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ABSTRACT
We present a new method for the analysis of images, a fundamental task in observational
astronomy. It is based on the linear decomposition of each object in the image into a series of
localized basis functions of different shapes, which we call ‘shapelets’. A particularly useful
set of complete and orthonormal shapelets is that consisting of weighted Hermite polynomials,
which correspond to perturbations around a circular Gaussian. They are also the eigenstates
of the two-dimensional quantum harmonic oscillator, and thus allow us to use the powerful
formalism developed for this problem. One of their special properties is their invariance under
Fourier transforms (up to a rescaling), leading to an analytic form for convolutions. The gen-
erator of linear transformations such as translations, rotations, shears and dilatations can be
written as simple combinations of raising and lowering operators. We derive analytic expres-
sions for practical quantities, such as the centroid (astrometry), flux (photometry) and radius of
the object, in terms of its shapelet coefficients. We also construct polar basis functions which
are eigenstates of the angular momentum operator, and thus have simple properties under rota-
tions. As an example, we apply the method to Hubble Space Telescope images, and show that
the small number of shapelet coefficients required to represent galaxy images lead to compres-
sion factors of about 40 to 90. We discuss applications of shapelets for the archival of large
photometric surveys, for weak and strong gravitational lensing and for image deprojection.

Key words: gravitational lensing – methods: analytical – methods: data analysis – techniques:
image processing – surveys.

1 I N T RO D U C T I O N

Image analysis is a fundamental task in observational astronomy.
For instance, new techniques, such as weak gravitational lensing
(see reviews by Bartelmann & Schneider 1999; Mellier 1999), mi-
crolensing (Mao 1999) and the search for supernovae (Perlmutter
et al. 1997; Riess 2000), have great scientific promise, but require
high precision image processing and analysis. As a result, a number
of sophisticated data analysis packages (e.g. FOCAS in IRAF, Jarvis
& Tyson 1981; SEXTRACTOR, Bertin & Arnouts 1996, etc.) and
techniques (e.g. wavelet analysis, see review by Starck, Murtagh
& Bijaoui 1998; image subtraction, Alard & Lupton 1998; shear
measurement, Kaiser, Squires & Broadhurst 1995; Kaiser 2000 and
Kuijken 1999) have been developed.

In this paper, we present a new method for image analysis. It
is based on the linear decomposition of each object into a series
of localized basis functions with different shapes, which we call
‘shapelets’. As a basis set, we choose Gaussian-weighted hermite
polynomials, which correspond to perturbations about a circular
Gaussian. These basis functions are the eigenstates of the two-
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dimensional quantum harmonic oscillator (QHO), and thus allow
us to use the powerful formalism developed for this problem. They
have a number of special properties. In particular, they are (up to a
rescaling) invariant under Fourier transforms and thus yield a simple
analytical form for convolutions. We derive a number of practical
tools which can be used to compute the characteristics of the object
(centroid, flux, radius, etc.) from its shapelet coefficients.

As an example, we show how images of galaxies observed with
the Hubble Space Telescope (HST) can be represented and strongly
compressed using shapelets. We also discuss several applications
of shapelets, such as the archival of large photometric catalogues,
gravitational lensing and image deprojection. A precise method to
measure the shear induced by weak lensing on galaxy images is
presented in an associated paper (Refregier & Bacon 2002 Paper II).
The application of shapelets to interferometric images is presented
in Chang & Refregier (2002).

Shapelets can be thought of as a two-dimensional generalization
of the Gauss-Hermite expansion, and of the related Edgeworth ex-
pansion. These one-dimensional series have been used to describe
line profiles of galaxies (van der Marel & Franx 1993; Gerhard 1993;
Blinnikov & Moessner 1998) and the growth of cosmological per-
turbations (Juszkiewicz et al. 1995 and references therein). Some of
our analytical results may thus be useful in these contexts.
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36 A. Refregier

Our method complements other existing image analysis meth-
ods. In particular, the wavelet transform (see Starck et al. 1998,
for a review) decomposes an image into a sum of basis functions
of different scales but with a set shape (see also the ridgelet and
curvelet extensions of wavelets; Starck, Candès & Donoho 2002
and reference therein). In our method, the image is decomposed
into a collection of compact disjoint objects of arbitrary shapes and
with a characteristic scale. We briefly compare the two approaches
by considering the reconstruction of a galaxy image as an example.

This paper is organized as follows. In Section 2, we describe
the main properties of one-dimensional shapelets and discuss their
connection to the QHO. In Section 3, we show how two-dimensional
shapelets can be formed and derive a number of practical analytical
results. In Section 4, we discuss how the shapelet states behave
under convolutions. In Section 5, we derive polar shapelets from
the Cartesian basis functions and describe some of their properties.
In Section 6, we discuss several direct applications of shapelets. In
Section 7, we briefly compare shapelets with other image analysis
methods. Our conclusions are presented in Section 8.

2 O N E - D I M E N S I O NA L S H A P E L E T S

2.1 Definitions

We first consider the description of a localized object in one di-
mension. For this purpose, we first define the dimensionless basis
functions:

φn(x) ≡ [2nπ
1
2 n!
]− 1

2 Hn(x)e− x2
2 , (1)

where n is a non-negative integer and Hn(x) is a hermite polynomial
of order n. These functions are orthonormal in the sense that∫ ∞

−∞
dxφn(x)φm(x) = δnm, (2)

where δmn is the Kronecker delta symbol. The first few functions are
plotted in Fig. 1. These functions, which we call ‘shapelets’, can be
thought of as shape perturbations around the Gaussian φ0(x),

To describe an object in practice, we use the dimensional basis
functions

Bn(x ; β) ≡ β− 1
2 φn(β−1x), (3)

where β is a characteristic scale, which is typically chosen to be

Figure 1. First few one-dimensional basis functions φn(x).

close to the size of the object. These functions are also orthonormal,
i.e.∫ ∞

−∞
dx Bn(x ; β)Bm(x ; β) = δnm . (4)

This infinite set of functions forms a complete basis for smooth
and integrable functions. Thus, a (sufficiently well behaved) object
profile f (x) can be expanded as

f (x) =
∞∑

n=0

fn Bn(x ; β). (5)

From the orthonormality condition (equation 4), the shapelet coef-
ficients are given by

fn =
∫ ∞

−∞
dx f (x)Bn(x ; β). (6)

In practice, the series of equation (5) will converge quickly if the
object f (x) is sufficiently localized, and if β and the origin x = 0
are not too different from the size and location of the object. This
series representation is referred to as the Gauss–Hermite series, and
is related to the asymptotic Edgeworth expansion (see e.g. van der
Marel & Franx 1993; Blinnikov & Moessner 1998; Juiszkiewicz
1995).

2.2 Fourier transform

These basis functions have a number of useful properties. Let us first
consider their Fourier transform, which, for an arbitrary function
f (x), is defined as

f̃ (k) = (2π)−
1
2

∫ ∞

−∞
dx f (x)eikx ,

f (x) = (2π)−
1
2

∫ ∞

−∞
dk f̃ (k)e−ikx .

(7)

With these conventions, the Fourier transform of the dimensionless
basis function φn(ξ ) is

φ̃n(κ) = i nφn(κ), (8)

Thus, up to a phase factor, the dimensionless basis functions are
invariant under Fourier transforms. This very useful property can
be understood in physical terms from the analogy with the QHO
(see Section 2.3).

The Fourier transform of the dimensional basis function Bn(x ; β)
is given by

f̃ n(k; β) = i n Bn(k; β−1). (9)

Thus, the Fourier transform acts on the basis functions with an
unsurprising change of scale β → β−1.

2.3 Analogy with the QHO

As we now discuss, the above basis functions are the eigenstates of
the QHO, which allows us to exploit the readily available formalism
developed for this problem. Let us consider a QHO with mass m and
natural frequency ω. If distances are measured in units of

√
h/mω

and energies in units of hω, the Hamiltonian for this system is

Ĥ = 1

2
[x̂2 + p̂2] (10)
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Shapelets – I. A method for image analysis 37

where x̂ and p̂ are the position and momentum operators respec-
tively. In the x-representation, they are given by

x̂ = x, p̂ = 1

i

∂

∂x
, (11)

and commute as [x̂, p̂] = i . As is well known, the basis functions
φn(x) are the eigenfunctions of the Hamiltonian, with

Ĥφn =
(

n + 1

2

)
φn . (12)

Clearly, Ĥ is symmetric under a permutation of x̂ and p̂ (see equa-
tion 10), thus explaining the invariance of φn under Fourier trans-
forms (equation 8).

Of particular practical interest are the lowering and raising oper-
ators, which are defined as

â ≡ 1√
2

(x̂ + i p̂), â† ≡ 1√
2

(x̂ − i p̂), (13)

where † is the Hermitian conjugate. They commute as [â, â†] = 1,
and act on the basis functions as

âφn = √
nφn−1, â†φn = √

n + 1φn+1. (14)

The Hamiltonian can then be rewritten as Ĥ = N̂ + 1/2, where the
number operator N̂ ≡ â†â has the property that

N̂φn = nφn . (15)

When convenient, we will use the bra–ket notation of quantum me-
chanics. For instance, the nth state is written as |n〉 and has an
x-representation given by 〈x | n〉 = φn(x).

The dimensional basis functions are the eigenfunctions of the
Hamiltonian

Ĥβ = 1

2
[β−2 x̂2 + β2 p̂2]. (16)

The eigenstates are labelled as |n; β〉 and obey Ĥβ | n; β〉 =
(n + 1/2)|n; β〉. The dimensional basis functions are then given
by Bn(x ; β) = 〈x | n; β〉.

2.4 Further properties

The Hermite basis functions have a number of further convenient
properties which we will need later and summarize here.

We first notice, by inspecting Fig. 1, that the basis functions
Bn(x, β) acquire both a larger extent and smaller scale oscilla-
tions when the order n is increased, keeping β constant. This
can be described more precisely by considering the characteris-
tic radius θmax(β, n) of a basis function, defined by θ2

max(β, n) ≡
〈n; β | x̂2 | n; β〉. As is well known from quantum mechanics, and
can easily be derived using equation (13), this root mean square
(rms) radius is given by θmax(β, n) = β(n + 1/2)1/2. Similarly, the
characteristic size θmin(β, n) of the small scale (oscillatory) features
in a basis function of order n is defined as the rms inverse radius
in Fourier space, i.e. by θ−2

min(β, n) ≡ 〈n; β | p̂2 | n; β〉. As can again
be verified using raising and lower operators, the radius is given by
θmin(β, n) = β(n + 1/2)−1/2. Thus a decomposition which includes
modes from n = 0 to nmax can represent features with scales rang-
ing between the two limits θmin(β, nmax) and θmax(β, nmax). In Sect-
ion 3.2 below, we show how these scales can be used to find a good
choice of β for an object.

Another important property relates to the rescaling of a shapelet
function. Let us, for instance, consider a function f (x) = ∑n fn

Bn(x ; β), which has been decomposed into shapelets of scale β. It
can be sometimes convenient to express it in terms of basis functions

with a different scale β ′, as f (x) = ∑n f ′
n Bn(x ; β ′). The relation

between the coefficients fn and f ′
n is derived in Appendix A and

involves the overlap matrix 〈n; β | n′, β ′〉, whose analytic form is
given by equation (A3).

Finally, we note that the basis functions obey the integral property

〈1 | n; β〉 ≡
∫ ∞

−∞
dx Bn(x ; β) = [21−nπ

1
2 β
] 1

2

(
n

n/2

) 1
2

, (17)

for n even (the integral vanishes otherwise), where the parenthesis
denotes the binomial coefficient and a convenient shorthand nota-
tion was used on the left-hand side. This can be derived using the
generating function of Hermite polynomials (see e.g. Arfken 1985).

3 T WO - D I M E N S I O NA L
C A RT E S I A N S H A P E L E T S

In this section, we construct two-dimensional shapelets by taking
products of the one-dimensional shapelets described above. We then
study the properties of the resulting ‘Cartesian’ basis functions, and
derive a number of analytical results which are useful in practice.

3.1 Definitions

Basis functions for two-dimensional objects can be constructed by
taking the tensor product of two one-dimensional basis functions.
We thus define the dimensionless functions

φn(x) ≡ φn1 (x1)φn2 (x2), (18)

where x = (x1, x2) and n = (n1, n2). Dimensional basis functions
are defined as

Bn(x; β) ≡ β−1φn(β−1x). (19)

These two-dimensional shapelets are again orthonormal, in the sense
that∫

d2x Bn(x; β)Bm(x; β) = δn1m1δn2m2 . (20)

The functions φn(x) are eigenstates of the two-dimensional QHO
whose Hamiltonian is

Ĥ = 1

2

[
x̂2

1 + x̂2
2 + p̂2

1 + p̂2
2

]
, (21)

where x̂i and p̂i are the position and momentum operators for each
dimension.

The first few two-dimensional shapelets are shown in Fig. 2.
Again, they can be thought of as perturbations around the two-
dimensional Gaussian φ00. These basis functions form a complete
orthonormal basis for smooth, integrable functions of two variables.
A (well behaved) two-dimensional function f (x), such as the image
of an object, can thus be decomposed as

f (x) =
∞∑

n1,n2=0

fn Bn(x; β), (22)

where the shapelet coefficients are given by

fn =
∫

d2x f (x)Bn(x; β) (23)

Fig. 3 shows how an image observed with HST can be decomposed
and reconstructed using shapelets. The resulting distribution of the
coefficients is shown in Fig. 4. More examples can be found in Fig. 5.
These examples and associated applications will be discussed in
detail in Section 6.
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38 A. Refregier

Figure 2. First few two-dimensional Cartesian basis functions φn1,n2 . The
dark and light regions correspond to positive and negative values, respec-
tively.

Figure 3. Decomposition of a galaxy image found in the HDF. The original
60 × 60 pixel HST image (upper left-hand panel) can be compared with
the reconstructed images with different maximum order n = n1 + n2. The
shapelet scale is chosen to be β = 4 pixels. The lower right-hand panel
(n � 20) is virtually indistinguishable from the initial image.

Figure 4. Shapelet coefficients for the image decomposition of the previous
figure. As the coefficient array is sparse, the images can be reconstructed
from the first few largest coefficients.

Figure 5. Reconstruction and compression of three HST galaxy images using
shapelets. The left-hand column shows the original images extracted from
the HDF and list Npix their size in pixels. The right-hand column shows their
reconstructed image from the Ncof largest coefficients (in absolute value) of
their shapelet decomposition. Because the coefficient matrix is typically
sparse, a large compression factor Npix/Ncof is achieved. The shapelet scale
was chosen to be β = 4 pixels in all three cases.
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Shapelets – I. A method for image analysis 39

The choice of an appropriate shapelet scale β and maximum order
nmax for the faithful and efficient decomposition of a given image
is of practical interest. Using arguments similar to those in Sect-
ion 2.4, it is easy to show that a decomposition in two dimensions
which includes shapelets of scale β with order ranging from n1 +
n2 = 0 to nmax can only describe features with scales between the
two limits

θmin ≈ β(nmax + 1)−
1
2 , θmax ≈ β(nmax + 1)

1
2 . (24)

Thus, if the function has features with scales ranging from θmax (e.g.
the size of the object or that of the image) and θmin (e.g. the pixel
size, or the size of a smoothing kernel), a good choice of β and nmax

will be

β ≈ (θminθmax)
1
2 , nmax ≈ θmax

θmin
− 1. (25)

In practice, this provides a good first guess, which can be refined
using a few iterations (see Section 3.2).

3.2 Photometry and astrometry

The most basic quantities to measure for an object in an image are
its total flux (photometry), centroid position (astrometry) and size.
Let us first decompose the intensity f (x) of the object into shapelet
coefficients fn = 〈n; β | f 〉 as in equation (22).

Using the integral property of equation (17), it is then easy to
show that the total flux F ≡ ∫ d2x f (x) of the object is

F = π
1
2 β

even∑
n1,n2

2
1
2 (2−n1−n2)

(
n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (26)

where the sum is over even values of n1 and n2.
Using equations (17) and (13), one can also show that the centroid

of the object x f
i ≡ ∫ d2xxi f (x)/F is given by

x f
1 = π

1
2 β2 F−1

odd∑
n1

even∑
n2

(n1 + 1)
1
2 2

1
2 (2−n1−n2)

×
[

n1 + 1
(n1 + 1)/2

] 1
2
(

n2

n2/2

) 1
2

fn1n2 , (27)

and similarly for x f
2 .

Similarly, the rms radius r f defined by r 2
f ≡ ∫ d2xx2 f (x)/F is

given by

r 2
f = π

1
2 β3 F−1

even∑
n1,n2

2
1
2 (4−n1−n2)(1 + n1 + n2)

×
(

n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (28)

These expressions can be used, by iteration, to find the optimal
centre and scale of the basis functions.

3.3 Coordinate transformations

Let us consider a general coordinate transformation of the form x →
x′ = (1+Ψ)x+ε, where Ψ is a 2×2 matrix, ε = (ε1, ε2) is a small
displacement. Such a transformation can arise, for instance, from a
translation, rotation or from the action of gravitational lensing. We
assume that the transformation matrix Ψ and the displacement ε are
small and constant across the object. We parametrize the matrix Ψ
following the gravitational lensing conventions as

Ψ =
(

κ + γ1 γ2 − ρ

γ2 + ρ κ − γ1

)
, (29)

where ρ describes rotations and the convergence κ describes overall
dilations and contractions. The shear γ1 (γ2) describes stretches and
compressions along (at 45◦ from) the x-axis. The displacements ε1

and ε2 correspond to translations along the x and y-axis, respectively.
Under this transformation, the intensity f (x) of an object becomes

f ′(x′) = f [x(x′)] � f (x′ − Ψx′ − ε). (30)

As we are now considering infinitesimal transformations, we can
Taylor-expand this expression and only keep the terms which are
first order in �. After using equations (11) and (13), we find

f ′ � (1 + ρ R̂ + κ K̂ + γ j Ŝ j + εi T̂ i ) f, (31)

where R̂, K̂ , Ŝi and T̂ i are the operators generating rotation, con-
vergence, shears and translations, respectively, and where we have
used the Einstein summation convention. The generators are given
by

R̂ = −i (x̂1 p̂2 − x̂2 p̂1) = â1â†
2 − â†

1 â2

K̂ = −i (x̂1 p̂1 + x̂2 p̂2) = 1 + 1

2

(
â†2

1 + â†2
2 − â2

1 − â2
2

)
Ŝ1 = −i (x̂1 p̂1 − x̂2 p̂2) = 1

2

(
â†2

1 − â†2
2 − â2

1 + â2
2

)
Ŝ2 = −i (x̂1 p̂2 + x̂2 p̂1) = â†

1 â†
2 − â1â2

T̂ j = −i p̂ j = 1√
2

(
â†

j − â j

)
, j = 1, 2. (32)

The rotation generator R̂ is thus simply equal to the angular mo-
mentum operator in two dimensions:

L̂ = x̂1 p̂2 − x̂2 p̂1 = i
(

â1â†
2 − â†

1 â2

)
, (33)

up to a factor of −i . Similarly, the translation generator T̂ i is simply
equal to the the linear momentum operator p̂i , up to the same factor.

These expressions along with equation (14) make it easy to com-
pute the effect of these transformations on the basis functions Bn.
For instance, the generator of translations along the x-axis has a
matrix representation T1mn ≡ 〈m | T̂ 1 | n〉 given by

T1mn = 1√
2

[√
n1δm1,n1−1 −

√
n1 + 1δm1,n1+1

]
δm2,n2 , (34)

and similarly for the other generators.
The meaning of the generators can be seen by studying their

action on the ground state. For instance, it is easy to see that under
the action of a shear γ1, the ground state |00〉 becomes

|00〉′ � (1 + γ1 Ŝ1) | 00〉 = | 00〉 + γ1√
2

[|20〉 − |20〉]. (35)

The action of the different transformations on the ground states can
be calculated in the same way and are shown in Fig. 6. Clearly, their
action is as expected from their definition. As the ground state is
circularly symmetric, the rotation operator vanishes when applied
to |00〉, i.e. R̂ | 00〉 = 0. More instructively, we can consider the
effect of R̂ on an asymmetric state such as |10〉. It is also shown in
the bottom row of the figure. As expected, the state |10〉 is rotated
counter-clockwise by the rotation operator.

Finite transformations can be produced by exponentiating the
generators. For instance, after a finite rotation by an angle ρ the
function f becomes

f ′ = eρ R̂ f =
( ∞∑

n=0

(ρ R̂)n

n!

)
f, (36)

and similarly for the shear and convergence.
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40 A. Refregier

Figure 6. Effect of coordinate transformations on the first two shapelet states
|00〉 and |10〉. All coordinate transformations are considered: translations,
rotations, convergence and shear. They are parametrized by εi , ρ, κ and γi ,
respectively, which were all assigned a value of 0.3 for the purpose of this
figure. Their action on any state are easily calculated using the raising and
lowering operators â†

i and âi . Clearly, the different transformation generators
act as expected from their definition.

3.4 Effect of noise

In this section, we study the uncertainty induced by noise on the basis
function decomposition, in the case of correlated and uncorrelated
background noise, and of Poisson noise. The observed intensity of
an object is

f ′(x) = f (x) + n(x), (37)

where f (x) is the intrinsic intensity of the object and n(x) is the
noise. The noise is taken to be unbiased, so that 〈n(x)〉 = 0 and is
characterized by its correlation function η(x, x′) ≡ 〈n(x)n(x′)〉.
Here the brackets refer to an ensemble average over noise
realizations.

The observed basis coefficients are then f ′
k = 〈k, β | f ′〉 and are

unbiased, i.e.

〈 f ′
k〉 = fk, (38)

where fk = 〈k, β | f 〉 are the intrinsic coefficients. It is then easy
to show that the covariance matrix cov[ f ′

k, f ′
l ] ≡ 〈( f ′

k − 〈 f ′
k〉)( f ′

l −
〈 f ′

l 〉)〉 for the observed coefficients is given by

cov[ f ′
k, f ′

l ] =
∫

d2x

∫
d2x ′ Bk(x, β)η(x, x′)Bl (x, β). (39)

To be more specific, we first consider the case of homogeneous
background noise, as can be produced by sky or instrumental back-
grounds. If the background noise is uncorrelated, η(x) = σ 2

n δ(2)(x),
where σn is the rms noise. As a result, the covariance matrix reduces
to

cov[ f ′
k, f ′

l ] = σ 2
n δlk, (40)

where we have used the orthonormality of the basis functions (equa-
tion 4). In this case, the covariance matrix is thus diagonal, so that

each coefficient is statistically independent. Moreover, the diago-
nal elements are all equal. Uncorrelated noise thus populates each
coefficient equally, and is thus ‘white’ as in the case of Fourier
transforms.

In the case of spatially correlated but homogeneous noise, the
noise correlation function is only a function of separation and can
thus be written as η(x − x′). As a result, equation (39) reduces to
the integral of a convolution and can thus be written symbolically
as

cov[ f ′
k, f ′

l ] = 〈k, β | η ∗ (l, β)〉, (41)

in the notation of equation (45) below. A convenient way to evaluate
this is to decompose η(x) itself into basis functions and then to use
the results of Section 4 below. Spatial correlations in the noise thus
produces correlations in the coefficients.

Another case of practical interest is that in which the noise is
dominated by Poisson shot noise. If the intensities are measured
in units of photon counts, the noise correlation function is then
η(x, x′) = f (x)δ(2)(x − x′). As a result, the covariance matrix is

cov[ f ′
k, f ′

l ] =
∑

m

fm B(3)
k,l,m, (42)

where B(3)
k,l,m(β, β, β) is the three-product integral defined in equa-

tion (47) below, and which is evaluated analytically in Paper II. In
this case again, the covariance coefficient is made non-diagonal by
the noise correlation, but is easily calculable analytically.

4 C O N VO L U T I O N

We now show how shapelets behave under convolutions, an oper-
ation which often occurs in practice (e.g. under the action of point
spread fucntion, seeing, smoothing, etc.). We start by considering
convolution by a general kernel in one dimension, and then study
the special case of smoothing by a Gaussian. Finally, we treat the
two-dimensional case, and illustrate the results with the example of
an HST galaxy image.

4.1 Convolution in one dimension

Let us first consider the convolution of two arbitrary one-
dimensional functions f (x) and g(x). Their convolution h(x) can
be written as

h(x) ≡ ( f ∗ g)(x) ≡
∫ ∞

−∞
dx ′ f (x − x ′)g(x ′) (43)

Each function can be decomposed into our basis functions with
scales α, β and γ . These scales are chosen to be most convenient in
each case. The coefficients are then fn ≡ 〈n; α | f 〉, gn ≡ 〈n; β | g〉,
hn ≡ 〈n; γ | h〉. Our aim is to find an expression which relates hn to
fn and gn . Because convolution is a bi-linear operation, this relation
will be of the form

hn =
∞∑

m,l=0

Cnml fm gl , (44)

where the convolution tensor can be written symbolically as

Cnml (γ, α, β) ≡ 〈n; γ | (m; α) ∗ (l; β)〉 (45)

and is a function of the scalelengths. Using the properties of the
basis functions under Fourier transforms (equation 9), it is easy to
show that the convolution tensor is given by

Cnml (γ, α, β) = (2π)
1
2 (−1)ni n+m+l B(3)

nml (γ
−1, α−1, β−1), (46)
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where the three-product integral is B(3)
nml (a1, a2, a3) is defined as

B(3)
lmn(a1, a2, a3) ≡

∫ ∞

−∞
dx Bl (x, a1)Bm(x, a2)Bn(x, a3). (47)

As we show in Paper II, this integral can be easily evaluated analyt-
ically with a recurrence relation.

4.2 Smoothing in one dimension

The special case consisting of smoothing by a Gaussian is useful in
practice. In this case, we let

g(x) ≡ (2π)−
1
2 β−1e

− x2

2β2 , (48)

which is normalized so that
∫

dxg(x) = 1. We can then write the
coefficients for the smoothed function h(x) as

hn =
∑

m

Gnm fm, (49)

where Gnm(γ, α, β) =∑l Cnml (γ, α, β)gl is the smoothing matrix.
The Gaussian g(x) can be thought as a (non-normalized) n = 0
shapelet state of amplitude g0 = 〈0; β | g〉, so that Gnm = Cnm0g0.
Using the generating function for Hermite polynomials, one can
show that, for the natural choice of γ 2 = α2 + β2, the smoothing
matrix is given by

Gnm = 2
n−m

2

(
ω

β

) 1
2 ωm

βnαm−n

(m!/n!)
1
2

[(m − n)/2]!
, (50)

for m − n � 0 and even (Gnm vanishes otherwise), and where ω−2 ≡
α−2 + β−2.

Fig. 7 shows how this analytic formula can be used to efficiently
smooth a two-dimensional image (see discussion in Section 4.3 be-

Figure 7. Illustration of smoothing in shapelet space. The original galaxy
image (61 × 61 pixels) of Fig. 3 (shown again in the upper left-hand panel)
is smoothed with a Gaussian kernel with standard deviation β = 2 pixels
(upper right panel). The resulting image smoothed using shapelets (lower
right-hand panel) is almost indistinguishable from that smoothed using di-
rect convolution in real-space (lower left-hand panel). In shapelet space,
smoothing is a simple matrix multiplication and can be very efficient when
the coefficient matrix is sparse, as is the case here (see Fig. 4).

Figure 8. Graphical representation of the smoothing matrix |Gnm | for dif-
ferent size β of the smoothing kernel (in units of the input shapelet scale α).
The horizontal axis corresponds to the input (unsmoothed) mode m, while
the vertical axis shows the output (smoothed) mode n. For small smoothing
scales (β → 0) the smoothing matrix approaches the identity matrix (up-
per left-hand panel). For large smoothing scales (β → ∞), it approaches
a projection on to the n = 0 mode (lower right-hand panel). For interme-
diate values, it corresponds to a projection on to lower order modes (upper
right-hand and lower left-hand panels).

low). An intuitive feeling for the effect of convolution on the shapelet
coefficients can be obtained from Fig. 8, which graphically shows
the smoothing matrix Gnm[α, β, γ = (α2 +β2)1/2] for different val-
ues of the smoothing scale β. As expected, the smoothing matrix
approaches the identity matrix in the limit of vanishing smoothing
scale (β → 0). On the other hand, for very large smoothing kernels
(β → ∞) it reduces to a projection of all the input modes m on
to the n = 0 output mode. For intermediate scales, the smoothing
matrix takes the form of a band which rotates from the vertical to the
horizontal as the smoothing scale β is increased. Smoothing thus
corresponds to a projection of the input modes into output modes
of smaller order. The high-order modes indeed have oscillations
on small scales and are thus gradually lost when we increase the
smoothing scale β.

4.3 Convolution in two dimensions

Let us now consider the convolution of two two-dimensional func-
tions, such as

h(x) = ( f ∗ g)(x) =
∫

d2x f (x − x′)g(x′). (51)

We again first decompose each function into shapelet coefficients
fn ≡ 〈n; α | f 〉, gn ≡ 〈n; β | g〉, and hn ≡ 〈n; γ | h〉 with shapelet
scales α, β and γ respectively, and where n = (n1, n2) as before.
Because convolution is bi-linear, we can again relate the convolved
to the unconvolved coefficients by

hn =
∑
m,l

Cn,m,l fmgl (52)
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where Cn,m,l (γ, α, β) is the two-dimensional convolution tensor.
From the separability of the two-dimensional basis functions (see
equation 18), it is easy to show that this tensor is equal to

Cn,m,l (γ, α, β) = Cn1,m1,l1 (γ, α, β)Cn2,m2,l2 (γ, α, β), (53)

where the tensors appearing on the right-hand side are the one-
dimensional convolution tensor defined in equation (46).

We can also consider the special case of smoothing with a two-
dimensional Gaussian. In this case, g(x) = (2πβ2)−1e−x2/2β2

, which
is normalized so that

∫
d2xg(x) = 1. The smoothed coefficients are

then given by

hn =
∑

m

Gn,m fm, (54)

where Gn,m(γ, α, β) is the two-dimensional smoothing matrix. It is
again easy to show that it is equal to

Gn,m(γ, α, β) = Gn1,m1 (γ, α, β)Gn2,m2 (γ, α, β), (55)

in terms of the one-dimensional smoothing matrix defined in Sec-
tion 4.2. With the natural choice γ 2 = α2 + β2, it can be evaluated
using equation (50).

Fig. 7 shows the how the galaxy image of Fig. 3 can be smoothed
using our shapelet method. The resulting image is indistinguish-
able from that derived using ordinary convolution in real space
(also shown). The shapelet method is, however, computationally
very efficient when the coefficient matrix is sparse as is the case
here (see Fig. 4). The effect of smoothing on the shapelet co-
efficients of this galaxy can be seen in Fig. 9. For clarity, the
smoothing scale was enhanced to β = 4 pixels. Clearly, convolution
amounts to a projection on to the lower order states, as discussed in
Section 4.2.

Figure 9. Shapelet coefficients of the same galaxy (Fig. 3) after smoothing
with a Gaussian kernel. For clarity, the standard deviation of the kernel was
increased to β = 4 pixels. By comparing this distribution with that before
smoothing (Fig. 4), it is easy to see how convolution amounts to a projection
on to the lower order shapelet states.

5 P O L A R S H A P E L E T S

The Cartesian basis functions discussed above are separable in the
Cartesian coordinates x1 and x2. It is also useful to construct basis
functions which are separable in the polar coordinates x and ϕ. These
are eigenstates of the Hamiltonian Ĥ and of the angular momentum
L̂ simultaneously, and thus have a number of convenient features.
In this section, we show how they can be constructed and study
some of their properties. These basis functions were independently
developed for weak lensing measurements by Bernstein & Jarvis
(2001).

5.1 Raising and lowering operators

To construct the polar basis functions, we first define the left and
right lowering operators as (see e.g. Cohen-Tannoudji, Diu & Lalouë
1977)

âl = 1√
2

(â1 + i â2) , âr = 1√
2

(â1 − i â2) . (56)

The associated raising operators are â†
l and â†

r , respectively. The
only non-vanishing commutators between these operators are[
âl , â†

l

] = [âr , â†
r

] = 1. (57)

The Hamiltonian (equation 21) and angular momentum (equation
33) operators for the two-dimensional QHO can then be written
as

Ĥ = N̂ r + N̂ l + 1, L̂ = N̂ r − N̂l , (58)

where the left-handed and right-handed number operators are natu-
rally defined as

N̂ l = â†
l âl , N̂ r = â†

r âr . (59)

The operators â†
l , â†

r , âl , and âr can thus be thought of as creating
and destroying left- and right-handed quanta.

5.2 Angular momentum states

As the operators N̂ r and N̂l form a complete set of commuting ob-
servables, their eigenstates |nl , nr 〉 provide a complete basis for our
function space. These states are defined N̂ l | nl , nr 〉 = nl | nl , nr 〉,
and similarly for N̂ r , for nlnr non-negative integers. They can be
constructed by applying the raising operators several times on the
ground state |n1 = 0, n2 = 0〉 = | nl = 0, nr = 0〉 ≡ | 0, 0〉, as

|nr , nl〉 =
(

â†
r

)nr
(

â†
l

)nl

√
nr !nl !

| 0, 0〉. (60)

From equation (58), it is easy to see that

Ĥ | nl , nr 〉 = (nr + nl ) | nl , nr 〉, L̂ | nl , nr 〉 = (nr − nl ) | nl , nr 〉.
(61)

We can therefore relabel these states in terms of their energy and
angular momentum quantum numbers, n = nr +nl and m = nr −nl ,
as

|n, m〉 =
∣∣∣∣nl = 1

2
(n − m), nr = 1

2
(n + m)

〉
. (62)

The angular momentum quantum number takes on the n + 1 values
given by m = −n, −n + 2, . . . , n − 2, n.
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Table 1. First few polar Hermite
polynomials.

H0,0(x) = 1

H0,1(x) = H1,0(x) = x

H0,2(x) = H2,0(x) = x2

H1,1(x) = x2 − 1

H0,3(x) = H3,0(x) = x3

H1,2(x) = H2,1(x) = x3 − 2x

H0,4(x) = H4,0(x) = x4

H1,3(x) = H3,1(x) = x4 − 3x2

H2,2(x) = x4 − 4x2 + 2

5.3 Basis functions

Using the x-representation of â†
l and â†

r , one can show that the
basis functions χnl ,nr (x, ϕ) ≡ 〈x | nl , nr 〉 for the angular momentum
states are given by

χnl ,nr (x, ϕ) = [πnl !nr !]−
1
2 Hnl ,nr (x)e−x2/2ei(nr −nl )ϕ, (63)

where Hnk ,nr (x) are polynomials, which we call ‘polar Hermite poly-
nomials’. They can be computed by noting that H0,0(x) = 1 and by
using the recursion relation

l − k

x
Hk,l (x) = l Hk,l−1 − k Hk−1,l . (64)

The diagonal polynomials can be computed using

Hkk = Hk+1,k−1 − x−1 Hk,k−1. (65)

The first few polar Hermite polynomials are listed in Table 1. They
have a number of useful properties. In particular, they are symmetric,
i.e. Hk,l = Hl,k and their derivative obey

H ′
k,l (x) = k Hk−1,l (x) + l Hk,l−1(x)

= 2x Hk,l (x) − Hk+1,l − Hk,l+1. (66)

Dimensional polar basis functions can be constructed as

Anl ,nr (x, ϕ; β) = β−1χnl ,nr (β−1x, ϕ). (67)

It is easy to check that these are orthonormal, i.e. that∫ 2π

0

dϕ

∫ ∞

0

dxx Anl ,nr (x, ϕ; β)An′
l ,n

′
r
(x, ϕ; β)

= 〈nl , nr ; β | n′
l , n′

r ; β〉 = δnl ,n
′
l
δnr ,n′

r
. (68)

The radial dependence |χnl ,nr (x) | of the first few polar shapelet
functions is shown in Fig. 10.

5.4 Relation to Cartesian states

It is useful to relate the angular momentum states |n, m〉 to the
Cartesian states |n1, n2〉. Using equations (56) and (60) along with
the binomial expansion, one can show that the transformation matrix
between these two bases is given by

〈n1, n2 | nl , nr 〉 = 2− 1
2 (nr +nl )i nr −nl

[
n1!n2!
nr !nl !

] 1
2 δn1+n2,nr +nl

×
nr∑

n′
r =0

nl∑
n′

l =0

i n′
l −n′

r

(
nr

n′
r

)(
nl

n′
l

)
δn′

r +n′
l ,n1 .

(69)
This shows that only states with n1 + n2 = nr + nl are mixed.
The first few |n, m〉 states are given in terms of |n1n2〉 states in
Table 2.

Figure 10. Radial dependence of the first few polar basis functions
|χnl ,nr (x)|.

Table 2. Angular momentum states |n, m〉 in terms
of the Cartesian states |n1, n2〉.
|n = 0, m = 0〉 = | 0, 0〉
|n = 1, m = 1〉 = 1√

2
[|1, 0〉 + i | 0, 1〉]

|n = 1, m = −1〉 = 1√
2

[|1, 0〉 − i | 0, 1〉]
|n = 2, m = 2〉 = 1

2 [|2, 0〉 + i
√

2 | 1, 1〉 − | 0, 2〉]
|n = 2, m = 0〉 = 1√

2
[|2, 0〉 + | 0, 2〉]

|n = 2, m = −2〉 = 1
2 [|2, 0〉 − i

√
2 | 1, 1〉 − | 0, 2〉]

5.5 Properties

Because the polar shapelet states are eigenstates of the angular mo-
mentum, they have simple rotational properties. Indeed, under a
finite rotation by an angle ρ, the polar states transform as

|nr , nl〉′ = e−iρ L̂ | nr , nl〉 = e−iρ(nr −nl ) | nr , nl〉, (70)

where we have used the exponentiation (equation 36) of the rotation
generator R̂ = −i L̂ (equation 32) to operate a finite rotation. In this
basis, finite rotations thus correspond only to a phase factor.

It is therefore a simple matter to rotate an arbitrary function f (x).
First, we decompose it into polar shapelet coefficients fnr ,nl =
〈nr , nl ; β | f 〉, with an appropriate shapelet scale β. The coefficients
f ′
nr ,nl

= 〈nr , nl ; β | f ′〉 of the rotated function f ′(x) are then given
simply by

f ′
nr ,nl

= e−i(nr −nl )ρ fnr ,nl . (71)

By contrast, operating a finite rotation in the Cartesian basis re-
quires an infinite number of applications of the R̂ operator (see
equation 36) and is thus impractical. On the other hand, convolu-
tions may not have simple analytical expressions in the polar ba-
sis, as they do in the Cartesian basis (see Section 4 and Paper II).
The results of Section 5.4 can thus be conveniently used to con-
vert from one basis to the other, depending on the operation to be
performed.

C© 2003 RAS, MNRAS 338, 35–47

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/338/1/35/1096986 by guest on 16 August 2022



44 A. Refregier

6 A P P L I C AT I O N S

Now that we have developed the main formalism for shapelets, we
illustrate the method using images from the HST. We also discuss
several direct applications of shapelets.

6.1 Example with HST images

As an example, we apply the shapelet decomposition method to
images of galaxies found in the Hubble Deep Field (HDF; Williams
et al. 1996), the deepest images observed with the HST. Fig. 3 shows
the original 61 × 61 image f (x) of one such galaxy (upper left-
hand panel). Using equation (22), we first compute the shapelet
coefficients fn of the galaxy with a shapelet scale β = 4 pixels. We
then reconstruct the image using equation (23) including coefficients
up to a maximum order n1 +n2 � nmax. The resulting reconstructed
images are shown on Fig. 3 for different values of nmax. As nmax is
increased, more small scale and large scale features are recovered, as
expected from the properties of our basis functions (see Section 2.4).
For nmax = 20, the reconstructed image is almost indistinguishable
from the original.

Fig. 4 gives a graphical representation of the shapelet coefficient
matrix fn1,n2 for this image. This can be thought as the represen-
tation of the galaxy in ‘shapelet space’. As is apparent from the
figure, the coefficient matrix is rather sparse. The fact that the odd
coefficients are small results from the fact that the shapelet centre
was chosen to be close to the centroid of the galaxy. The coefficients
are negligibly small beyond n1 + n2 � 15, thus explaining why we
obtain a virtually full reconstruction with nmax = 20.

Because of the sparse nature of the coefficient matrix, we can
hope to recover the image from only the first few largest coefficients.
Fig. 5 shows the reconstruction of the galaxy of Fig. 3 and of two
other Hubble Deep Field (HDF) galaxies, by keeping only the Ncof

coefficients with largest absolute value | fn |. As can be seen from
the top two panels, the galaxy image can be faithfully recovered
with the top Ncof = 60 coefficients, yielding a compression factor
Npix/Ncof of 62 compared to the original image which contained
Npix = 61 × 61 = 3721 pixels. (The bookeeping required to keep
track of selected coefficients only requires 1 bit per coefficient, and
thus results only in a small overhead relative to this compression
factor). For the other two galaxies shown in the middle and bottom
rows, compression factors of about 40–90 are achieved. Note that
the galaxy in the bottom row has a simpler structure and thus affords
more compression.

6.2 Catalogue archival

We have seen above that the first few shapelet coefficients capture
most of the structure of galaxy images and thus allow considerable
data compressions. This can be very useful for upcoming and future
large galaxy surveys such as the Sloan Digital Sky Survey (SDSS;
Gunn & Weinberg 1995), or that derived from the planned SNAP
mission (Perlmutter et al. 2001). One can imagine storing the first
few shapelet coefficients in the catalogue, thus both saving stor-
age and conveying compactly the shape information of each each
galaxy. The flux, centroid, major and minor axes and position angle
of each galaxy could then be computed from their shapelet coeffi-
cients directly (as described in Section 3.2), thus avoiding the need
to consider several definitions of magnitudes. Since galaxy shapes
in different wavelengths are strongly correlated, the treatment of
multi-colour data could be done efficiently by decomposing differ-
ences of the images in different pass-bands and again keeping the

largest coefficients. The resulting catalogue could then also be use-
ful for study of galaxy morphology and classification in shapelet
space.

6.3 Modelling the point spread function

Several astronomical techniques (e.g. high-precision astrometry and
photometry, microlensing, weak lensing, supernova searches, etc.)
require correction for the point spread function (PSF) of the tele-
scope across an image. For instance, Alard & Lupton (1998) have
developed a technique to take the difference of two images con-
volved with a spatially varying PSF. Shapelets provide a convenient
correction method for the PSF: the PSF shape can be measured at
different positions in the field using bright stars and then decom-
posed into shapelet coefficients; a two-dimensional polynomial fit
for each shapelet coefficient as a function of position can then be
performed to derive a model of the PSF shape at any point (cf. Alard
& Lupton 1998 and Kaiser 2000, who used this approach with other
sets of basis functions). The convolution matrix can then be inverted
to compute the shapelet coefficients of objects prior to convolution.
As discussed in Section 4, convolution amounts to a projection on
to lower shapelet order. As a result only low order coefficients can
be recovered. Another approach consists of fitting the deconvolved
shapelet coefficients convolved to the PSF model to the data (cf.
Kuijken 2000). The analytical properties of shapelets under convo-
lution (see Section 4 and Paper II) greatly facilitate and clarify the
procedure. A detailed study of deconvolution using shapelets will
be presented in Paper II.

6.4 Gravitational lensing

Gravitational lensing is a powerful method to directly probe the mass
of astrophysical objects. In particular, the weak coherent distortions
induced by lensing on the images of background galaxies provide a
direct measure of the distribution of mass in the Universe. This weak
lensing method is now routinely used to study galaxy clusters, and
has recently been detected in the field (see reviews by Bartelmann
& Schneider 1999; Mellier 1999; Mellier et al. 2000). Because the
lensing effect is only of a few percent on large scales, a precise
method for measuring the shear is required. The original methods
of Bonnet & Mellier (1995) and of Kaiser et al. (1995, hereafter
KSB) are not sufficiently accurate or stable for the upcoming weak
lensing surveys. Thus, several new methods have been proposed
(Kuijken 1999; Rhodes, Refregier & Groth 2000; Kaiser 2000).
As we briefly describe below, the properties of our basis functions
make shapelets particularly well suited for providing the basis of a
new method. A similar approach was independently developed by
Bernstein & Jarvis (2001).

Let us consider a galaxy with an unlensed intensity f (x). We have
shown in Section 3.3 that under the action of a weak shear γi , the
lensed intensity is

f ′ � (1 + γi Ŝi ) f. (72)

After decomposing these intensities into our basis functions
Bn(x, β) (equation 22), this becomes a relation between the lensed
and the unlensed coefficients given by

f ′
n = (δnm + γi Simn) fm, (73)

where Simn ≡ 〈m | Ŝ1 | n〉 is the shear generator matrix given in
equation (32). The goal for weak lensing is to estimate the shear
from the shapes of an ensemble of galaxies which are assumed
to be randomly oriented prior to lensing. In the widely used KSB
method, this is acheived by considering the effect of lensing on the
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Gaussian-weighted quadrupole moments of the galaxy images.
These are exactly equal to the n1 + n2 = 2 coefficients in our shapelet
decomposition. In a sense, our method thus generalizes this ap-
proach and captures all the available shape information of galaxies.
Because the shear matrix is simple in our Cartesian basis, we can
then construct an estimator for the shear by comparing the distribu-
tion of the lensed shapelet coefficients f ′

n to that of a training set fn

for which lensing is known to be negligible. This can be done either
by constructing a linear shear estimator from the observed coeffi-
cients or by using a Maximum Likelihood technique. In Paper II,
we follow the first approach and show that shapelets can be used to
derive precise shear recovery in realistic simulations of deep optical
images (see Bacon et al. 2001).

As Luppino & Kaiser (1997) discussed, the shear acts, in practice,
after the smearing produced by the PSF. To account for this, we can
first model the PSF across the field, as described in Section 6.3.
Then one of the methods mentioned in that section can be used to
derive the deconvolved coefficients from the observed convolved
ones. Again, a detailed study of this deconvolution method and its
impact in weak lensing measurement is presented in Paper II.

Shapelets can also be used for strong lensing applications, such as
the modelling of cluster or galaxy potentials using multiple images
and giant arcs. In Section 3.3, we concentrated mainly on first-order
distortions, but also mentioned that distortions of arbitrary ampli-
tudes can be derived by exponentiating the shear and convergence
operators (see equation 36). An equivalent method to compute the
effect of large distortions on the shapelet coefficients is to use the
analytical expression for rescaling of Appendix A. One can then
model the shape of the lensed object using shapelets and explore a
large class of lens models efficiently by computing the lensed im-
age coefficients analytically. Another possibility is to also model the
gravitational potential of the lens using shapelets.

6.5 Deprojection

Another important problem in astronomy is that of deprojection.
For instance, the two-dimensional images of galaxies and clus-
ters of galaxies observed on the sky are projections of their three-
dimensional distributions. One can hope to reconstruct the three-
dimensional distribution of these systems by combining observa-
tions at different wavelengths. These indeed probe different physi-
cal processes, and therefore correspond to different weighting along
the line of sight. Here, we show how shapelets can be used to solve
this problem.

To do so, we consider the simple yet practical example of a clus-
ter of galaxies observed both through its X-ray emission (see e.g.
Sarazin 1988, for a review) and Sunyaev–Zel’dovich (SZ) effect
(Sunyaev & Zel’dovich 1972; see Birkinshaw 1999 for a review).
Cluster deprojection is a long standing problem in astrophysics, and
has been studied by several groups (see the recent solution by (Doré
et al. 2001), and references therein). Here, we assume, for simplic-
ity, that the cluster gas is isothermal. The X-ray emissivity of the
cluster can then be written as (e.g. Sarazin 1988)

X (x, y) � X0

∫
dzρ2(x, y, z), (74)

where ρ is the three-dimensional electron density of the gas, z is the
line-of-sight coordinate, and X0 is a constant which depends on the
wavelength of observation, the gas temperature, and the distance
to the cluster. The Comptonization parameter Y (x, y) from the SZ
effect can be observed as temperature anisotropies of the cosmic
microwave background (see review by Birkinshaw 1999). It is pro-

portional to the electron pressure integrated along the line of sight,
and can thus be written, for an isothermal cluster as

Y (x, y) � Y0

∫
dzρ(z, y, z), (75)

where Y0 is a constant which again depends on the wavelength of
observation, the gas temperature, and distance to the cluster. Our
goal is to reconstruct the three-dimensional gas density ρ(x, y, z)
from measurements of X (x, y) and Y (x, y).

For this purpose, let us decompose these two observed images into
two-dimensional shapelets as X (x, y) = ∑n1n2

Xn1n2 Bn1n2 (x, y),
and Y (x, y) = ∑n1n2

Yn1n2 Bn1n2 (x, y). We choose the same shapelet
scale β for X, Y and ρ and thus drop it to simplify the notation. In
analogy with the discussion in Section 3.1, we can also define three-
dimensional basis functions Bn1n2n3 (x, y, z) ≡ Bn1 (x)Bn2 (y)Bn3 (z)
as products of three one-dimensional shapelets. This allows us to
decompose the three-dimensional gas density distribution as

ρ(x, y, z) =
∑

n1,n2,n3

ρn1n2n3 Bn1n2n3 (x, y, z). (76)

Using the properties of the shapelet basis functions, it is then easy
to show that the shapelet coefficients for the X-ray emissivity can
be written as

Xn1n2 = X0

∑
m,m′

B(3)
n1m1m′

1
B(3)

n2m2m′
2
δm3,m′

3
ρmρm′ , (77)

where B(3)
nml is the ubiquitous three-product integral defined in equa-

tion (47), and m ≡ (m1, m2, m3) in this context. Similarly, the co-
efficients for the Comptonization parameter can be written as

Yn1n2 = Y0

∑
n3

〈1 | n3〉ρn, (78)

where 〈1 | n〉 is the integral defined in equation (17). The direct ap-
proach, which consists of solving these two equations for the desired
coefficients ρn, is probably difficult in practice. A more convenient
approach is to derive an estimate for ρn by χ2-fitting these coef-
ficients to the observables Xn1n2 and Yn1n2 taking into account the
noise in each measurement. The χ2 procedure also produces the co-
variance matrix for the coefficients ρn, and thus allows us to study
any degeneracy present in the deprojection. This is greatly facili-
tated in practice by the analytic forms for 〈1 | n〉 (equation 17) and
for B(3)

nml (see Paper II), and the fact that the fitted model is linear in
its output parameters ρn.

Note that our method is fully general and does not assume that
the cluster distribution has any specific form. In particular, it could
be particularly useful if the SZ observations are performed with an
interferometer as is the case for recent measurements (see Carlstrom
et al. 1999, and reference therein). In this case, the interferometer
yields a measurement of the Fourier transform of Y (x, y), and can
thus make use of the dual properties of our shapelet functions under
Fourier transforms (equation 9). A more thorough study of the de-
projection using shapelets is left to future work. A study of the use
of shapelets for reconstructing images with interferometers will be
presented in Chang & Refregier (2002).

7 C O M PA R I S O N W I T H OT H E R M E T H O D S

It is interesting to compare shapelets with other image analysis
methods. While there exist a large number of such methods, we
concentrate here on multiscale approaches which are widely used
in astronomy.
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46 A. Refregier

Figure 11. Comparison of shapelets and wavelets for the reconstruction of
the HST galaxy image in Fig. 3. The image was decomposed into shapelet
(left column) and wavelet (right column) coefficients and reconstructed using
the Ncof largest coefficients (in absolute value, see Fig. 5). The original
image has Npix = 64 × 64 pixels, and the resulting compression factor is
Npix/Ncof. The rows correspond to Ncof = 5, 20 and 60, from top to bottom,
respectively. The shapelet decomposition was performed using β = 5.6 and
Nmax = 20. The wavelet decomposition was performed using DAUB12 basis
functions.

In the wavelet method (see review by Starck et al. 1998), the im-
age is decomposed into a sum of basis functions located on a grid
across the image. The basis functions are taken to have a range of
sizes, but have all the same circular shape. In the newly developed
ridgelet and curvelet methods (see Starck et al. 2002, and refer-
ence therein), the basis functions also have variable axis ratios and
position angles, yielding better descriptions of edges and linear fea-
tures. These methods are ideal to decompose an image into different
scales, which can then be analysed separately.

In the shapelet method, on the other hand, an object is modelled as
a sum of shape components spanning a range of scales (θmin < β <

θmax, see Section 3.1) centred on the shapelet scale β. It is therefore
well adapted to the treatment of astronomical images, which are
typically composed of collections of compact disjoint objects, each
having a characteristic scale.

A detailed comparison of the performance of the shapelet and
wavelet method would depend on the particular application and is
beyond the scope of this paper. Here, we instead consider the sim-
ple example, shown in Fig. 11, of the reconstruction of the HST
galaxy of Fig. 3. The wavelet decomposition was performed us-
ing the DAUB12 basis functions.1 The shapelet decomposition was

1 We considered several discrete wavelets (DAUB4, DAUB12, and
DAUB20), and chose the one (DAUB12) which yielded the best results.
Better reconstructions might be obtained by using other basis functions or
by using continuous wavelet transforms with optimised wavelet scales.

performed using the optimal shapelet scale β = 5.6. In both cases,
the image was reconstructed using the top Ncof largest coefficients
(in absolute value), as in Fig. 5. The compression factor Npix/Ncof,
where Npix is the number of pixels in the image, is also displayed.

As can be seen on the bottom panels in Fig. 11, a full recovery
of the galaxy image requires about the same number of coefficients
(Ncof � 60) in both methods. In this example, shapelets and wavelets
therefore perform equally well for image compression. For a small
number of coefficients (Ncof = 5 or 20), the shapelet reconstruction
more faithfully captures the spiral arm features of the galaxy. This
can be explained by the fact that the galaxy, as well as most astro-
nomical objects, are nearly circularly symmetric. Shapelets are in-
deed designed to describe perturbations about a circularly symmetric
object, while wavelets are more general. Moreover, the shapelet co-
efficients are Gaussian-weighted multipole moments, which are of
physical interest and are already being used in astrophysical appli-
cations (e.g. weak lensing, see Section 6.4). Thus, shapelets provide
a convenient basis for the compact description of galaxy images.

The two approaches can therefore be thought of as complemen-
tary. For instance, one can use wavelets to remove large-scale back-
ground variations, and to search for and detect objects in the image.
The resulting object catalogue can then be used as the input to the
shapelet method, which will then characterize the shape of each
object in detail.

8 C O N C L U S I O N S

We have described and developed a new method for analysing im-
ages. It is based on the decomposition of the objects in the image
into a series of basis functions of different shapes, or ‘shapelets’.
The method is fully linear and uses a number of powerful properties
of the basis functions. In particular, we showed that Hermite basis
functions have simple analytic properties under convolution, noise,
rotations, distortions, and rescaling. These functions are eigenfunc-
tions of the QHO and thus allow us to use the formalism developed
for this problem. For instance, we showed that transformations such
as translations, rotations, shears and dilatations can be expressed as
simple combinations of the raising and lowering operators. Another
special property of these functions is that they are (up to a rescaling)
their own Fourier transforms. This is a unique property, which stems
from the special symmetry of the QHO Hamiltonian. We derived
analytical expressions for the flux, centroid and radius of the object,
from its shapelet coefficients. We also constructed polar shapelets
which give the explicit rotational properties of the object.

Our method potentially has a wide range of applications. It can be
viewed as a new representation of images which makes object shapes
easy to study and modify. For instance, we applied our method to
galaxy images found in the HDF and showed how they could be
well represented with a small number of shapelet coefficients. This
can be used to compress galaxy images by a factor of 40–90, and
could thus have important applications for galaxy archival. We also
discussed several direct applications of shapelets to measurements
of gravitational lensing, and the problems of de-projection and PSF
correction. Other applications to be explored are that of multi-colour
shapelets and of the study of galaxy morphology and classification
using shapelets. Our original motivation for developing this method
was to find a robust and precise method to measure weak lensing
distortions in the presence of a PSF. The application of shapelets to
this problem and to the general problem of deconvolution will be
presented in detail in Paper II. The application of shapelets to image
reconstructions from interferometric observations is presented in
Chang & Refregier (2002).

C© 2003 RAS, MNRAS 338, 35–47

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/338/1/35/1096986 by guest on 16 August 2022



Shapelets – I. A method for image analysis 47

We have also briefly compared our method with the wavelet
method. Using the reconstruction of a galaxy image as an exam-
ple, we found that the two methods perform equally well for image
compression. In this example, shapelets however capture the main
features of the galaxy with fewer coefficients, and provide a more
physical description of the object shape. On the other hand, wavelets
are better suited to filter and detect sources embedded in a large-
scale background. It would therefore be interesting to study how
these two complementary approaches can be combined.
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A P P E N D I X A : R E S C A L I N G

In this appendix, we show how we can easily operate a change of
scale β for the decomposition of a function in one dimension. This
is convenient for finding the optimal scale β for a given function.
In addition, such a change of scale occurs when a two-dimensional
image is distorted by gravitational lensing.

Let us consider a function f (x) = 〈x | f 〉 which we decompose
(as in equation 5) into two sets of basis functions with scales β1 and
β2 as

f (x) =
∞∑

n=0

〈n; β1 | f 〉Bn(x ; β1) =
∞∑

n=0

〈n; β2 | f 〉Bn(x ; β2) (A1)

The coefficients in each basis are related by

〈n1; β1 | f 〉 =
∞∑

n2=0

〈n1; β1 | n2; β2〉〈n2; β2 | f 〉. (A2)

Using the generating function of Hermite polynomials, one can show
that the transformation matrix is given by

〈n1; β1 | n2; β2〉 =
min(n1,n2)∑

l=0

(−1)
n2−l

2
(n1!n2!)

1
2(

n1−l
2

)
!
(

n2−l
2

)
!l!

×�(n1, n2, l)

(
b1

2

) n1+n2
2 −l

b
l+ 1

2
2 , (A3)

where

b1 ≡ β2
1 − β2

2

β2
1 + β2

2

, b2 ≡ 2β1β2

β2
1 + β2

2

(A4)

and �(n1, n2, l) is equal to 1 if n1, n2 and l are all odd or all even,
and is equal to 0 otherwise. In the limiting case where β1 = β2,
the transformation matrix reduces to 〈n1; β1 | n2; β2〉 = δn1,n2 , in
agreement with the orthonormal properties of the basis functions
(equation 4).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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