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Abstract

We analyze the model of topological fermions, where charged fermions
are treated as topological solitons. We discuss vibrations of soliton
shapes. It is shown that depending on the power of the potential term
(discrete parameter m) of the model Lagrangian the spectrum of normal
mode frequencies can be discrete (for m = 1) or continuous (for m ≥ 2).
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1 Introduction

The well-known success of the Skyrme model to the description of short-range

forces and properties of strongly coupled particles makes it worthwhile to ex-

tend the “skyrmion philosophy” to long-range forces and physics of electrically
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coupled particles. The so-called model of topological fermions (MTF) [2, 3]

proposes a realization of such an idea.

The model has three independent degrees of freedom parameterizing an

SU(2) field

Q(x) = cosα(x) + i�σ�n(x) sinα(x), (1)

where �σ are the Pauli matrices and �n(x) is a three-dimensional unit vector in

internal (“colour”) space 1. Due to the constraint |�n(x)| = 1 this vector has

two independent degrees of freedom. Both fields, α(x) and �n(x), are functions

of the Minkowski coordinates xμ = (ct, x, y, z).

The Lagrangian density of the MTF reads

L = −αf h̄c

4π

(
1

4
�Rμν · �Rμν + Λ(q0)

)
, (2)

where �Rμν is the curvature tensor

�Rμν = �Γμ ∧ �Γν , with the connection �Γμ =
1

2i
Tr(�σ∂μQQ†). (3)

The potential term is given by

Λ(q0) =
1

r4
0

(
TrQ

2

)2m

=
1

r4
0

cos2m α(x), m = 1, 2, 3, . . . (4)

The model contains two parameters, the fine-structure constant, αf , and a

dimensional parameter r0.

Note that the “curvature term” −1
4
�Rμν · �Rμν is proportional to the Skyrme

term, but the so-called kinetic term of the Skyrme model does not enter the

Lagrangian density (2) in order to allow for electromagnetic fields and forces

[3].

Due to its Lagrangian density the MTF has different properties than the

Skyrme model at r → ∞ [2, 3]. In the Skyrme model the chiral field U ap-

proaches the trivial configuration, U → 1. In the MTF the field configuration

for r → ∞ is determined by the minima of the potential characterized by

α(x) = π
2

and arbitrary direction of �n,

Q(x) = i�σ�n(x) at r → ∞. (5)

1We use the summation convention that any capital latin index that is repeated in a
product is automatically summed from 1 to 3. The arrows on variables in the internal
“colour” space indicate the set of 3 elements �q = (q1, q2, q3) or �σ = (σ1, σ2, σ3) and �q�σ =
qKσK . We use the wedge symbol ∧ for the external product between colour vectors (�q∧�σ)A =
εABCqBσC . For the components of vectors in physical space x = (x, y, z) we employ small
latin indices, i, j, k and a summation convention over doubled indices, e.g. (E × B)i =
εijkEjBk. Further we use the metric η = diag(1,−1,−1,−1) in Minkowski space.
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As a result the Q field can form a hedgehog configuration and the field α(x)

describes the profile of a charged soliton with properties of an electron, whereas

the field �n(x) is related to the dual electromagnetic field strength [2, 3] by

∗fμν(x) = − e0

4πε0c
[∂μ�n(x) ∧ ∂ν�n(x)] · �n(x). (6)

The field strength fμν reads fμν = −1
2
εμνρσ

∗f ρσ with ε0123 = 1.

The model has two types of excitations, which are related to �n and α

degrees of freedom and have different physical meaning.

One type (connected with fluctuations of the field �n(x)) is realized as elec-

tromagnetic field evolved by the charge in the wave zone (where α → π
2
).

Some properties of such fluctuations were already studied, appropriate classi-

cal equations of motion for the field �n were derived [3] and explicit solutions

of these equations of motion, which behave like electromagnetic waves, were

found [1].

The subject of the present paper is to study another type of MTF exci-

tations which is generated by fluctuations of the field α(x) and realized as

vibrations of the soliton shape.

The paper is organized as follows. In Section 2 we derive the Lagrangian

density for small α-fluctuations. Than, in Section 3, we calculate normal modes

of the fluctuations. We find that the spectrum of the mode frequencies is very

different for m = 1 and m �= 2, where m is the power in the potential term

(21). The conclusions are given in Section 4.

2 α-fluctuation in the MTF Lagrangian den-

sity

We will start from the second order variation terms of the MTF Lagrangian

density

δL = −αf h̄c

4π
δ
(

1
4
�Rμν

�Rμν + Λ
)

=
αf h̄c

4π

[
1
2
�ζ 2q0 ∂q0Λ − 1

2
(�ζ�q )2∂2

q0
Λ − (∂μ

�ζ ∧ ∂ν
�ζ )�Rμν + (∂μ

�ζ ∧ �ζ) (�Γν ∧ �Rμν)

+1
2
(∂μ

�ζ ∧ �Γμ)(∂ν
�ζ ∧ �Γν) − 1

2
(∂μ

�ζ ∧ �Γν)(∂
μ�ζ ∧ �Γν)

]
, (7)

where �ζ = �ζ(t,x) are three independent variation parameters introduced

by

Q → Q′ = ei�σ�ζQ =
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=
[(

1 − 1
2
ζ2

)
+ i�σ�ζ

]
(q0 + i�q�σ) =

=
[
q0(1 − 1

2
ζ2) − �ζ�q

]
+ i�σ

[
(1 − 1

2
ζ2)�q + q0

�ζ + �q ∧ �ζ
]
. (8)

In Eq. (7) terms linear in �ζ vanish due to the equation of motion.

To simplify calculations we introduce in (7), (8) and later on the notations

q0(x) = cos α(x) and �q(x) = �n(x) sinα(x) and use spherical coordinates θ and

φ in colour space.

We will also use the spherical coordinates, r, ϑ, ϕ for the physical space and

specify the hedgehog soliton by �n = �r
r
. One gets

�er = �n, ∂ϑ�n = �eϑ,
∂ϕ�n

sin ϑ
= �eϕ. (9)

By rotation of �eθ and �eξ and �eφ with angle α we get

�eξ = cosα�eθ − sinα�eφ, �eη = sin α�eθ + cos α�eφ (10)

with

(�eξ ∧ �eη) = �n and (∂ϑ�n ∧ ∂ϕ�n) · �n = sinϑ. (11)

In spherical coordinates the covariant and contravariant components of the

connection and the curvature tensor (3) read

�Γr = α′(r)�n, �Γr = −α′(r)�n,
�Γϑ = sin α�eξ, �Γϑ = − 1

r2 sinα�eξ,
�Γϕ = sin ϑ sinα�eη, �Γϕ = − 1

r2 sinϑ
sinα�eη

�Rϑϕ = sinϑ sin2 α�n, �Rϑϕ = sin2 α
r4 sinϑ

�n,
�Rϕr = sin ϑ sinα α′ �eξ, �Rϕr = sin α α′

r2 sinϑ
�eξ,

�Rrϑ = sin α α′ �eη, �Rrϑ = sin α α′
r2 �eη.

(12)

After some algebra one arrives at

δL =
αf h̄c

4π

[
1
2
�ζ 2 cosα ∂q0Λ − 1

2
ζ2
r sin2 α ∂2

q0
Λ − 2 sin2 α

r4 sinϑ
(∂ϑ

�ζ ∧ ∂ϕ
�ζ ) · �n

−2 sin α α′
r2 sinϑ

(∂ϕ
�ζ ∧ ∂r

�ζ ) · �eξ − 2 sin α α′
r2 (∂r

�ζ ∧ ∂ϑ
�ζ ) · �eη + 2 sin2 α α′

r2 (∂r
�ζ ∧ �ζ) �n

+ sinα
r2 (α′2 + sin2 α

r2 )[(∂ϑ
�ζ ∧ �ζ) �eξ + 1

sinϑ
(∂ϕ

�ζ ∧ �ζ ) �eη]

+1
2
{α′(∂r

�ζ ∧ �n) + sinα
r2 [(∂ϑ

�ζ ∧ �eξ) + 1
sin ϑ

(∂ϕ
�ζ ∧ �eη)]}2

+ sin2 α
r2 (∂μ

�ζ · �n)(∂μ�ζ · �n) + 1
2
(α′2 + sin2 α

r2 )[(∂μ
�ζ �eξ)(∂

μ�ζ �eξ) + (∂μ
�ζ �eη)(∂

μ�ζ �eη)]
]
.

(13)
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Now let us consider “α-fluctuations”, which correspond to the following choice

of the parameter �ζ

�ζ(t,x) = φ(t, r)�n, �n =
x

|x| . (14)

Then the fluctuation of the Lagrangian density reads

δL =
αf h̄c

4π

[
sin2 α

r2
∂μφ∂μφ − φ2

{
sinα sin 3α

r4
+

cos 2α

r2
∂μα∂μα − 2 sin 2α

r3
∂μr∂μα+

+
sin 2α

r2
�α +

m

r4
0

cos2mα
(
(2m − 1) tan2α − 1

)}]
.

(15)

Using the equation of motion

m

r4
0

cos2mα = −sin2 α cos α

r4
+ 2

sinα

r3
∂μr ∂μα − cos α

r2
∂μα∂μα − sinα

r2
�α (16)

the expression (15) reduces to

δL =
αf h̄c

4π

{
sin2 α

r2
∂μφ∂μφ − φ2

[
sin2 α(1 + 3 cos 2α)

2r4
− sin 2α

r3
∂μr∂μα

−sin2 α

r2
∂μα∂μα +

sin 2α

2r2
�α +

m

r4
0

cos2mα(2m − 1) tan2α

]}
.

(17)

Introducing a new field variable

Φ =

√
2 sin α

r
φ (18)

one arrives at the final expression for the fluctuating Lagrangian density

δL =
αf h̄c

4π

{
1

2
∂μΦ∂μΦ − Φ2

[
1 + 3 cos 2α

4r2
+

m(2m − 1)r2

2r4
0

cos2m−2α

]}
.

(19)
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3 Normal modes of fluctuations

3.1 Fluctuation potential

From (19) we get the Lagrangian for the α-fluctuations. It has the standard

form

L[Φ] = T [Φ] − U [Φ], T [Φ] = 1
2

∫
d3x Φ̇2,

U [Φ] =

∫
d3x

[
1
2
(∇Φ)2 + Φ2V (r)

]
=

∫
d3x Φ

[−1
2
Δ + V (r)

]
Φ,

V (r) =
1 + 3 cos 2α

4r2
+

m(2m − 1)r2

2r4
0

cos2m−2α =
v(ρ)

r2
0

,

(20)

where ρ = r/r0.

To calculate the potential V (r) one needs to know the profile function

α(r). The solutions for the profile function with different m are discussed in

Appendix A. The behaviour of cosα(r) for m =1,2,3 and 4 is displayed in

Figure 1.
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Figure 1: At the left panel: cosα(r) for m = 1 (solid line), m = 2 (long-dashed

line), m = 3 (short-dashed line) and m = 4 (dot-dashed line). At the right

panel: the potential v in dependence on ρ = r/r0.

From Eq. (20) one immediately learns that for m = 1 the fluctuation

potential increases as V (r) ∼ r2 at r → ∞, while for m ≥ 2 it decreases as

V (r) ∼ r−2, see Figure 1. Outside the region 0.3 < ρ < 2 the potential is very

similar for all m ≥ 2.
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For m =2 and 3 we can give explicit expressions for the potential

v(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

7
· 2 − 2ρ̃2 + 10ρ̃4

ρ̃2(1 + ρ̃2)2
, m = 2

2 + ρ2 + 14ρ4

ρ2(1 + ρ2)2
, m = 3

(21)

where ρ̃ is defined in (39).

3.2 Normal modes

To find the normal modes of the fluctuations we expand Φ(t, r) in an orthonor-

mal and complete set of functions ηi(r) (see, e.g, [4])

Φ(t, r) =
∑

i

ci(t)ηi(r). (22)

These functions ηi(r) are determined by the Schrödinger-type equation[−1
2
Δ + V (r)

]
ηi(r) = Ω2

i ηi(r). (23)

Because the potential is very different for m = 1 and m ≥ 2 let us consider

these two cases separately.

• m = 1

There is an infinite number of bound states. Separating angular and

radial coordinates ηi(r) = 1
r
Rnl(r)Yll3(r/r) in Eq. (23) we get for the

radial wave function

−1

2
R′′

nl +

[
l(l + 1)

2r2
+ V (r)

]
Rnl = Ω2

nlRnl, (24)

where

V (r) =
1 + 3 cos 2α(r)

4r2
+

r2

2r4
0

=
v(ρ)

r2
0

(25)

and α(r) is given by (35).

From (24) and (25) it follows that for l 
 1 the spectrum reduces to the

spectrum of the three dimensional harmonic oscillator.

At r → 0 Eq.(24) becomes

−1

2
R′′

nl +

[
l(l + 1) + 2

2r2

]
Rnl = 0 (26)
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with the solution

Rnl ∼ rξ, ξ =
1

2
+

√
1

4
+ l(l + 1) + 2. (27)

At r → ∞ it reduces to the asymptotic oscillator equation

−1

2
R′′

nl +
1

2
κr2Rnl = 0, κ = ω2 =

1

r4
0

(28)

with the solution

2Rnl ∼ rσe−
1
2
ωr2

. (29)
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Figure 2: The radial wave functions Rnl for m = 1. The radial wave functions

are shifted by eigenvalues Ω2
nl. For comparison we show the sum of the potential

and the centrifugal energy l(l+1)
2ρ2 .

The numerical solutions for the radial eigenfunctions are shown in Fig-

ure 2 for different angular momentum quantum number l and radial

quantum number n. So the solutions of the Schrödinger equation (23)

are characterized by three quantum numbers, i = (n, l, l3). The eigen-

states are obviously degenerate with respect to l3.

In Figure 3 the eigenvalues Ω2
nl are compared with the spectrum Ω̃2

nl of

the three dimensional oscillator.

• m ≥ 2

For m ≥ 2 the potential V (r) is repulsive everywhere and there are no
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Figure 3: The spectrum of Eq. (23) for m = 1 (solid lines). For comparison

we also show the spectrum Ω̃2
nl = 1

r2
0
(2n+ l− 1

2
) of three-dimensional oscillator

potential (dashed lines).

bound states. At r → ∞ the solutions of Eq. (23) are spherical waves

ηk =
e±ikr

r
and ω2

k = 1
2
k2. (30)

The spectrum is continuous.

4 Conclusions

We derive the Lagrangian for small fluctuations of the soliton profile around

the hedgehog solution and discuss shape vibrations of the topological fermions.

It is shown that at r � r0 the potential term of the Lagrangian is repulsive and

very similar for all values of the discrete parameter m of the model. At r → ∞
its behaviour differs for m = 1 and m ≥ 2. It grows as r2 for m = 1, while for

m ≥ 2 it decreases as r−2. As a result the spectrum of normal frequencies is

discrete for m = 1 and continuous for m ≥ 2.
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A Profile function

The profile function is determined from the differential equation

d2q0

dρ2
+

(1 − q2
0)q0

ρ2
− mρ2q2m−1

0 = 0 (31)

supplemented by the following boundary conditions

α(0) = 0, α(∞) =
π

2
. (32)

In (31) one sets q0(r) = cosα(r) and Λ(q0) = q2m
0 (r).

At short distances, ρ � 1, Eq. (31) is fulfilled by

q0(r) ≈ 1 − κρ2 (33)

with arbitrary κ. The parameter κ is determined by the condition q0(∞) = 0.

Now let us discuss the behaviour of q0 at r → ∞. This behaviour is

very different for m = 1 and m ≥ 2. Thus we will consider these two cases

separately. Note, that for m = 2 and 3 there are exact analytical solutions,

for other m only approximate solutions do exist.

For m = 1 one gets the asymptotic equation

d2q0

dρ2
− ρ2q0 = 0 at ρ → ∞ (34)

with solution q0 ∼ ρ− 1
2 e−

1
2
ρ2

. To connect the solutions (33) and (34) smoothly

one can use the following trial function

cosα(r) =
e−

1
2
ρ2

4
√

1 + κ0ρ2
. (35)

The variation parameter κ0 = 0.206796 is determined from the minimum of

the energy functional

H [q0] =

∫ ∞

0

dρ

[
(1 − q2

0)
2

2ρ2
+ (∂ρq0)

2 + ρ2q2m
0

]
. (36)

For m ≥ 2 Eq. (31) is reduced to the equation

d2q0

dρ2
+

q0

ρ2
− mρ2q2m−1

0 = 0 at ρ → ∞, (37)

which is different from (34) and has the asymptotic solution

q0 = Aρ−ξ, where A =

[
m2 + 3

m(m − 1)2

] 1
2(m−1)

and ξ =
2

m − 1
. (38)
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For m = 2

α(r) = arctan(ρ̃
√

2 + ρ̃2),

cosα =
1

1 + ρ̃2
, sinα =

ρ̃
√

2 + ρ̃2

1 + ρ̃2
, ρ̃ = 4

√
2
7
ρ.

(39)

For m = 3

α(r) = arctan(ρ), cosα =
1√

1 + ρ2
, sin α =

ρ√
1 + ρ2

, (40)

see [2].

For m ≥ 4 one can connect the two solutions (33) and (38) by the following

trial function

q0 = (1 + κ1ρ
2 + κ2ρ

4)−ξ/4 (41)

with

κ2 = A− 4
ξ =

m(m − 1)2

m2 + 3
(42)

and κ1 ≥ 0 is a variational parameter.

For m = 4,

cosα(r) ≈ 1
6
√

1 + κ1ρ2 + κ2ρ4

with κ1 = 2.98428, κ2 = 36
19

.
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