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Using swelling hydrogels, we study the evolution of a thin circular artificial tumor whose growth is

confined at the periphery. When the volume of the outer proliferative ring increases, the tumor loses its

initial symmetry and bifurcates towards an oscillatory shape. Depending on the geometrical and elastic

parameters, we observe either a smooth large-wavelength undulation of the swelling layer or the

formation of sharp creases at the free boundary. Our experimental results as well as previous observations

from other studies are in very good agreement with a nonlinear poroelastic model.
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Heterogeneous or anisotropic growth is a known source

of spontaneous deformations in both biological and inani-

mate matter [1–4]. Homogeneous volume variations can

also induce nontrivial shapes if growing bodies are con-

strained in space [5]. Layered tissues provide a generic

example of this process. Because they are structurally

heterogeneous, distinct layers may grow at different rates,

creating stresses which in turn can deform the system.

Besides its importance for human-made systems [6], the

buckling of layered structures is now thought to be in-

volved in the morphogenesis of biological tissues such as

fingerprints [7], brain convolutions [8], placodes [9], sphe-

roidal fruits [10], or mucosa [11]. Many solid tumors also

develop a layered structure during their avascular evolu-

tion. Nutrient depletion inside the tumor, due to the

consumption at the margins, leads to the formation of a

hypoxic core surrounded by a ring of highly proliferative

cells [12]. This stratification slows the expansion of the

tumor that eventually reaches a limiting size. To overcome

this limitation, some tumors such as melanoma or glio-

blastoma lose their initial symmetry to further invade the

surrounding tissues [13]. Although many biochemical

processes underlie tumor development, one may wonder

whether differential growth could contribute, by a buckling

mechanism, to their morphological evolution.

In order to study the growth of layered tissues, we use

hydrogels as highly monitorable abiotic substitutes for

biological tissues. Besides their similar mechanical prop-

erties, some hydrogels can swell when immersed in a

solvent. In this work, we exploit this swelling ability to

mimic soft tissue growth and discuss the advantages and

drawbacks of such an approach. Motivated by the geome-

try of melanoma, we investigate experimentally and theo-

retically the plane strain growth of a ring bound on one side

to an elastic disk and free of traction on its other boundary

as illustrated in Fig. 1.

The central part of the system is made of a neutral

gel, swelling by at most 3% when immersed in water,

while the external part is a ring of charged gel that

swells by at least 300% in the same environment due to

charges that favor straight configurations of the polymer

chains. Swelling hydrogels are prepared as in [14] using

the following protocol. For 1 ml of pregel solution,

100 mg of a mixture of neutral monomer (acrylamide),

charged monomer (sodium acrylate), and cross-linker

(N;N0-methylenebisacrylamide) is dissolved in distilled

water. Nongrowing gels are prepared in the same fashion,

although they do not contain any charged monomer. The

gelification is initiated using 0.5 mg of ammonium persul-

fate and catalyzed with 1 �l of tetramethylenediamine

(10% wt=vol). First, a disk of neutral hydrogel is polymer-

ized in a 1 mm thick circular mold of diameter 50 mm.

After polymerization, an external annulus of variable width

is removed and replaced with the charged pregel solution,

colored with turnsole (blue-violet). The tunable parameters

of the system are (i) the elastic stiffness of the neutral and

charged hydrogels, respectively �I and �II, which are

proportional to the concentration of cross-linkers [15,16]

and (ii) the radius A of the inner disk and the thicknessH of

FIG. 1 (color online). Experimental setup (left) and schematic

representation of the experiment (right).
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the growing ring. The system is then placed between a

glass plate and a sieve (pore size 80 �m), with rubber

spacers to control the gap, and immersed within distilled

water for a few hours. Images are taken every 2 min.

In the following, we explore the evolution of the system

in the phase space defined by the two dimensionless ratios

�I=�II and H=A. The system first evolves from the refer-

ence configuration [Figs. 2(a) and 2(e)] in an axially sym-

metric fashion [Figs. 2(b) and 2(f)], then bifurcates to an

oscillatory shape above a threshold in volume increase

(depending on the geometrical and elastic parameters).

We observe two distinct structures: for �I=�II & 1 a

buckling pattern appears, both boundaries of the annulus

being nearly parallel in the vicinity of the instability

threshold [Fig. 2(c)]. Further solvent uptake brings the

outer edge of the oscillating ribbon in contact with

itself and further breaks the symmetry. Conversely, for

�I=�II * 1, the instability is entirely condensed in the

ring with the formation of petals isolated by sharp creases

while the inner interface disk-annulus remains approxi-

mately circular [Fig. 2(g)]. Such creases are reminiscent

of the folds observed by Tanaka et al. [17,18]. In

both sequences, the system ultimately breaks [Figs. 2(d)

and 2(h)]. Additionally, we observe a color gradient in the

radial direction, indicating an inhomogeneous water con-

centration, although the gel is everywhere in contact with

the solvent. This distribution persists after several days,

even though the volume has reached its final value corre-

sponding to the thermodynamic equilibrium. To further

quantify the instability, we have reported in Fig. 3(a) the

dependence of the wavelength � on the thickness H of the

growing layer in the buckling (�I=�II ¼ 0:25) and creas-

ing regimes (�I=�II ¼ 6). Those measurements clearly

identify H as the relevant length scale for the instability.

Note that for �I=�II � 1 and H=A � 0:3, the system

does not exhibit the buckling instability but rather deforms

in the transverse (thin) dimension. The central disk is

stretched, becomes thinner, and its diameter increases.

This effect is more pronounced when the core of the tumor

is very soft. This three-dimensional effect might explain

the relatively poor reproducibility of the experiments in

this regime.

To understand how the elastic ratio �I=�II controls the

instability, we record in Fig. 3(b) the wavelength �, scaled
byH, as a function of�I=�II, clearly showing a transition

between the two regimes around �I=�II � 1. In the buck-

ling regime, � results from a competition between the

elasticity of the swelling ring and that of the inner disk,

decreasing with increasing �I=�II. When the wavelength

(and thus the penetration length) falls below the ring

thickness at threshold, the swelling rim and the disk un-

couple and the system enters in a regime where �=H is of

order 1 and independent of �I=�II.

In order to explain quantitatively those results, we use a

nonlinear poroelastic theory due to Gibbs and recently

specialized to gels [19,20]. We consider a swelling elastic

ring of gel (subscript II) surrounding an incompressible

disk (subscript I). The position of a point in the reference

(current) configuration is ~R (~r) and F ¼ @~r=@ ~R describes

the local deformation. In cylindrical coordinates, bodies I
and II occupy the regions 0 � R � A, 0 � � � 2� and

A � R � B � AþH, 0 � � � 2�. The gel is a network
of cross-linked polymer chains associated with a solvent at

the concentration Cð ~RÞ. The system is in contact with a

solvent reservoir held at chemical potential � so the sol-

vent can enter or leave the network. Physically, � repre-

sents the energetical cost of exchanging a solvent particle

between the gel and the reservoir. At the thermodynamic

equilibrium, the chemical potential in the gel is constant

and equal to � and the grand potential of the gel

Ŵ IIðF; �Þ ¼W IIðF; CÞ ��C is minimized,W II being

its Helmholtz free energy. The C dependence can be

eliminated by assuming the molecular constituents of the

FIG. 2 (color online). Typical sequences of evolution for two

systems with similar initial aspect ratio [H=A� 0:26 and 0.27

for sequence (a)–(d) and (e)–(h), respectively]. �I=�II is, re-

spectively, 0.5 and 6 for sequences (a)–(d) and (e)–(h). In

sequence (a)–(d), the water is colored with eosin.

FIG. 3 (color online). (a) Wavelength � as a function of

the initial thickness H for �I=�II ¼ 0:25 (red circles) and

�I=�II ¼ 6 (blue squares). The lengths are normalized by the

inner radius A. (b) Reduced wavelength �=H as a function of

�I=�II for various thickness. Experimental results from [25] are

shown. The lines are the theoretical predictions.
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network to be incompressible, i.e., 1þ vC ¼ detF � J,
where vC is the volume of solvent divided by the volume

of the dry network [19]. From the statistical theory of

polymer chains [15], we choose the simplest possible

form forW II ¼ �II=2ð�
2
IIr þ �2

II� � 2� 2 logJIIÞ, where
�2
IIr and �2

II� are the eigenvalues of FTF. The equilibrium

condition reads DivSII ¼ ~0, where SII ¼ @Ŵ II=@F is

the nominal stress. There is also a surface energy associ-

ated with the gel-water interface and thus ST
II
~N ¼

��kJIIF
�T ~N on this boundary, where �, k, and ~N are,

respectively, the surface energy, curvature, and outer unit

normal vector associated with the free boundary. At short

time, the system evolves in an axially symmetric fashion.

Because the disk is incompressible, it is mapped to the

region 0 � rIðRÞ ¼ R � rIðAÞ ¼ A, 0 � � ¼ � � 2�,
while the annulus is mapped to A � rIIðRÞ � rIIðBÞ ¼
b � Aþ h, 0 � � ¼ � � 2�. The inner disk being un-

stretched in this nonlinear configuration, only its linear

properties are relevant for the stability analysis and, under

the assumptions of material isotropy, homogeneity and

incompressibility, it is characterized by a single elastic

constant �I (the infinitesimal shear modulus). The only

nonvanishing equilibrium equation in the ring is r00II½1þ
ðr0IIÞ

�2�þ r0II=R½1�ðr0IIÞ
�2�� rII=R

2þ 1=rII ¼ 0, with

rIIðAÞ ¼ A and SIIrrðBÞ ¼ ��=B. This equation is inte-

grated numerically. The ring is under circumferential com-

pression and radial tension while the dilatation JII (and

hence C) increases from the inner to the free boundary.

This heterogeneity results from the inhibition of swelling

by the stresses which are stronger near the core (Fig. 4).

The radial and orthoradial components of the stress SI in

the disk are given by the continuity of normal traction,

yielding SIrr ¼ SI�� ¼ ��=v��II½1=r
0ð1Þ � r0ð1Þ�,

and the disk is thus under homogeneous isotropic tension.

We now study the stability of this axially symmetric

solution by adding to the base state an infinitesimal per-

turbation ½uð1ÞðrÞ cosðm�Þ; vð1ÞðrÞ sinðm�Þ� and by lineariz-

ing the equilibrium and constitutive equations [21]. This

yields the usual equations of linear elasticity with an

apparent elastic modulus depending on the prestressed

configuration. Within this framework, swelling decreases

the effective stiffness of the gel. In the present situation,

because the stretches depend on space and orientation, so

does the apparent Young’s modulus, and the swollen ring

behaves as an anisotropic, heterogeneous linear material in

the vicinity of the base state [22]. Together with the two

linear ordinary differential equations of second order for

each media, we supply eight boundary conditions: the

continuity of displacement at r ¼ A (two equations) and

mechanical equilibrium at r ¼ A, b (four equations). In

addition, physical quantities must stay bounded at r ¼ 0
(two equations). This boundary-value problem is solved

numerically by fixing the parameters B=A, �I=�II, and

�=ð�IIAÞ and finding the wave number m that minimizes

the threshold thickness. Alternatively, we may take the

wavelength � ¼ 2�A=m as an order parameter which,

for the sake of clarity, is taken as a continuous parameter.

We take the value � ¼ 0:1 mN=m for the surface tension

[23]. The results are shown as solid lines in Fig. 3 and are in

excellent agreement with experimental measurements.

Further analytical progress can be made in the limit

A ! 1 which corresponds to a planar swelling layer

bound to a half-space [22]. We only record here the

asymptotic results. For a very soft disk (�I=�II � 1) we
find for the wavelength and thickness at threshold h:

�

H
¼

2�

61=3

�

�I

�II

�

�1=3
and

h

H
¼ 1þ

32=3

24=3

�

�I

�II

�

2=3
:

A similar scaling law can be obtained for a layer with a

prescribed volumetric strain on a compliant substrate

although it predicts higher wavelengths and thresholds

[24]. In opposition to biological growth, swelling does

not involve solid matter creation but rather a migration of

solvent that decreases the cross-linkers’ density and hence

the stiffness. Bifurcations thus occur at lower threshold,

explaining recently reported discrepancies [22,25]. This

distinction is even more striking in the hard disk limit

(�I=�II � 1) where, following [5], we find [22]

�

H
� 4�= log

�

44:95

d

�

and

h

H
� 1:51þ 0:45d log

�

44:95

d

�

under the assumption that d ¼ �=ð�IIHÞ is small (at most

10�4 in our experiments). In agreement with the experi-

mental observations, the wavelength is of order H, inde-

pendent of �I=�II, and depends weakly on �. The surface
tension prevents the wavelength to collapse to zero, a so-

called surface instability, predicted for the related problem

of an elastic half-space in compression [26]. By contrast,

however, the swelling layer bifurcates when it reaches

roughly 1.5 times its initial volume, a value much lower

than its counterpart for biological growth or compression

(�3 times the initial value [5]), in agreement with our

findings and previous results [14].

FIG. 4 (color online). Base state. Radial (TIIrr—red solid line)

and circumferential (TII��—blue) solid line) components of the

Cauchy (true) stress TII ¼ J�1
FIIFIISII together with the dilatation

(JFII—green dashed line) of the ring as a function of the current

space variable r. The physical parameters are B=A ¼ 1:5,
�I=�II ¼ 1, � ¼ 1:5, and �=ð�IIAÞ ¼ 10�4.
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Although our analysis correctly describes the onset of

this instability, its nonlinear evolution exhibits interesting

features [27] that are not fully understood. Firstly, adjacent

buckles quickly come in contact, greatly impacting the

evolution of the system above the instability threshold.

Moreover, the creasing structure possibly involves a spi-

nodal decomposition of the gel due to the stress focusing at

the junction between consecutive petals (Fig. 5). This

phase separation might lock the system in a metastable

state by creating an energy barrier preventing the reorgan-

ization of the solvent inside the network.

While gel swelling is a relaxation towards thermody-

namic equilibrium, tumor growth is an active process. This

distinction hinders further comparison between the dynam-

ics of growth and swelling. On the other hand, by capturing

the effects of geometry, nonlinear elasticity, and stress-

modulated growth, our study shed light on the mechanics

and morphogenesis of tumors. From a clinical standpoint,

the contour shape of melanoma is highly relevant for

diagnosis and indicates a shift of a benign nevus toward

an aggressive behavior. The ABCD system (asymmetry,

border irregularity, color, diameter) is a widely used visual

criteria for assessing the potential malignancy of a skin

lesion. The contour of the melanoma may indeed exhibit

long (A) or short (B) wavelength undulations, as observed

in our artificial tumor. Moreover, the thickness of the

proliferative ring being fixed by the competition between

diffusion and growth, a large diameter implies a small

aspect ratio and thus, according to our model, a low

bifurcation threshold. This is consistent with the use of

the D criteria in melanoma diagnosis.

We have investigated the morphogenesis of layered

tissues in a previously unexplored geometry and unraveled

a transition between two qualitatively distinct regimes.

Experimental results have been well described by a de-

tailed nonlinear poroelastic model and scaling laws given

for thin swelling rings. Our approach also provides a

simple way to investigate in detail the challenging problem

of stress-modulated growth. Finally, the present study

clarifies the conditions for cusp formation, highly singular

structures still resisting theoretical explanation.
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FIG. 5 (color online). (a) Close-up view of the cusped struc-

ture. Although the system is out of the solvent bath, a thin layer

of water wets the free boundary which appears smooth. The

arrow indicates an opaque region below the cusp which might be

associated with a spinodal decomposition. (b)–(e) Various ex-

periments with similar aspect ratios H=A� 0:13 and increasing

values of �I=�II (from left to right: 0.25, 0.5, 1, 6). (f)–

(i) Corresponding theoretical predictions. Although the absolute

amplitude of the deformation is not known, the relative ampli-

tude (between the inner and outer interfaces) shows a condensa-

tion of the deformation at the free boundary.
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