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Based on a first-principles approach, we exploit a class of shaped graded materials in which thermal
energy is apparently controlled to transfer from a region of lower temperature to a region of higher
temperature. This phenomenon, which is in contrast to our common intuition, is indicative of an
apparent negative thermal conductivity �ANTC�. Further analysis shows that the ANTC is related to
a symmetric oscillation of paired thermal conductivities with specific gradation profiles, which are
shown to satisfy a sum rule. Such shaped graded materials can serve as good candidates for thermal
rectification. © 2008 American Institute of Physics. �DOI: 10.1063/1.2951600�

First we briefly review the recent development of vari-
ous cloaks,1–10 which were designed by using graded
materials.11 An electromagnetic cloak is well known for hid-
ing objects from electromagnetic waves,1–3 due to the high
freedom of design of metamaterials12 that may be both inho-
mogeneous and anisotropic in their electric permittivity and
magnetic permeability. Independently, Leonhardt4,5 has given
an approach that can be performed to cloak an object in
the short wavelength limit. Owing to intriguing potential ap-
plications related to such invisibility, such an electromag-
netic cloak has received extensive attention, e.g., ranging
from its scattering cross section6 and two dimensional
counterpart,2,7–9 to its extensions such as acoustic cloaks.10

In this work, we initially start by proposing a kind of thermal
cloaks. Interestingly, based on a coordinate transformation
method, we exactly reveal an inverse thermal flow �ITF� as
geometric shape of the cloak changes in a typical range. The
ITF is indicative of an apparent negative thermal conductiv-
ity �ANTC�. The ANTC is of value for achieving various
thermal rectifications, e.g., designing thermal diodes.13–16

They have potential important applications such as environ-
mentally friendly air conditions. To realize them, the present
mechanism is distinctly different from that used in Refs. 13
and 14.

Thermal conduction is the movement of a heat flux from
a high temperature region toward a low temperature region.
In this process, the heat flux is proportional to the tempera-
ture gradient. The thermal conduction equation can be writ-
ten as

�C
�T

�t
+ ��− � � T� = Q , �1�

where � is the density, C is the heat capacity, T is the tem-
perature, � is the thermal conductivity, and Q is a heat
source. For a steady state, temperature T does not change
with time thus the first term containing �T /�t vanishes.
Throughout this work, there is no heat source in the area
under consideration, so Q=0. Thus, Eq. �1� admits
��−��T�=0.

In the Cartesian coordinates �x ,y ,z�, the equation for
describing an ellipsoidal shape is x2 /a2+y2 /b2+z2 /c2=1,
where a, b, and c are the three principal semiaxes of the
ellipsoid. We choose �� ,� ,�� to represent a point in the el-

lipsoidal coordinates. Then, we squeeze the ellipsoidal vol-
ume into an ellipsoidal shell through the following relations
��=a1+��a2−a1� /a2, ��=b1+��b2−b1� /b2, and ��=c1

+��c2−c1� /c2, where a1, b1, and c1 �a2, b2, and c2� are the
inner �outer� three principal semiaxes of the ellipsoidal shell.
The key feature of the permittivity equations which allows
the invisibility is the invariance of their form under coordi-
nate transformations.1,17 In the present distorted coordinates,
the form of the thermal conduction equation also keeps un-
changed, but the corresponding thermal conductivity is got in
the form like ���

� =��Q�Q�Q� /Q�
2, where �� is thermal con-

ductivity in the original coordinates, and Q�, Q�, and Q� are2
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Thus, in the distorted ellipsoidal coordinates, we have the
renormalized values of the thermal conductivities, ���

� , ���
� ,

and ���
� , inside the ellisoidal cloaking region �shell�,
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where �0 denotes the thermal conductivity of the host mate-
rial �which is beyond the whole cloak�. From Eqs. �5�–�7�,
we can see that the thermal conductivity �� is both aniso-
tropic and tensorial �see also Fig. 1�.

Now we are in a position to perform numerical simula-
tions by using the finite element method. There are three
domains in the whole system, namely, the inner domain, the
cloaking domain �shell�, and the outer domain. For conve-
nience, we set the thermal conductivity of the inner domain
to have the same value as that �0 of the outer domain, anda�Electronic mail: jphuang@fudan.edu.cn.
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�0=163 W /m K �thermal conductivity of silicon�. This will
not affect our results at all because the main interest of this
work is on the cloaking domain, in which the behavior of
ITF appears. The thermal conductivity of the cloaking do-

main is determined according to Eqs. �5�–�7�. For all the
spherical or non-spherical cloaks discussed in this work, we
keep the ratio between the volume of the cloaking �shell�
domain and that of the inner domain to be 7:1, and the ap-
plied temperature T is set to be 300 and 100 K at the two
opposite planes of the cubic simulation box, respectively. It
is worth mentioning that, regardless of the actual value of T,
our results hold for given temperature differences between
the opposite planes. As the spherical cloak is centrosymmet-
ric, it makes no difference when the temperature is applied in
various directions. However, for an ellipsoidal cloak, we
have to discriminate the direction of temperature due to the
existence of geometric anisotropy. In our simulations, we
apply the temperature in two opposite planes along the three
principal axes, a, b, and c, of the ellipsoidal cloak, respec-
tively. Below we focus on two types of rotational ellipsoid
�namely, spheroid� with a�b=c �oblate spheroid� and
a�b=c �prolate spheroid�. Throughout this work, the set of
a ,b, and c will be used to denote both three inner semiaxes
�a1, b1, and c1� and three outer semiaxes �a2, b2, and c2� of
the ellipsoidal cloak if there are no special instructions. We
should remark that our simulation results are also indepen-
dent of the length scale of the cloak, e.g., from microsized to
macrosized, if any.

Figure 1 displays the anisotropic thermal conductivities
���
� , ���

� , and ���
� in the distorted coordinate versus �� /a1,

�� /b1, and �� /c1, respectively, according to Eqs. �5�–�7�. A
monotonic increase is clearly shown.

Figure 2 shows the pathway of heat flux in thermal
cloaks with various geometrical shapes. The temperature dis-
tribution is also shown. The streamlines of Fig. 2�a� repre-
sent the pathway of the heat flux in the spherical cloak for
the parameters as indicated in the caption. As we can see, the
heat flux goes around the inner domain and eventually re-
turns to its original pathway. In this process, the object inside
the inner domain is protected from the invasion of external
heat flux. For a spheroidal cloak, the pathway of the heat flux
is also illustrated in Fig. 2�b� �oblate spheroid� and Fig. 2�c�
�prolate spheroid� with the applied temperature gradient di-
rected along the principal semiaxis a. The pathway of the
oblate spheroidal cloak with a�b=c is similar to that of the

FIG. 2. �Color online� Pathway of heat flux in thermal cloaks �left panels�
and their cross sections �right panels�. The streamlines denote the pathway
of the heat flux when the temperature is set to be 300 and 100 K at the top
and bottom planes of the cubic simulation box, respectively. The tempera-
ture distribution is also shown in the cross section. �a� Spherical thermal
cloak and its cross section. Parameters: r1=0.1 m �inner radius� and
r2=0.2 m �outer radius�. �b� Oblate spheroidal thermal cloak with three
principal semiaxes a, b, and c satisfying a�b=c �left panel� and its cross
section �right panel�. The temperature gradient is applied along the direction
of the semi-axis a. Parameters: a1=0.1 m and b1=c1=0.2 m �three inner
semiaxes�; a2=0.2 m and b2=c2=0.4 m �three outer semiaxes�. �c� Same as
�b�, but for prolate spheroidal thermal cloak with a�b=c. Parameters:
a1=0.2 m and b1=c1=0.1 m; a2=0.4 m and b2=c2=0.2 m.

FIG. 3. �Color online� Temperature difference TAB between the starting
point A and ending point B of the ITF streamline �as indicated in the inset�
as a function of the ratio between a and b �a :b� for spheroidal thermal
cloaks with three principal semiaxes a�b=c. The three curves correspond
to three positions of incoming heat flux that respectively, have vertical dis-
tances of 0.8b, 0.6b, and 0.4b with respect to the semiaxis a �see also the
inset�.

FIG. 1. �Color online� The anisotropic thermal conductivities �
��
� , ���

� , and
�

��
� in the distorted coordinate vs �� /a1, �� /b1, and �� /c1, respectively,

according to Eqs. �5�–�7�. The three curves are overlapped. Parameters:
a2=2a1, b2=2b1, and c2=2c1.
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spherical cloak. However, the situation becomes different for
the case of prolate spheroid with a�b=c, as shown in Fig.
2�c�. We observe an ITF inside the prolate spheroidal cloak.
Here, the so-called ITF means that the heat flux can flow
backwards, in contrast to normal thermal flow �NTF� for
which the heat flux flows forward only. The ITF corresponds
to an ANTC in this nonspherical cloaking region, which is to
be explained below. Due to the symmetry of the prolate
spheroid, the ITF zone is strictly symmetrical, which locates
close to the two opposite sides of the prolate cloak. Further-
more, we have also investigated the case of a general ellip-
soid with a�b�c for which the external temperature gradi-
ent is directed along the longest principal semiaxis, and its
behavior is generally similar to Fig. 1�c� �no figures shown
here�. Nevertheless, in this case, the ITF streamline is no
longer strictly symmetrical, the degree of which depends on
the actual values of a, b, and c.

For understanding the ITF, we resort to the Fourier ther-
mal conduction equation,18

JT = − �
dT

dz
= − �

�T

�z
, �8�

where JT is heat flux density, � is the thermal conductivity,
and �T is the temperature gradient. This equation indicates
that the thermal flux should flow from the high temperature
region to the low temperature region. So, as for homoge-
neous materials �or without the thermal cloak of our inter-
est�, the temperature difference between positions A and B
�see Fig. 3�, TAB, should be smaller than zero, namely, TA
�TB. That is, in this situation, the thermal flux should flow
from B to A. However, in the present case �with the thermal
cloak�, the local temperature difference between the two
points A and B TAB is larger than zero indeed as to be shown
in Figs. 3 and 4, namely, TA�TB. Moreover, the thermal flux
still flows from point A to B. This is apparently opposite to
the requirement of the homogeneous case. Thus, this corre-
sponds to an ANTC in the inverse region, which arises from
the specific profile of material properties.

In Fig. 3, we discuss the temperature gradient along the
direction of the semiaxis a. Here, the temperature difference
TAB �see the caption� is investigated as a function of the ratio
between a and b �a :b�. In detail, there is a coexistence of
NTF and ITF streamlines, and a transition between them as
geometrical shape of the cloak varies. Evidently, when a :b is
smaller than or equal to 1 �oblate spheroid or sphere�, the
temperature difference TAB=0, namely, there is no ITF, and
only NTF appears. As a :b�1 �prolate spheroid�, the ITF
comes to appear, and reaches maximum at about a :b=2.
Eventually, it tends to disappear as a :b is large enough cor-
responding to a rodlike cloak.

Figure 4 displays the relation between the thermal con-
ductivities ���

� and ���
� in the ITF region within the cross

section of the spheroidal cloaking domain as a function of
the distance r �details can be found in the caption�. All the
1–25 points displayed in �b�–�d� have been taken in sequence
along the streamline of the ITF region, as shown in Fig. 4�a�,
which are indicated by the ordered numbers for a :b= �b�
2:1, �c� 3:1, and �d� 4:1. As a :b is given, all the paired ���

�

and ���
� �namely, two thermal conductivities corresponding

to the same number� appear in a symmetric oscillation tra-
jectory, and satisfy a sum rule: ���

� +���
� = �b� 802.7	0.6, �c�

889	3, and �d� 984	2. It is worth noting that the corre-
sponding thermal conductivity ���

� keeps unchanged for the
cross section �in two dimensions� of interest.

The fact that our results do not depend on specific length
scales makes an experimental demonstration very tractable.
Finally, it should be noted that, besides thermal conduction
of our interest, heat can also be transferred by thermal radia-
tion and/or convection, and that often more than one of these
processes occur in a particular situation.
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FIG. 4. �Color online� Paired thermal conductivities �
��
� and ���

� �indicated
by the same number� in the ITF streamlines within the cross section of the
prolate spheroidal cloak with a�b=c as a function of the distance r be-
tween any point in the ITF streamline and the center of the cloak �see �a� the
schematic graph�, for �b� a :b=2:1, �c� a :b=3:1, and �d� a :b=4:1. All the
25 points have been taken in sequence from the starting point to the ending
point of the ITF streamlines, as clearly indicated in the corresponding or-
dered numbers �see �a��.
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