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Abstract

In this paper we list a number of similarity measures, some of which are not well
known (such as the Monge-Kantorovich metric), or newly introduced (reflection metric).
We formulate properties of similarity measures, and introduce new properties. We also
give a set of constructions that have been used in the design of some similarity measures,
including some new constructions.

1 Introduction

Large image databases are used in many multimedia applications in fields such as enter-
tainment, business, art, engineering, and science. Retrieving images by their content, as
opposed to external features, has become an important operation. A fundamental ingredient
for content-based image retrieval is the technique used for comparing images. There are two
general methods for image comparison: intensity-based (color and texture) and geometry-
based (shape). A recent user survey about cognition aspects of object retrieval shows that
users are more interested in retrieval by shape than by color and texture [30]. However, re-
trieval by shape is still considered one of the most difficult aspects of content-based search.
Indeed, systems such as IBM’s QBIC, Query By Image Content [25], perhaps one of the most
advanced image retrieval systems to date, is relatively successful in retrieving by color and
texture, but performs poorly when searching on shape. The Alta Vista photo finder [6] shows
similar behavior.

There is no universal definition of what shape is. Impressions of shape can be conveyed
by color or intensity patterns (texture), from which a geometrical representation can be
derived. This is shown already in Plato’s work Meno [24]. (This is one of the so-called
Socratic dialogues, where two persons discuss aspects of virtue; to memorialize Socrates, one
of the figures is called after him.) In this work, the word ‘figure’ is used for shape. Socrates’
description

“figure is the only existing thing that is found always following color”.

does not satisfy Meno, after which Socrates gives a definition in “terms employed in geomet-
rical problems”:

“figure is limit of solid”.
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In this paper too we consider shape as something geometrical.

Shape similarity measures are an essential ingredient in shape matching. Matching deals
with transforming a pattern, and measuring the resemblance with another pattern using some
dissimilarity measure. The terms pattern matching and shape matching are commonly used
interchangeably. The matching problem is studied in various forms. Given two patterns and
a dissimilarity measure:

e (computation problem) compute the dissimilarity between the two patterns,

e (decision problem) for a given threshold, decide whether the dissimilarity between two
patterns is smaller than the threshold,

e (decision problem) for a given threshold, decide whether there exists a transformation
such that the dissimilarity between the transformed pattern and the other pattern is
smaller than the threshold,

e (optimization problem) find the transformation that minimizes the dissimilarity between
the transformed pattern and the other pattern.

Sometimes the time complexities to solve these problems are rather high, so that it makes
sense to devise approximation algorithms that find an approximation:

e (approximate optimization problem) find a transformation that gives a dissimilarity be-
tween the two patterns that is within a specified factor from the minimum dissimilarity.

2 Properties

In this section we list a number of possible properties of similarity measures. Whether or
not specific properties are desirable will depend on the particular application, sometimes a,
property will be useful, sometimes it will be undesirable. Some combinations of properties are
contradictory, so that no distance function can be found satisfying them. A shape similarity
measure, or distance function, on a collection of shapes S is a function d: § x S — R. The
following conditions apply to all the shapes A, B, or C in S.

1 (Nonnegativity) d(A, B) > 0.

2 (Identity) d(A, A) = 0 for all shapes A.

3 (Uniqueness) d(A, B) = 0 implies A = B.

4 (Strong triangle inequality) d(A, B) + d(A,C) > d(B, C).

Nonnegativity (1) is implied by (2) and (4). A distance function satisfying (2), (3), and
(4) is called a metric. If a function satisfies only (2) and (4), then it is called a semimetric.
Symmetry (see below) follows from (4). A more common formulation of the triangle inequality
is the following;:

5 (Triangle inequality) d(A, B) + d(B,C) > d(4, C).

Properties (2) and (5) do not imply symmetry. Similarity measures for partial matching,
giving a small distance d(A, B) if a part of A matches a part of B, in general do not obey the
triangle inequality. A counterexample is given in figure 1: the distance from the man to the
centaur is small, the distance from the centaur to the horse is small, but the distance from
the man to the horse is large, so d(man, centaur) + d(centaur, horse) > d(man, horse) does
not hold. It therefore makes sense to formulate an even weaker form [14]:



Figure 1: Under partial matching, the triangle inequality does not hold.

6 (Relaxed triangle inequality) c(d(A, B) +d(B,C)) > d(A, (), for some constant ¢ > 1.
7 (Symmetry) d(A,B) =d(B,A).

Symmetry is not always wanted. Indeed, human perception does not always find that shape
A is equally similar to B, as B is to A. In particular, a variant A of prototype B is often
found more similar to B than vice versa [32].

8 (Invariance) d is invariant under a chosen group of transformations G if for all g € G,
d(g(A),9(B)) = d(A, B).

For object recognition, it is often desirable that the similarity measure is invariant under
affine transformations, illustrated in figure 2. This however depends on the application, and
sometimes a large invariance group is not wanted. For example, Sir d’Arcy Thompson [31]
showed that the outlines of two hatchetfishes of different genus, Argyropelecus olfersi and
Sternoptyxr diaphana, are shear invariant, so that they cannot be distinguished under shear
transformations, see figure 3.

The following four properties are about robustness, a form of continuity. Such properties
are useful to be robust against the effects of discretization, see figure 4.

9 (Perturbation robustness) For each ¢ > 0, there is an open set F' of deformations
sufficiently close to the identity, such that d(f(A4),A) < e for all f € F.

10 (Crack robustness) For each each € > 0, and each “crack” z in the boundary of A, an
open neighborhood U of z exists such that for all B, A—U = B—U implies d(4, B) < e.

11 (Blur robustness) For each ¢ > 0, an open neighborhood U of bd(A), the boundary of
A exists, such that d(A, B) < e for all B satisfying B—U = A — U and bd(A) C bd(B).
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Figure 2: Affine invariance: d(4, B) = d(g(A), g(B)).



Figure 3: Two shear invariant hatchetfishes of different genus: Argyropelecus olfersi and
Sternoptyz diaphana. After [31].

12 (Noise robustness) For each z € R? — A, and each ¢ > 0, an open neighborhood U of x
exists such that for all B, B—U = A — U implies d(4, B) < e.

A distance function is distributive in the shape space if the distance between one pattern
and another does not exceed the sum of distances between the one and two parts of the other:

13 (Distributivity) For all A and decomposable BUC, d(A,BUC) < d(A, B) +d(4,C).

The following properties all describe variations of discriminative power. The first one says
that there is always a shape more dissimilar to A than some shape B. This is not possible if
the collection of shapes is finite.

14 (Endlessness) For each A, B there is a C such that d(A,C) > d(A, B).

The next property means that for a chosen transformation set G, the distance d is able to
discern A as an exact subset of AU B. No g(A) is closer to A U B than A itself:

15 (Discernment) For a chosen transformation set G, d(A, AU B) < d(g(A), AU B) for all
g €G.

The following says that changing patterns, which are already different, in a region where they
are still equal, should increase the distance.

16 (Sensitivity) For all A, B with ANU =BNU,B—-U=C—-U,and BNU # CNU for
some open U C R?, then d(A, B) < d(4,C).

Figure 4: Discretization effects: deformation, blur, cracks, and noise.



The next property says that the change from A to AU B is smaller that the change to AUC
if B is smaller than C":

17 (Proportionality) For all ANB =0 and ANC =0, if B C C, then d(4,AU B) <
d(A, AU Q).

Finally, the distance function is strictly monotone if at least one of the intermediate steps of
adding B — A to A, and C — B to B is smaller than the two steps combined:

18 (Monotonicity) For all A C B C C, d(A,C) > d(A, B), or d(A,C) > d(B,C).

3 Similarity Measures

3.1 Discrete Metric

Finding an affine invariant metric for patterns is not so difficult. Indeed, a metric that is
invariant not only for affine transformations, but for general homeomorphisms is the discrete
metric:

0 if A equals B

1 otherwise
However, this metric lacks useful properties. For example, if a pattern A is only slightly
distorted to form a pattern A’ the discrete distance d(A, A') is already maximal.

3.2 L, Distances, Minkowski Distance

Many similarity measures on shapes are based on the L, distance between two points. For
two points z,y in R¥, the L, distance is defined as Ly(z,y) = (Zf:o |z; — y;|P)Y/P. This is
also often called the Minkowski distance. For p = 2, this yields the Euclidean distance L.
For p = 1, we get the Manhattan, city block, or taxicab distance L;. For p approaching oo,
we get the max metric: max;(|z; — y;|)-

For all p > 1, the L, distances are metrics. For p < 1 it is not a metric anymore, since
the triangle inequality does not hold.

3.3 Bottleneck Distance

Let A and B be two point sets of size n, and d(a,b) a distance between two points. The
bottleneck distance F'(A,B) is the minimum over all 1 — 1 correspondences f between A
and B of the maximum distance d(a, f(a)). For the distance d(a,b) between two points, an
L, distance could be chosen. An alternative is to compute an approximation F to the real
bottleneck distance F. An approximate matching between A and B with F the furthest
matched pair, such that F < F < (1 + €)F, can be computed with a less complex algorithm
[13].

So far we have considered only the computation problem, computing the distance be-
tween two point sets. The decision problem for translations, deciding whether there exists a
translation £ such that F(A + £, B) < e can also be solved, but takes considerably more time
[13]. Because of the high degree in the computational complexity, it is interesting to look



at approximations with a factor e: F(A+¢,B) < (1 +€)F(A + ¢*,T) [29], where £* is the
optimal translation.

Variations on the bottleneck distance are the minimum weight distance, the most uniform
distance, and the minimum deviation distance.

3.4 Hausdorff Distance

In many applications, for example stereo matching, not all points from A need to have a
corresponding point in B, due to occlusion and noise. Typically, the two point sets are of
different size, so that no one-to-one correspondence exists between all points. In that case,
a dissimilarity measure that is often used is the Hausdorff distance. The Hausdorff distance
is defined not only for finite point sets, it is defined on nonempty closed bounded subsets of
any metric space.

The directed Hausdorff distance h(A, B) is defined as the lowest upper bound (supremum)
over all points in A of the distances to B: kh(A4,B) = SUpge 4 infpe g d(a, b), with d(a,b)
the underlying distance, for example the Euclidean distance (Lg). The Hausdorff distance
H(A,B) is the maximum of i(A, B) and h(B, A): H(A,B) = max{d(A, B),d(B, A)}. For
finite point sets, it can be computed using Voronoi diagrams [2].

Given two finite point sets A and B, computing the translation £* that minimizes the
Hausdorff distance H(A + ¢, B) is discussed in [9] and [20]. Given a real value ¢, deciding if
there is a rigid motion m (translation plus rotation) such that H(m(A), B) < € is discussed
in [8]. Computing the optimal rigid motion, minimizing H(m(A), B), is treated in [19], using
dynamic Voronoi diagrams.

Given the high complexities of these problems, it makes sense to look at approximations.
Computing an approximate optimal Hausdorff distance under translation and rigid motion is
discussed in [1].

3.5 Partial Hausdorff Distance

The Hausdorff distance is very sensitive to noise: a single outlier can determine the distance
value. For finite point sets, a similar measure that is not as sensitive is the partial Hausdorff
distance. It is the maximum of the two directed partial Hausdorff distances: Hy(A,B) =
max{ﬁk (A, B), ﬁk(B,A)}, where the directed distances are defined as the k-th value in in-
creasing order of the distance from a point in A to B: hy(A, B) = ki, minyep d(a,b). The
partial Hausdorff distance is not a metric since it fails the triangle inequality. Deciding
whether there is a translation plus scaling that brings the partial Hausdorff distance under a
given threshold is done in [21] by means of a transformation space subdivision scheme. The
running time depends on the depth of subdivision of transformation space.

The subdivision of transformation space is generalized to a general framework by [18].
Here the optimal transformation is approximated. The matching can be done with respect
to other transformations as well, for example, similarity (translation, rotation, and scaling),
or affine transformations (translation, rotation, scaling, and shear).

3.6 p-th Order Mean Hausdorff Distance

For pattern matching, the Hausdorff metric is often too sensitive to noise. For finite point
sets, the partial Hausdorff distance is not that sensitive, but it is no metric. Alternatively,
[7] observes that the Hausdorff distance of A, B C X, X having a finite number of elements,
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Figure 5: Polygonal curve and turning function.

can be written as H(A, B) = sup,¢cx |d(z, A) — d(z, B)|. The supremum is then replaced by
an average: AP(A,B) = (ﬁ Y ozex ld(z, A) — d(z, B)|P)Y/?, where d(z, A) = infsc 4 d(z,a).
This is a metric less sensitive to noise. This measure can for example be used for comparing
binary images, where X is the set of all raster points.

3.7 Turning Function Distance

The cumulative angle function, or turning function, ©4(s) of a polygon A gives the angle
between the counterclockwise tangent and the z-axis as a function of the arc length s. © 4(s)
keeps track of the turning that takes place, increasing with left hand turns, and decreasing
with right hand turns. Clearly, this function is invariant under translation of the polyline.
Rotating a polyline over an angle 6 results in a vertical shift of the function with an amount 6.
For polygons and polylines, the turning function is a piecewise constant function, increasing
or decreasing at the vertices, and constant between two consecutive vertices.

In [5] the turning angle function is used to match polygons. First the size of the polygons
are scaled so that they have equal perimeter. The L, metric on function spaces, applied to © 4
and ©p, gives a dissimilarity measure on A and B: d(4,B) = ([ [04(s) — Op(s)[? ds) l/p,
see figure 6.

In [33], for the purpose of retrieving hieroglyphic shapes, polyline curves do not have the
same length, so that partial matching can be performed. In that case the starting point of the
shorter one is moved along the longer one, considering only the turning function where the
arc lengths overlap. Partial matching under scaling, in addition to translation and rotation,
is more involved [10].
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Figure 6: Rectangles enclosed by © 4(s), ©p(s), and dotted lines are used for evaluation of
dissimilarity.
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Figure 7: A curve and its signature function.

3.8 Signature Function Distance

A less discriminative function is the so-called signature function. At every point along the
curve, the signature function o value is the arc length of the curve to the left or on the
tangent line at that point [23], see Figure 7. It is invariant under similarity: combinations
of translation, rotation, and scaling. For convex curves, the signature function has value one
everywhere, because at every point, the whole curve lies to the left of the tangent.

For polylines, dissimilarity measures can be used that are based on ‘time warps’ of se-
quences of elements (vertices or segments), pairing elements of A to elements of B, which can
be computed by dynamic programming [22]. The pairing need not be one-to-one: the pairing
of element ¢ of A to element j of B, may be followed by a pairing of i to 5+ 1, ¢+ 1 to j, or
1+ 1to7+1.

3.9 Fréchet Distance

The Hausdorff distance is often not appropriate to measure the dissimilarity between curves.
For all points on A, the distance to the closest point on B may be small, but if we walk forward
along curves A and B simultaneously, and measure the distance between corresponding points,
the maximum of these distances may be larger, see Figure 8. This is what is called the Fréchet
distance. More formally, let A and B be two parameterized curves A(«a(t)) and B(S(t)),
and let their parameterizations « and 8 be continuous functions of the same parameter
t € [0,1], such that a(0) = B(0) = 0, and (1) = B(1) = 1. The Fréchet distance is
the minimum over all monotone increasing parameterizations «(t) and B(t) of the maximal
distance d(A(a(t)), B(B(t))), t € [0, 1], see figure 8.

The special case of computing the Fréchet distance for polylines is considered in [4]. A
variation of the Fréchet distance is obtained by dropping the monotonicity condition of the

Figure 8: Hausdorff (H) and Fréchet (F) distance between two curves.



parameterization. The resulting Fréchet distance d(A4, B) is a semimetric: zero distance need
not mean that the objects are the same. Another variation is to consider partial matching:
finding the part of one curve to which the other has the smallest Fréchet distance.

Parameterized contours are curves where the starting point and ending point are the
same. However, the starting and ending point could as well lie somewhere else on the contour,
without changing the shape of the contour curve. For convex contours, the Fréchet distance
is equal to the Hausdorff distance [4].

3.10 Nonlinear elastic matching distance

Let A ={a1,...,an} and B = {by,... ,b,} be two finite sets of ordered contour points, and
let f be a correspondence between all points in A and all points in B such that there are no
a1 < ag, with f(a1) > f(ag). The stretch s(a;, bj) of (a;, f(a;) = bj) is 1 if either f(a;—1) =b;
or f(a;) = bj_1, or 0 otherwise. The nonlinear elastic matching distance NEM (A, B) is the
minimum over all correspondences f of ) s(ai, b;) + d(a;,bj), with d(a;,b;) the difference
between the tangent angles at a; and b;. It can be computed using dynamic programming
[11]. This measure is not a metric, since it does not obey the triangle inequality.

3.11 Relaxed Nonlinear elastic matching distance

The relaxed nonlinear elastic matching distance NEM, is a variation of NEM, where the
stretch s(a;,b;) of (ai, f(a;) = bj) is r (rather than 1) if either f(a;—1) = b; or f(a;) = bj_1,
or 0 otherwise, where r > 1 is a chosen constant. The resulting distance is not a metric, but
it does obey the relaxed triangle inequality, property (6) above [14].

3.12 Reflection Distance

The reflection metric [17] is an affine-invariant metric that is defined on finite unions of
curves in the plane. They are converted into real-valued functions on the plane. Then,
these functions are compared using integration, resulting in a similarity measure for the
corresponding patterns.

The functions are formed as follows, for each finite union of curves A. For each z € R?,
the wisibility star V§ is defined as the union of open line segments connecting points of A that

x
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Figure 9: Reflection star at z.



are visible from z: V§ = |J{Ta | a € A and ANTa = @}. The reflection star RY is defined
by intersecting V¥ with its reflection in z: R4 = {z +v €R? |z —v € V¥ and z + v € V§{},
see figure9. The function p4 : R? — R is the area of the reflection star in each point:
pa(z) = area(R%). Observe that for points = outside the convex hull of A, this area is always
zero. The reflection metric between patterns A and B defines a normalized difference of the
corresponding functions p4 and pp:

d(A,B) = _Jz21Pa(2) — ()| ;l;c

Jge max(pa(x), pp(z)) dz’

From the definition follows that the reflection metric is invariant under all affine trans-
formations. In contrast with single-curve patterns, this metric is defined also for patterns
consisting of multiple curves. In addition, the reflection metric is deformation, blur, crack,
and noise robust.

3.13 Area of Overlap

Two dissimilarity measures that are based on the area of the polygons rather than their
boundaries, are the area of overlap and the area of symmetric difference (see next subsection).
For two compact sets A and B, the area of overlap is defined as area(ANB). This dissimilarity
measure is a not a metric, since the triangle inequality does not hold. The invariance group
is the class of diffeomorphisms with unit Jacobi-determinant.

It turns out that translating the polygons so that their centroids coincide gives an over-
lap of at least 9/25 of the optimal solution [12]. For translations, the transformation that
maximizes the area overlap also minimizes the area of symmetric difference.

3.14 Area of Symmetric Difference, Template Metric

For two compact sets A and B, the area of symmetric difference, also called template metric,
is defined as area((A — B) U (B — A)). Unlike the area of overlap, this measure is a metric.
Translating convex polygons so that their centroids coincide also gives an approximate
solution for the symmetric difference, which is at most 11/3 of the optimal solution under
translations [3]. This also holds for a set of transformations F' other than translations, if
the following holds: the centroid of A, ¢(A), is equivariant under the transformations, i.e.
c(f(A)) = f(c(A)) for all f in F, and F is closed under composition with translation.

ap

= =

N

Figure 10: Area of overlap and symmetric difference.
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3.15 Banach-Mazur Distance

For any two convex bodies A and B of the Euclidean plane, let A\(A, B) be the smallest ratio
s/r where r,s > 0 satisfy rB' C A C sB", and B', B" are some translates of B. Let B denote
class of bodies equivalent to B under translation and positive scaling (the homothets of B).
The function A(4, B) = log A(4, B) is a metric on shapes and is called the Banach-Mazur
metric. It is invariant under affine transformations [15].

3.16 Monge-Kantorovich Metric, Transport Metric, Earth Mover’s Dis-
tance

Given two patterns A = {(A1,w(41)),...,(Am,w(4An))} and B = {(B1,w(B1)), ..., (Bn,
w(By))}, where A; and B; are subsets of R?, with associates weights w(4;),w(B;). The
distance between A and B is the minimum amount of work needed to transform A into B.
(The notion of work as in physics: the amount of energy needed to displace a mass.) This is
a form of the Monge-Kantorovich metric used in heat transform problems [26], which is also
used in shape matching [16] and color-based image retrieval [27]. The discrete version can be
computed by linear programming.

4 Constructions

In this section we discuss a number of constructions that can be used to manipulate similarity
measures, in order to arrive at certain properties.

4.1 Remapping

Let w : [0, 00] — [0, 0] be a monotone continuous function with w(z) = 0 iff z = 0, and which
is subadditive: w(z +v) < w(z) + w(y). Examples include mappings to /(1 + z), tan~!(z),
log(z), z'/?, for some p > 1, and min(z, ¢), for some positive constant c. If d(A, B) is a metric,
then so is d(A, B) = w(d(A, B)). With some of these functions, an unbounded metric d can be
mapped to a bounded metric. For the cut-off function min(z, ¢), the maximum distance value
becomes ¢, so that property (14) above does not hold. It is used in [7] for comparing binary
images. The log(x) function is used in the Banach-Mazur distance log A(4, B). Without the
logarithm it would not satisfy the triangle inequality, and therefore not be a metric.

4.2 Normalization

Normalization is often used to scale the range of values of a similarity measure to [0, 1], but it
can also change other properties. For example, normalizing the area of overlap and symmetric
difference by the area of the union of the two polygons makes it invariant under a larger
transformation group, namely the group of all diffeomorphisms with a Jacobi determinant
that is constant over all points [17].

4.3 From Semi-metric to Metric

Let S be a space of objects, and d a semimetric. Identifying all elements A, B of S for which
d(A, B) = 0, and considering these as a single object, yields another space S’. The semimetric
on S then gives a metric d'(C, D) = d(C,D) on S'.
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4.4 Semi-metric on Orbits

A collection of patterns S and a transformation group G determine a family of equivalence
classes S/G. For a pattern A € S, the orbit is G(A) = {g(4) | ¢ € G}. The collection
of all these orbits forms a space of equivalences classes. A semimetric d invariant under a
transformation group G results in a natural semimetric on the orbit set: d : S /G xS/G—R
defined by d(G(A),G(B)) = inf{d(g(A),B) | g € G} is a semimetric on the space S/G.
Rucklidge [28] used this principle to define a shape distance based on the Hausdorff distance.

4.5 Extension with empty set

A pattern space S not containing the empty set &, with metric d, can be extended with &,
by defining d'(A,B) = d(A,B)/(1 + d(A, B)), d'(2,2) =0, and d'(A,9) = 1 for A,B € S.
This gives a bounded metric pattern space such that the restriction of d’ to S is topologically
equivalent to d [17]. In addition, the invariance group remains the same.

4.6 Vantageing

Let d be some distance function on a space S of patterns, d : S x S — R. For some fixed
C € S (vantage object), the function d¢ (A4, B) = |d(4,C) — d(B, C)| is a semimetric, even if
d does not obey nonnegativity, identity, weak triangle inequality, and symmetry.

4.7 Imbedding patterns

Affine invariant pattern metrics can be formed by mapping patterns to real-valued functions
and computing a normalized difference between these functions. Affine invariance is desired
in many pattern matching and shape recognition tasks.

Let I(R?) be the space of real-valued integrable functions on R?. Define the L' seminorm
on I(R?) by |a] = [z |a(z)| dz.

For a diffeomorphism g the Jacobi-determinant is the determinant of the derivative of g
at a given point. We use j4(z) to denote the absolute value of the Jacobi-determinant of ¢ in
z. For real-valued functions a,b : R? — R, aV b denotes the pointwise maximum. Define the
normalized difference of two functions with non-zero integrals by o,(a,b) = |a — b|/|a V b|.
This is a semimetric on the set of non-negative valued functions with non-zero integrals.

A large class of mappings from patterns in R? to integrable functions result in invariant
semimetrics based on the normalized difference o,. Namely, let S be a collection of subsets
of R?. Let each A € S define a unique function ny : R2 — R in I(R?), and let g be a
diffeomorphism with constant Jacobi-determinant. If g determines a number ¢ > 0 such that
ny4)(9(z)) = dnx(z) for all A € S and = € R?, then 0,(ny4),ng5)) = 0yn(na,np) for all
A,B € S [17]. This was used in the construction of the reflection metric.

5 Conclusions

In this paper, we have identified a number of useful properties of similarity measures. Some
properties are conflicting, and the desirability depends on the application at hand. We have
listed a number of similarity measures, some of which are not well known (such as the Monge-
Kantorovich metric), or new (reflection metric). Finally, we gave a set of constructions that
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have been used in the design of some similarity measures. It is an interesting problem to
design new similarity measures that satisfy new combinations of properties.
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