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ABSTRACT In this paper, we put forward on the drive-response synchronization in shape for

four-dimensional (4-D) continuous chaotic system, using the basic theory of plane curves in classical

differential geometry. For 4-D continuous system, shape synchronization means the six-response systems

have the same shape of chaotic attractor as the six projective systems of driver system. Numerical simulations

are given to verify the theoretical analysis, which clearly shows that the shape controllers can really make two

systems achieve shape synchronization in a quite short time. Moreover, a shape synchronization encryption

algorithm for color image is proposed. Simulation results reveal the superiority of the proposed approach.

INDEX TERMS Shape synchronization, 4-D chaotic system, drive and response, chaotic attractor, image

encryption.

I. INTRODUCTION

With the development of computer, communication, and

network technologies, information security issues have

attracted more and more attention and become a current

research hotspot [1]–[6]. Chaos has characteristics such

as unpredictability, pseudo-randomness, and extreme sen-

sitivity to initial value [7], [8], it has been widely used

in complex networks [9]–[13], memristors [14]–[19], ran-

dom number generators [20], [21], secrecy communica-

tion technologies [22]–[25], especially the image encryption

[26]–[29]. In information subject, chaos can be divided into

two categories. One is to construct a new digital encryption

algorithm using a chaotic system based on the computer

finite precision technology. Zhou et al. proposed [30] a

framework for parallel image encryption based on discretized

chaotic map. Zhang et al. [31] proposed an image encryption

algorithm based on the spatiotemporal chaos of the mixed

linear-nonlinear coupled map lattices. An Efficient Image
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Encryption Scheme Based on S-Boxes and Fractional-Order

Differential Logistic Map has been proposed in [32]. Based

on matrix semi-tensor product theory, an algorithm for syn-

chronously updating Boolean network encryption was pro-

posed in [33]. Beyond that, some chaotic image encryption

schemes using one-time keys [34], dynamic random growth

technique [35], spatial bit-level permutation [36], genetic

algorithm [37] and DNA rules [38]–[40] have been pro-

posed. The other one is the chaotic secure communica-

tion system with chaotic synchronization as the technical

core. Wang et al. [41] presented a new image encryption

scheme based on time-delay Lorenz system synchroniza-

tion. Vaidyanathan et al. [42] introduced a image encryption

based on chaotic hyperjerk synchronization using an adaptive

backstepping controller. Muthukumar et al. [43] designed an

image encryption and decryption based on the synchronized

lowest fractional order chaotic systems. Muthukumar et al.

[44] proposed a new image encryption method of fast projec-

tive synchronization of fractional order dynamical systems.

Therefore, many researchers have focused on chaotic syn-

chronization and their synchronization techniques.
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Since Ott, Grebogi and York first observed chaos [45],

and Pecora and Carroll first presented chaos synchronization

[46] in 1990, two of the main concerns are their control and

synchronization.Control refers to the adaptive control of a

given chaotic system with the aim of forcing its states to be

asymptotically stable, usually converging towards zero. Till,

extensive researches have been devoted to various control

strategies have been utilized such as active-passive control

[47], [48], state feedback control [49]–[53], fuzzy model

control [54], impulsive control [55], sliding mode control

[56], [57] and adaptive control [58]–[60]. These methods can

effectively solve the chaos control and chaos synchronization

problems.

Various concepts of chaotic synchronization have been

proposed, such as complete synchronization [61], [62], lag

synchronization [63], projective synchronization [64], [65],

phase synchronization [66], partial synchronization [67],

general synchronization [68], anti-synchronization [69], [70].

These concepts of chaotic synchronization almost focus on

state variables of drive and response systems. For completely

synchronization, its states of the drive and the response sys-

tem can be asymptotically stable, converging towards zero.

In case of projective synchronization, its states of the drive

and the response system can be synchronized up to a scaling

factor. As well known, chaotic attractors can be described by

smooth and continuous curve in some bounded region in with

given initial condition for continuous chaotic systems. The

chaotic attractors with different positions in phase space show

the same or different shapes. According to the differential

geometry theory of plane curve, two plane curves share the

same shape when their signed curvature is equivalent while

choosing the same arc-length parameter. In phase space, how

to define the synchronization of two chaotic systems with

the same shape of chaotic attractor with different positions?

Therefore, if we pay attention to the shape of the drive

chaotic attractor and control scheme, then a new problem for

drive-response synchronization may be proposed.

In our previous work [71], [72], we proposed shape

synchronization for a class of two-dimensional and

three-dimensional chaotic systems and their application

in secure communication system. Moreover, many clas-

sical hyper-chaotic systems have been proposed, such as

hyper-chaotic Chen system [51], hyper-chaotic Lü system

[73], hyper-chaotic Lorenz system [74] and Chua’s chaotic

system [75], [76]. Unlike two and three dimensional chaotic

systems, the dynamics of higher dimensional chaotic systems

is more complex and the shape of the chaotic attractors is

invisible. It means that the shape of the higher chaotic attrac-

tors cannot be described by a single physical quality. On the

other hand, in information transmission, higher dimension

means stronger information carrying capacity. Therefore, it is

very necessary to study the shape synchronization problem of

higher dimensional chaotic systems.

Motivated by the above discussions, in this paper, shape

synchronization of a class of continue 4-D chaotic system is

discussed. Themain themajor advantages can be summarized

as follows: (1) The shape synchronization schema for 4-D

chaotic system is discussed. Compared with other chaotic

synchronization, this kind of synchronization focus the shape

of chaotic attractor instead of the distances between state

variables of the drive and response systems, and means the

six-response systems have the same shape of chaotic attractor

as the six projective systems of drive system. However, there

are no further studies about this work. (2) By getting the pur-

pose of control, the group of shape controllers are designed

based on the classical differential geometry technique. Under

these controllers, the chaotic attractor of response system and

drive system have the same arc length measure and relative

curvature,and two systems achieve shape synchronization in

a short time. The synchronization error and timing is inves-

tigated. (3) A lightweight image encryption algorithm by

using shape synchronization is proposed. The senders uses

the 4-D chaotic system to encrypt the image file, and sends

the driving signal and Key to the receiver. As this time, the

shape controller is used to synchronize the response system in

shape, then decrypted the inverse operation of the encryption

algorithm to obtain the decrypted image file. During this

period, the scheme used the shape characteristics variables

of drive system as the driving signals. So, the attackers are

hard to identify the type of chaotic system using these driving

signals. Even if the worse-case scenario attackers are able to

successfully access these driving signals and only possible

to plot the shape of driving chaotic attractor rather than the

accurate position. On the other side, the proposed scheme

can achieve fast synchronization in shape, which can also

enhance the synchronization rate and is suitable for real-time

communication system.

The rest of this paper is organized as follows. Section II

presents the basic concepts of classical differential geom-

etry. Section III describes the shape synchronization model

of 4-D chaotic system. Section IV is about the definition of

shape synchronization and the design of shape controller. The

reconstruction process of the chaotic drive system and the

numerical simulations shown in section V. An image encryp-

tion algorithm based on the shape synchronization is pro-

posed in section VI. Conclusions are drown in the last section.

II. PRIORI KNOWLEDGE OF PLANE CURVE

Let r = r(t) ∈ Rn, t ∈ R+, R+ ∈ [0,+∞) be a regular

curve in Rn. It is a plane curve when n = 2 and when n = 3,

it is a spacial curve. ‘‘regular’’ means to any t ∈ R+, r ′(t) =
dr(t)/dt does not vanish. By theway, all the curvesmentioned

in this paper are regular curves.

The arc-length parameter s of curve r = r(t) is defined

by the equation s(t) =
∫ t1
t0

‖r ′(τ )‖dτ , which indicates the

unit length of the curve between the point r(t0) and r(t1).

Obviously, for any t ∈ R+, s′(t) > 0, there must be an

anti-function t = t(s).

Consider the plane curve r(t) = (x(t), y(t))T ∈ R2 on the

Cartesian right hand Frame. The unit tangent is defined as:

T (t) =
r ′(t)

|r ′(r)|
=

1√
(x ′(t))2 + (y′(t))2

[
x ′(t)
y′(t)

]
(1)
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The unit normal vector is defined as:

N (t) =
1√

(x ′(t))2 + (y′(t))2

[
−y′(t)
x ′(t)

]
(2)

It is easy to figure out that ‖T (t)‖ = 1, ‖N (t)‖ = 1,

(T (y),N (t)) = 0, t ∈ R+. ‖ ∗ ‖ denotes Euclidean norm,

(∗) denotes the inner product. The signed curvature ρ(t) is

defined as.

ρ(t) =
x ′(t)y′′(t) − x ′′(t)y′(t)

[(x ′(t))2 + (y′(t))2]3/2
(3)

Extraordinarily, if we choose the arc-length s as the param-

eter instead of time t , the relationship between the signed cur-

vature ρ(s), unit tangent vector T (s) and unit normal vector

N (s) can be described by.

Ṫ (s) = ρ(s)N (s), Ṅ (s) = −ρ(s)T (s) (4)

It is called Frenet-Serret formula. Meanwhile, we have

the signed curvature ρ(s), unit tangent T (s) and unit normal

vector N (s) as below.

ρ(s) = ẋ(s)ÿ(s) − ẍ(s)ẏ(s)

T (s) = ṙ(s) =
[
ẋ(x)

ẏ(s)

]
, N (s) =

[
−ẏ(s)
ẋ(s)

]
(5)

Suppose there are two arc-length parameterized regular

curve r1(s) and r2(s). If their signed curvature ρ1(s) and ρ2(s)

are equivalent everywhere and do not vanish, then the curve

r1(s) and r2(s) can be transformed to each other by a rotation

and a translation. It means that r1(s) = Ar2(s) + ϒ0,

A =
[
cosθ0 −sinθ0
sinθ0 cosθ0

]
, ϒ0 =

[
x0
y0

]

in which θ0 is the rotation angle, and ϒ0 is the translation

vector.

Definition 1: Consider two t-parameterized regular plane

curve r1(t) and r2(t). Make arc-length s be the common

parameter from initial time t0. If there exist a matrix A =
[cosθ0,−sinθ0; sinθ0, cosθ0] and a vector ϒ0 = [x0, y0]

T

such that r1(s) = Ar2(s) + ϒ0, then the two plane curve

r1 = r1(t) and r2 = r2(t) are called to share the same shape.

III. SHAPE SYNCHRONIZATION SCHEME

A. DESCRIPTION OF DRIVE SYSTEM

Consider the following four-dimensional chaotic systems.




ẋ1 = f1(x, t)

ẋ2 = f2(x, t)

ẋ3 = f3(x, t)

ẋ4 = f4(x, t)

(6)

where x = [x1, x2, x3, x4]
T ∈ R4 is the state vector of the

system and fi(i = 1, 2, 3, 4) is a smooth nonlinear function.

Remark 1: Many four-dimensional chaotic systems can be

described by the Eq. (6), such as hyper-lorenz, hyper-chen,

hyper-zhou, etc. This implies that model (6) has the common

feature of four-dimensional chaotic systems.

Under a given initial condition, the chaotic attractor of the

system described by Eq. (6) is a regular four-dimensional

spacial curve. Referring to paper [77], [78], the geome-

try theory of plane curve can be utilized by projecting the

chaotic attractor onto the coordinate planes. When t0 and

x0 = (x1(t0), x2(t0), x3(t0), x4(t0))
T are given, the solutions

of the Eq. (6) are: x1(t) = ϑ1(x0, t0, t) , ξ1(t), x2(t) =
ϑ2(x0, t0, t) , ξ2(t), x3(t) = ϑ3(x0, t0, t) , ξ3(t), x4(t) =
ϑ4(x0, t0, t) , ξ4(t).

Obviously, ξ = ξ (t) = (ξ1(t), ξ2(t), ξ3(t), ξ4(t)) ∈ R4 is

a state trajectory of the system (6). Let the coordinate axes

be x1, x2, x3, x4, the coordinate origin is O. By projecting

the trajectory ξ = ξ (t) onto the coordinate planes x1ox2,

x1ox3, x1ox4, x2ox3, x2ox4, x3ox4 respectively, the following

projective system can be obtained.

{
ẋi = fi(xi, xj, ξa(t), ξb(t), t)

ẋj = fj(xi, xj, ξa(t), ξb(t), t)
(7)

where i, j, a, b ∈ {1, 2, 3, 4} satisfying that i < j, a 6= b and

a, b ∈ {1, 2, 3, 4}−{i, j}. The projective system describes the

project curves of the chaotic attractor of drive system (6).

Definition 2: System (7) is called as the projective system

of drive system (6). The projective system consists of six

subsystems. When i = 1, j = 2, a = 3, b = 4, the

corresponding projective subsystem is abbreviated asDS− I ;

When i = 1, j = 3, a = 2, b = 4, the correspond-

ing projective subsystem is abbreviated as DS − II ; when

i = 1, j = 4, a = 2, b = 3,the corresponding projective

subsystem is abbreviated as DS − III ; When i = 2, j =
3, a = 1, b = 4,the corresponding projective subsystem is

abbreviated asDS−IV ; When i = 2, j = 4, a = 1, b = 3, the

corresponding projective subsystem is abbreviated asDS−V ;
When i = 3, j = 4, a = 1, b = 1, the corresponding

projective subsystem is abbreviated as DS − VI .

B. DESCRIPTION OF RESPONSE SYSTEM

Consider the projective system (7), the corresponding con-

trolled response system is designed as.





ẏk1 = αk1 (y
k , t)uk1(t)

ẏk2 = αk2 (y
k , t)uk1(t)

ẏk3 = β(yk , t) + αk3 (y
k , t)uk1(t) + ωk (yk , t)uk2(t)

(8)

The response system is also made up of six sub-

systems which are abbreviated as RS − k and k =
I , II , III , IV ,V ,VI . yk = (yk1, y

k
2, y

k
3)
T ∈ R3 is the state vec-

tor, αk (yk , t), βk (yk , t), ωk (yk , t) are derivable time varying

functions and uk (t) = (uk1(t), u
k
2(t))

T is the control input.

If given the initial state yk0 = yk (t0), starting time t0 and

control input uk (t), then the plane curve determined by the

first two equations of Eq. (8) can be described as r̃k =
(yk1(t), y

k
2(t))

T .

Definition 3: Plane curve r̃k = (yk1(t), y
k
2(t))

T is called

as the project curve of RS − k which is described by Eq.

(8). Abbreviated as PCR − k , k = I , II , III , IV ,V ,VI . (The
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meaning of the symbols that mentioned in Definition 2 and

Definition 3 is shown is Table 1).

TABLE 1. Symbols mentioned in Definition 2.

IV. SHAPE SYNCHRONIZATION AND CONTROL OF

CHAOS

A. DEFINITION OF SHAPE SYNCHRONIZATION

Definition 4: Consider the drive system (6) and response

system (8), if the plane curve PCR − k which is the defined

by response subsystem RS − k shares the same shape with

the plane curve that defined by projective subsystem DS− k ,

then RS − k is called as shape synchronized with system

DS− k . If to all k = I , II , III , IV ,V ,VI that RS− k is shape

synchronized with DS − k , then we call that the response

system (8) is synchronized with drive system (6) in shape.

Definition 5: If there exist a group of controller uk (t) =
(uk1(t), u

k
2(t))

T , k = I , II , III , IV ,V ,VI , under the con-

trol of which, response system(8) is shape synchronized

with drive system(6), then uk (t) = (uk1(t), u
k
2(t))

T , k =
I , II , III , IV ,V ,VI is called as a group of shape synchroniza-

tion controllers.

B. SHAPE SYNCHRONIZATION CONTROLLER DESIGN

The main usage of the shape synchronization controller

uk (t) = (uk1(t), u
k
2(t))

T is to guarantee that the plane curve

PCR − k shares the same shape with the plane curve that

determined by the projective subsystemDS−k . According to

the differential geometry theory of plane curve, if two plane

curves share the same shape, their arc-length parameterized

signed curvature must be equivalent everywhere. Therefore,

the designing procedure of the shape synchronization con-

troller can be divided into two steps.

step 1: Design controller uk1(t) which make sure that the

plane curve PCR− k and the plane curve that determined by

projective systemDS−k have the same arc-length parameter.

step 2: Design controller uk2(t) which ensure that the

signed curvature of PCR − k and the signed curvature of

the plane curve determined by projective system DS − k

are equivalent everywhere. The following assumptions are

propose.

Assumption 1: Consider the response system (8), the

following inequality is true for any t ∈ [t0,∞),

k = I , II , III , IV ,V ,VI , where t0 ∈ R is the initial time.

(αk1 (y
k , t))2 + (αk2 (y

k , t))2 6= 0 (9)

Assumption 2: Consider the response system (8), the

following inequality is true for any t ∈ [t0,∞),

k = I , II , III , IV ,V ,VI , where t0 ∈ R is the initial time.

{[αk1 (y
k , t), αk2 (y

k , t)](yk3)}ω
k (yk , t) 6= 0 (10)

where the Lie-Bracket is follow the form.

[αk1 (y
k , t), αk2 (y

k , t)](yk3)

= αk1 (y
k , t)

δαk2 (y
k , t)

δyk3
− αk2 (y

k , t)
δαk1 (y

k , t)

δyk3

Remark 2: The function of Assumption 1 is to make sure

that the plane curve PCR − k is regularly positive defined.

Assumption 2 is utilized to synthesize the controller uk2(t)

which guarantee the equivalence of the signed curvature of

PCR − k and the curve determined by projective system

DS − k .

According to Assumption 1 and Assumption 2, a group of

shape synchronization controller is designed as follow.

Remark 3: For simplicity, parameters t in uk1(t) and u
k
2(t)

has been omitted in this section.

uk1 =

√
(fi(xi, yi, ξa, ξb, t))2 + (fj(xi, yi, ξa, ξb, t))2

(αk1 (y
k , t))2 + (αk2 (y

k , t))2

uk2 =
ρkd [(fi(xi, yi, ξa, ξb, t))

2 + (fj(xi, yi, ξa, ξb, t))
2]3/2

(uk1)
2{[αk1 (yk , t), α

k
2 (y

k , t)](yk3)}ωk (yk , t)

−
σ (yk , t)

(uk1)
2{[αk1 (yk , t), α

k
2 (y

k , t)](yk3)}ωk (yk , t)
(11)

in which

ψ=
{
(αk1 (y

k , t))2
δαk2 (y

k , t)

δyk1
− (αk2 (y

k , t))2
δαk1 (y

k , t)

δyk2

+
[
δαk2 (y

k , t)

δyk2
−
δαk1 (y

k , t)

δyk1

]
αk1 (y

k , t)αk2 (y
k, t)

}
(uk1)

3,

σ (yk , t)=
{
[αk1 (y

k , t), αk2 (y
k , t)](yk3)

}
[βk (yk , t)

+αk3 (y
k , t)uk1] + ψ.

When given the initial state x0 and time t0, the signed

curvature ρkd can be calculated according to the following

formula.

ρkd =
ẋiẍj − ẍiẋj

[(fi(xi, yi, ξa, ξb, t))2 + (fj(xi, yi, ξa, ξb, t))2]3/2

Theorem 1: If Assumption 1 is true, then under the control

of uk1(t), the signed curvature of PCR − k possess the same

arc-length measure as the plane curve defined by projective

system DS − k .

Proof: According to Eq. (7), the arc-length skd of the

projective drive system DS − k can be calculated as.

skd =
∫ t

t0

√
fi(xi, yi, ξa, ξb, t))2+(fj(xi, yi, ξa, ξb, t))2dt (12)
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The arc-length skr of plane curve PCR − k can be calculated

as.

skr =
∫ t

t0

√
(ẏk1)

2 + (ẏk2)
2dt (13)

Substituting the controller (11) into (13), then there exist

skd − skr = 0, k = I , II , III , IV ,V ,VI . Theorem 1 is proved.

Theorem 2: If both Assumption 1 and Assumption 2 are

true, under the control of uk1, u
k
2, the signed curvature of the

plane curve PCR− k and the curve determined by projective

system DS − k is equivalent everywhere.

Proof: Referring to Eq. (3), the signed curvature ρkd of

the curve determined by projective system DS − k can be

calculated as follows.

ρkd =
ẋiẍj − ẍiẋj

[f 2i (xi, yi, ξa, ξb, t) + f 2j (xi, yi, ξa, ξb, t)]
3/2

(14)

Similarly, the curvature ρkr of PCR− k is.

ρkr =
ẏk1 ÿ

k
2 − ÿk1 ẏ

k
2

[(αk1 (y
k , t)uk1)

2 + (αk2 (y
k , t)uk1)

2]3/2
(15)

On the basis of Assumption 1 and Assumption 2, it is easy to

figure out that.

ẏk1 ÿ
k
2 − ÿk1 ẏ

k
2

= αk1u
k
1

[dαk2 (yk , t)
dt

uk1 − αk2 (y
k , t)

duk1
dt

]

−αk2u
k
1

[dαk1 (yk , t)
dt

uk1 − αk1 (y
k , t)

duk1
dt

]

=
[
αk1 (y

k , t)
dαk2 (y

k , t)

dt
− αk2 (y

k , t)
dαk1 (y

k , t)

dt

]
(uk1)

2

= σ (yk , t){[αk1 (y
k , t), αk2 (y

k , t)](yk3)}ω
k (yk , t)uk2, (16)

By Substituting equation (16) into (15), the curvature of

PCR− k can be obtained as.

ρkr =
(uk1)

2{[αk1 (yk , t), α
k
2 (y

k , t)](yk3)}ωk (yk , t)u
k
2

[(αk1 (y
k , t)uk1)

2 + (αk2 (y
k , t)uk1)

2]3/2

+
σ (yk , t)

[(αk1 (y
k , t)uk1)

2 + (αk2 (y
k , t)uk1)

2]3/2
(17)

Replacing the uk1(t), u
k
2(t) in Eq (17) with (11), then to all

k = I , II , III , IV ,V ,VI , we have.

ρkd − ρkr = 0 (18)

The proof of Theorem 2 completes.

Theorem 3: Consider the drive system (6), projective sys-

tem (7) and response system (8), if both Assumption 1 and

Assumption 2 are true, then under the effect of controller (11),

the response system (8) is shape synchronized with the

chaotic drive system (6).

Remark 4: Referring to Definition 4 and Theorem 3, that

the response system (8) and chaotic drive system (6) achieved

shape synchronization on the whole. It means that the tra-

jectory whose projections on the two dimension coordinate

planes are PCR− k shares the same shape with the trajectory

of the drive system (6). But,due to the position difference,

their state is not completely the same. Theorem 3 does not

explain how to reconstruct the the state of chaotic drive sys-

tem (6) from the state of the response system (8) after chaotic

shape synchronization is achieved. Actually, according to

Theorem 3 and the conclusions of shape synchronization, it is

definitely capable to reconstruct all the states of the drive

system (6). The reconstruction of the states is performed in

the next section.

V. RECONSTRUCT OF 4-D CHAOTIC SYSTEMS AND

NUMERICAL SIMULATION

A. RECONSTRUCT SHAPE SYNCHRONIZATION OF 4-D

CHAOTIC SYSTEMS

In this section, we are going to explain how to reconstruct the

state of drive system (6) from the state of response system (8)

on the basis of the Theorem 1- 3. Before that, let’s review the

following truth first.

Let x0 = (x1(t0), x2(t0), x3(t0), x4(t0))
T be the initial state

of the drive system (6) at time t0, using the symbols in

subsection III-A, the state trajectory of system (6) is ξ (t) =
(ξ1(t), ξ2(t), ξ3(t), ξ4(t))

T ∈ R4. It’s projection on the coordi-

nate plane is described by Eq. (7), the unit tangent vector and

unit normal vector of the plane curve rk = (xi(t), xj(t)) at the

initial point rk0 = (xi(t0), xj(t0)) can be calculated as bellow.

T k0 =
1√

f 2i (x0, t0) + f 2j (x0, t0)

[
fi(x0, t0)

fj(x0, t0)

]

N k
0 =

1√
f 2i (x0, t0) + f 2j (x0, t0)

[
−fj(x0, t0)
fi(x0, t0)

]
(19)

where k = I , II , III , IV ,V ,VI , i, j = 1, 2, 3, 4, i < j.

Table 2 presents the corresponding relationship between the

projective curves, initial unit tangent vectors and normal

vectors.

TABLE 2. Symbols mentioned in Definition 3.

Due to the Theorem 1-3, under the effect of controller of

controller (11), the plane curve PCR−k (parametric function

r̃k = (yk1(t), y
k
2(t))

T ) that defined by response system RS − k

shares the same shape with the plane curve (parametric func-

tion rk = (xi(t), xj(t))
T ) defined by projective systemDS−k .

It means that signed curvature ρkd (s
k ) = ρkr (s

k ) (arc-length

parameter sk = skd = skr ). Therefore, according to Defini-

tion 1 and basic theory of plane curve. In the same coordinate
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TABLE 3. Projections and initial vectors.

system, Let T̃ k0 , Ñ
k
0 be the unit tangent vector and the normal

vector of the plane curve PCR− k at the time t0. If there are

r̃k0 = rk0 , T̃
k
0 = T k0 , Ñ

k
0 = N k

0 , then the plane curve PCR− k

is completely coincident with the plane curve that determined

by projective system DS − k . It is to say that the state of the

system that corresponding to PCR − k is exactly the same

with the state of the projective drive system DS − k .

To summarize, if T k0 ,N
k
0 represent the unit tangent vector

and normal vector of the projective system DS − k respec-

tively, then the following differential equation can be obtained

by utilizing the the radius vector of PCR−k , signed curvature

ρkr (s
k ) and the Frenet-Serret formula when given the initial

state r0,T
k
0 ,N

k
0 .





ṡk = ‖r̃k (t)‖
ṙk = T kd (s

k )

Ṫ kd (s
k ) = ρkr (s

k )N k
d (s

k )

Ṅ k
d (s

k ) = −ρkr (sk )T kd (sk )
ẏk1 = αk1 (y

k , t)uk1(t)

ẏk2 = αk2 (y
k , t)uk1(t)

ẏk3 = βk (yk , t) + αk3 (y
k , t)uk1(t) + ωk (yk , t)uk2(t)

(20)

where initial state sk0 = sk (t0) = 0, yk3(t0) = 0, rk (t0) = rk0 ,

T kd (t0) = T k0 , N
k
d = N k

0 . u
k
1, u

k
2 are given by Eq.(11).

Let rk (t) = (ηk1(t), η
k
2(t))

T be the solution of equation (20)

under the above given initial condition. Referring to the sym-

bols in Definition 2, the state of the chaotic drive system (6)

can be reconstructed as follow.

ξ = ξ (t) = (ηI1, η
I
2, η

VI
1 , η

VI
2 )T (21)

Except (21), other similar results can be obtained as well.

Such as,

ξ = ξ (t) = (ηI1, η
IV
1 , η

II
2 , η

III
2 )T ,

ξ = ξ (t) = (ηII1 , η
V
1 , η

IV
2 , η

VI
2 )T .

Theorem 4: Consider the four-dimensional chaotic drive

system (6), if given the initial condition sk0 = sk (t0) = 0,

yk3 = 0, rk (t0) = rk0 , T
k
s (t0) = T k0 , N − dk (t0) = N k

0 ,

then under the effect of controller (11) response system (8)

can make sure that the system (21) is the same with the drive

system (6).

B. NUMERICAL SIMULATION

In this section, a numerical simulation will be conducted on

a hyper-Lü system to illustrate and compare the control and

synchronization results. The dynamic equation of the hyper-

Lü is follow the form.




ẋ1 = a(x2 − x1)

ẋ2 = cx2 − x1x3 + x4

ẋ3 = x1x2 − bx3

ẋ4 = x3 − dx4

(22)

where a = 20, b = 5, c = 10, d = 1.5. The projections on

the coordinate planes of the chaotic attractor when given the

initial state x1(0) = 1, x2(0) = −2, x3(0) = 3, x4(0) = −9

are shown in Fig. 1.

FIGURE 1. Projections of the drive system chaotic attractor.

According to Eq. (19), we can figure out the unit tangent

vector and normal vector of the system’s (22) project curves

at the initial point.

T Id (0)= [−0.8824,−0.4706]T , N I
d = [0.4706,−0.8824]T

T IId (0)= [−9621,−0.2726]T , N II
d = [0.2726,−9621]T

T IIId (0)= [−0.9642, 0.2652]T, N III
d = [−0.2652,−0.9642]T

T IVd (0)= [−1.3310,−0.7071]T, N IV
d = [0.7071,−1.3310]T

T Vd (0)= [−0.8888, 0.4583]T, NV
d = [−0.4583,−0.8888]T

T VId (0)= [−0.7176, 0.6965]T, NVI
d = [−0.6965,−0.7176]T

(23)

Before reconstruct chaotic drive system, we need to recon-

struct the project curves rk (t) of the drive system chaotic

attractor. The project curve of the drive system (22) on the

coordinate plane x1ox2 is r I (t) = (x1(t), x2(t))
T . Refer-

ring to Eq. (8), the response subsystem can be designed as

αI1(y
I , t) = sin(yI3), α

I
2(y

I , t) = cos(yI3), β
I (yI , t) = 0,

αI3(y
I , t) = 0, ωI (yI , t) = 1. Apparently (αI1(y

I , t))2 +
(αI2(y

I , t))2 6= 0, {[αI1(yI , t), αI2(yI , t)](yI3)}ωI (yI , t) 6=
0, thus the response subsystem meets Assumption 1 and

Assumption 2. According to (11), the author designed the

following shape controller for the response subsystem:

uI1 =
√
ẋ21 + ẋ22

uI2 =
ẍ1ẋ2 − ẍ2ẋ1

(uI1)
2

(24)

The curve r I (t) can be reconstructed by solving the equation

that follow the form of Eq. (20) (k = 1). The initial value of
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the function is given bellow.

sI (0) = 0, yI1(0) = −1,

yI2(0) = 2, yI3(0) = 0,

T Id = [−8824,−0.4706]T ,

N I
d = [0.4706,−8824]T , (25)

The figure (a)-(f) in Fig. 2 show the the project curves of the

drive system (22), plane curves defined by response system

and the reconstructed project curves of the drive system.

FIGURE 2. Project curves of drive system,response system and
reconstructed system. (a) Project curve r I ; (b) Plane curve r̃ I ;
(c) Reconstructed curve r I ; (d) Project curve rVI ; (e) Plane curve r̃VI ;
(f) Reconstructed curve rVI .

From Fig. 2, it is easy to figure out that image (a) and

(b) share the same geometry shape, so as image (d) and (e).

It indicates that the project curves of drive system (22) share

the same shape with the plane curves defined by response

subsystem RS−VI . Although, the plane curves have identical
geometry shape, but their position is not exactly the same. It is

the reason why we need to reconstruct these plane curves.

Image (c) and (f) in Fig. 2 display the plane curves that are

reconstructed from the state of the response system. As we

can see that the position of the curves in image (a) and

(c) is totally the same, so as the curves in image (f) and (d).

It implies that the state that these plane curves corresponding

to is exactly the same. According to (21), chaotic drive system

can be reconstructed as ξ = ξ (t) = (ηI1, η
I
2, η

VI
1 , η

VI
2 ).

Fig. 3 presents the project curves of the reconstructed sys-

tem.Compared Fig. 1 with Fig. 3, we can find out that not

only the shape, but also the position of the project curves of

the reconstructed system are almost the same with the chaotic

drive system (22). Therefore, it can be concluded that the

state of reconstructed chaotic drive system and the state of

the chaotic drive system is identical. Fig. 4 (a) presents the

each state error between the reconstructed system and chaotic

drive system (22).

As we can see that each state error between the drive

system and reconstructed drive system can nearly be ignored.

Where e1, e2, e3, e4 are defined as e1 = x1 − ηI1, e2 = x2 −
ηI2, e3 = x3 − ηVI1 , e4 = x4 − ηVI2 . This verifies the corollary

that the state of the reconstructed system and the state of the

drive system (22) is exactly the same Fig. 4 (b) presents a

contract of the result of this paper and the result of refer-

ence [79]. Under the same circumstance, blue line represent

the total error of the method proposed in this paper while

the red line represent the total state error of the paper [79].

FIGURE 3. Projections of the reconstructed system.

FIGURE 4. State errors of the proposed method. (a) The error between
the drive system and reconstructed system, (b) The total state error
between this paper and ref [79].

Total state error is defined as ‖e‖ =
√
e21 + e22 + e23 + e24.

In paper [79], the adaptive control method was applied. The

state error asymptotically converge to zero, it implies that the

bigger the initial difference is, the longer it takes to converge

to zero. Whereas, the total error of method proposed in this

paper can be nearly ignored and is unacted on the difference

between the initial state of the drive and response system. Due

to a series of rotation and translation, the state of the drive

system and response system is completely the same. So from

this point of view, our method precede the method proposed

in paper [79].

VI. IMAGE ENCRYPTION SCHEME

Image encryption algorithm has made great progress with the

improvement of computer computing power, because image

encryption often costs more and more with the improvement

of encryption algorithm complexity(Refs. [80]–[83]). In this

paper, a lightweight image encryption algorithm based on

shape synchronization is proposed.

A. THE FLOW CHART OF ALGORITHM DESIGN (FIG.5)

In order to design a kind of image encryption algorithm based

on 4-D chaotic system, it is necessary to ensure the security

of the key during the color image transmission under the

circumstance that the encryption effect is good. Therefore,
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FIGURE 5. The flow chart of algorithm design.

the chaos shape synchronization theory is used. Senders use

image scrambling algorithm of Baker’s map firstly, then XOR

operation with the chaotic sequence generated by the driv-

ing chaotic system, send enciphered image, key and driving

signal during transmission. When the recipient gets the file,

he uses the shape controller to synchronize the response

system in shape firstly, then State Reconstructor component

to reach complete synchronization, decrypts it through the

inverse operation to obtain the decryption image at last.

B. DESIGN FOR IMAGE ENCRYPTION ALGORITHM

The detailed encryption steps are described as:

Step 1: Assume the color plain image P with the

size M × N , split P into its R, G, B component and

obtain 3 grayscale image matrices, each size isM ×N . Then,

expend the size of the obtained grayscale image matrices to

n×nwith 0, and denote the expendedmatrices as OR, OG and

OB respectively, where n = max{M ,N }.
Step 2: Using the Baker’s map [84] to scramble the matri-

ces OR, OG and OB. After different rounds of scrambling on

three component, reshape the scrambled matrices into three

vectors and denoted as DR, DG, DB respectively.

Step 3: Using the 4-D chaotic sequence to generate a

four dimensional chaotic sequence, and truncate a chaotic

sequence x(k) ∈ R4×(n×n)of length n × n from r position.

Then, generate four integer sequences of Xi ∈ [0, 256] by

Eq. (26).

Xi = mod(floor(xi(k) × 107), 256), i = 1, 2, 3, 4; (26)

At the same time, the initial tangent vector and normal vec-

tor T 0
12,N

0
12,T

0
34,N

0
34 of the projection curve of the chaotic

attractor are calculate, which are saved as a part of Key.

Step 4: Employing the chaotic sequence to mask the

scrambled pixels DR, DG, DB. The ciphered image C =
(Cr (i),Cg(i),Cb(i)) is obtained according Eq. (27).





Cr (i) = DR(i) ⊕ X1(i) ⊕ X2(i), i = 1, 2, . . . n2

Cg(i) = DG(i) ⊕ X2(i) ⊕ X3(i), i = 1, 2, . . . n2

Cb(i) = DB(i) ⊕ X3(i) ⊕ X4(i), i = 1, 2, . . . n2
(27)

Key= [x0, θR, θG, θB, r,T
0
12,N

0
12,T

0
34,N

0
34]

Remark 5: x0 denotes the initial value of drive system, θR,

θG, θB denote the rounds of scrambling on the three com-

ponents of original color image, r denotes the start position

of extracted the chaotic sequence. T 0
12,N

0
12 denote the initial

point tangent vector and normal vector of DS-I system(the

projective system of drive system on x1ox2). T
0
34,N

0
34 denote

the initial point tangent vector and normal vector of DS −VI

system (the projective system of drive system on x3ox4).

C. DESIGN FOR IMAGE DECRYPTION ALGORITHM

The detailed decryption steps are described as:

Step 1: Under the effect of the shape synchronization con-

troller, response system and chaotic drive system will achieve

shape synchronization. The state of the response system is

not exactly the same as the state of the drive system even

though shape synchronization has been achieved. Using K

(x0, θR, θG, θB,T
0
12,N

0
12,T

0
34,N

0
34), the state constructor then

generate complete synchronized chaotic signal.

Step 2:Use the same step of 3 of encryption algorithm, get

sequence signal y1, y2, y3, y4.

Step 3: Decrypt the ciphered image C = (Cr (i),Cg(i),

Cb(i)) as shown in Eq. (28), to get the D̂R, D̂G, D̂B without

chaotic signal.




D̂R = Cr (i) ⊕ Y1(i) ⊕ Y2(i), i = 1, 2 . . . .n2

D̂G = Cg(i) ⊕ Y2(i) ⊕ Y3(i), i = 1, 2 . . . .n2

D̂B = Cb(i) ⊕ Y3(i) ⊕ Y4(i), i = 1, 2 . . . .n2
(28)

Step 4: Use the same step of 2 of encryption algorithm to

get the recovered image.

D. EXPERIMENTAL RESULTS AND ANALYSIS

In the encryption process, this paper selects 512 × 512 Lena

image (Fig. 6 (a)), M = N = n = 512. Then according

to the shape synchronization of response system, the image

can be decrypted (Fig. 6 (b)). The three component image

of original plain color image and encrypted image are shown

below (Fig. 6 (c)- (h)). We also chose two special images (all

white and all black) to be encrypted and the results are shown

in Fig. 7 (a)-(d).

1) HISTOGRAM ANALYSIS

The histogram is used to describe the distribution with respect

to pixel values in their finite field. The distribution of the

plain color image is usually steep, thus, the obvious fea-

tures can easily obtained by hackers. As a good encryption

algorithm, the ideal histogram of a encrypted should be uni-

formly distributed to prevent the attacker from any statistical

information. Fig. 8 (a), (b), (c) show the histograms three

component of the plain color images, and Fig. 8 (d), (e), (f)

show their respective encrypted images. It is clear from

Fig. 8 that the histograms of the cipher images are fairly

uniform and significantly different from the histograms of

the plain color images. Variances of histograms are listed in

Table 4. The lower value of variances indicates the higher

uniformity of ciphered images. In Table 4, the variance value

is 1007039.1216 for histogram for histogram of B channel

of the plain image Lena,which is greater than the variance

930.7373 for histogram of B channel of ciphered image Lena
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FIGURE 6. Encryption and encryption of images. (a) Original color image
of Lena,(b) Decrypted color image of Lena, (c) R path of original color
image, (d) R path of encrypted color image, (e) G path of original color
image, (f) G path of encrypted color image, (g) B path of original color
image, (h) B path of encrypted color image.

TABLE 4. Variances of histograms compared the plain-images and
ciphered images.

using the proposed algorithm. Therefore, the proposed algo-

rithm is efficient.

2) CORRELATION ANALYSIS OF ADJACENT PIXEL

It is known a pixel in an image is highly correlated to its

neighborhoods, and hackers can recover the plain color image

through analyzing the correlation information. Therefore,

the correlation between the adjacent pixels of the encrypted

image is an important index to characterize the quality of an

image encryption algorithm. The correlation coefficients rxy

FIGURE 7. Encryption and decryption of white and black images.
(a) Original image of White, (b) Encrypted image of White, (c) Original
image of Black, (d) Encrypted image of Black, (e) Decrypted image of
White, (f) Decrypted image of Black.

FIGURE 8. Histogram of plain color image and ciphered image.
(a) Histogram of R channel of color Lena, (b) Histogram of G channel of
color Lena, (c) Histogram of B channel of color Lena, (d) Histogram of R
channel of ciphered color Lena image, (e) Histogram of G channel of
ciphered color Lena image, (f) Histogram of B channel of ciphered color
Lena image.

of two adjacent pixels can be computed by Eq. (29)

rxy =
cov(x, y)

√
D(x)D(y)

(29)

in which cov(x, y) = 1
N

∑N
i=1 ((xi−E(x))(yi−E(y))). E(x) =

1
N

∑N
i=1 xi and D(x) = 1

N

∑N
i=1 (xi − E(x))2 are the expec-

tation and variance of variable x, respectively. N denotes

the number of pixels obtained from the image. 5000 pairs

of adjacent pixels from the original images and the cipher

images are randomly chosen and the pixel correlations results

in three directions are illustrated in Table 5. It is clear that the

correlation of the encrypted image is effectively removed and
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TABLE 5. Correlation coefficients of adjacent pixels.

TABLE 6. Correlation coefficients.

the correlation coefficients are close to zero, which means the

algorithm is very effective.

3) INFORMATION ENTROPY ANALYSIS

Information entropy can be used to characterize the richness

of information. The information entropy values for some

plain color images and encrypted images using the proposed

algorithm have been calculated and illustrated in Table 6.

From these results, we can watch that the information entropy

values of all encrypted images are very near 8, and the

encrypted images generated by our algorithm have better ran-

dom distributions, and the information leakage is negligible.

VII. CONCLUSION

Today, with the application of more and more widely var-

ied information transmission on the Internet, information

encryption technology has played a very important role. So in

this paper, we used the 4-D chaotic systems,then designed

the shape controllers to make synchronization between dif-

ferent chaotic and dimensions systems in shape. Finally a

lightweight image encryption was put into practice and final

simulation experiments carried out. In this paper,the use of

shape synchronization theory in the field of image encryption,

to ensure that the encryption is effectiveness and practicabil-

ity. But the decryption of the image does not appear to be

a defect of the phenomenon. In the future work, we need to

further study the safety of the algorithm.
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