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Abstract

Instance segmentation aims to detect and segment in-

dividual objects in a scene. Most existing methods rely

on precise mask annotations of every category. However,

it is difficult and costly to segment objects in novel cate-

gories because a large number of mask annotations is re-

quired. We introduce ShapeMask, which learns the inter-

mediate concept of object shape to address the problem of

generalization in instance segmentation to novel categories.

ShapeMask starts with a bounding box detection and grad-

ually refines it by first estimating the shape of the detected

object through a collection of shape priors. Next, Shape-

Mask refines the coarse shape into an instance level mask

by learning instance embeddings. The shape priors pro-

vide a strong cue for object-like prediction, and the instance

embeddings model the instance specific appearance infor-

mation. ShapeMask significantly outperforms the state-of-

the-art by 6.4 and 3.8 AP when learning across categories,

and obtains competitive performance in the fully super-

vised setting. It is also robust to inaccurate detections, de-

creased model capacity, and small training data. Moreover,

it runs efficiently with 150ms inference time on a GPU and

trains within 11 hours on TPUs. With a larger backbone

model, ShapeMask increases the gap with state-of-the-art

to 9.4 and 6.2 AP across categories. Code will be publicly

available at: https://sites.google.com/view/

shapemask/home.

1. Introduction

Instance segmentation is the task of providing pixel-

level classification of objects and identifying individual

objects as separate entities. It is fundamental to appli-

cations such as autonomous driving or robot manipula-

tion [8, 44], since segmenting individual objects could help

autonomous agents’ planning and decision making. The

community has made great headway on this task recently

[38, 39, 19, 17, 36, 10, 26, 2, 33, 21, 23]. However, these

approaches require precise pixelwise supervision for every

category. The need for annotation limits instance segmen-

tation to a small slice of visual world that we have dense

Figure 1: ShapeMask instance segmentation is designed to

learn the shape of objects by refining object shape priors.

Starting from a bounding box (leftmost column), the shape

is progressively refined in our algorithm until reaching the

final mask (rightmost column). The bounding box is only

needed to approximately localize the object of interest and

is not required to be accurate (bottom row).

annotations for. But how can instance segmentation gener-

alize better to novel categories?

Existing instance segmentation algorithms can be cate-

gorized into two major approaches: detection-based [38,

39, 19, 17, 10] and grouping-based [35, 1, 36, 26, 2, 33]. To

generalize to novel categories, detection-based approaches

can use class-agnostic training which treats all categories as

one foreground category. For example, previous works per-

form figure-ground segmentation inside a box region with-

out distinguishing object classes [38, 39]. Although class

agnostic learning can be readily applied to novel categories,

there still exists a clear gap compared to the fully super-
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vised setup [21, 38]. On the other hand, the grouping-

based approaches learn instance specific cues such as pixel

affinity for grouping each instance. Although the group-

ing stage is inherently class-agnostic and suitable for novel

categories, most algorithms still rely on semantic segmenta-

tion [1, 35, 2] to provide class information, which requires

pixelwise annotation of every class. Whether detection or

grouping-based, generalization to novel categories remains

an open challenge.

We propose to improve generalization in instance seg-

mentation (Figure 1) by introducing intermediate represen-

tations [29, 43, 11], and instance-specific grouping-based

learning [40, 23]. Consider Figure 2. Most detection-

based approaches use boxes as the intermediate represen-

tation for objects (see middle column) which do not con-

tain information of object pose and shape. On the con-

trary, shapes are more informative (see right column) and

have been used by numerous algorithms to help object seg-

mentation [1, 47, 20, 7, 46]. As the pixels of novel objects

may appear very different, we hypothesize that shapes can

be leveraged to improve generalization as well. Intuitively

speaking, learning shapes helps because objects of differ-

ent categories often share similar shapes, e.g., horse and ze-

bra, orange and apple, fork and spoon. On the other hand,

grouping-based learning causes the model to learn “which

pixels belong to the same object” and may generalize well

by learning appropriate appearance embeddings. For exam-

ple, even if the model has never seen an orange before, it can

still segment it by grouping pixels with similar appearance.

Motivated by these observations, we propose a new in-

stance segmentation algorithm “ShapeMask” to address the

generalization problem. Figure 1 illustrates how Shape-

Mask starts with a box detection, and gradually refines it

into a fine mask by learning intermediate shapes. Given

a detection, ShapeMask first represents it as a uniform box

prior. Then ShapeMask finds the shape priors which best in-

dicate the location, scale and rough shape of the object to fit

the box (detection prior). Finally, ShapeMask decodes the

coarse mask by a fully convolutional network and refines

it by its own instance embedding. The idea behind refine-

ment is similar to grouping approaches. To generalize to

novel categories, we simply use class agnostic training for

ShapeMask without the need of transfer learning. A natural

by-product of learning shapes as soft priors is that Shape-

Mask can produce masks outside the detection box similar

to [18] and unlike [19, 10] which apply feature cropping.

Experiments on COCO show that ShapeMask signifi-

cantly outperforms the state-of-the-art transfer learning ap-

proach [21] in the cross-category setup. In fact, ShapeMask

can outperform the state-of-the-art using only 1% of the la-

beled data. We also qualitatively show that ShapeMask is

able to segment many novel object classes in a robotics en-

vironment different from the COCO dataset. In the fully su-

Figure 2: Illustration of objects in uniform box priors vs.

shape priors. Every row contains: (left) input image plus

detections, (center) box priors, (right) shape priors. Shape

priors represent objects with much richer details than boxes.

pervised instance segmentation setting, ShapeMask is com-

petitive with state-of-the-art techniques while training mul-

tiple times faster and testing at 150-200ms per image, be-

cause it runs seamlessly across hardware accelerators such

as TPUs[22, 16] and GPUs to maximize performance.

2. Related Work

Instance segmentation can be categorized into two ma-

jor approaches: detection-based and grouping-based ap-

proaches. The detection-based approaches [17, 10, 18, 28,

6, 19, 38, 39] first detect the bounding box for each ob-

ject instance and predict the segmentation mask inside the

region cropped by the detected box. This approach has

been the dominant approach to achieve state-of-the-art per-

formance in instance segmentation datasets like COCO[32]

and Cityscapes [8]. The grouping-based approaches [26,

2, 4, 35, 33, 1, 25] view the instance segmentation as a

bottom-up grouping problem. They do not assign region of

interest for each object instance. Instead, they produce pix-

elwise predictions of cues such as directional vectors [33],

pairwise affinity [35], watershed energy [2], and semantic

classes, and then group object instances from the cues in

the post-processing stage. In addition to grouping, some

object segmentation works have simultaneously used shape

priors as unaries in probabilitic framework [1, 47, 20], aug-

mented proposals [7], or as top-down prior to help group-

ing [46, 24, 3]. Classical instance segmentation approaches

are mostly grouping-based and work well on unseen data

[42, 40]. For example, MCG [40] generates quality masks

by normalized cut on the contour pyramid computed from

low level cues. So far, grouping-based approaches have not

been shown to outperform detection-based methods on the

challenging COCO dataset.

Recently, [37, 48, 23, 21] study instance segmentation

algorithms that can generalize to categories without mask

annotations. [23] leverages the idea that given a bound-

ing box for target object, we can obtain pseudo mask label

from a grouping-based segmentation algorithm like Grab-

Cut [42]. [37] studies open-set instance segmentation by
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using a boundary detector followed by grouping, while [48]

learns instance segmentation from image-level supervision

by deep activation. Although effective, these approaches

do not take advantage of existing instance mask labels to

achieve better performance.

In this paper, we focus on the partially supervised

instance segmentation problem [21], as opposed to the

weakly-supervised setting [23, 48]. The main idea is to

build a large scale instance segmentation model by leverag-

ing large datasets with bounding box annotations e.g. [27],

and smaller ones with detailed mask annotations e.g. [32].

More specifically, the setup is that only box labels (not mask

labels) are available for a subset of categories at training

time. The model is required to perform instance segmenta-

tion on these categories at test time. MaskX R-CNN [21]

tackles the problem by learning to predict weights of mask

segmentation branch from the box detection branch. This

transfer learning approach shows significant improvement

over class-agnostic training, but there still exists a clear gap

with the fully supervised system.

3. Method

In the following sections, we discuss the set of modules

that successively refine object box detections into accurate

instance masks.

3.1. Shape Recognition

Shape priors: We obtain a set of shape bases from a collec-

tion of mask annotations in order to succinctly represent the

canonical poses and shapes of each class. These bases are

called “shape priors”. The intuition is that when the approx-

imate shape is selected early on in the algorithm, the subse-

quent instance segmentation becomes much more informed

than a box (see also Figure 2). In order to obtain shape

priors, we run k-means to find K centroids of all instance

masks for each class in the training set. We resize all mask

annotations to a canonical size 32×32 before clustering. In

the class specific setting, the total number of shape priors is

C × K, where C is the number of classes (e.g. K = 20).

In the class agnostic setting, we group all classes as one and

have K shape priors in total (e.g., K = 100). We define the

set of shape priors as H = {S1, S2, ..., SK}. Figure 3 visu-

alizes example selected shape priors per class for the COCO

dataset. We can see the objects have diverse within- and

between-class appearance. In class-agnostic setting, clus-

tering yields similarly diverse shape priors.

Shape estimation: Starting with a box detection, we first

represent it as a binary heatmap B, i.e. b ∈ {0, 1}, ∀b ∈ B.

The purpose of this stage is to estimate a more informative

detection prior Sprior from B (see Figure 4). To achieve

this, we estimate the target object shape by selecting similar

shape priors from the knowledge base H . Unlike existing

methods [6, 19] which view shape prediction as a per-pixel

Confidential + Proprietary

Visualization of COCO Class Priors

KMeans clustering with K=20.

Figure 3: Shape priors obtained by clustering mask labels in

the training set. Each prior is a cluster centroid of an object

category.

classification problem, we learn to combine similar shapes

from H to form predictions.

Figure 4 illustrates the entire process. First, we pool fea-

tures inside the bounding box B on the feature map X , to

obtain an embedding xbox representing the object instance:

xbox =
1

|B|

∑

(i,j)∈B

X(i,j) (1)

The instance shape embedding xbox is then used to recog-

nize similar shapes in the knowledge base H . The shape pri-

ors are the bases used to reconstruct the target object shape

inside the bounding box. The predicted object shape S is a

weighted sum of shape priors {S1, S2, ..., SK}, where the

weights are predicted by applying a linear layer φ to xbox

followed by a softmax function to normalize weights over

K, wk = softmax(φk(xbox))

S =

K∑

k=1

wkSk (2)

The predicted shape S is then resized and fitted into the de-

tection box B to create a smooth heatmap, which we call

“detection prior” Sprior (as shown in Figure 4). During

training, we apply pixel-wise mean square error (MSE) loss

on the detection prior Sprior against the ground-truth mask

Sgt to learn the parameters in φ.

The approach simplifies the instance segmentation prob-

lem by first solving the shape recognition problem. It in-

corporates the strong prior that the primitive object shapes

only have a few modes. This regularizes the output space

of the model and prevents it from predicting implausible

shapes, e.g., “broken pieces”. By adding such structure to

the model, we observe improved generalization to novel cat-

egories. We speculate this is because many novel objects

share similar shapes with the labeled ones.

3.2. Coarse Mask Prediction

Given the detection prior Sprior from the previous sec-

tion, the goal of this stage is to obtain a coarse instance

mask Scoarse (Figure 5). First, we use a function g to em-

bed Sprior into the same feature dimension as the image
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Figure 4: Shape Estimation. Given a box detection, we

refine the box into an initial estimate of shape Sprior by

linearly combining prior shapes S1, S2, ..., Sk. Our model

learns to predict the shape prior distribution to minimize

reconstruction error.

features X , where g is a 1 × 1 convolution layer. Then we

sum them into a prior conditioned feature map Xprior:

Xprior = X + g(Sprior) (3)

Xprior now contains information from both image features

and the detection prior which guides the network to pre-

dict object-like segmentation mask. A coarse instance mask

Scoarse is decoded by applying a function f to Xprior,

which consists of four convolution layers in our case. This

is similar to the mask decoder design in [19], but the dif-

ference is we use detection prior Sprior to guide decod-

ing. Pixel-wise cross entropy loss is applied to the predicted

mask Scoarse to learn the parameters in the mask decoder:

3.3. Shape Refinement by Instance Embedding

Although the coarse segmentation mask Scoarse pro-

vides strong cues for possible object shapes, it does not

leverage the instance-specific information encoded by the

image features. As opposed to previous stages that aim to

extract rough shape estimates, the goal of this stage is to

refine Scoarse into a detailed final mask Sfine (Figure 6).

Similar to the instance shape embedding xbox in Sec.

3.1, we can pool the instance mask embedding by the re-

fined shape prior to obtain more accurate instance represen-

tations xmask. Given a predicted coarse mask Scoarse, we

compute the instance embedding xmask of the target object

by pooling features inside the coarse mask:

xmask =
1

|Scoarse|

∑

(i,j)∈Scoarse

Xprior(i,j) (4)

We then center the image features Xprior from Equation 3

by subtracting the instance embedding xmask at all pixel

locations:

Xinst(i,j) = Xprior(i,j) − xmask (5)

1x1 
Conv

+
3x3 

Conv

x4

1x1 
Conv

Sigmoid

Sigmoid
CE

Loss 

X

Sprior

Xprior
Scoarse

Sgt

Sprior Scoarse

Figure 5: Coarse Mask Prediction. We fuse Sprior with

the image features X to obtain prior conditioned features

Xprior, from which we decode a coarse shape Scoarse.

Fine Mask

W

H

C

Avg.  
Pool

Xprior

3x3
Conv

x4

4x4 
Deconv

1x1 
Conv

-

up 4x

Spatial 
Avg.
Pool

x

Sigmoid

Sigmoid
CE

Loss 

Xprior

Scoarse Xinst

Sfine

Sgt

Xinst

Scoarse

Centered Inst. Features

Figure 6: Shape Refinement. Starting from Xprior and

Scoarse, we first compute the instance embedding Xinst by

average pooling the features within Scoarse. Then we sub-

tract Xinst from Xprior before decoding the final mask. We

show the low-dimensional PCA projection of the “Centered

Instance features” for the purpose of visualization.

This operation can be viewed as conditioning the image fea-

tures by the target instance. The idea is to encourage the

model to learn simple, low-dimensional features to repre-

sent object instances. To obtain the fine mask Sfine, we

add the mask decoding branch which has the same archi-

tecture as described in Section 3.2 with one additional up-

sampling layer to enhance the output resolution. Same as

before, pixelwise cross entropy loss is used to learn the fine

mask Sfine from the groundtruth mask Sgt.

Note that the Sgt here is of higher resolution than before

due to the upsampling of Sfine.

3.4. Generalization to Class Agnostic Learning

To generalize to novel categories, we adopt class-

agnostic learning in ShapeMask. We follow the setup

in [21], the box branch outputs box detections with confi-

dence scores for all classes and the mask branch predicts

a foreground mask given a box without knowing the class.

For generating shape priors S1, S2, ..., Sk, we combine in-

stance masks from all classes together and run k-means with

a larger K than the class-specific setting. This allows us

more capacity to capture the diverse modes of shapes across

all categories. At inference time, we treat any novel ob-

ject as part of this one foreground category during shape
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estimation and mask prediction stages. The capability to

generalize well across categories makes ShapeMask also a

class-agnostic algorithm, although its performance in the

class-specific setting remains competitive among the best

techniques.

3.5. Implementation Details

We adopt RetinaNet1 [31] to generate bounding box

detections for ShapeMask. Unlike [19, 6] which sample

masks from the object proposals, we directly sample 8

groundtruth masks and their associated boxes per image to

jitter them for training. Given a bounding box, we assign

the box to a feature level in feature pyramid [30] by its

longest side and take a fixed-size feature patch centered on

the box. More details on the detector, training and feature

cropping processes can be found in the Supp. Materials.

4. Experiments

Experimental setup: We report the performance of

ShapeMask on the COCO dataset [32]. We adopt well es-

tablished protocol in the literature for evaluation [14, 41,

19, 10, 28, 9, 6] by reporting standard COCO metrics AP,

AP50, AP75, and AP for small/medium/large objects. Un-

less specified otherwise, mask AP is reported instead of

box AP. We additionally compare the training and inference

times, so as to demonstrate the performance/complexity

tradeoff.

4.1. Generalization to Novel Categories

We first demonstrate the state-of-the-art ability of Shape-

Mask to generalize across classes and datasets. Such gen-

eralization capability shows ShapeMask can work well on a

larger part of the visual world than other approaches which

require strong pixelwise labeling for every category.

Partially Supervised Instance Segmentation is the task of

performing instance segmentation on a subset of categories

for which no masks are provided during training. The model

is trained on these categories with only box annotations, and

on other categories with both box and mask annotations.

The experiments are set up following the previous work

[21]. We split the COCO categories into “voc” vs. “non-

voc”. The voc categories are those also present in PASCAL

VOC [12]. At training time, our models have access to the

bounding boxes of all categories, but the masks only come

from either voc or non-voc categories. The performance up-

per bounds are set by the oracle models that have access to

masks from all categories. In this section, our training set is

COCO train2017 and the comparison with other methods is

done on val2017 non-voc/voc categories following previous

work [21].

1https://github.com/tensorflow/tpu/tree/master/models/official/retinanet

Main results: We achieve substantially better results than

the state-of-the-art methods as shown in Table 1. All bench-

mark experiments use ResNet-101 network with feature

pyramid connections [30]. Using the same FPN backbone,

ShapeMask outperforms the state-of-the-art method MaskX

R-CNN [21] by 6.4 AP on voc to non-voc transfer, and 3.8

AP on non-voc to voc transfer. The gap relative to the oracle

upper-bound is 4.8 and 7.6 AP for ShapeMask, compared to

the 10.6 and 9.6 AP of MaskX R-CNN (lower is better). By

adding a stronger feature pyramid from [13], we outperform

MaskX R-CNN by 9.4 and 6.2 AP. This shows that Shape-

Mask can take advantage of large backbone model. We also

observe that ShapeMask clearly outperforms the baseline

class agnostic Mask R-CNN reported in [21] or our own

Mask R-CNN implementation. These results provide strong

evidence that ShapeMask can better generalize to categories

without mask annotations.

Figure 7 visualizes the outputs of ShapeMask in the

partially supervised setting. ShapeMask is able to seg-

ment many objects well despite not having seen any exam-

ple mask of the same category during training. The mask

branch was trained on voc, tested on non-voc categories

and vice versa. By using shape prior and instance embed-

ding, ShapeMask is able to predict complete object-looking

shapes in cases where the pixelwise prediction approaches

like Mask R-CNN tend to predict broken pieces.

Generalization with less data: To study the generalization

capabilities of ShapeMask with less training data, we train

class agnostic ShapeMask and Mask R-CNN on voc and

test on non-voc categories using only 1/1, 1/2, until 1/1000

of the data. To mimic the realistic setting of having less la-

beled data, we subsample the training set by their image id.

Figure 8 shows that ShapeMask generalizes well to unseen

categories even down to 1/1000 of the training data. In fact,

using just 1/100 of the training data, ShapeMask still out-

performs the state-of-the-art MaskX R-CNN trained on the

whole data by 2.0 AP.

Generalization to robotics data: We further demonstrate

the ShapeMask algorithm in an out-of-sample scenario, by

testing it on object instance segmentation for robotics grasp-

ing (Figure 9). This dataset contains many objects not de-

fined in the COCO vocabulary, therefore serving as a good

testbed to assess the generalization of ShapeMask. The

dataset comes with bounding box annotations on office ob-

jects and architectural structures, but without any instance

mask annotation. The model is only trained on COCO and

not on this data. To isolate the task of instance segmentation

from detection, we feed in groundtruth boxes and evaluate

only on segmentation task. As seen, ShapeMask general-

izes well to many categories not present in the training data.

This shows our approach is particularly useful in settings

where the agent will encounter objects beyond the pixel-

wise annotated vocabulary.
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Figure 7: Visualization of ShapeMask on novel categories. For clarity, we only visualize the masks of novel categories.

ShapeMask is able to segment many challenging objects well without seeing mask annotations in the same categories. It

learns to predict object-like shapes for novel categories in many cases where Mask R-CNN does not (see rightmost column).
voc → non-voc non-voc → voc

backbone method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN [21] 18.5 34.8 18.1 11.3 23.4 21.7 24.7 43.5 24.9 11.4 25.7 35.1

Our Mask R-CNN 21.9 39.6 21.9 16.1 29.7 24.6 27.2 39.6 27.0 16.4 31.8 35.4

FPN GrabCut Mask R-CNN [21] 19.7 39.7 17.0 6.4 21.2 35.8 19.6 46.1 14.3 5.1 16.0 32.4

MaskX R-CNN [21] 23.8 42.9 23.5 12.7 28.1 33.5 29.5 52.4 29.7 13.4 30.2 41.0

Oracle Mask R-CNN [21] 34.4 55.2 36.3 15.5 39.0 52.6 39.1 64.5 41.4 16.3 38.1 55.1

Our Oracle Mask R-CNN 34.3 54.7 36.3 18.6 39.1 47.9 38.5 64.4 40.4 18.9 39.4 51.4

FPN ShapeMask (ours) 30.2 49.3 31.5 16.1 38.2 38.4 33.3 56.9 34.3 17.1 38.1 45.4

Oracle ShapeMask (ours) 35.0 53.9 37.5 17.3 41.0 49.0 40.9 65.1 43.4 18.5 41.9 56.6

NAS-FPN [13] ShapeMask (ours) 33.2 53.1 35.0 18.3 40.2 43.3 35.7 60.3 36.6 18.3 40.5 47.3

Oracle ShapeMask (ours) 37.6 57.7 40.2 20.1 44.4 51.1 43.1 67.9 45.8 20.1 44.3 57.8

Table 1: Performance of ShapeMask (class-agnostic) on novel categories. At the top, voc → non-voc means “train on masks

in voc, test on masks in non-voc”, and vice versa. ShapeMask outperforms the state-of-the-art method MaskX R-CNN [21]

by 6.4 AP on voc to non-voc transfer, and 3.8 AP on non-voc to voc transfer using the same ResNet backbone. ShapeMask

has smaller gap with the oracle upper-bound than MaskX R-CNN. By using a stronger feature pyramid from [13], ShapeMask

outperforms MaskX R-CNN by 9.4 and 6.2 AP.

Mask AP vs Amount of Mask Annotation
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Figure 8: Generalization with less data. ShapeMask gener-

alizes well down to 1/1000 of the training data.

4.2. Fully Supervised Instance Segmentation

Although the focus of ShapeMask is on generalization,

this section shows that it is competitive as a general purpose

instance segmentation algorithm.

Main results: We compare class-specific ShapeMask to

leading instance segmentation methods on COCO in Table

2. Following previous work [19], training is on COCO

train2017 and testing is on test-dev2017.

Using the same ResNet-101-FPN backbone, ShapeMask

outperforms Mask R-CNN by 1.7 AP. With a stronger back-

bone, ShapeMask outperforms the best Mask R-CNN and

MaskLab numbers by 2.9 and 2.7 AP. Since the focus of

ShapeMask is to generalize to novel categories, we do not

apply the techniques reported in [6, 34], including atrous
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Figure 9: ShapeMask applied for object instance segmen-

tation for robotics grasping. Here the ShapeMask model

is trained on the COCO dataset and is not fine-tuned on

data from this domain. As seen, it successfully segments

the object instances, including novel objects such as a plush

toy, a document, a tissue box, etc. For better visualization,

smaller segmented objects are shown in the middle column

and larger ones in the right column.

convolution, deformable crop and resize, mask refinement,

adaptive feature pooling, heavier head, etc. Without any

of these, ShapeMask ranks just behind PANet by 2.0 AP.

Similarly, ShapeMask achieves 45.4 AP for box detection

task without using the techniques reported by [5, 45, 34] –

only second to the 47.4 AP of PANet (see Supp. Materials).

Figure 1 of Supp. Materials visualizes the results of Shape-

Mask to demonstrate its ability to capture detailed contours,

thin structures, and overlapping objects.

We benchmark the training and inference time with ex-

isting systems. Our training time of 11 hours on TPUs is

4x faster than all versions of Mask R-CNN [19, 15] 2. For

ResNet-101 model, we report competitive inference time

among leading methods, where we note that our CPU time

is unoptimized and can be reduced with more engineering.

Among the heavier models, ShapeMask is the only method

with reported runtimes. Training finishes within 25 hours

on TPUs and runs at 5 fps per 1024× 1024 image on GPU.

The Supp. Materials further show that by reducing the

feature channels of mask branch, we can reduce the mask

branch capacity by 130x and run 6x faster there (4.6ms)

with marginal performance loss. These results show that

ShapeMask is among the most efficient methods.

Analysis of robust segmentation: With pixelwise predic-

tion approaches such as [19], the fate of mask is designed

to depend heavily on detection quality. When detections are

not reliable, there exists no mechanism for the mask branch

2github.com/facebookresearch/Detectron/blob/master/MODEL ZOO.md

Figure 10: Analysis of Robust Segmentation. We stress-

test Mask R-CNN and ShapeMask on randomly perturbed

boxes (both were trained on whole boxes). Using soft de-

tection priors, ShapeMask can handle poorly localized de-

tections at test time while Mask R-CNN fails to do so by

design of tight feature cropping.

to recover. In ShapeMask, masks are not confined to come

from within detection boxes. We analyze the robustness of

segmentation by conducting the following experiment.

First, we perturb the box detections at inference time by

downsizing the width and height independently with a ran-

dom factor x ∼ U(0.75, 1.00), where U represents uni-

form distribution. Downsizing avoids the complication of

overlapping detections. Figure 10 compares the masks pro-

duced by Mask R-CNN and ShapeMask under this pertur-

bation. Since Mask R-CNN can only produce masks within

the boxes, it is not able to handle poorly localized detec-

tions. In contrast, ShapeMask uses detection merely as soft

shape priors and manage to correct those cases without be-

ing trained for it at all. In addition, Table 3 quantifies the

effect of downsized detections on mask quality. We see a

significant drop in Mask R-CNN performance while Shape-

Mask remains stable. In addition, we show that training

ShapeMask on downsized boxes improves its robustness.

4.3. Ablation Study

To understand our system further, we compare the uni-

form box prior with our learned detection prior, and the di-

rect mask decoding [19] with our instance conditioned mask

decoding. Table 4 shows our partially supervised system

ablation results on COCO val2017 using ResNet-101-FPN.

Surprisingly, using either object shape prior or instance em-

bedding greatly improves from the baseline by about 12 and

5 AP. Combining both techniques boosts the performance

even further. Similar results are found for the fully super-

vised setting (Supp. Materials).
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backbone AP AP50 AP75 APS APM APL Training

(hrs)

Inference

(X + Y ms)

GPU

FCIS+++ [28] +OHEM ResNet-101-C5-dilate 33.6 54.5 - - - - 24 240 K40

Mask R-CNN [19] ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4 44 195 + 15 P100

Detectron Mask R-CNN [15] ResNet-101-FPN 36.4 - - - - - 50 126 + 17 P100

ShapeMask (ours) ResNet-101-FPN 37.4 58.1 40.0 16.1 40.1 53.8 11* 125 + 24 V100

Mask R-CNN [19] ResNext-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5 - - -

MaskLab [6] Dilated ResNet-101 37.3 59.8 39.6 19.1 40.5 50.6 - - -

PANet [34] ResNext-101-PANet 42.0 65.1 45.7 22.4 44.7 58.1 - - -

ShapeMask (ours) ResNet-101-NAS-FPN [13] 40.0 61.5 43.0 18.3 43.0 57.1 25* 180 + 24 V100

Table 2: ShapeMask Instance Segmentation Performance on COCO. Using the same backbone, ShapeMask outperforms

Mask R-CNN by 1.7 AP. With a larger backbone, ShapeMask outperforms Mask R-CNN and MaskLab by 2.9 and 2.7 AP

respectively. Compared to PANet, ShapeMask is only 2.0 AP behind without using any techniques reported in [34, 6]. This

shows that ShapeMask is competitive in the fully supervised setting. Timings reported on TPUs are marked with star signs.

Inference time is reported following the Detectron format: X for GPU time, Y for CPU time. All mask APs are single-model,

and are reported on COCO test-dev2017 without test time augmentation except Detectron on val2017 (gray).

Method No Jittering Jittering

Our Mask R-CNN 36.4 29.0

ShapeMask (ours) 37.2 34.3

ShapeMask w/ jittering training (ours) 37.2 35.7

Table 3: Instance segmentation Mask AP with jittered de-

tections at test time. ShapeMask is more robust than Mask

R-CNN by 5.3 AP. Adding jittering during training time

makes ShapeMask more robust to it (last row).

voc → non-voc non-voc → voc

Shape Embed. AP AP50 AP75 AP AP50 AP75

13.7 28.0 12.0 24.8 45.6 23.5

X 26.2 44.6 27.1 29.4 51.7 29.0

X 26.4 44.9 27.2 30.6 53.4 30.4

X X 30.2 49.3 31.5 33.3 56.9 34.3

Table 4: Ablation results for the partially supervised model.

4.4. The Influence of Shape Priors

We conduct the following experiment to study how the

quality of shape priors affects the final masks. We use the

IoU of detection prior as a proxy for the distance to prior

shapes in training set. This captures both the presence of

similar shapes in the training set, and whether the shape

priors are correctly predicted for downstream segmentation.

We plot the detection prior IoU vs. the final mask IoU for

non-voc classes with a model trained on voc categories in

Figure 11 with visualization of various regimes. The plot

shows clear positive correlation between the prior and fi-

nal mask IoUs for the categories. We show IoU because it

isolates the effect of mask prediction from object detection.

5. Conclusion

We introduce ShapeMask that uses shape priors and in-

stance embeddings for better generalization to novel cate-

gories. ShapeMask significantly outperforms state-of-the-

art in the cross categories setup. It is robust against inaccu-

rate detections, competitive in the fully supervised setting,

and runs efficiently for training and inference. We believe it

A

B

C

Figure 11: Top: Scatter plot of fine mask vs. detection

prior mask IoU with the ground truth. Each dot represents a

class average IoU. We observe a positive correlation among

the classes. A, B, and C maps to the regime of very good,

good, and poor mask IoUs. Bottom: Representative exam-

ples from regime A, B, and C. We observe that good priors

tend to produce good masks (A and B), and a poor prior can

cause the mask to go to the background (C).

is a step to further instance segmentation in the wild.
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