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ABSTRACT

Testing the often-made assumption that ice particle aggregates (snowflakes) are well represented by

oblate spheroids, ellipsoid fits are applied to aggregate images. An algorithm to retrieve both the ellipsoidal

parameters and the orientations of the fitted ellipsoids is applied to Multi-Angle Snowflake Camera

measurements of ice particle aggregates observed in Alaska. The resulting ellipsoids have shapes closer to

prolate spheroids than the oft-assumed oblate spheroids. A robust linear relationship exists between the

two characteristic aspect ratios of the ellipsoids. The most probable orientation of the maximum dimension

of the retrieved ellipsoids is not in the horizontal plane, and the rotational angles of the maximum di-

mensions in the horizontal plane are not uniform, but instead display some correlation with the wind

direction at the times of the measurements. The retrieval results can be used to improve the representation

of aggregates in microphysics and/or electromagnetic radiation scattering models applicable to radar and

satellite measurements.

1. Introduction

Ice microphysical processes play important roles in

both cloud and precipitation processes (e.g., Koenig and

Murray 1976; Lin et al. 1983; Lord et al. 1984; Rutledge

and Hobbs 1984; Dudhia 1989) and climate (e.g., Liou

1976, 1986; Hartmann and Short 1980; Ramanathan

et al. 1989; Ramanathan and Collins 1991; Chen et al.

2000; Vavrus 2004; Waliser et al. 2009). As ice particles

grow by vapor depositional growth and/or collisions

with other particles, their sizes and fall speeds change,

affecting their further growth processes (e.g., Mitchell

andHeymsfield 2005; Hashino and Tripoli 2011a,b). The

fall speeds of ice particles and the rates at which ice

precipitates determine the lifetimes of clouds and the

total amounts of precipitation produced, both of which

are critical in estimating Earth energy budgets.

Modelers usually separate ice particles into different

species such as pristine ice particles, aggregates, graupel,

and hail and treat their growth processes differently

(e.g., Fridlind et al. 2007; Morrison andGrabowski 2008;

Thompson et al. 2008). The physics of vapor-grown ice

crystals, including plates, dendrites, and columns, is

comparatively well understood after decades of study

(e.g., Marshall and Langleben 1954; Frank 1972; Lamb

and Scott 1974; Kuroda and Lacmann 1982; Kuroda and

Gonda 1984; Nelson and Knight 1998; Libbrecht 2003;

Sazaki et al. 2010). However, routine measurements of

ice particles reveal that most natural ice particles are not

pristine but come in myriads of complex combinations

with widely varying shapes (e.g., Korolev et al. 1999;

Korolev and Isaac 2003; Garrett and Yuter 2014;

Schmitt et al. 2016). Riming and aggregation are the two

main processes transforming vapor-grown ice crystals

into complex-shaped ice particles. Liquid collection by

ice particles (riming) is understood less well than vapor

growth of ice, but better than ice collection by ice par-

ticles (aggregation), mostly because of a lack of under-

standing of the collection kernel resulting from the

complex flow about the colliding particles and theirCorresponding author: Zhiyuan Jiang, zxj113@psu.edu
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attachment processes. While the work by Westbrook

et al. (2004), Connolly et al. (2012), and others have

placed aggregation processes on far firmer foundations,

the characteristics of aggregates produced by these

processes have yet to be tested rigorously against ob-

servations. Jiang et al. (2017) showed that the three-

dimensionality of aggregates must be considered in the

analysis of images of aggregates to eliminate biases in

properties retrieved from two-dimensional images. In

contrast, Jensen and Harrington (2015) were able to si-

multaneously match modeled mass, shape, and fall speed

evolution of ice particles during riming growth against

wind tunnel studies over a range of temperatures.

Of riming and aggregation, aggregation is the more

common pathway to transform cloud ice to precipita-

tion (e.g., Field and Heymsfield 2003; Mitchell and

Heymsfield 2005). Yet many of the details of aggregates

and the processes that govern their growth remain

poorly known and, as such, cannot be represented in

models. This lack of knowledge about aggregation pro-

cesses may be attributed to the difficulty in observing

aggregates and characterizing their shapes. Ice particle

aggregates are delicate, so their shapes have to be de-

termined while falling, implying some form of remote

sensing of their properties (i.e., pictures, shadow images,

radar, etc.). However, remote sensing only provides in-

direct information on the characteristics of aggregates

and thus must be combined with other tools to enhance

our understanding of aggregate properties.

Microwave remote sensing is a widely used tool to

observe free-falling aggregates. To gain insights into

microphysical processes, microwave measurements are

often evaluated in conjunction with detailed cloud-

resolving models (e.g., Botta et al. 2011; Jensen et al.

2018). Such work requires transformations from model

output space to microwave sensor variable space. In mi-

crophysical models, aggregates are usually represented as

constant density spheres or spheroids or by several di-

mensional relationships involving mass, area, or aspect

ratio (e.g., Fridlind et al. 2007; Morrison and Grabowski

2008; Thompson et al. 2008). But general knowledge that

aggregates are not well represented by spheroids has led

the microwave remote sensing community to create de-

tailed aggregates for use in scattering calculations (e.g.,

Kim 2006; Liu 2008; Botta et al. 2010; Nowell et al. 2013;

Tyynelä andChandrasekar 2014; Kuo et al. 2016; Lu et al.

2016). This leads to the conundrum of having to reconcile

inconsistent treatment of ice aggregates between cloud

models and scattering calculations based on more real-

istic assumptions about them (e.g., Geer and Baordo

2014; Sieron et al. 2018). The mass, size, shape, orien-

tation, and fall speed of aggregates are the important

physical properties of aggregates that determine their

growth rates and scattering properties. These physical

properties have to be measured correctly and treated

consistently in both microphysics and microwave scat-

tering models. In this paper, we take a first step in

documenting some of the most fundamental character-

istics of aggregates: their basic shapes and orientations.

The size of an ice particle is the most frequently used

physical property to link to other properties. Given a

particle size, other physical properties (e.g., mass, pro-

jected area, and fall speed) are inferred using relation-

ships reported in the literature (often obtained from

independent experiments), such as mass, area, and fall

speed versus size relationships (e.g., Mitchell et al. 1990;

Mitchell 1996; Pruppacher and Klett 1997, p. 61). As

a result, a legitimate question becomes, How well can

aggregate sizes be characterized? Captured aggregates

frequently disintegrate upon touching any surface, and

sizes determined from two-dimensional projections of

aggregates depend on the shapes and orientations of

the particle (Wu and McFarquhar 2016; Jiang et al.

2017). The shape and orientation themselves must be

characterized from the same projections, a problem

when considering irregularly shaped objects with un-

known orientations. To constrain the problem, it is

common practice to treat aggregates as oblate spheroids

(e.g., Matrosov et al. 2005; Kennedy and Rutledge 2011;

Hogan et al. 2012), in which case, the size is known from

any projection. The aspect ratio of the oblate spheroid

is often taken to be the mean projected aspect ratio of

0.6 found from images (Korolev and Isaac 2003; Hogan

et al. 2012; Garrett et al. 2015), particularly for radar

scattering studies. However, Jiang et al. (2017) showed

that the mean sampled aspect ratio of oblate spheroids

will be larger than the actual aspect ratios of the spher-

oids, and several studies of radar scattering by aggregates

have shown that assumed oblate spheroids do not fully

capture the scattering properties of aggregates (e.g.,

Botta et al. 2011; Kneifel et al. 2011; Leinonen et al.

2012; Kulie et al. 2014; Ori et al. 2014; Tyynelä and

Chandrasekar 2014).

Another important attribute of aggregates is their

three-dimensional orientation as they fall. The orienta-

tion of an individual particle determines its horizontal

cross-sectional area and thus fall speed (given mass),

which, in turn, determines how the aggregate will in-

teract with other particles. Microwave remote sensors

sample a huge number of aggregates, each with its own

orientation vector and with these orientation vectors

often assumed to be a Gaussian distribution of the

maximum dimension of the aggregate about the hori-

zontal plane. Complex-shaped aggregates may gently

float down or fall with rotational and/or spiral pat-

terns when their mass centers are different from their
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geometrical centers (Kajikawa 1982, 1989; Mitra et al.

1990). Such rotational patterns suggest that the orienta-

tion vector directions vary widely in three-dimensional

space, making them difficult to retrieve from single image

in situ measurements, just as for particle size.

Multiple two-dimensional projections of the same ice

particle alleviate some of the difficulties in retrieving

particle shape and orientation. Kleinkort et al. (2017)

presented a technique to perform three-dimensional

shape reconstructions from five simultaneous images

of a single particle. In this study, we present results

from aMulti-Angle Snowflake Camera (MASC;Garrett

et al. 2012), which records three simultaneous two-

dimensional projections of the same particle. In keep-

ing with the desire to maintain an analytical shape, but

with more degrees of freedom than a spheroid, we

adopted ellipsoids to represent aggregates. The shape

and orientation of an ellipsoid are specified by six

parameters—three semiaxes a, b, and c for shape and

three Euler rotation angles a, b, and g for orientation.

We developed an algorithm based on gradient descent

(GD) and a genetic algorithm (GA) to retrieve the six

parameters of an ellipsoid from three projections of the

same aggregate. (More details on the retrieval algorithm

are contained in the appendix.) Retrieval results from

aggregate images collected by a MASC deployed on the

north slope of Alaska are shown as the main content of

this paper.

2. Data analysis

We analyzed MASC images of aggregates taken

during snow events at Barrow, Alaska (now known as

Utqia _gvik), during April and May 2014, and Oliktok

Point, Alaska, from March 2016 to December 2017. At

Barrow, the MASC was deployed on top of an instru-

ment shelter, approximately 6m above the surrounding

surface, with its central camera facing into the prevailing

wind (east-northeasterly). At Oliktok Point, the MASC

was deployed in the center of a double Belfort Alter

fence (diameters 1.2 and 2.4m), 20 cm below the fence

top, again with the central camera facing into the

prevailing east-northeasterly wind (F. Helsel 2018,

personal communication).

The initial image processing followed Garrett et al.

(2012), but only particles with three images, one from

each of the three cameras, were retained for further

analysis. As a next step, we followedHuang et al. (2010),

requiring that the vertical dimension of the aggregate be

approximately the same in all three images. This re-

quirement ensured that all the cameras recorded the

entirety of the aggregate. For the images that we ana-

lyzed the maximum vertical dimension across the three

images had to be smaller than 1.2 times the minimum

vertical dimension of the aggregate over the three

images. This condition ensured that all three cameras,

which are located in the same horizontal plane, captured

sufficient shape and orientation information to enable

retrievals with quantifiable errors. Finally, a size thresh-

old of 5mm was used to eliminate smaller pristine ice

crystals from the study. Graupel are excluded by visual

inspection of all particles thatmet the size criteria.A total

of 950 aggregates out ofmore than 45000 particles passed

these selection criteria. Note that riming was not inten-

tionally ruled out so that rimed aggregates were included

in the dataset as well.

The retrieval algorithm used GD, a GA, and a com-

bination of the two methods (GA–GD) to minimize the

differences between the two-dimensional projected el-

lipses from the retrieved ellipsoid and ellipses fitted to

the two-dimensional projections of the ice particle. (See

appendix for details.) Three semiaxes a, b, and c (for

shape) and three Euler rotation angles a, b, and g (for

orientation) of the ellipsoid were retrieved as the out-

put. The Euler rotation angles are specified in the

appendix of Jiang et al. (2017).

The largest source of uncertainty in the retrievals

came from the differences between the projected ellip-

ses of the ellipsoid fitted about the aggregate (the ‘‘truth’’)

and the ellipses fitted to the projections of the aggregate

(the input to the retrieval). These systematic differences

were represented by the final value of the cost function

in the fit (see appendix), which we used to indicate the

accuracy of the retrieval.

3. Results

We ordered the semiaxes a, b, and c of the retrieved

ellipsoids so that a . b . c. Figure 1 shows two-

dimensional frequency of occurrence histograms of the

two retrieved aspect ratios b/a and c/a for all 950 ag-

gregates. Because of the semiaxes ordering and the

definitions for the aspect ratios, only the lower-right

triangle of each panel contains solutions. In these his-

tograms, the red diagonal line represents prolate

spheroids (a . b 5 c) and the green vertical line oblate

spheroids (a 5 b . c). The first observation from these

figures is that the MASC-observed aggregates were

generally ellipsoidal in shape, with the ellipsoids being

closer to prolate spheroids and rarely looking like oblate

spheroids. Fitting a line with y intercept set to 0 to the

observed aspect ratios, we obtained the dashed–dotted

lines in Fig. 1. We accounted for the uncertainty

resulting from the systematic error in the retrieval

(see appendix) by applying an arbitrary weight of [62

(cost function)] in the linear fit to the frequency of
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occurrences as a function of the two retrieved aspect

ratios. The three retrieval methods all gave similar

fitted linear relationships between the two aspect

ratios, with the smaller aspect ratio about 2/3 of the

larger one. This result suggests that aggregates may

be parameterized better as ellipsoids with a linear

relation between the two aspect ratios than as the

often-used sphere or oblate spheroid.

This change in understanding of aggregate shapes has

consequences onmodeled properties of aggregates. One

immediate impact is on aggregate fall speed calcula-

tions. The fall speed of any particle depends on the ratio

of particle mass to effective cross-sectional area (Lamb

and Verlinde 2011, p. 383). Although the effective cross-

sectional area is a function of the particle fall speed

through the drag coefficient, Böhm [1989, their Eq. (10)]

shows that the fall speed is inversely proportional to the

square root of the particle cross-sectional area Ac. The

projected area of the centroid ellipsoid shape (b/a5 0.60

and c/a 5 0.40) can differ by 40%–60% from that of

an oblate spheroid with 0.6 aspect ratio, resulting in a

20%–40% difference in fall speed. We also examined

the ice-covered area fraction (Ai/Ac) for each of the

fitted ellipses, where Ai is the area within Ac containing

ice. The area fraction distributions are consistent among

the three cameras, with a mean fraction of 0.82. The

consistency in area fractions suggest that it is reasonable

to assume that this ratio will hold for any projection

of the ellipsoid, allowing for estimates of the actual cross

section of the aggregate. Together, the changes in the

fall speed and the actual cross-sectional area impact the

further collisional growth of the aggregate, and thus

precipitation rates.

To characterize the uncertainty of the fitted relation-

ship between the two aspect ratios, the joint probability

density function of the two aspect ratios was assumed to

follow a bivariate beta distribution [Nadarajah and Kotz

2005, their Eq. (4)]:
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By doing so, the three product moments, including the

centroid of the distribution, that is, E(b/a) and E(c/a),

are conserved. The three parameters obtained from the

current measurements are

p
1
5 5:9691, p

2
5 3:9714, p

3
5 5:0479:

FIG. 1. Two-dimensional frequency of occurrence histograms of retrieved ellipsoidal shape (i.e., the two characteristic aspect

ratios b/a and c/a) of the irregular aggregates fromMASCmeasurements obtained with (a) GD, (b) GA, and (c) GA–GD. The fitted joint

PDFs of the two aspect ratios are shown as black contours.
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The advantage of using the bivariate beta distribution is

that it requires c/a# b/a, consistent with our convention

for characterizing ellipsoidal shape. Nadarajah and Kotz

(2005) showed that the conditional probability density

distribution is a beta distribution, the conditional mo-

ments of which are known analytical expressions. These

analytical expressions facilitate development of param-

eterization schemes for aggregate processes.

Example images from MASC measurements of dif-

ferent ellipsoidal shapes are given in Fig. 2 together

with the two retrieved aspect ratios (averaged over the

three algorithms GD, GA, and GA–GD) for each of

them. Because each aggregate experiences unique mi-

crophysical growth processes, different aggregates will

have different numbers of monomers of different types

and sizes, with different attachment orientations. The

more general ellipsoidal shape assumed in our study

allows us to capture the greater variety of aggregate shapes

revealed in Fig. 2 better than the typically assumed

spheroidal shape.

Westbrook et al. (2004) showed that their (simulated)

aggregation process converges to a single set of geo-

metric relationships, as viewed in the context of a single

two-dimensional projection, independent of monomer

characteristics as the number of monomers increases.

Our set of images represents aggregates typical of shallow

mixed-phase clouds in the Arctic. Figure 1 shows that

these end products of aggregation processes assume a

wide distribution of three-dimensional shapes, suggesting

that the Westbrook et al. (2004) assumption may not be

appropriate, at least for the cloud types represented

in this study.

The orientation vector of a spheroid is two-dimensional

by definition (e.g., Metcalf 1988) and is usually specified

by the elevation and azimuth angles of its symmetry axis

or the axis along the maximum dimension. It is often

assumed that particles have a preferred orientation with

their maximum dimension in the horizontal plane (e.g.,

Sassen 1987; Klett 1995; Ryzhkov et al. 2011). For ellip-

soids, the orientation vector is three-dimensional and

specified by the Euler angles (e.g., Jiang et al. 2017).

However, it is not intuitive how the Euler angles are

related to the orientation of a specific dimension (e.g.,

maximum dimension) of the ellipsoid. Here, we char-

acterized the orientation of the ellipsoids by the ele-

vation (EL) angle, defined as the angle between the

FIG. 2. Example MASC images of aggregates along with the two retrieved aspect ratios for

them. The spatial scales for the images are identical, allowing their relative sizes to be easily

compared. Each row represents the same aggregate with the three images in a row representing

distinct viewing directions.
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horizontal and the maximum dimension. These EL an-

gles may be considered as a proxy for the canting angle

discussed in radar papers. These angles were calculated

from the Euler angles as

EL5 cot21

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2a1 cos2b sin2
a

q

jsina sinbj

!

.

The probability density functions of the retrieved ele-

vation angles are shown in Fig. 3.

The elevation angle represents how much the maxi-

mum dimension deviates from the horizontal plane. The

often-assumed maximum dimension preferentially in

the horizontal plane corresponds to an elevation angle

equal to 08. However, the elevation angle probability

density function (black dotted–dashed line in Fig. 3a)

peaks at ;108, indicating that the sampled aggregates

did not fall with their maximum dimensions preferen-

tially in the horizontal plane. The aggregates favored a

deviation from the horizontal plane over a horizontal

orientation in these MASC measurements. This is

physically plausible. Preferred horizontal orientation of

the maximum dimension assumes that the distribution

of mass within an ice particle is symmetrical; however,

the stochastic nature of aggregation suggests that it is

unrealistic to assume that the center of mass of an ag-

gregate corresponds with its geometric center.

Because of the design of the MASC, higher wind

speeds create stronger turbulence near the MASC

(Garrett et al. 2015). We further subsampled the ag-

gregates according to the environmental wind speed ws

at their time of observation (within the same minute).

We divided the two sets of retrieved triplets into three

groups (Fig. 3a): ws , 3.0m s21 (226 aggregates), 3.0 #

ws # 7.0m s21 (342 aggregates), and ws . 7.0m s21

(134 aggregates). For larger wind speeds (.7.5m s21),

the distribution of elevation angles was relatively

flat between 08 and 708, whereas for weak winds

(,3.0m s21), the distribution was much narrower with a

peak at ;158. The dependence of elevation angle dis-

tribution on wind speed still exists for observations

without a fence (Fig. 3b), even though the sample size is

small (only 71 aggregates). This dependence on wind

speed suggests that the orientations of the aggregates

may be influenced by turbulence generated by the in-

strument and/or shear across the top of the fence sur-

rounding the MASC or the shear in the wind speed near

the surface. However, it is also possible that aggregate

orientation has a natural dependence on wind speed and

independent of instrument impacts on it. In general, the

wind speed gradient near the surface is larger with larger

wind speed. With the existence of velocity gradients, even

symmetric spheroidal particles with homogeneous density

have preferential alignments (e.g., Bernstein and Shapiro

1994; Voth and Soldati 2017). The peak mode and spread

of the orientation distribution depends on the velocity

gradient. According to Berstein and Shapiro (1994), the

orientation distribution is not only affected by the flow

velocity gradient, but also the particle rotational diffusion,

which maintains or restores the equilibrium statistical

distribution of the overall orientation of particles. For

nonhomogeneous ice aggregates with complex rotational

diffusion, the orientation distribution can be more com-

plex compared with homogeneous spheroidal particles.

We also investigated the distribution of the rotation

angles of the maximum dimensions (projected onto the

horizontal plane) of the aggregates. This distribution

generally is assumed to beuniform.Our results (not shown)

suggest that the aggregates preferentially aligned their

maximum dimensions normal to the predominant wind

direction, although comparisons to equal-in-number

random samples from a uniform rotation distribution

suggested that our sample size is too small to make a

firm conclusion regarding this result. A torque, due to a

horizontal wind–induced drag force, applied to parti-

cles with mismatched geometric and mass centers will

cause the particles to rotate. However, at this point, we

are unable to conclude whether or not the retrieved

preference in azimuthal orientation is physical or the

result of undersampling.

FIG. 3. PDFs of the retrieved elevation angles for (a) all of ag-

gregates in the study and (b) the 71 aggregates in the study col-

lected without a fence around the MASC when the measurements

were made. The elevation angles for the aggregates are illustrated

by the black dotted–dashed line, whereas those for aggregates

observed at wind speeds less than 3.0m s21, between 3.0 and

7.5m s21, and larger than 7.5m s21 are illustrated by the blue, red,

and green lines, respectively.
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4. Summary and conclusions

Aggregation is one of the dominant cold cloud pre-

cipitation production processes, yet few observations

exist to inform the representation of this important pro-

cess in cloud models. Progress on this front requires

consistent treatment of aggregate properties in forward

models of observation systems (e.g., radar and satellites)

and cloudmicrophysical models. Currently, most forward

models treat aggregates as oblate spheroids with an as-

pect ratio of 0.6. Such spheroidal models do not fully

capture the scattering properties of ice aggregates (e.g.,

Liu 2008; Botta et al. 2010). In the microphysical pa-

rameterizations within cloudmodels, aggregate properties

are mostly represented through dimensional relationships

retrieved from observations, some of which are aimed to

capture shape effects (e.g., Thompson et al. 2008). To allow

more flexibility in representing irregular shapes, while

maintaining the simplicity necessary to be represented

in microphysical parameterizations, ellipsoids are pro-

posed to represent aggregates in this study.

The bulk of our knowledge of atmospheric ice particle

shapes has been derived from single two-dimensional

images of particles. The assumption of spheroidal shapes,

valid for pristine vapor-grown ice particles, was used

in the analyses of these images. This practice was sub-

sequently extended to analyses of irregular particles. The

impact of orientation on the images of spheroids and/or

irregular particles has been acknowledged but then, with

few exceptions, largely ignored. This was perhaps the

result of a single image not containing sufficient infor-

mation to draw conclusions about both shape and ori-

entation, and yet only single images have been largely

available over the past couple of decades. Here, we ex-

ploit the recent availability of novel instruments that

record multiple images of the same ice particle from

different view directions to develop a retrieval algorithm

of both particle shape and orientation.

Because spheroids are included as special cases in the

general category of ellipsoids, our retrieval results allow

us to examine the often-used assumption of representing

aggregates with spheroidal shapes. We show that our

sample of 950 aggregates are better represented by el-

lipsoids than spheroids, with a robust linear relationship

between the two aspect ratios of ellipsoids. We charac-

terized the spread in the two aspect ratios using a bi-

variate beta distribution. This retrieved distribution of

aspect ratios is used to infer values and uncertainties in

other parameters, for example, horizontally projected

cross-sectional areas needed for fall-speed calculations.

The analytical formula of the distribution, including the

product moments and conditional probability distribu-

tion, is amenable to use in parameterization schemes.

The work presented here is a step in the same di-

rection as the earlier work of Kleinkort et al. (2017) and

is applicable to all MASCmeasurements as well as other

multiview instruments such as the 3-ViewCloud Particle

Imager. Simultaneous mass measurements of individual

aggregates must be made in conjunction with shape and

orientation measurements to complete the analytical

description of aggregates necessary for microphysical

model development; unfortunately, simultaneous mea-

surements of shape, orientation, and mass for individual

aggregates do not currently exist. In lieu of such direct

measurements, retrievals of effective density based on

MASC measurements of fall speed and retrievals of

shape and orientation become an avenue for making

additional progress on this problem (e.g., Huang

et al. 2015).

Most of the aggregates in the sample of 950 for this

study were not aligned with their maximum dimension

in the horizontal plane. The distribution of the angles

between the horizontal plane and the maximum di-

mension derived in this study is quite distinct from those

derived from single images (e.g., Gergely et al. 2017).

The sensitivity of the canting angle distribution to the

wind speed at time of measurement suggests that careful

attention must be given to the deployment of the MASC.

Without a fence, the sampling efficiency of the instrument

is low and a strong function of the prevailing wind

speed. Thériault et al. (2012) showed that using a fence

may introduce shape and size biases in the sampled

population, and our study suggests fences may also in-

troduce wind speed–dependent orientation biases.

Heymsfield et al. (2004) showed that the projected

areas of ice particles obtained from images are related to

the density of the ice particles. It warrants further study

to determine how (or if) a measure of projected area for

these irregularly shaped aggregates may be related to

mass density. There is an urgent need in the community

to add individual particle mass measurements together

with multiple view imaging instruments.
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APPENDIX

Shape and Orientation Retrieval Algorithm

We describe in detail the methodology to retrieve the

shape and orientation of an ellipsoid from three two-

dimensional projections similar to those from the Multi-

Angle Snowflake Camera (MASC) and show results

obtained by applying the retrieval to artificially gener-

ated irregular aggregates.

An ellipsoid with arbitrary orientation is specified

by six variables: the three semiaxes a, b, and c and the

three Euler rotation angles a, b, and g. A single two-

dimensional projection yields three independent ob-

servables: the two semiaxes Ra and Rb of the projected

ellipse and the angle u of its maximum dimension rela-

tive to the horizontal axis [positive (negative) when the

maximum dimension is in first and third (second and

fourth) quadrants; Fig. A1]. Note that the angle u is

different from Garrett et al. (2015) as they use the

absolute value of u as we defined it here. The MASC’s

three viewing directions yield a total of nine observ-

ables from which to retrieve the six defining shape and

orientation variables of the ellipsoid. Jiang et al.

(2017) derived analytical expressions for the observ-

ables in terms of the six parameters describing an el-

lipsoid and the three viewing directions. These nine

expressions, one for each of the observables, consti-

tute the forward model in our retrieval. We employ

both gradient descent and genetic algorithms to de-

termine the six ellipsoidal parameters from the nine

observables.

Gradient descent (GD) is an iterative algorithm used

to find the minimum of a function by moving the solu-

tion down the gradient from its current location in the

solution space. Let f represent the forward model from

the ellipsoidal parameter space

x5 (a,b, c,a,b,g)T

to observation space

y5 (R1
a,R

2
a,R

3
a,R

1
b,R

2
b,R

3
b, u

1, u2, u3)
T
,

where the superscripts indicate the three different pro-

jections. Ideally, we want to find x such that f(x) 5 y.

However, being unable to solve for x 5 f21(y) analyti-

cally, we instead search for a solution x* that minimizes

the cost function

jf(x*)2 yj5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

[f(x*)2 y]T 3 [f(x*)2 y]

q

.

Starting from an initial guess x0, the estimate of x* is

updated at every step using

x
n11

5 x
n
2 rJ

f
(x

n
)[f(x

n
)2 y]1 0:1(x

n
2 x

n21
) ,

where r is the learning rate (0.15 in this study) and Jf is

the Jacobian matrix of the forward model. One-tenth of

the previous step is added to overcome local minima and

speed up convergence. Stopping criteria are the toler-

ance of error (0.001), that is, the value of the cost func-

tion below which the search stopped, and the total

number of iterations (1000).Weuse several initial guesses

spread out in the solution space to avoid local minima.

The final solution is selected by the y that leads to the

lowest achieved cost function over all starting conditions.

The space covered by the initial guesses x0 is con-

strained by the observations y. The semimajor axis a

of the ellipsoid is at least as large as the maximum

semimajor axis of the three projected ellipses, or

max(R1
b, R

2
b, R

3
b), which is used as the initial guess of a.

The semiaxis b of the ellipsoid ranges between the

maximum semiminor axis b of the three projected

ellipses, ormax(R1
b, R

2
b, R

3
b), and theminimum semimajor

axis a of the three projected ellipses, or min(R1
a, R

2
a, R

3
a).

We select four evenly distributed initial guess values for b

across this range. The semiaxis c of the ellipsoid is at most

as large as the minimum semiminor axis b of the three

FIG. A1. A schematic figure showing the observables that are

obtained from two-dimensional projections of an ellipsoid. This

schematic is based on the three MASC viewing directions and the

nine observables that are provided by them.
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projected ellipses, or min(R1
b, R

2
b, R

3
b), which is used as

the initial guess of c.

There are not as many constraints for orientation as for

size. Prolate and oblate spheroidal shapes allow for accu-

rate orientation retrieval (Jiang 2016). Because prolate

spheroidal orientation retrieval is more accurate than ob-

late spheroidal orientation retrieval when obtainedwithin a

general ellipsoidal shape retrieval framework (Fig. 5.8 in

Jiang 2016), prolate spheroidal orientation retrieval is used

to obtain the initial guesses of a and g. Initial guesses of

b start at the three values of 458, 908, and 1358. Note that

radians are used for the units of the angles in the calculation

of the cost function to keep the contributions of the angle

and shape parameters to the cost function approximately

equal. Therefore, 12 initial guesses of x0 (4 different initial

guesses for b times 3 different initial guesses of b) are used

to avoid local minima in the cost function.

The projection orientation angle u in the forward model

f is not continuous because it is constrained to fall be-

tween2908 and908.Aconstraint isapplied limiting thechange

in u to less than 908 in the calculation of the relevant derivative

in the gradient descent. If the change is larger than 908, it is

replaced by 1808 minus the change. Even though this pro-

ceduredoesnoteliminate thediscontinuity in thecost function,

theconstraintdoesmakethederivativeof theorientationangle

small, thus avoiding big changes when updating xn.

Genetic algorithms (GA) are also iterative. TheGA that

we usedminimizes the cost function by simulating a natural

selection process. The first generation of the population is

taken to be the same as the initial guesses used in the GD

method. Members of the population with smaller cost

functions have higher probabilities to pass part of their

characteristics to the next generation and a higher chance

of being selected as parents. We use the tournament se-

lectionmethod to select parents (Goldberg andDeb 1991).

In our implementation of thismethod, the best individual

from four randomly selected members of the population is

taken as a parent. The next generation is produced from

two parents whose offspring results from a linear combi-

nation of the parents obtained by randomly selecting a

point on the segment connecting the parents. This process is

called crossover. The segment can be shrunk or extended

by a factor called the crossover scale (2 in this study). After

crossover, each element of the child is allowed to mutate

with a prescribed mutation probability. The mutation

probability for each element of xn can be tuned separately

depending on how often we want that element to mutate.

We used mutation probabilities of 0.1 for shape param-

eters and 1 for orientation parameters. Each new gener-

ation is the final result of the selection, crossover, and

mutation processes. Stopping criteria are a maximum

number of 600 generations and an average relative

change of 10216 in the cost function over 50 generations.

It is not obviouswhich algorithm ismore effective in our

application. Therefore, both methods are used in this

study. Haupt and Haupt (1998) suggested that these two

methods can be combined by first using the genetic al-

gorithm to find several starting points for the gradient

descent method such that local minima can be avoided

and then using the gradient descent to further improve

retrieval accuracy. Thus a third method, a combined

genetic algorithm–gradient descent method (GA–GD),

is also used. Tests of the three methods with randomly

generated ellipsoids show that the mean retrieval bias

is less than 5% in semiaxes and less than 108 in Euler

angles.

Artificial irregular aggregates from Schmitt and

Heymsfield (2010) are used to further evaluate the re-

trieval algorithm. Details on how the aggregates are

generated can be found in that paper, but are quickly

summarized here. An aggregate starts with a randomly

oriented ice crystal. Additional randomly oriented ice

crystals are added to the aggregate at a random location

one at a time. The aggregates are composed of 20 hex-

agonal crystals, each with an aspect ratio of either 0.1

(thin plate), 0.4 (thick plate), 1.25 (isometric column), or

10 (column). All crystals in each aggregate have the

same aspect ratio. In this study, the size of each crystal

is allowed to change by a random factor between 0.5 and

2, which is different from Schmitt and Heymsfield

(2010). Examples of the artificial aggregates are shown

in Fig.A2.A total of 44 aggregates were produced to test

the retrieval algorithm. For each aggregate, four sets of

three images using the MASC viewing geometry were

generated with orientations drawn from uniform distri-

butions for each of the Euler angles. Note that the size of

each aggregate is scaled to be about 5mm.

Because aggregates have complex shapes, and there-

fore, complex-shaped projections, application of the

retrieval algorithm requires fitting ellipses to the pro-

jections of the aggregate. The fitted ellipse (we use the

MATLAB function ‘‘regionprops’’) has the same nor-

malized second central moments as the image (e.g., Hu

1962). The three fitted ellipses are used to retrieve the

ellipsoidal shape and orientation that best represents the

aggregate. We evaluate retrieval accuracy by comparing

the ellipsoid retrieved from the three fitted ellipses

with the ellipsoid fitted directly to the artificial (three-

dimensional) aggregate itself. This fitting introduces

another degree of uncertainty in the retrieval because

the ellipses fitted to the two-dimensional projections of

the aggregate will not necessarily correspond to the

best fit ellipsoid to the (three-dimensional) aggregate itself.

Even though we treat the best fit ellipsoid to the (three-

dimensional) aggregate as the ‘‘truth,’’ the fitted ellipsoid

may be different based on different fitting algorithms.
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The procedure for fitting ellipsoids to the aggregates

themselves is as follows. Assume an aggregate consists

of m discrete elemental points with xi, yi, and zi repre-

senting the Cartesian coordinates of these points in the

aggregate. The center of the aggregate is

(x, y, z)5
1

m

�

�
m

i51

x
i
, �

m

i51

y
i
, �

m

i51

z
i

�

.

A plane

z2 z5A(x2 x)1B(y2 y)

is fitted to these points that minimizes the sum of the

square of the distances of these points from the plane

in the z direction, that is, �
m

i51[A(xi 2 x)1B(yi 2 y)2

(zi 2 z)]2, using linear regression. Here, A and B are

calculated from

FIG. A3. PDFs of the retrieval errors for (top) the shape (i.e., a, b, and c) and (bottom) orientation (a, b, and g) parameters obtained from

the GD, GA, and GA–GD methods.

FIG. A2. Examples of artificial irregular aggregates used to evaluate the retrieval algorithm.
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The semiaxis b is assumed to be in this plane. Next, all

the points in the aggregate are projected onto the fitted

plane, which gives a projection of the aggregate. The

ellipse fitting algorithm from the MATLAB function

regionprops, the same as used to fit ellipses to theMASC

images, is applied to the projection to determine the

direction of the semiaxis b of the ellipsoid. The particle

is then projected onto a plane perpendicular to the

semiaxis b in order to determine the directions of

semiaxes a and c. The semiaxes a, b, and c are half of the

largest distance of the particle along each of their di-

rections, respectively.

First, we explore retrieval errors assuming that the

fitted ellipsoid represents the truth. The probability

density functions (PDFs) of retrieval errors (i.e., re-

trieved variable value minus the truth value from the

artificial aggregate) for the six ellipsoidal parameters are

given in Fig. A3. The PDFs for most parameters peak

near 0%. However, the semiaxis a is better retrieved

than b, which has a larger spread, and c, which centers

around 220%. The PDF of errors for the Euler angle

b has a higher peak and therefore smaller variance than

FIG. A4. PDFs of the differences between the two-dimensional projected ellipses obtained from direct projections of the aggregates

themselves and those obtained from the ellipsoid fits to the aggregates.
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the other two Euler angles a and g. To generate the

results presented in Fig. A3 we treated the ellipsoids

fitted to the artificial aggregates as the truth. However,

the two-dimensional projected ellipses of the (three-

dimensional) fitted ellipsoid do not necessarily correspond

to the ellipses obtained by fits to the two-dimensional

projections of the (three-dimensional) artificial aggregates.

This difference leads to a systematic error that cannot

be avoided.

Second, we explore the cause of the systematic error

by looking at the deviations of the ellipses fitted to the

projections of the aggregates from those of the projec-

tions of the fitted ellipsoids. We explore this systematic

error by inspecting PDFs of the differences between the

observables based on the projected ellipses of the el-

lipsoids fitted to the artificial aggregates and the ob-

servables based on the ellipses fitted to the projections

of the artificial aggregates (Fig. A4, black lines). The

differences in Ra have a peak probability around 0%,

while the differences in Rb peak near 20%. The large

difference in Rb explains the retrieval bias in semiaxis c.

For these artificial aggregates, the ellipsoid fitting al-

gorithm tends to overestimate the c axis by taking the

largest distance in the c-axis direction.

The ellipses fitted to the projections of the artificial

aggregates are subsequently input into the retrieval,

which manages to retrieve ellipsoids whose projected

ellipses closely (i.e., with smallest cost function) match

the input (Fig. A4, black dashed lines). However, the

differences between the observables Ra and Rb from the

projected ellipses of the ellipsoids fitted to the artificial

aggregates and those from the ellipses fitted to the

projections of the artificial aggregates are much larger

(Fig. A4, black solid lines). It is these differences that

are contributing most to the retrieval errors shown in

Fig. A3, where the a-axis length is unbiased, the c-axis

length is biased by about220%, and the b-axis length is

biased by some value between 0% and 220%. This im-

plies that the retrieval algorithm retains the information

from the images, the only information provided in real

observations. In contrast, ellipsoids fitted to the three-

dimensional artificial aggregate are less likely to have

projected ellipses close to the ellipses fitted to the pro-

jections of the artificial aggregates.One interesting aspect

of the projected orientation angles u is that the two PDFs

for them in the third column of panels in Fig. A4 are

similar. The bulk of the systematic error results from the

uncertainty introduced by the sensitivity of u to the

viewing direction for an irregularly shaped particle. All of

these systematic errors suggest that the final value of the

cost function may be used to identify aggregate shapes

that deviate greatly from our assumed ellipsoidal shape

for them.
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