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Abstract 

 
This paper develops an efficient new method for 3D 

partial shape retrieval. First, a Monte Carlo sampling 
strategy is employed to extract local shape signatures 
from each 3D model. After vector quantization, these 
features are represented by using a bag-of-words 
model. The main contributions of this paper are three-
fold as follows: 1) a partial shape dissimilarity 
measure is proposed to rank shapes according to their 
distances to the input query, without using any time-
consuming alignment procedure; 2) by applying the 
probabilistic text analysis technique, a highly compact 
representation "Shape Topics" and accompanying 
algorithms are developed for efficient 3D partial shape 
retrieval, the mapping from "Shape Topics" to "object 
categories" is established using multi-class SVMs; and 
3) a method for evaluating the performance of partial 
shape retrieval is proposed and tested. To our best 
knowledge, very few existing methods are able to 
perform well online partial shape retrieval for large 
3D shape repositories. Our experimental results are 
expected to validate the efficacy and effectiveness of 
our novel approach. 
 
Keywords: Shape representation, partial shape 
retrieval, a bag-of-words model, probabilistic text 
analysis. 
 
1. Introduction 
 

Large 3D shape repositories are becoming available 
at present. In computer vision, pattern analysis, 
computer aided design, manufacturing, molecular 
biology and a number of other disciplines, part-based 
3D model retrieval is extremely valuable. One typical 
example is to create new shapes by cutting and pasting 
existing shape parts [1]. However, most existing 
methods for shape analysis are based on global shape 
similarity functions. Very few methods support 

efficient 3D partial shape retrieval from large 
databases. This paper aims to develop a new method 
for 3D partial shape retrieval.  

The key technical challenge is how to achieve high 
efficiency while retaining accuracy. In this paper, we 
investigate methods for partial shape similarity 
measure without the need of an alignment-verification 
procedure. This is fundamentally different from most 
existing approaches for 3D shape matching. 

Our approach is based on the concept of Spin image 
signatures. We start by using a Monte-Carlo approach 
to sample mesh geometry and bases points of spin 
images. It is robust and insensitive to differences in 
mesh resolution and tessellation. Using vector 
quantization [2], spin image clusters (shapemes) are 
generated. A bag-of-words model is used to represent 
features. With an analogy to document analysis, such 
clusters correspond to words, 3D models match with 
documents, shape repository is mapped to corpus. As a 
result, statistical text analysis techniques [3, 4] are 
easily incorporated into our framework. 

The first contribution of this paper is that we 
propose a partial shape dissimilarity measure based on 
Kullback-Leibler divergence. With this measure, the 
constraint that the partial query shape should be 
properly embedded in the retrieved global shapes is 
implicitly modeled. 

Second, with the assumption that each 3D model 
can be represented by a mixture of latent topics, we 
propose a highly compact representation “Shape 
Topics”. It is based on latent Dirichlet allocation [3]. 
Again, the dissimilarity measure under this shape 
representation is proposed. Tremendous gain in 
efficiency is achieved with moderate degradation in 
performance. 

Third, a performance evaluation method is proposed 
for partial shape retrieval. By generating random shape 
patches automatically, the influence of the difference 
in the selected partial shape is averaged out on a large 
shape repository. 

This paper is organized as follows: We review 



related work in Section 2. Starting with a conceptual 
overview of our approach, details of feature extraction 
and representation are introduced in Section 3, 
followed by dissimilarity measure and “Shape Topics” 
signature in Section 4. Experimental results are 
presented in Section 5. Finally, we conclude this paper 
in Section 6. 
 
2. Previous Work 
 

Designing discriminating global 3D shape 
descriptors is an active research area [5]. Recently, a 
publicly available shape benchmark is released and the 
performance of some global shape descriptors are 
reported [6]. We shall use the same benchmark for 
performance evaluation. 

Local 3D shape descriptors are the foundations of 
our work [7, 8]. We adopt spin images [7], because 
“3D shape contexts” is not suited for bag-of-words 
paradigm and “harmonic shape contexts” is 
computationally expensive [8]. 

The 2D descriptor “shape contexts” is proposed and 
an iterative shape matching method using thin-plate 
spline is studied in [9].  Similar matching by alignment 
methods are applied to 3D shape and a review can be 
found in [10]. A different approach to partial shape 
matching is to simplify the dissimilar parts of the 
global shape [11].  These methods are computationally 
expensive in general. 

Two efficient 2D shape matching methods are 
proposed in [2]. One is “representative shape contexts”, 
and the other is “Shapeme”.  The former is readily 
available for partial shape matching but is still too slow 
to apply to our problem. The latter is vector 
quantization. However, the distance definition is only 
appropriate for global shape similarity measure. 

A recent proposed method [12] circumvents this 
problem by segmenting 3D shapes in the database into 
parts and maintaining a “shapeme” feature for each 
part. Partial shape matching can be handled by two 
steps: First, the optimal binary composition of parts’ 
feature is calculated for each database shape, to 
approximate the query shape feature. Second, 
similarities between the query shape feature and the 
composite parts-features of database shapes are 
calculated for nearest neighbor shape recognition.  

In this paper, a suitable dissimilarity measure is 
proposed for direct 3D partial shape retrieval without 
segmentation. To further reduce the time and storage 
complexity of online retrieval, we propose a highly 
compact signature “Shape Topics”. It is based on 
probabilistic semantic analysis technique [3]. Related 
papers on image analysis include [13, 14, 15]. Spatial 

layouts are incorporated [15] to generalize the bag-of-
words model. Though helpful in object recognition, 
fixing the spatial configuration may be harmful to 
partial shape matching: separating a part from a global 
shape would break up many interconnections. 
 
3. Basic Procedures of Our Approach 
 

The ultimate goal of this paper is to develop a highly 
compact shape representation which also supports 
efficient partial shape retrieval. To see why this is 
possible, we give a simple example to illustrate the 
concept. 

Suppose we have a 3D model of a man. It has non-
zero posterior probability distribution on four topics: 
head, torso, arm, and leg. If a partial shape having a 
subset of the four topics is entered as the query, 
finding the global shape under this compact semantic 
representation is very easy. 

We seek to achieve this high-level description step-
by-step in this section. From bottom to top, large 
quantities of low level features are condensed and 
intrinsic structures are revealed, which leads to high 
efficiency. 

In this section, we introduce how features are 
extracted and represented in our method. Since 
dissimilarity measure and Shape Topics are the main 
focus of this paper, they will be discussed thoroughly 
in Section 4. 
 
3.1. Feature Extraction 
 

The first step of this process is to extract and 
represent low-level features. As mentioned in Section 
2, spin images [7] are chosen for the local shape 
descriptor in this paper. A brief introduction is given 
below.  

 
Figure 1: An illustration of spin image descriptor. 
 

As shown in Fig. 1, O is the basis point of spin 
image descriptor, n is the mesh normal at the basis. 
Plane η  is perpendicular to n, and passes through O. 
For each point P on the meshes, we calculate the 
vertical distance h and horizontal distance w to the 



plane. If h H<  and w W< , then the corresponding bin 

(shown in gray) on the spin image is added by one, 
where H and W are the vertical and horizontal support 
range of the spin image. When all points on the meshes 
are visited, the spin image signature at O is generated. 

The original paper [7] uses mesh vertices to generate 
spin images. However, in the shape benchmark [6], 
many 3D models have both large and tiny triangles. To 
account for this, we use a Monte-Carlo strategy to 
sample N points on the meshes [16]. The importance of 
each triangle is proportional to its area. After this 
process, sample points are distributed on the meshes 
uniformly. 

Spin image characterizes the local shape around its 
basis, within the support range. It is also invariant to 
rotation and translation. We use the same Monte-Carlo 
approach to select M bases uniformly on the mesh, and 
calculate the corresponding spin images using the N 
point samples. 

In this paper, 500M = is fixed for a global shape. 
For partial shape retrieval, spin image signatures are 
calculated only for bases within the selected region, 
which speeds up the feature extraction procedure. In 
image analysis, the bases of a local descriptor are often 
picked using an interest point detector and the support 
range for each basis is decided by scale-space extrema 
[17]. On 3D shape, there is a lack of distinctive local 
structure, such as textons in images. Therefore, 
improper bases selection and scale decision may 
deteriorate the performance of local shape descriptor. 
Since scale is not the main focus of this paper, we test 
the performance of partial shape retrieval with a fixed 
global scale. Multi-scale representation or scale 
selection on 3D shape will be a direction for future 
research. 

Therefore, we set the support range of spin image 
descriptors to a fraction of the global shape size: 

0.4H W R= =  
R is the root mean square of the distances from points 
on the meshes to the shape centroid, which can be 
computed using an analytical formula. To ensure the 
sampling density on the surface is equal for each scale-
normalized 3D model, the number of sample points on 
a mesh is set as follows: 

2/N S R∝                                  (1) 
S is the sum of the areas of all triangles on a 3D model. 
The average N is 50,000 for the shape repository [6]. 
 
3.2. Feature Representation 
 

Now each 3D model is represented with a number of 
spin images. Without compression, restoring all spin 
images of all 3D models in the PSB benchmark [6] 

needs gigabytes of memory, which prohibits efficient 
partial shape retrieval. We use a k-means algorithm to 
agglomerate 1500 clusters from these spin images, and 
represent each spin image with the index of its nearest 
cluster. The number of clusters is chosen based on 
previous results [13, 14, 15] and is shown empirically 
good for our task. The clusters are referred to as 
“shapemes” in [2], but we treat each cluster as a word. 
This allows effective text analysis technique to be 
incorporated into our framework [3, 4]. Finally, by 
discarding the information of bases position, each 3D 
model is represented by a histogram counting word 
frequencies. 
 
4. Dissimilarity Measure and Shape Topics 
 
4.1. Dissimilarity Measure 
 

In our 3D shape retrieval system, the feature of the 
query shape is extracted online, and compared with 
those in the database. The retrieval results are ranked 
according to the dissimilarity measure. How to choose 
the dissimilarity measure is a key problem and we 
investigate this issue in this subsection. 

In text retrieval, vector space model [18] is a well 
founded method which is shown to be excellent. A 
cosine similarity measure is used between the word 
histogram of the query and a document in the database, 
with various weighting strategy. However, the 
symmetric nature makes it not suited for our purpose.  

Suppose a partial shape query have two topics, head 
and torso. It is a good candidate to be a part of a man’s 
3D model. However, the man’s model (suppose which 
has four topics) could not be a part of the query shape. 
This example shows the dissimilarity measure should 
be asymmetric. 

 
Figure 2: The asymmetric property of KL divergence. 
 

Suppose another partial shape have three topics, 
head, torso and wing. It is a good candidate to be a part 
of a bird’s 3D model, but not a man’s. The cosine 
similarity measure will give the same value for the two 
partial shapes against a man’s model, which is 



undesirable. 
Motivated by the two conceptual examples, we 

propose Kullback-Leibler divergence as a suitable 
dissimilarity measure for our problem, owing to the 
sparseness of word histograms and topic histograms 
(shown later). As illustrated by Fig.2, the two 
distributions are sparse, i.e. approaching zero outside 
the modes. In cases for any position x within a mode of 
Q, it is also within a mode of P, the 
divergence ( ( ) || ( ))KL Q x P x is small (Fig.2). Otherwise, 
the divergence is large. Roughly speaking, the KL 
divergence is small iff all the modes of Q are within the 
modes of P. More details can be found in [19]. 

This property is desirable since for a good match, 
we expect the word distribution of a partial shape 
query to be within the global shape. If the query shape 
has modes outside the global shape, the large 
dissimilarity measure will penalize such a match. 

In our problem, we normalize the word distribution 
that sums to one, and use the following dissimilarity 
measure:

((1 ) || (1 ) )dissimilarityD KL Q I P Iε ε ε ε= − + − + ,  (2) 

where Q, P are the word distributions of the query and 
a global shape in the database. I is a uniform 
probability distribution and ε  is a small number. ε  
provides a tradeoff between two forces: one is the 
distinction between the common parts of P, Q, and the 
other is to penalize Q out of P. When ε  is very small, 
the latter force is dominant. 

In document analysis, it is assumed that different 
words have different discriminative power. The idea is 
simple: Words that frequently appeared in a corpus are 
less distinctive, and vice versa. To account for this, a 
widely used strategy is to weigh each word channel 
with the inverse document frequency (idf) [18]: 

log logw N n= − ,                         (3) 
where N is the number of documents in the corpus, n is 
the number of documents that a word appears. For our 
method, we compare shape retrieval with and without 
idf-weighting to word histograms. The two approaches 
have nearly identical performance. Perhaps, this is 
because shape words are generated by clustering, but 
not via a frequency-based selection of spin images. For 
simplicity, idf-weighting is not used in this paper. 
 
4.2. Shape Topics 

 
Using the dissimilarity measure that is introduced, 

matching word distributions is a practical way for 3D 
partial shape retrieval. However, unlike a fixed size 
dictionary in natural language processing, visual words 
in image analysis and shape words in this paper would 
increase endlessly with the growth of the database. 

Can we obtain a more parsimonious shape 
representation to account for this? Recent advances in 
probabilistic text analysis give appropriate answer to 
this question. 

We shall briefly introduce the idea of latent 
Dirichlet allocation [3]. It is a generative hierarchical 
Bayesian model. The process of generating a document 
in a corpus can be described as follows. The length of 
the document L  is sampled from a Poisson 
distribution. The parameter θ  is sampled from a 
Dirichlet distribution: 

~ ( )Dirichletθ α                              (4) 
The above two processes are done once for a document. 
The following process repeats L times. For each word 
in the document, a topic lt  is sampled from the 
distribution: 

~ ( )lt Multinomial θ                        (5) 
Then a word is generated from a multinomial 

distribution 
~ ( , )l lw Multinomial t β                     (6) 

When the number of topics is fixed, the maximum 
likelihood estimates of the parameters of these 
distributions are leant using a variational EM method 
in an unsupervised manner. Automatically deciding the 
topic number is possible by Bayesian model selection 
using a Markov Chain Monte Carlo approach [4]. We 
found that the performance of partial shape retrieval is 
relatively insensitive to the topic number. So, it is fixed 
manually in this paper. 

For a new document, The Dirichlet posterior iγ is 
estimated using a variational approach for each topic i.  

i iγ α−  approximates the number of words generated 

from the topic i, where iα  is the prior parameter of the 
i-th topic.  

Then each 3D model can be represented by the 
histogram { }i iγ α− over topics. After normalization, 
this shape signature is referred to as Shape Topics. 

The dissimilarity measure is similar to that of the 
word histograms, except for a logarithm warping: 

~ ~
( || )dissimilarityD KL Q P=                         (7) 

log( )i iq qγ δ= +
∼

                             (8) 

log( )i ip pγ δ= +
∼

                             (9) 

where iq  and ip  are the i-th component of the shape 

topic signature, γ is a scaling factor and δ  is a shift 
factor which is slightly larger than 1.0. 

Note that the topics learned do not correspond to 



human perception naturally. Modeling object 
categories in the generative graphical model is possible 
[13]. However, we argue that generative models are 
good at explaining the data, while discriminative 
approaches are better in classification generally. We 
use multi-class support vector machines to map 
objective “Shape Topics” to subjective object 
categories, which will be discussed in Section 5. 
 
5. Experimental Results 
 

In our partial shape matching system, an interested 
patch on a 3D model can be selected using a mouse, as 
shown in Fig. 3.  The spin images whose bases within 
the interest region are calculated as the search key. 
After vector quantization, the resulting word histogram 
or “Shape Topics” of the query is compared to those of 
the database model’s. The output of our retrieval 
system is a ranking list of models, with decreasing 
similarity to the query. 

However, the position, size and shape of the 
selected region affect the retrieval results seriously. To 
account for this, we propose the following method to 
evaluate the performance of a partial shape retrieval 
system. 

For each 3D model, a point is selected randomly on 
the meshes as the interested center. The spin image 
bases on this model are sorted by their distances to the 
interested center. A fixed percentage of the spin 
images nearest to the interested center are selected as 
the search key. In this manner, the effect of position 
and shape of the selected region can be averaged out 
by computing the statistics over all 3D models in the 
database. 

 
Figure 3: A 3D model and the selected partial shape (in red). 
 

To compare with other 3D shape retrieval 
algorithms tested on the Princeton Shape Benchmark 

[6], we use five statistics, “nearest neighbor (NN)”, 
“first tier (FT)”, “second tier (ST)”, “E-measure (E-
M)”, “discounted cumulative gain (DCG)” and the 
“precision-recall plot” to measure the quality of the 
retrieval results. Details about the statistics can be 
found in [6].  

We tested our algorithms on the 907 3D models of 
the “testing part” of the benchmark. These models 
belong to the 92 classes with the finest classification 
granularity. It is hard to achieve good classification 
performance under this strict setting.  

Note that direct comparison between our algorithm 
and global 3D shape retrieval algorithms is unfair and 
perhaps meaningless. There are two main reasons. First, 
only partial information on the query shape is used. 
Second, 3D models in different categories may have 
similar patches to the partial shape query. However, 
encouraging results are obtained. 
 
5.1. Partial Shape Retrieval with Word 
Histogram 
 

The first experiment is based on word histogram, a 
1500 dimensional shape descriptor. We selected 20% 
spin images nearest to an interested center as the 
search key. Parameter ε  in Eq.2 is set as: 0.13ε = . 
Each query takes about 1.60 sec, with 1.01 sec for spin 
image generation, 0.34 sec for vector quantization, 
0.25 sec for dissimilarity calculation and ranking (on a 
PIV 2.4GHz CPU with 256M memory). 
 

\ NN FT ST E-M DCG 
KL 0.971 0.262 0.335 0.175 0.594 
L2 0.802 0.221 0.275 0.139 0.533 
VSM 0.510 0.221 0.305 0.165 0.534 

Table 1: The retrieval statistics with different (dis)similarity 
measures. 
 

 
Figure 4: The precision-recall plot with different 
(dis)similarity measures. 
 

Table 1 shows the retrieval statistics under three 



different (dis)similarity measures: the proposed 
distance measure on word histograms (KL), L2 Norm 
(L2) and vector space model (VSM) with tf-idf 
weighting [18]. The global shape of the query patch is 
included in the retrieval results. We can see that KL is 
significantly better than the other distance measures: 
Only KL has a very high nearest neighbor accuracy, 
indicating that the global shape can be successfully 
found from a randomly selected small portion of it. Fig. 
4 shows the corresponding precision-recall plot. 

Though tested on different shape benchmark, it is 
interesting to compare our result to that of [12]. First 
note that their “Bayesian optimal” similarity measure is 
very similar to the vector space model, expect using a 
different idf-weighting (without taking logarithm). 
Second, their task is to recognize an instance of partial 
shape by nearest neighbor search, while our task is to 
retrieve shapes in the same class of the query. In their 
report (see table 1 in [12]), segmenting 30 shape parts 
raises the nearest neighbor recognition accuracy from 
78.5% (HP-1, without segmentation) to 91.1% (HP-30). 
In our experiments, as shown in table 1, the nearest 
neighbor accuracy for the propose KL dissimilarity is 
97.1% (without re-sampling the spin image basis and 
geometry of shapes), compared to the 51% of the 
vector space model. This suggests that by adopting a 
suitable dissimilarity measure, similar (or even better) 
performance can be achieved with far better efficiency 
both in time and storage, compared to [12]. 
 
5.2. Partial Shape Retrieval with Shape Topics 
 

The second experiment is to study the performance 
of “Shape Topics”, as shown in Table 2.  The topic 
number is fixed to be 40 in this paper. The parameters 
in Eq.7-9 are set as: 1.03δ = , 40.0γ = . Neither ε  in 
word histograms nor ,γ δ in Shape Topics is 
performance sensitive: a broad range of values yield 
similar outputs. 

Note that “Shape Topics” is a highly compact shape 
representation. A 3D model has non-zero posteriors in 
4.65 topics on average. Only 14 bytes storage 
requirement is needed to archive the indices and values 
of theses non-zero posteriors for a 3D model. To our 
knowledge, this is a tremendous save up in space over 
all previous 3D shape descriptors. As a result, the 
comparison time for the query feature with all features 
in the database is greatly reduced. Therefore, “Shape 
Topics” is readily for partial shape retrieval on very 
large 3D shape repositories. This is a major advantage 
over previous approaches on scalability. 

Fig. 5 shows the precision-recall plot of the “Shape 
Topics (ST)” method, in comparison with “word 

histogram (WH)” method. Note “WH” is just the “KL” 
in Figure 4, but whether the descriptor is based on 
words or topics is our emphasis here. Again, the task is 
to retrieve global shapes based on the selected 20% 
part of the query shape. 
 

\ NN FT ST E-M DCG 
ST 0.614 0.223 0.301 0.163 0.537 

Table 2: The retrieval statistics of “Shape Topics”. 

 
Figure 5: The Precision-recall plot for “Shape Topics (ST)”, 
in comparison with “Word Histogram (WH)”. 
 

From Table 2 and Fig.5, we can see that after a 
dimension reduction from 1500D to 40D, the retrieval 
performance only degrades gracefully. In comparison 
with Table 1, the retrieval performance of “Shape 
Topics” is even better than the L2 and VSM distance 
measure on word histograms in terms of DCG measure. 

To see the characteristics of partial shape retrieval 
using “Shape Topics”, we show two examples in Fig. 6 
and Fig. 7. Some retrieved shapes are not good under 
global similarity measure, but they share a similar part 
with the query. 

Note that “Shape Topics” is faster than “word 
histogram” for online 3D partial shape retrieval. The 
extra time for “Shape Topics” is to make inference 
about the posteriors over topics from word histograms. 
This process happens only once for the query shape. It 
takes less than 0.05 sec. on our PC, while the time for 
feature comparison with all 3D models in the database 
is reduced greatly. 
 
5.3. Global Shape Retrieval with Shape Topics 
 

Although “Shape Topics” is a highly parsimonious 
shape representation, we find that it is even better than 
some global 3D shape descriptors with nearly 10 times 
of storage requirements. To see this, we use 100% of 
spin images on the query shape. To be consistent with 
tests on existing global shape descriptors, we remove 
the query shape out of the retrieval results. The 
retrieval statistics are shown in Table 3. We use the 



symmetric KL divergence here, i.e.  
~ ~ ~ ~

( || ) ( || )dissimilarityD KL Q P KL P Q= +                  (10) 

Performance of global shape descriptors are referred to 
[6]. It is shown that “Shape Topics” is better than “D2” 
[16], a widely used global shape descriptor.  
 

\ NN FT ST E-M DCG 
Global 0.314 0.168 0.248 0.155 0.444 

Table 3: The statistics of “Shape Topics” for global 
shape retrieval (The query is removed form the 
retrieval results). 

The results of global shape retrieval are shown in 
Fig. 7. Fig. 6 is referred to for a comparison between 
global shape retrieval and partial shape retrieval. 
 
5.4. 3D Model Classification using Shape 
Topics 
 

It is not hard to establish the mapping from Shape 
Topics to 3D model categories. We train multi-class 
SVMs with radial basis kernel function to infer 
category label for a “Shape Topics” distribution. We 
choose the classification file with the “coarse2” 
granularity [6]. There are the same 7 categories in both 
the training and testing part of the benchmark. The 
parameters of SVMs are decided using cross validation. 
We obtain a 55% correct classification rate in the 
“testing part”. Note the sub-categories of the 
“training/testing part” of the 7 classes are different. 
This perhaps leads to the correct rate underestimated. 
 
6. Conclusion 
 

In this paper, we investigate the problem of efficient 
partial 3D shape retrieval. First, a Monte-Carlo method 
is used to select interested points and to sample 
geometry, which makes our approach robust to 
irregular mesh tessellation. Using vector quantization, 
each 3D model is represented as a bag-of-words. 
Second, the asymmetric KL divergence is proposed for 
dissimilarity measure and demonstrated to be effective 
for partial shape retrieval. Finally, we show that a 
compact signature “Shape Topics” can be obtained 
using probabilistic semantic text analysis. Extensive 
Experiments validate the effectiveness of our approach. 
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Figure 6: An example of partial shape retrieval using Shape Topics. 20% spin images of the query shape nearest to an interested 
point is selected as the search key. We use the utility of the Princeton Shape Benchmark [6] to generate the retrieval results. 
Green margin corresponds to the query shape, blue margin to retrieved shapes in the same category as the query, red margin to 
retrieved shapes in different categories from the query. To see the difference of “Shape Topics” with previous global 3D shape 
retrieval approaches, we intentionally choose this example which is not good in terms of global similarity measure. However, 
most of the high ranking “false matches” have parts similar to the partial shape query. We mark these parts with yellow circles. 
Therefore, in terms of partial similarity measure, “Shape Topics” does a good job. 

 
Figure 7: An example of global shape retrieval using Shape Topics. 100% spin images of the query shape are selected as the 
search key. Note the query model is identical to that in Fig. 6. To make the retrieval results comparable to that in Fig. 6, we use 
the same asymmetrical dissimilarity measure. However, not only fingers, but also palm and wrist are included in our search key. 
The new introduced topics remove most of the non-hand shapes in Fig.6 from the high-ranking list. Seven out of eleven retrieved 
shapes are in the same category as the query. 


