have a 
content-based search and retrieval systems for 3D models 
that are based on the features intrinsic to the 3D models, 
most important of which is the shape [1, 13, 24, 27, 8, 15, 
21, 18, 11, 30, 31, 32, 4, 17, 19, 22, 33, 9, 16, 20].  

One of the first questions one would ask in developing a 
shape similarity matching system is the kind of shape 
representation(s) the system accepts. 3D CAD models, 

many of which are defined as either 3D solids or manifold 
surfaces, are quite important. Solids and manifolds (e.g., 
mesh surfaces) are amenable to many mathematically 
sound analysis techniques. However, a majority of the 
important and useful models around are defined as 
polygon soup, examples being the VRML, MPEG-4 
SNHC and file formats for many proprietary computer-
animation software packages. As it is one of the most 
dominant shape representations currently in use, we must 
develop a shape similarity search algorithm for polygon 
soup models.  

In the field of content-based search and retrieval of 2D 
images, shape of an object is one of the most important of 
the features, in addition to color, texture and others [28, 
29]. In analyzing shape and texture of objects in the 
images, many Frequency domain and multiresolution 
image analysis techniques are found to be  very powerful 
tools. Examples of such techniques include, but not limited 
to, Fourier transform, various wavelet-based pyramids, 
Laplacian pyramid, Gaussian pyramid, and morphological 
pyramids [10, 25]. Frequency domain and multiresolution 
analysis techniques found their ways into processing of 2-
manifold surfaces embedded in 3D space. However, these 
2-manifold based analysis techniques are not directly 
applicable to 3D shapes defined as polygon soup, which 
are not manifolds. 

One possible approach to apply a multiresolution 
analysis technique to a polygon soup 3D shape is to scan-
convert the shape into a voxel-based representation, as in 
[31, 9]. A whole battery of existing image analysis 
techniques could then be applied to the voxel-based model, 
since it is essentially a 3D image.  

This paper presents a new alternative method to shape 
comparison of 3D models that employs multiresolution 
analysis approach without relying on voxelization of the 
3D models. From an input polygon-soup 3D model, our 
method computes a 3D multiresolution representation  
(MRR) based on n-simplices by using the three-
dimensional alpha-shapes proposed by Edelsbrunner [7]. 
To compute the MRR, we specify a set of alpha value 
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spaced at power of 2 intervals to the alpha shapes 
algorithm. This multiresolution scheme is reminiscent of 
the morphological multiresolution analysis for 2D image 
analysis. Our method then computes, for each model in the 
MRR, a shape descriptor by applying the Absolute Angle 
Distance (AAD) shape descriptor [20]. An ordered set of 
multiple AAD shape descriptors for the MRR is our 
multiresolution shape descriptor for the input 3D model.   

Experiments showed that the proposed multi-resolution 
shape similarity comparison method outperforms in 
retrieval performance the single-resolution method using 
the AAD. As a tradeoff, computational cost of our 
multiresolution method is higher than that of the AAD. 

The rest of this paper is organized as follows. In the 
following section, we review the previous work on shape 
similarity matching of 3D shapes, especially those that are 
defined as polygon soup. In Section 3, we describe the 
proposed algorithm. In Section 4, we evaluate the 
performance of the proposed method through experiments. 
We conclude the paper in Section 5.   

2. Previous Work 

There are four major steps in shape-based retrieval of 3D 
models from a 3D model database (See Figure 1.) 
(1) Query formation: Form and present a query. 

Alternatives for querying 3D shapes include a 3D 
shape given a priori, a 3D sketch of the 3D shape, or a 
2D sketch of a 3D shape.  

(2) Feature extraction: Extract feature vectors, or shape 
descriptor, from the model to be used for shape 
similarity (more often, dissimilarity) computation. 
Shape representation of the target 3D models 
influences the shape features that can be employed.  

(3) Dissimilarity computation: Compute dissimilarity 
value between shapes. Usually, the dissimilarity 
values are expected to reflect human judgments.  

(4) Retrieval: Efficiently retrieve, from the database, the 
models having the lowest dissimilarity values. 

In the following, we review the item (2) and (3) above, 
as our focus in this paper is a shape descriptor and its 
distance computation method.  

A shape descriptor can be classified by 3D shape 
representations it accepts. Our targets are surfaces based 
3D shape representations. Roughly speaking, a surface 
based 3D shape representation can be classified into solid, 
manifold, or polygon soup.   

I call the first two, solid and manifold, “well-defined” 
representations. A solid is a real 3D object, whose volume 
can be properly computed. Many geometric CAD models 
fall in this category, and shape features have been 
proposed for this class of 3D models [17, 18, 15, 4]. Other 
3D models may not be solid, but are defined as sets of 

manifolds. A manifold model allows computation of such 
differential geometric properties as surface curvature (e.g., 
[32]). It also allows computation of topological properties, 
e.g., an extension of the Reeb graph proposed by Hilaga, 
et al [11].  
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Figure 1. A generic diagram for a shape similarity search 
database for 3D geometric models. 

The last kind, polygon soup, is “ill-defined” in that it 
does not really define a 3D object or manifold surface. It is 
a collection of points, lines, independent polygons, and 
meshes that create an illusion of 3D shape. A VRML 
model may also contain such parameterized shapes as 
sphere and cone. Despite its “ill-defined” nature, most of 
the models available on the net (e.g., VRML models), or 
the models used in the entertainment industry are polygon 
soup models. We have to somehow deal with polygon 
soup model.  

2.1. Shape descriptors for polygon soup models 

In this section, we review the shape descriptors for 
polygon soup models. A method in this class can be 
classified further depending on if it requires pose 
normalization to compute shape descriptor. 

Some of the previous methods required pose 
normalization prior to shape comparison. Paquet et al [23] 
computed, after pose normalization, a set of geometrical 
features. They combined the shape with other features 
such as color for their shape similarity search. Suzuki et al 
[26, 27] computed, after pose normalization, distribution 
of vertices in the uniformly subdivided axis-aligned grid. 
Zaharia [33] employed a 3D Hough transformation as the 
shape feature, after pose normalization. Both [27] and [33] 
took advantage of symmetries of their shape features so 
that their pose normalization can be simplified. Elad et al 
[8] also normalized pose and computed various moments 
from the points generated randomly on the surface. The 
method by Ohbuchi et al [19] first normalizes pose by 
using moments. Then it computes moment of inertia, 
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average and variance of distance from the (inertial) axis to 
the model surface. According to our experiment, which is 
yet to be published, the retrieval performance of this 
method [19] is better than the Osada’s D2 [21, 22], and is 
comparable to the AD and AAD [20] described below. 
However, these and other methods, which require pose 
normalization, could run into trouble if pose normalization 
fails. 

Other shape features targeting polygon soup are 
invariant to similarity or other transformations, and thus do 
not require pose normalization [1, 31, 21, 22, 9]. 

Osada et al [21, 22] proposed and compared statistical 
features that are invariant to rigid body transformation. 
The best performing one both in terms of computation cost 
and retrieval performance is the D2 shape function. The 
D2 is a 1D histogram of Euclidian distances between 
randomly selected pairs of points located on the model’s 
surface. The points are generated at random location on 
each polygon. Their method is quite robust, and for its 
simplicity, performed quite well both in terms of 
computational cost and retrieval performance.  

Ohbuchi et al [20] adopted Osada’s approach and 
improved retrieval performance of the D2 with only 
modest increases in computational costs. Their shape 
descriptors, called Angle Distance (AD) and Absolute 
Angle Distance (AAD) histograms are 2D histogram 
having the axes of distance and angle. Both AD and AAD 
take into account not only the distance between the point 
pair but the angle formed by the surface normal vectors at 
the pair of points. Their experiments showed that the AAD 
significantly outperformed the Osada’s D2. The method 
described in this paper uses the AAD as a component.  

Ankerst [1] proposed one of the first 3D shape 
similarity matching algorithms. Their algorithm is not 
directly applicable to 3D polygonal models, as they 
targeted 3D molecular database, in which each model is a 
collection of points (atoms) with properties (e.g., a mass or 
a label “hydrogen”.) Nonetheless, their basic approach is 
applicable to 3D polygonal models as well. One of their 
shape descriptor parameterizes a 3D space using 
concentric shells, making the feature invariant to rotation. 
Their other parameterizations subdivided the space radially, 
which made them rotationally variant. 

The shape descriptor of Funkhouser et al [9] combines 
the concentric parameterization of Ankerst [1] with the 
spherical harmonic approximation of Vranić et al. [31]. 
They first scan-converts polygons of a 3D model into a 
voxel buffer of size 643 in a Cartesian coordinate system. 
Then, at concentric shells, the distribution of voxels in the 
voxel buffer is approximated by a set of spherical 
harmonic coefficients. Experimental evaluation showed 
that their method outperformed several other methods, 
including those by Osada [21, 22] and Ankerst [1]. 
Significance of their work also lies in the fact that they 

constructed a well-developed 3D model database system. 
The system has a publicly accessible web-based query 
interface that accepts keyword text, 2D sketch, 3D sketch 
(using Teddy [12]), and 3D example model as the query. 
Min et al describes their initial experience with using the 
database [16].  

Some of the shape descriptors, for example, those by  
Vranić [31] and Funkhouser [9] employed “frequency 
domain” or “multiresolution” approaches. Our method 
falls in this category. We idea was to apply an analogue of 
morphological multiresolution analysis to polygon soup 
models for their shape similarity comparison.  

3. The Shape Similarity Comparison 
Algorithm 

Our method assumes, as its input, models defined as 
polygon soup. The method does not use connectivity of the 
faces in comparing the shapes. The method accepts, but 
simply ignores, anything that does not have surface area, 
e.g., a zero-area polygon and a polyline.  

The proposed method uses a multiresolution shape 
descriptor for shape comparison. To do so, the method first 
computes, from a polygon-soup 3D model, a 3D 
multiresolution representation  (MRR) based on n-
simplices by using the three-dimensional alpha-shapes 
proposed by Edelsbrunner [7]. (For brevity, in the 
following of this paper, we will call this alpha-
Multiresolution Representation, or AMRR for short.) 
Computation of AMRR starts by converting the surface-
based model into a point set model by using a Monte-Carlo 
sampling of the surface geometry. Then the AMRR, which 
is a set of alpha shapes, is computed by using L alpha 
value spaced at power-of-2 intervals.  

Our multiresolution shape descriptor is called the Alpha 
Multiresolution AAD (AMR-AAD) for we combined the 
Absolute Angle Distance (AAD) shape descriptor [20] with 
the AMRR. An ordered set of the AAD descriptors 
computed for multiple resolution levels forms the AMR-
AAD. Note here that the AMRR is a multiresolution 
framework not tied to the AAD shape descriptor. Any 
shape descriptor that satisfies certain requirements can be 
used with the AMRR.  

A distance between a pair of AMR-AAD shape 
descriptors is the distance, or dissimilarity of the 
corresponding pair of 3D models. 

To repeat, the method compares 3D models for their 
shape similarity by following the steps below;  
1. Converting to a point set model: Convert the input 

surface-based model into a point-based model by 
Monte-Carlo sampling the surface of the model. 

2. Generating multiresolution representation: First, a 
set of L-1 scale values iα  ( 1, 2,..., 1)i L= −  for the 



In the proceedings of the Pacific Graphics 2003, Canmore, Canada, Oct. 2003 

 4 

multiresolution representation is found based on the 
size statistics of the model. This is necessary to 
compare models having different sizes. Then, compute 
L-1 3D alpha shapes [7] from the point set model by 
using the L-1 scale. 

3. Computing the shape descriptor: Compute the 
AMR-AAD consisting of L AAD shape descriptors. 
Of L shape descriptors, L-1 are computed from the L-
1 alpha shapes above, and the remaining one is 
computed from the original (input) face-based model.  

4. Computing distance between models: Compute the 
distance between the shape descriptors of a pair of 
models to be compared for their shape (dis-)similarity.  

We will explain each of the steps above in detail in the 
following sections. 

3.1. Converting to a point set model 

To compute an AMRR for a 3D polygon-soup model, 
we first create a point set model for the polygon-soup 
model. Instead of just using the original vertices, we 
sampled the surface geometry by generating points located 
(quasi-) randomly on the surfaces of the model. This 
sampling is necessary to avoid problems caused by 
variation in surface tessellation.  

First, if the model contained non-triangular polygons, 
they are triangulated prior to the point generation. Then, a 
set of points on a polygon is generated. Coordinate P  of a 
point on a triangle is determined by using the equation 
below by Osada et al. [Osada02].  

( ) ( ) ( )1 1 1 2 2 1 2 31 1r r r r r= − + − + ⋅P t t t . (2) 

In the formula, 1t , 2t , and 3t  are vertices of the 
triangle, and 1r  and 2r  are Sobol’s quasi-random number 
sequences (QRNS, also known as low-discrepancy 
sequences). The number of points per triangle is 
proportional to the area of the triangle. Instead of the 
pseudo-random number sequence (PRNS) employed by 
Osada, et al, we used the Sobol’s QRNS for QRNS 
provides faster conversion when applied to Monte-Carlo 
sampling. We typically approximate a surface based 3D 
model by using 1000 to 2000 points before computing 3D 
alpha shapes.  

3.3 Generating multiresolution representation  

A set of 3D alpha shapes [7] is a family of 3D shapes 
computed from a 3D point set given various values of real-
valued parameter α . If α = ∞ , the alpha shape is equal to 
convex hull of the point set, and if 0α = , the alpha shape 
equals the input point set. If 0α∞ > > , the alpha shape is 
a set of points (0-simplex), lines (1-simplex), and triangles 
(2-simplex).   

Figure 2 illustrates an example of a 2D alpha shape (a 
polygon drawn in solid line) generated from the 2D point 
set. Given the point set and α , a circle is moved around 
on the point set. When the circle “rests” on a pair of points, 
a straight line is drawn between the pair of points. The 
result in this case is a concave polygon. It can be imagined 
easily that if α = ∞ , the resulting alpha shape is a convex 
hull. 

 

 
 

α

 
Figure 2. A 2D example of an alpha shape (the polygon in 

solid line) computed from the point set.  

In order to compare the models having different sizes, 
shape descriptors must be invariant to size of the models. 
We achieve this by making the values of α proportional to 
the size of each model. Given the point set, we first 
determine the minimum dmin and the maximum dmax 
distances among all the possible pairs of the points 
generated on the model (e.g., Np(Np-1)/2 pairs for the Np 
points). The values of alpha iα  ( 1, 2,..., 1)i L= −  for the 
levels i are computed as follows;  

 max min
12i i

d d
α −

−
=     ( 1, 2,..., 1)i L= −  (1) 

That is, an increase in the level i halves the value iα . 
For example, a model at level 1 is very close to the convex 
hull of the original model. As the level i increases, that is, 
as the value of iα  decreases, smaller features appear in the 
model. At i = ∞ , iα  becomes 0, and the resulting alpha 
shape is a point set. This set of alpha shapes generated 
from a 3D point set by using multiple values of α is 
somewhat analogous to a morphological multiresolution 
representation in 2D image processing.  

For the experiments described in Section 4, we 
computed AMRR at 5 different α values. The use of 5 
levels is reasonable since an alpha shape produced at the 
level 5 is analogous in spatial resolution to a voxel model 
having 323 voxels. We believe that a voxel model of 
resolution 323 could typically capture significant part of 
the important shape features in a good majority of 3D 
shapes. In addition to these models at 5 resolution levels, 
AMR-AAD uses the original model so that features are not 
lost during the point sampling and reconstruction using the 
alpha shapes algorithm. In the following, for convenience, 
we call the original level as the “Level 6” model. (This 
name is somewhat justified as the original model would 



In the proceedings of the Pacific Graphics 2003, Canmore, Canada, Oct. 2003 

 5 

contain the most detailed shape.) 
Figure 3 shows an example of an AMRR generated 

from a face-based 3D model of an office chair. Figure 3a 
and Figure 3b show, respectively, the original model and 
its point set model. Figure 3c-3i show, respectively for the 
eight levels i = 1, 2, 3, 4, 5, 6, 7, alpha shapes computed 
from the point set model of Figure 3b. A model generated 
by using a large α (e.g., level i=1 or 2) captures global 
shape, while a model generated by using a small α  (i.e., 
level i=5 or 6) captures detail. As the value of α becomes 
even smaller, alpha-shapes produced become fragmented 
(Figure3i), and in the end becomes the input point set.  

 

  
(a) Original (b) Point set (c) Level-1 

  
(d) Level-2 (e) Level-3 (f) Level-4  

  
(g) Level-5 (h) Level-6 (i) Level-7 

Figure 3. A set of alpha shapes generated from a set of 
1024 point generated on the surface of the original model.  

3.3. Computing the shape descriptor 

The AMRR requires a shape descriptor that is 
insensitive to inconsistent surface (normal) orientations, as 
the surfaces in the alpha shapes are not oriented. We chose 
to combine the AMRR with the AAD shape descriptor 
[20] since the AAD satisfies the requirement above, and 
that the AAD has a good retrieval performance for its 
relatively low computational cost. An additional reason is 
the saving in computational costs, as both AAD and 
AMRR uses points generated (quasi-) randomly on the 
surfaces of the 3D model. Note, however, that the AMRR 
is not tied to the AAD; the AMRR may be combined with 
any (single-resolution) shape descriptor that satisfies the 
surface orientation insensitivity requirement mentioned 
above.  

The AAD [20] is based on the Osada’s D2 shape 

function [21, 22]. The advantages of the D2 are that it is 
robust against topological and geometrical irregularities 
and degeneracies, and that it does not require pose 
normalization. It is also relatively low cost to extract and 
compare D2 shape descriptors.  

To compute the D2 shape function for a 3D model, 
points are generated at random location on every surface 
of the model. The number of point per polygon is made 
proportional to the area of the polygon. This step is the 
same as the point generation in creating AMRR. Then, 
Euclidian distance (in 3D) is computed for every possible 
point pair, i.e., the Np(Np-1)/2 pairs for the Np points 
generated. The feature vector of the D2 shape function is 
the 1D histogram generated by counting the population of 
pairs that falls within a certain distance interval.  

We extended the D2 by adding the histogram of surface 
orientation to create the AAD shape descriptor [20]. When 
points are generated on the surfaces of a model (Figure 4a), 
each point is attached with the normal vector of the surface 
on which the point is generated (Figure 4b). As with the 
D2, for every pair of points, the AAD computes the 3D 
Euclidian distance between the pair of points. In addition, 
the AAD computes the inner product of the surface normal 
vectors attached to the points. The AAD is a 2D histogram, 
whose axes are the absolute value of the inner product of 
the surface normal vectors and the distance between the 
pair of points. The AAD was shown to have higher 
retrieval performance than the D2, while having the 
computational cost comparable to the D2. 

 

 na 
nbpa 

pb

dab 

 
(a) Points generated on the 
surface of the office chair 
model. 

(b) Each point has its 3D 
coordinate and the normal 
vector of the surface it is 
on.  

Figure 4. The AAD computes the histogram of distance 
and mutual orientation of the points on the model’s 
surfaces. 

The 2D histogram still requires normalization for 
compare models having different size. We used the 
distance average based normalization of the distance axis 
of the 2D histogram, which performed the best among the 
four methods we tried [20]. Assume that the 2D histogram 
has the Id distance intervals and Ia angular (or, absolute 
value of the inner-product) intervals. The normalization 
method first finds the average distance, and subdivides the 
distance axis of the histogram (having the total of Id 
intervals) into two, which are, above and below the 
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average distance. Then, each of the upper and lower half 
of the histogram is divided into Id/2 equally spaced 
intervals. The sizes of the interval may differ above and 
below the average. In the angular axis, the range of the 
absolute value of the inner product [0,1]  is subdivided into 
Ia equally spaced intervals. The resulting AAD is a 2D 
histogram having a dI I×  elements.  

An AMR-AAD descriptor having L resolution levels is 
a 3D histogram of dimension a dL I I× × , which can be 
written as 3D vector ( )ijkx=x , in which ( 1, 2,..., )i L=  
( 1, 2,..., )aj I=  , and ( 1,2,..., )dk I= .  

Figure 5 shows an example of the AAD shape 
descriptor computed for the office chair model of Figure 3 
using the average-based distance normalization method. It 
is computed by using Np=1024 points generated by the 
Sobol’s QRNS, and the numbers of histogram interval are 
Id = 64, and Ia = 4. Figure 6 shows, as 2D images, AMR-
AAD descriptors for the office chair model and a car 
model. The histograms are computed by generating 
Np=1024 points and using the number of intervals Id = 64, 

and Ia = 4. The darker the color, the higher the histogram 
values are. (Note that the images are histogram-equalized 
for the illustration purpose.) 

3.4. Distance computation 

A distance, or dissimilarity, among a pair of models X 
and Y are computed by using their respective shape 
descriptors x=(xijk) and y=(yijk). The distance d(x,y) 
between the shape descriptor x and y are defined as 
follows;  

 ( ) ( )2

1 1 1

,
d aI IL

i ijk ijk
i j k

d w x y
= = =

= −∑ ∑ ∑x y  (3) 

It is a simple weighted average of the distance at each 
resolution level. The smaller the distance value d(x,y), the 
more similar the pair of models is. In the equation, the 
number of AMRR level is L, the number of distance 
intervals is Id, and the number of angular intervals is Ia.  

The wi are the weights of the descriptor at multiple 
AMRR levels for weighted averaging. A larger value of wi 
for a resolution level means that the level has the larger 
effect on the result.  

4. Experiments and Results 

We have implemented the proposed algorithm using 
C++ language on a Linux platform. To compute alpha 
shapes, we used a robust and efficient implementation of 
the alpha shapes algorithm called the Hull by Clarkson et 
al [3].  

4.1. Experimental Method 

In the case of content-based search and retrieval of 2D 
images, several de-facto-standard image databases with 
known categories exist. In the case of shape similarity 
retrieval of 3D models, most researchers must be satisfied 
with a few hundreds to a thousand free 3D mesh models 
collected from the Internet. Obviously, performance 
figures would depend very much on the model database 
and the categories used for the experiment. Changes in the 
models contained in the database or changes in the 
categorization will produce results different from those 
reported below. Performance comparison among methods 
without actually implementing them requires a standard 
database and standard category. Us researchers should 
work together to create such a database (or two or three!) 

In our case, we manually collected 1200 free polygon 
soup 3D models, most of which are VRML models, from 
the Internet. We then converted their format to that of the 
VRML 97 using conversion tools.  

To measure performance, we classified the 1200 models 
into 35 categories based on the judgment of two adult male 

|A|     
+1  

0 
 

 dmin  dmax D
Figure 5. The AAD descriptor for the Level-1 model of 
the office chair in Figure 3. 
 
Level Model 

 

  

1 
 

2 
 

3 
 

4 
 

5 
 

6= 
Orig.  

Figure 6. A pair of AMR-AAD shape descriptors, each of 
which uses AMRR models at 5 resolution levels (L=1…5) 
as well as the original model. The original model is 
referred to as the level-6 model for convenience. 



In the proceedings of the Pacific Graphics 2003, Canmore, Canada, Oct. 2003 

 7 

persons. Of the1200 models, 861 are categorized into one 
of the 34 “known” categories. The “known” categories 
include such shape and/or semantic categories as “Car”, 
“Lamp”, “Chair”, “Officechair”, “Humanoid”, “Plane1”, 
“Head”, and “Mug”. The 35th category is the “Other” kind, 
which contained remaining 339 hard-to-classify models. In 
the experiments below, we queried models in the known 
categories only. If a query using a model from a known 
category produced models from the “Other” category, 
those models from the “Other” category are counted as 
failures. Thus, large number of model in the “Other” 
category push down the performance figures, such as FT, 
ST, NN, figures and recall-precision plots.  

Retrieval performance of the proof-of-the-concept 
system has been evaluated by using the First Tier (FT), 
Second Tier (ST), and Nearest Neighbor (NN), as well as 
the recall-precision plot. 

First Tier (FT): Assume that the query belongs to the 
class Cq containing k models. The FT figure is the 
percentage of the models from the class Cq in the top (k-
1) matches. As the query model is excluded, (k-1) 
models from the class Cq in the top (k-1) results 
produces the figure 100%.  
Second Tier (ST): The ST figure is the percentage of 
the models from the class Cq in the top 2(k-1) matches. 
Nearest Neighbor (NN): The percentage of the cases in 
which the top match is drawn from the query’s class Cq. 

Recall and precision are defined as follows. Let M be 
the set of all the models in the database, and the query 
presented by the user is an element in the set im M∈ . Let 
the category to which im  belongs to be Ci . The category 
Ci contains iC  models including the im  itself. Assume 
that the systems returned the set of models S, in which the 
models the system determined most similar models to the 
query im are included. Then, the recall and precision 
values averaged over all the models, that are, R̂  and P̂  
and are computed as follows; 

 
1

1ˆ
M

i

i i

S C
R

M C=

= ∑
I

 (4) 

 
1

1ˆ
M

i

i

S C
P

M S=

= ∑
I

 (5) 

The maximum values for both R̂  and P̂  are 1.0. Recall 
and precision are in trade-off relationship so that 
improving one degrades the other. For example, recall 
value R̂ =1.0 can be trivially achieved if all the M  
models are retrieved. But such a retrieval result is useless 
as the result include every model in the database.  

To plot the tradeoff between the recall and precision, 
we computed R̂  and P̂  by varying the number of 

retrieval S  in the range 1 S M≤ ≤ .  

4.2. Retrieval performance 

There are two major parameters to be considered in the 
AMR-AAD shape descriptor, the number of resolution 
levels L, and the weights wi for the resolution level i (See 
equation (1)).  

As mentioned before, we used L=5, but added the 
original model (called “level 6”) to make the total number 
of resolution levels 6. To compute the AMR-AAD, all but 
the case H used Np=1024, Id=64, and Ia=4, for each 
resolution level. That is, if two resolution levels are used, 
total number of points used for the descriptor is 2048. In 
the case H, the Np=6144, Id=64, and Ia=4 are used. 

As for the weights, we compared seven different 
combinations of weights that are listed in Table 1 (The 
cases A and H have the same weights but different Np 
values.). For example, case A used 0.0iw =  for i=1, 2, 3, 
4 and 5, and 1.0iw =  for 6i = . That is, the case A is a 
single resolution shape descriptor that is exactly the same 
as the AAD shape descriptor [Ohbuchi03]. As another 
example, the case F employed weights 1.0, 2.0, 3.0, 4.0, 
5.0, and 6.0, respectively, for the levels 1, 2, 3, 4, 5, 
6(=original), respectively.   

4.2.1. Effect of the multiresolution approach 
According to the experiments listed in Table 1, the 

multiresolution approach appears to improve performance. 
The performance figures for those cases (cases B, C, D, E, 
F, G) employing multiple resolution levels are better than 
the case using only one resolution (case A). For example, 
the case B, which employed both the original model and 
its convex hull, outperformed the case A, which used the 
original model only. Further improvements in performance 
was observed as more resolution levels are recruited, as 
seen in the cases C, D, E, and F.  

Note that the AMR-AAD actually uses more points for 
the shape descriptor; if it uses 6 resolution levels, 6 times 
more points ( 6,144 1,024 6= × ) are used. We did an 
experiment to know whether the multiresolution approach 
or the mere increase in number of points is the main source 
of performance gain. We used Np=6144 for the AAD (case 
H) and compared its performance with the others. The 
result shows that any non-degenerate AMR-AAD (cases B, 
C, D, E, F, G) performed better than the single resolution 
AAD using a larger number of points (Np=6144, case H). 
Note that the AAD using Np=6144 cost 6 times more to 
compute than the AMR-AAD using 6 levels, as the 
computational cost of AAD is ( )2

pO N .  
Note also that the AAD that used Np=6144 (case H) 

performed only slightly better than the AAD using 
Np=1,024 (case A) while costing 36 times more in terms of 
computation. Changes in the number of histogram 
intervals Id and Ia could affect the performance of the AAD. 
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But increases in Id and Ia would actually decrease the 
overall performance by making the descriptor too sensitive 
to minute differences in shape (that is, a higher precision 
but a lower recall.)[20].  

Table 1. Weighting of the resolution levels in AMR-AAD 
shape descriptors and retrieval performance. All but the 
case H used Np=1024 for computing the AAD shape 
descriptor for each resolution level. The case H used 
Np=6144 just for one AAD descriptor at level 6. 

Weights for the resolution levels Performance 
           Level 
Case 

1 2 3 4 5 6 FT 
[%] 

ST
[%]

NN
[%]

A (=AAD) 0 0 0 0 0 1 24.0 35.7 43.1 
B 1 0 0 0 0 1 25.9 37.7 46.3 
C 1 0 1 0 0 1 26.7 38.4 46.6 
D 1 0 0 1 0 1 27.2 38.8 49.5 
E 1 1 1 1 1 1 27.3 39.0 50.0 
F 1 2 3 4 5 6 27.9 39.9 51.8 
G 1 2 4 8  16 32 27.5 39.8 51.2
H (=AAD) 0 0 0 0 0 1 24.0 36.0 44.3

4.2.2. Weighting and retrieval performance 
Table 1 shows that, compared to the even weighting 

across the resolution levels (the case E), weighting the 
resolution levels unevenly (the case F) could improve 
performance. Also, putting more weight on the higher 
resolution descriptor(s) improved performance. This effect 
can be observed by comparing the case C and D, and by 
comparing the case E and F. However, there is a limit to 
this; too much weight on the higher resolution descriptors 
actually degraded performance, as seen in the cases G 
compared to the case F. 

4.3. Performance variations due to category 

Obviously, there are variations in performance from one 
category to another. Figure 7 shows the recall-precision 
plots from three categories, “4 legged animal”, “head”, and 
“humanoid”. The “4 legged animal” category and “head” 
category included models that are geometrically similar. 
However, the “humanoid” category contained “humanoid” 
in many different postures. Hence, retrieval performance 
of the “4 legged animal” category and “head” category are 
much better than the “humanoid” category. A category that 
is of semantic in nature produces a low score.  

4.4.  Comparison with other shape descriptors 

We compared the performance of the best-performing 
AMR-AAD descriptor (the case F in Table 1) with the 
AAD [20] and our implementation of the D2 [21, 22]. We 
call our implementation of the Osada’s D2 as mD2, for the 

implementation details differ from that of Osada’s. (For 
example, we used QRNS to compute mD2, instead of the 
PRNS in the Osada’s D2.) 

The result is shown in Table 2 for the FT, ST, and NN 
figures, and in Figure 8 for the recall-precision plot. The 
AMR-AAD multiresolution shape outperformed AAD and 
mD2 in every performance measures. For example, the FT 
figure improved by more than 7% over the mD2, and the 
NN figure improved more than 14% over the mD2. The 
recall-precision plot shows that the AMR-AAD 
outperformed both AAD and mD2 in all the plotted range. 

Please note that the comparing these numbers or the 
plot with that of the other methods measured by using 
different databases and categories is meaningless. For 
example, a large number of models in the “Other” category 
will bring down the performance figure, as the models 
retrieved from the “Other” category are counted as failures 
in our experiment. We need a standard test 3D model 
database with an accompanying category set. 

Table 2. Comparison of retrieval performance among three 
shape descriptors by means of FT, ST, and NN figures. 

Methods FT ST NN 
mD2 20.5% 31.4%  37.1% 
AAD 24.0% 35.7%  43.1% 

AMR-AAD 27.9% 39.9%  51.8% 
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Figure 7. Significant performance variation exists among 
categories.  

4.5. Retrieval examples 

Figure 9 shows an example query results by using 
models of a car (82porsch.wrl) and an office chair 
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(officechair.wrl) as queries. In each figure, the query 
model is positioned at the upper left corner, and top 20 
matches are shown to the right in a left-to-right, top-to-
bottom scan-line order. (The top-left model is the closest 
model to the query. In both Figure 9a and Figure 9b, the 
top match is the query model itself.)  

Black polygons that appear in some of the models 
indicate that the surface normal vectors of these polygons 
are flipped compared to the others. 

5.  Summary and conclusion 

In this paper, we proposed a new multiresolution 
approach to 3D shape similarity comparison of polygon 
shape models by using 3D alpha-shapes [7]. To derive a 
multiresolution representation from a 3D polygon soup 
model, our method first converts the model into a point set 
model by stochastically sampling the model’s surfaces. 
The method then reconstructs a set of 3D alpha-shapes by 
using multiple predetermined scale parameters, or alpha 
values. A multiresolution shape descriptor, an ordered set 
of single resolution shape descriptors, can then be derived. 
We employed the AAD shape descriptor [20] for the 
single-resolution shape descriptor. Our evaluation 
experiments showed that the proposed multiresolution 
method has significantly better retrieval performance than 
the single resolution AAD shape descriptor.   

While the multiresolution approach is quite powerful, 
our current algorithm that employs the 3D alpha shapes is 
slow. We somehow must improve the computational 
efficiency of multiresolution shape descriptors in order to 
deal with a large database of 3D models. We intend to 
investigate better alternatives to the Sobol’s quasi-random 
number sequence for creating point set models and to 
compute the AAD shape descriptor. By using a better 
QRNS, we will be able to use fewer sample points, thereby 
reducing the computational costs. A candidate would be 
the Niederreiter sequence, which worked quite well in 
computing volume and surface area of solid models [5, 14].  

We also intend to explore other (single-resolution) 
shape descriptors to be combined with the multiresolution 
shape-similarity comparison framework proposed in this 
paper.  
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Figure 8. The recall-precision plot averaged over 1200 
models in 35 categories. 
 

(a) A car model (82porsch.wrl) is queried.  

(b) An office chair model (officechair.wrl) is queried. 

Figure 9. Query examples.
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