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Shaping lightwaves in time and frequency for
optical fiber communication
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In optical communications, sphere shaping is used to limit the energy of lightwaves to within

a certain value over a period. This minimizes the energy required to contain information,

allowing the rate of information transmission to approach the theoretical limit if the trans-

mission medium is linear. However, when shaped lightwaves are transmitted through optical

fiber, Kerr nonlinearity manifests itself as nonlinear interference in a peculiar way, potentially

lowering communications capacity. In this article, we show that the impact of sphere shaping

on Kerr nonlinearity varies with chromatic dispersion, shaping block length and symbol rate,

and that this impact can be predicted using a novel statistical measure of light energy. As a

practical consequence, by optimally controlling the parameters of sphere-shaped lightwaves,

it is experimentally demonstrated that the information rate can be increased by up to 25% in

low-dispersion channels on a 2824 km dispersion-managed wavelength-division multiplexed

optical fiber link.
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The bandwidth of lightwaves was once considered an almost
limitless resource for optical communications. However,
due to the ever-increasing demand for higher data rates,

the efficient use of bandwidth has become an important goal for
today’s optical communications1. This has led to the use of
coherent transmission technology and high-order quadrature
amplitude modulation (QAM), which allow more information to
be contained in a single communication symbol. Lately, an
information theoretic approach has been adopted for optical
QAM systems to improve bandwidth efficiency by applying for-
ward error correction (FEC) coding and probabilistic constella-
tion shaping (PCS)2–4 technology. This has created an intriguing
phenomenon in nonlinear optical fiber communications as pre-
sented in this article, which was never seen in other commu-
nications systems.

An implementation of PCS called sphere shaping5–17, notably
important in both theory and real-world applications, only creates
the blocks of communication symbols with the total energy not
exceeding a certain limit. This fundamentally minimizes the average
energy of a spectro-temporal block of lightwaves to contain a given
amount of information. When the lightwaves are transmitted
through a linear medium, increasing the shaping block length
towards infinity allows the information rate to approach the theo-
retical limit18. However, when the lightwaves are transmitted over
optical fiber, the sphere shaping can increase Kerr nonlinearity19–22

and lower the nonlinear capacity21 while retaining its fundamental
energy efficiency5–10. The unique way that the sphere shaping
constrains energy changes the statistical properties and temporal
structure of the shaped lightwaves differently depending on the
shaping block length, and accordingly the manifestation of Kerr
nonlinearity varies8,11,12,22. For this reason, there have been several
recent approaches to optimizing the shaping block length to miti-
gate Kerr nonlinearity8,11,12,15,16,23.

In addition to the shaping block length, the symbol rate at which
communication symbols can change values also affects Kerr non-
linearity. This is because the symbol rate determines the way a
continuum of the lightwaves, in time and frequency, is divided into
small blocks of symbols in today’s densely packed wavelength-
division multiplexing (WDM) systems. Namely, the frequency
bandwidth of symbols increases in proportion to the symbol rate
while their time duration decreases inversely. Therefore, changing
the symbol rate changes both the spectral and temporal properties
of the lightwaves. For the traditional unshaped lightwaves that carry
statistically independent and identically distributed (i.i.d.) symbols,
the influence of the symbol rate has been well established through
simulation, experiment, and analysis24,25. However, in the case of
sphere-shaped lightwaves, the presence of a temporal structure of
energy invalidates the i.i.d. assumption and makes it difficult to
study the Kerr nonlinearity analytically. Analytical approaches to
take into account the structure of lightwaves have so far been
successful up to one symbol26,27, but extending the analysis to
structures spanning many symbols seems mathematically daunting.
To quantify the effect of large temporal structures of lightwave on
Kerr nonlinearity, empirical approaches are being taken in rapidly
growing recent studies8,15–17,23. However, there has been no study
on whether or how the symbol rate affects this quantification.

In this article, we show that for a given fiber link, shaped
symbols with the same block length can be affected differently by
Kerr nonlinearity depending on the symbol rate. Furthermore,
using a novel statistical measure of light energy, we provide a
comprehensive picture showing the relationship between the
spectro-temporal block size of sphere-shaped lightwaves, chro-
matic dispersion of fiber, and Kerr nonlinearity. This compre-
hensive picture elucidates the seemingly inconsistent results
observed between experiments performed independently with
different settings, without which shaped lightwaves may appear to

exhibit peculiar behavior. Not only does our finding contribute to
an intrinsic understanding of the characteristics of sphere-shaped
lightwaves, it also allows the most efficient use of optical band-
width by optimizing the parameters of sphere shaping in WDM
systems. By adjusting the spectro-temporal block size of sphere
shaping, we experimentally demonstrate that the effective signal-
to-noise ratio (SNR) increases by up to 1.1 dB and the net data
rate (NDR) increases by up to 25% in low-performing channels in
a 3.7-THz-wide full C-band transmission system.

Results
Sphere shaping of lightwaves. We consider a polarization-
division multiplexed (PDM) M2-ary QAM system. A digital
shaping encoder at the transmitter produces blocks of amplitudes
chosen from an equally spaced numerical alphabet A ¼
1; 3; ¼ ; 2M � 1f g in arbitrary units. Each amplitude is multi-
plied by an equiprobable sign in þ1;�1f g, resulting in a prob-
ability distribution over f±1; ±3; ¼ ; ± 2M � 1ð Þg symmetric
around the origin. The symmetry of the probability allows for
legitimate analysis with only positive amplitudes, and hence we
omit the sign throughout this article for descriptive purposes (but
in simulations and experiments, equally distributed positive and
negative signs are used). In our system, four consecutive ampli-
tudes constitute one dual-polarization symbol, as has been done,
e.g., in16,17, that is transmitted with a symbol period of TSym and a
symbol rate of RSym ¼ 1=TSym. We therefore set up the encoder to
produce a 4n-long amplitude block over n symbol periods. Let us
denote this amplitude block as a ¼ ½a1; ¼ ; a4n� with ai2A for
i ¼ 1; ¼ ; 4n and the corresponding symbol block as x ¼
½x1; ¼ ; xn� with dual-polarization symbols xi ¼
a4i�3; a4i�2; a4i�1; a4i
� � 2 A4 for i ¼ 1; ¼ ; n. Then, in tradi-
tional QAM systems, the amplitude block a (and hence the
symbol block x) can have a maximum total energy of E*

Unshaped ¼
max kak2 ¼ 4nð2M � 1Þ2 when all amplitudes are at their max-
imum, where ||·|| denotes Euclidean norm. On the other hand,
sphere shaping imposes a limit E*

Shaped on the total energy such

that only amplitudes that jointly fulfill kak2 ≤E*
Shaped are created

by the encoder, where E*
Shaped <E*

Unshaped in general. This method
is called sphere shaping5–17 because if every shaped block is
plotted as a point in 4n-dimensional signal space, with the i-th
amplitude being the position of the point on the i-th coordinate
axis, the points are distributed uniformly over a set of
4n-dimensional square lattice points that lie on or contained in a

4n-dimensional (hyper-) sphere of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E*
Shaped

q
(due to the

symmetry by equiprobable signs). As we decrease the limit
E*
shaped, more combinations of amplitudes are not allowed to be

created, hence less information can be contained per block. This
is because the maximum number of information bits per block is
given by log2N

� �
if there are N possible combinations of ampli-

tudes, where �b c denotes the floor function. The maximum
information rate in bits per dual-polarization symbol is then
given by R ¼ log2N

� �
=nþ 4, where the addition by 4 accounts

for four sign bits per symbol. The average energy of a to achieve R
with sphere shaping decreases with increasing block length 4n
(see, e.g.,8,16), achieving a theoretical minimum average energy as
n ! 1. We refer to the reduction in average energy of a by
shaping as the fundamental shaping efficiency in this article.
Figure 1(a) shows the probability distributions of the total energy
in a block of length n ¼ 5. Compared to the unshaped PDM
16-QAM (left figure) with R ¼ 8 and E*

Unshaped ¼ 180, sphere
shaping (right figure) substantially reduces the maximum energy
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to E*
Unshaped ¼ 52 (71% reduction) at the expense of only 1.6 bit

reduction in R (20% reduction). In a densely packed WDM
system with identical channel configurations, such probabilistic
energy distributions as in Fig. 1(a) are observed within each
rectangular block that divides lightwaves in the time-frequency
plane as shown in Fig. 1(b), where the width and height of the
block are determined by both RSym and n. While the shaping
block length n or the distribution of energy (cf. Figure 1(a)) has
been optimized in existing studies8,11,12,15–17,23 to mitigate non-
linear interference (NLI), the spectro-temporal region where the
distribution is found (cf. Figure 1(b)) has never been noted pre-
viously. In the following sections, we will see that it is the dis-
tribution of light energy in all aspects of probability, time, and
frequency that determines the manifestation of Kerr nonlinearity
as NLI, and thus RSym and n must be controlled simultaneously to
minimize NLI.

Power deviations in sphere-shaped lightwaves. In long-haul
optical fiber links, the NLI generated from i.i.d. symbols behaves
similarly to additive white Gaussian noise (AWGN)28–30. The
average NLI power increases in proportion to the cube of the
average symbol power as28–30

hPNLIi ¼ ηhkxk2i3; ð1Þ
where h�i denotes statistical averaging, η is the NLI coefficient
determined mostly by link parameters and to some extent by

modulation. Denoting the symbol power normalized to have unit
mean by p≜ jjxjj2= jjxjj2� �

; η increases as the central moment μn
of p increases, where μn is defined as

μn ¼ p�1
	 
n� �

: ð2Þ
Namely, μn quantifies the n-th order deviation of instantaneous p
from average hpi ¼ 1, and the more p deviates from hpi, the
greater the NLI. Note that the instantaneous and average powers
are implicitly measured over a symbol period TSym and infinite
time, respectively.

A question arises here as to whether measuring the instantaneous
power over a single symbol period is appropriate to study the light
propagation effect, since the shaped symbols have a unique
temporal energy structure that, while propagating through optical
fiber, results in a different evolution compared to i.i.d. symbols. The
presence of the temporal energy structure in dispersive medium
suggests that a longer time period than TSym may better characterize
the light propagation effect31,32. To find an appropriate time to
measure the instantaneous power, we define a new statistical figure
of merit called the windowed central moment of p as

�μn ¼ hðhpiw � 1Þni � ð2wÞn�1|fflfflfflffl{zfflfflfflffl}
ðaÞ

; ð3Þ

where h�iw denotes a moving average filter with a sliding window of
length w symbols (with a sliding step size of one symbol). Namely, �μn
quantifies the n-th order power deviation using the instantaneous

Fig. 1 Comparison of the power deviation between unshaped and shaped lightwaves. a Probability distribution of the total energy in a block of the
unshaped (left figure) and shaped (right figure) symbols. The maximum energy is significantly lower in the shaped symbols than in the unshaped symbols.
b Division of the continuum of lightwaves in time and frequency. The probability distributions shown in (a) appear in each of the rectangular blocks that
divide the lightwaves. c Probability distribution of the normalized power p

� �
w of the unshaped (left figures) and shaped (right figures) symbols, measured

with a sliding window of length w ¼ 1 (upper figures) and 40 (lower figures). d The windowed second central moment �μ2 as a function of the measurement
window size w. As w increases, the moment decreases only for the shaped symbols. All shaped symbols in Fig. 1 achieve R ¼ 6:4.
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power measured over w symbol periods, with w being a free
parameter that will be optimized in the following section. Since hpiw
approaches 1 as w increases, the term (a) on the right-hand side
ensures that �μn remains the same regardless of w, if p is i.i.d. Here,
the factor 2 compensates for hpiw being averaged over 2
polarizations. Without the term (a), the second windowed central
moment �μ2 equals the energy dispersion index that was lately
suggested32.

Figure 1(c) shows the probability distributions of hpiw for
PDM 16-QAM symbols without (left figures) and with (right
figures) sphere shaping (n ¼ 5). When the instantaneous power is
measured with w ¼ 1 as conventionally done (upper figures),
sphere shaping appears to make the instantaneous power more
spread out around the average power (note the increase of μ2
from 0.32 to 0.687 after sphere shaping). If we interpret this using
the existing analytical model developed for i.i.d. symbols30,33, it
implies that sphere shaping increases NLI compared to the
unshaped lightwaves17,34. On the contrary, if n is not large as
shown in Fig. 1(c), recent simulations and experiments8,15,16,23

show that sphere shaping does not necessarily increase and can
even decrease NLI compared to the unshaped lightwaves. The
contradiction between the model and empirical observations may
be attributed to the fact that, when energy structures exist in time,
the power deviation measured with w ¼ 1 does not represent a
proper statistical measure to analyze lightwaves. This is a
plausible explanation given that, as shown in Fig. 1(c), when w
increases from 1 (upper figures) to 40 (lower figures), hpiw
becomes concentrated near hpi for the shaped symbols (right
figures) due to the block-wise energy constraint, whereas it
maintains the variance for the unshaped symbols (left figures).
Depicted in Fig. 1(d) is �μ2 as a function of w. As w increases, �μ2
remains constant for i.i.d. symbols (dashed lines), but it decreases
for the finite-length shaped symbols (solid lines). Therefore, if it is
the power deviation measured over a longer period than TSym that
determines the manifestation of Kerr nonlinearity, it may be
possible to make the analytical model and empirical observations
consistent by replacing the conventional statistical measure in Eq.
(2) with the new measure in Eq. (3), as we will investigate further
in the following sections.

Optimization of sphere shaping parameters in the time-
frequency plane. We first study the influence of sphere shaping
on NLI using split-step simulations35,36. We transmit symbols in
a total bandwidth of 100 GHz centered at 193.4 THz (1550.1 nm)
over NCh channels that evenly divide the total bandwidth, with
NCh ¼ 1, 2, 4, 8, 16, 32, 64. The symbols are transmitted in each
channel at a rate of RSym ¼ 88=NCh GBd, ranging from 1.375 to
88 GBd, leaving 12% spectral margins for root-raised cosine
(RRC) pulse shaping with a roll-off factor of 0.1. Sphere shaping
is performed in each channel with n ¼ 5, 10, 20, 40, 80, 320, 1280,
and 5120, with a fixed R ¼ 6.4 bits per dual-polarization symbol
using 16-QAM. For comparison, i.i.d. shaping is also performed
on 16-QAM using a Maxwell-Boltzmann distribution with
6.4 bits of entropy per dual-polarization symbol. Therefore, all the
WDM configurations under test send data at the same rate in the
same total bandwidth. We assume, throughout the article, the use
of a rate-0.8 field-programmable gate array (FPGA)-verified
spatially-coupled low-density parity-check (LDPC) code37 for
forward error correction (FEC), which has a normalized gen-
eralized mutual information (NGMI) threshold38,39 of NGMI� ¼
0.86 for error-free decoding. With this, the same total informa-
tion rate of 422.4 Gb/s can be achieved by all the WDM config-
urations. Four links with regular 60 km spans are constructed by
standard single-mode fiber (SSMF) of length LSSMF km followed
by dispersion compensating fiber (DCF) of length LDCF ¼ 60�

LSSMF km in each span (with dispersion coefficients of 17.24 and
–80 ps/nm/km, respectively), as shown in Table 1. An Erbium
doped fiber amplifier (EDFA) recovers the launch power after
every span with 4.5 dB noise figure. Complete details of the
simulation setup are given in the Methods section.

Figure 2(a) shows the effective SNR as a function of the symbol
rate (on x-axis) and shaping block duration (on y-axis), defined as

SNREff ¼
hkxk2i

hPASEi þ hPNLIi
; ð4Þ

where PASE

� �
is the average amplified spontaneous emission

(ASE) noise power. The signal, ASE, and NLI powers are all
measured over the total bandwidth of 100 GHz. The contour lines
are obtained by interpolating 63 simulation points (red dots). The
top points at each RSym represent i.i.d. shaping, so their y-axis
values are not exact values but merely represent very large
numbers. The y-axis values for all other points are exact. The
bottom points at each RSym represent n ¼ 5, but for the same n,
the shaping block duration in nanoseconds on y-axis varies with
RSym. The launch power is optimized for each point to maximize
SNREff . The effective SNR is evaluated at the transmission
distances where the NGMI is near the threshold. Looking at
Fig. 2(a), we notice the following: (i) like the i.i.d. uniform 16-
QAM25, the optimal RSym for i.i.d. shaping of 16-QAM to
maximize SNREff (yellow stars) decreases as the total net
dispersion DTotal increases, (ii) reducing n improves SNREff if
RSym is near optimal (red stars), and (iii) the optimal RSym

increases as n decreases (compare, e.g., the yellow and red stars).
The highest SNREff at the smallest n, however, does not
necessarily maximize the end-to-end communication perfor-
mance measured in NGMI, as shown in Fig. 2(b), due to the
complex interplay with the fundamental shaping efficiency that
decreases as n decreases. In general, (i) the optimal n for NGMI
tends to increase with DTotal, and (ii) the optimal RSym for NGMI
is higher than the optimal RSym for SNREff .

We scrutinize the nonlinear effect by extracting the NLI
coefficient η from the simulation results as

η ¼ hkxki2
SNREff

� hPASEi
" #

=hkxk2i3; ð5Þ

derived from Eqs. (1) and (4). The result is shown in Fig. 2(c-1).
We factorize η as

η ¼ η1 ´Δη; ð6Þ
where η1 represents the NLI coefficient of i.i.d. shaping, cf.
Figure 2(c-2), and Δη ≤ 1 is a correction factor for finite-length
shaping, cf. Figure 2(c-3). Furthermore, from another set of
simulations using the same WDM settings as above, yet with only
one channel being transmitted in each setting, we evaluate ηSPM
produced solely by self-phase modulation (SPM)40,41, cf.
Figure 2(c-4). Then, by subtracting the SPM contribution from
the full-fledged simulation results, we obtain ηXPM produced
solely by cross-phase modulation (XPM)42,43, cf. Figure 2(c-7).

Table 1 Link configurations in which the impact of sphere
shaping is evaluated.

Link Name LSSMF LDCF Net dispersion DSpan per span

Link A 49.36 km 10.64 km 0 ps/nm
Link B 49.98 km 10.02 km 60 ps/nm
Link C 51.83 km 8.17 km 240 ps/nm
Link D 60 km 0 km 1033.8 ps/nm
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Fig. 2 Split-step simulation with various spectro-temporal division of lightwaves. a Effective SNR drawn as a function of the symbol rate (spectral
division) and shaping block duration (temporal division). b NGMI showing the end-to-end performance, produced by the complex interaction of the
propagation effect and the fundamental energy efficiency of the underlying sphere shaping. c NLI coefficient η and its decompositions into SPM
contribution ηSPM and XPM contribution ηXPM, and into factors due to i.i.d. shaping η1 and finite-length shaping Δη. Source data for Fig. 2 are provided with
this paper.
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Looking at Fig. 2(c-5), (c-8), as RSym increases, η1SPM increases
whereas η1XPM decreases, as a consequence of the relative increase
in channel bandwidth within a fixed total bandwidth (see also25),
and thus the combined effect η1 changes just marginally, cf.
Figure 2(c-2). The influence of RSym on η1 is expected to decrease
further as the modulation order increases and the shaped signal
approaches continuous Gaussian. Looking at the finite-length
effect in Fig. 2(c-6), (c-9), the influence ofΔηSPM and ΔηXPM on
SNREff is prominent only near the red circled areas, where their
base coefficients η1SPM and η1XPM are large. Areas far from the
circled areas have a negligible impact on SNREff . Combining
ΔηSPM and ΔηXPM , Δη changes much more than η1, indicating
that n has a much greater impact on SNREff than RSym near the
optimal point that maximizes SNREff . This leads to SNREff of
Fig. 2(a). More results are provided in Supplementary Figs. 1–4.

The window size for �μ2 is then determined in a similar way to32

by calculating the Pearson correlation coefficient ρ η; �μ2
	 


that
quantifies how much η is correlated with �μ2. This is done
separately for SPM and XPM, as shown in Fig. 3(a) at 240 spans
in Link D. The red lines show the linear fits of the optimal
window sizes w�

SPM and w�
XPM that produce the greatest

ρ ηSPM ; �μ2
	 


and ρ ηXPM ; �μ2
	 


, respectively, which are given by

w�
SPM � 2RSymBCh β2

�� ��LSpanNSpan ð7Þ
and

w�
XPM � 2RSymBCh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NCh=0:88

p
β2
�� ��LSpanNSpan ð8Þ

in number of symbols. Here, RSym is in s−1, BCh � RSym is the
channel bandwidth in s−1, β2 is the dispersion coefficient in s2/m,
LSpan is the span length in m, and NSpan is the number of spans. In
Eq. (8), the division by 0.88 is due to channel spacing, and the
factor

ffiffiffiffiffiffiffiffi
NCh

p
indicates that w�

XPM increases with the number of
channels but only in proportion to its square root. This is
consistent with the fact that more symbols from the copropagat-
ing channels are involved in nonlinearity as the number of
channels increases but more distant channels contribute less to
nonlinearity. Note that Eqs. (7) and (8) are valid for all the
systems under test (cf. Supplementary Figs. 5–8). Plugging the
average symbol power hkxk2i and the windowed central moments
�μ2 and �μ3 obtained with w�

SPM and w�
XPM into a state-of-the-art

analytic model known as the enhanced Gaussian noise (EGN)
model30,33, we obtain SNREff as shown in Fig. 3(b) (see the
Methods section for more details). The EGN model assumes i.i.d.
amplitudes and phases of symbols, and hence is not accurate for
lightwaves with local energy structures. There is a recently
developed analytical model26,27 that extends the EGN model to
account for energy structures present over one symbol period, but
extending this further to energy structures spanning tens to
thousands of symbol periods that we deal with in this work seems
mathematically intractable. Therefore, we allow for model
mismatch by using the classical EGN model, but improve the
accuracy of evaluating structured lightwaves (green solid lines in
the figure) by replacing μ2 and μ3 with optimized �μ2 and �μ3 (i.e.,
obtained with w�

SPM and w�
XPM). This provides good agreement

with the split-step simulation results (black dashed lines) in a
wide range of conditions (cf. Supplementary Figs. 9, 10). This
shows that the energy structure, whether short or long, can be
taken into account with manageable complexity when analyzing
the light propagation effect.

Demonstration of optimal sphere shaping through full C-band
transmission experiment. We experimentally demonstrated the
optimal sphere shaping for maximum NDR in a full C-band

transmission system shown in Fig. 4(a)44. The dependence of the
optimal sphere shaping on dispersion is conveniently verified in a
recirculation loop that accumulates varying dispersions over
frequency. The loop consists of 7 spans of 40.3 km (on average)
fiber, 1 span of which (span #4) is SSMF (with 0.092 ps/nm2/km
dispersion slope) and the rest are anomalous-dispersion fiber
(with –2.47 ps/nm/km dispersion and –0.1026 ps/nm2/km dis-
persion slope, at 1550.1 nm). We transmit 37 100 GHz-wide
channels in the C-band over 10 loops (2824 km). Figure 4(b)
shows the accumulated dispersion as a function of distance for
several selected channels. We denote the channels at
192.1–195.7 THz sequentially by Ch#1 to Ch#37. Then, Ch#8 at
192.8 THz (solid red line) undergoes zero net dispersion after
every loop, and the farther away from Ch#8 the channel under-
goes greater absolute net dispersion, reaching up to DTotal

�� �� ¼
4.85 ns/nm at Ch#37.

Three independent streams of symbols are transmitted over the
loop, one of which is loaded on the channel under test (CUT), the
other two on the even- and odd-indexed interfering channels that
are fully decorrelated by delay fibers of distinct lengths (10, 20,…,
190 m for odd channels, and 10, 20, …, 180 m for even channels,
cf. Figure 4(a)). At the transmitter (TX), all interfering channels
are loaded with the same E�

Shaped, n, and RSym as the CUT. At the
receiver (RX), commonly used coherent digital signal processing
(DSP) is performed offline to recover the transmitted symbols.
Complete details of the experimental setup are given in the
Methods section.

We implement up to 20 combinations of n and RSym by using
n ¼ 5, 10, 20, 80, 320, and RSym � 9.8, 19.7, 39.4, 78.8 GBd. On each
of the 100 GHz-wide optical channels in our experimental system,
we emulate the four RSym above by performing digital subcarrier
multiplexing (DSM)45,46 with NSC ¼ 1, 2, 4, 8 digital subcarriers on
an optical carrier modulated at 78.8 GBd, as shown in Fig. 4(c). RRC
pulse shaping is performed on each subcarrier with a roll-off factor
flexibly adjusted between 0.05 and 0.1 depending on NSC . With this,
we ensure in a back-to-back experiment that SNREff averaged over
subcarriers differs by no more than 0.2 dB between DSM of all NSC
at the same optical SNR (OSNR), thereby circumventing the
bandwidth limitations of the transmitter favoring NSC ¼ 1 (see the
Methods section for more details).

For each pair of n and RSym, the NDR achieved by sphere
shaping of 16-QAM is determined by finding the maximum
R� 2 f5:2; 5:6; ¼ ; 7:6g varied in increments of 0.4, which yields
an NGMI greater than NGMI� ¼ 0.86. The NDR per optical
carrier is then given by

NDR ¼ 4 ´ R�=4 �m 1� RC

	 
� �
RSymNSCRPi ð9Þ

in Gb/s, where the multiplication by 4 in the right-hand side
accounts for 4 amplitudes per symbol time, m ¼ log2M, and
RPi ¼ 47=48 is the pilot ratio used to assist coherent DSP. Instead
of R ¼ 4.8 for shaped 16-QAM, we use uniform quadrature
phase-shift keying (QPSK), since they produce the same NDR.
Combined with up to 20 configurations of n and RSym, changing R
for each channel to maximize the NDR implies that a huge
number of measurements are made across the 37 channels in
C-band for experimental verification of optimal sphere shaping.

We present the result obtained with the launch power (defined
as the total power for the full C-band) of 13 dBm in this article,
although the results are obtained with various launch powers
from 8 to 13 dBm in 1 dBm steps. The power excursion across the
C-band is maintained within 4 dB after 10 loops by adjusting the
inline dynamic gain equalizers (DGEs, cf. Figure 4(a)). The power
excursions due to experimental constraints (e.g., a small power
excursion caused by coarse attenuation granularity of the DGEs
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results in an increasing power excursion as the number of loops
increases) are considered to be the most important contributor to
discrepancy in validation of theory. Typical recovered constella-
tions are shown in Fig. 4(a) next to the RX. Figure 5(a) and (b)
show, respectively, the optimal n� and R�

Sym that jointly maximize
NDR in each channel. In general, n� tends to increase as jDTotalj
(green solid line) increases, which is consistent with the
simulation result in Fig. 2(b). R�

Sym tends to decrease from 78.8

to 39.4 GBd when DTotal

�� �� increases from approximately 2 to 4 ns/

nm, and this trend of change also matches the simulation result in
Fig. 2(a). Using the optimal n� and R�

Sym of Fig. 5(a, b), SNREff of
Fig. 5(c) (orange circles) is obtained. Note that greater SNREff

than those in Fig. 5(c) are obtained with n smaller than n�, but
they provide smaller NDRs due to the reduced fundamental
shaping efficiency. Also shown in Fig. 5(c) is the SNREff of the
shaping with the longest n ¼ 320 (blue triangles), chosen as a
benchmark for its best performance in linear channels, at a
symbol rate of RSym ¼ 39:4 GBd that represents a widely used

Fig. 3 The optimal window size for instantaneous power measurement and SNREff predicted by the EGN model using it. a Pearson correlation
coefficients between ηSPM and �μ2 (left figure), and between ηXPM and �μ2 (right figure) with various window sizes w, obtained at 240 spans in Link D. The
red lines are obtained using Eqs. (7) and (8), estimated to produce the greatest correlation. There is no XPM at RSym = 88 GBd, since only one channel is
transmitted. b SNREff predicted by the EGN model, obtained with the optimal w�

SPM and w�
XPM (green solid lines) and traditional w ¼ 1 (red dotted lines), in

comparison with the split-step simulation results (black dashed lines) at 60 and 240 spans in Link D. Source data for Fig. 3(a) are provided with this paper.
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value in deployed coherent systems. Near the zero-dispersion
regime at 192.8 THz, the benchmark shaping does not produce
an NGMI greater than NGMI� with any R, hence the channels
are modulated with QPSK (blue pluses in Fig. 5(c)). Figure 5(d)
shows the NDRs achieved by the optimal n� and R�

Sym (orange
circles), and by the benchmark shaping (blue triangles), where
the NLI-optimized parameters offer higher NDRs than the
linear-channel optimal benchmark widely in low-dispersion
channels. The NDR increase by the NLI-optimized parameters
reaches 25% near the zero-dispersion regime (cf. red arrow in
Fig. 5(d)) and 12.1% on average over the underperforming 20
channels with low dispersion. The total NDR increase in the
C-band reaches 6.4% (12.86 Tb/s as compared to 12.09 Tb/s of
the benchmark, obtained as the sum of the NDRs of all 37
channels in Fig. 5(d)). While the previous works8,11,12,16,23

optimized only n to observe some gains in SNREff and NDR
over specific links (e.g., for single-span links), joint optimiza-
tion of n and RSym in this work produces significantly larger
gains and allows these gains to be achieved over a much wider
variety of links.

Discussion
As seen from the comparison of the finite-length and i.i.d. shaped
lightwaves under various conditions, finite-length sphere shaping
reduces Kerr nonlinearity. To explain this phenomenon, we
hypothesized that there is a specific time window for quantifying
the power deviation of lightwaves to best describe the propagation
effect and that, when measured with this time window, the power
deviation is reduced by the small spherical energy structures in
the shaped lightwaves. We provided three evidences that support
this hypothesis. First, the many horizontal line segments of the
NLI contour Δη observed in wide areas of Fig. 2 and Supple-
mentary Figs. 1–4 indicate that Kerr nonlinearity depends on the
spherical energy structure present in absolute time rather than in
the number of symbols. Second, Eqs. (7) and (8) show that the
measurement window size for the instantaneous power agrees
remarkably well with the current theoretical understanding of
SPM and XPM in dispersive medium. Third, the analytical results
obtained with such an optimized time window fairly match the
numerical simulation results, as shown in Fig. 3 and Supple-
mentary Figs. 9 and 10. Nevertheless, we cannot completely rule
out the possibility that there may be other, yet undiscovered,

Fig. 4 Experimental system to verify the performance of optimal sphere shaping in full C-band transmission. a Schematic of the experimental setup.
Inset: typical recovered constellations at the receiver. b Dispersion map of various WDM channels over the optical fiber link. c Typical received power
spectral densities when a single (upper figure) and eight (lower figure) digital subcarriers are transmitted.
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reasons that explain the phenomenon. While Eqs. (7) and (8) are
valid for all system configurations tested in this article, it remains
for future work to see if the optimal measurement window size
changes in different system configurations, such as when the total
system bandwidth changes. It also remains for future work to see
how the dependence of η on RSym and n changes as the sphere-
shaped QAM modulation order increases to approach continuous
Gaussian signaling in terms of the time-averaged probability
distribution.

The finding of this article that there is a specific time window
for measuring power deviations that allows the manifestation of
Kerr nonlinearity to be most accurately envisioned, has significant
practical implications for optical fiber communications. For the
sphere shaping demonstrated in this article, identifying such an
optimal time window allows us to analytically determine the
optimal spectro-temporal sphere shaping configuration for
maximum communication performance. It also opens up the
possibility of finding new modulation techniques for lightwaves
that minimize power deviations using the exact measurement
window, which will be different from what are incorrectly found
using a single symbol window.

It should be noted that the simulation and experiment pre-
sented in this paper focus on the study of the light propagation
effects by excluding the impact of imperfect transceivers. In real
world applications, however, determining the system parameters
is a much more complex problem since the implementation cost
and technological limitations must be considered. For example, in
the presence of the spectral roll-off of high-bandwidth transceiver
components, or due to the complexities associated with multi-
carrier DSP, single-carrier transmission at the maximum band-
width allowed by the technology can find an advantage over
DSM. Also, the use of advanced carrier recovery algorithms such
as the maximum-likelihood blind phase search (BPS) may
influence the impact of sphere shaping on NLI under certain

conditions47, but in this work at transmission distances that
match the sphere-shaped 16-QAM format, no noticeable effect
was observed using the BPS.

Methods
Sphere shaping. The digital sphere shaping encoder is implemented by enu-
merative sphere shaping (ESS)7,8 for n ¼ 5, 10, 20, 40, 80, and by constant com-
position distribution matching (CCDM)9,10 for n ¼ 320, 1280, 5120. Note that
CCDM can only approximately realize sphere shaping for finite block lengths, but
it converges to ideal sphere shaping with a decreasing approximation error as the
block length increases. The sphere shaping encoder produces 4n-long amplitude
blocks to conform with the amplitude-to-PDM symbol mapping rule used in the
article. For the case of R ¼ 6.4 bits per dual-polarization symbol, the finite-length
shaping blocks used in the split-step simulation and C-band transmission
experiment consume 0.583, 0.346, 0.209, 0.137, 0.099, 0.025, 0.009, 0.002 dB more
average symbol energy than ideal shaping, respectively, for n ¼ 5, 10, 20, 40, 80,
320, 1280, 5120. Here, the ideal shaping refers to an i.i.d. process that creates dual-
polarization symbols according to a Maxwell-Boltzmann distribution over the
given support at the same entropy rate as R.

Split-step simulation. The fiber loss parameters are αSSMF ¼ 0.2 dB/km and
αDCF ¼ 0.45 dB/km, where the subscripts denote the fiber type. The fiber dispersion
parameters are β2;SSMF � �2:199 ´ 10�26 s2/m and β2;DCF � 1:020 ´ 10�25 s2/m.
The fiber nonlinearity parameters are γSSMF ¼ 1:45 ´ 10�3 W-1/m and γDCF ¼
5:02 ´ 10�3 W-1/m. All fiber parameters are quantified at a wavelength of
1550.1 nm. We transmit 218, 217, 216, 215, 214, 214, 214 dual-polarization symbols in
each channel, respectively, for the WDM systems with NCh ¼ 1, 2, 4, 8, 16, 32, 64.
The total number of dual-polarization symbols transmitted over all channels is
therefore 218 for NCh ≤ 16, 2

19 for NCh ¼ 32, and 220 for NCh ¼ 64. The modulated
symbols are oversampled with factors of 2, 4, 8, 16, 32, 64, 128, respectively, for
NCh ¼ 1, 2, 4, 8, 16, 32, 64; i.e., the oversampling factor increases linearly with the
symbol period TSym. The step size is adaptively determined by the distance at which
the nonlinear phase shift in a single step is 0.1 degrees, or 10 km, whichever is
smaller. Every EDFA along the optical fiber links has a noise figure of 4.5 dB and
produces a constant output power equal to the launch power such that the ASE-
induced signal droop is accurately evaluated48. For all system configurations, we
calculate SNREff by dividing the total signal power within the entire 100 GHz-wide
frequency band by the total ASE plus NLI power within the same band. While the
experiment is performed with full C-band transmission for practical significance,

Fig. 5 Experimental results obtained with the nonlinear fiber-channel-optimized sphere shaping. a Optimal shaping length n� for maximum NDR that
tends to increase with the total net dispersion DTotal

�� ��. b Optimal symbol rate R�Sym for maximum NDR that decreases from 78.8 to 39.4 GBd when DTotal

�� ��
increases from approximately 2 to 4 ns/nm. c The effective SNR achieved by the fiber-channel-optimized n� and R�Sym (orange circles) and by the linear-
channel-optimized n ¼ 320 at RSym ¼ 39:4GBd (blue triangles and pluses). d The NDRs achieved by the fiber-channel- optimized and linear-channel-
optimized sphere shaping configurations. Near the zero-dispersion regime, an NDR increase of up to 25% is achieved by the fiber-channel-optimized
shaping.
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the split-step simulation is performed over a total bandwidth of 100 GHz due to the
simulation time required for the many configurations under test; seven symbol
rates, eight shaping block lengths, six launch powers over four different links
correspond to 1344 simulation runs.

EGN simulation. The second order and fourth order nonlinear coefficients of the
EGN model30 are obtained with Monte-Carlo integration over 106 random reali-
zations of frequency tones in the system bandwidth, for each of the SPM and XPM,
using the same sets of system parameters as the split-step simulation. From the
windowed central moments of p, the fourth and sixth standardized moments of x
can be obtained as �μ2 þ 1 and �μ3 þ 3�μ2 þ 1, respectively, and then substituted into
the EGN model. Due to the different optimal window sizes w for SPM and XPM, as
shown in Eqs. (7) and (8), different standardized moments are used to evaluate
SPM and XPM for each set of system parameters.

Full C-band transmission experiment. The laser for the TX at CUT is a semi-
conductor external cavity laser (ECL). The ECL’s wavelength is fully tunable in C-
band, typical output power is 13 dBm, and linewidth is 40 kHz. The same type of
laser is used as the local oscillator (LO) of the coherent RX. For the other TXs for
36 interfering channels, distributed feedback (DFB) lasers are used. The DFB lasers’
typical output power is 8 dBm and linewidth is 10 MHz. The modulators are
LiNbO3 modulators with 3 dB bandwidth of 35 GHz. The half-wave voltage (Vπ) of
the modulator is 3 V. The lightwaves from the 36 DFB lasers are multiplexed into
even and odd frequency bands using polarization maintaining silica based arrayed
waveguide grating multiplexers (AWGs). We modulate the lightwaves with dual-
polarization I/Q modulators for all channels. At the TX, 336896=NSC sphere-
shaped dual-polarization symbols are generated by using a computer for each of
NSC subcarriers. To assist coherent DSP of the RX, one QPSK symbol is inserted as
a pilot for every 47 sphere-shaped symbols, using the same average power as the
sphere-shaped symbols. The number of modulation symbols is limited by the
memory size of the digital-to-analog converters (DACs). The generated NSC
symbol streams are filtered by RRC filters with a pass bandwidth of RSym=NSC GHz
and roll-off factors between 0.05 and 0.1, digitally frequency-shifted and multi-
plexed to build a comb of NSC digital subcarriers in the baseband. Then, the
combined NSC symbol streams are filtered by another RRC filter with a pass
bandwidth of RSym GHz and a roll-off factor of 0.1. Digital pre-distortion49 in the
frequency domain follows and compensates for the bandwidth limitations of the
TX components such that the optical signal launched into fiber has a flat power
spectral density (PSD) in the pass band. Four 17 nm CMOS DACs with 8-bit
resolution transform the generated digital symbol streams to electrical fields at a
sampling rate of 120 GSa/s. Each subcarrier is modulated at a symbol rate of
RSym ¼ 78:75=NSC ¼ 9.84375, 19.6875, 39.375, 78.75 GBd, respectively, for NSC ¼
8, 4, 2, 1. The maximum symbol rate is determined to RSym ¼ 78.75 GBd such that
DSM (with NSC ≥ 2) can perform similar to NSC ¼ 1 in a back-to-back config-
uration, since at higher symbol rates the DSM performs worse than NSC ¼ 1 due to
the bandwidth limitations of the transmitter components. The oversampling fac-
tors correspond to 120=RSym � 12.19, 6.10, 3.05, 1.52, respectively, for NSC ¼ 8, 4,
2, 1. At the TX, interfering channels are split by a liquid crystal on silicon (LCoS)-
based wavelength selective switch (WSS), propagate through different delay fibers
for decorrelation with each other, and recombined by another WSS of the
same type.

In the recirculating loop, EDFAs with a noise figure around 4.7 dB are used. A
variable optical attenuator (VOA) is attached after each EDFA, such that the
optical power at the output of the VOA equals the launch power. The PSD of the
optical signal at the EDFA output is flattened by an LCoS-based or micro-electro-
mechanical systems (MEMS)-based programmable optical filter that acts as a DGE.

At the RX, an LCoS-based WSS filters out interfering channels, leaving only the
CUT. Four balanced photo diodes (BPDs) with 75 GHz bandwidth detect the
optical signals on the CUT. The electrical signals produced by the BPDs, containing
NSC symbol streams inside, are sampled at 256 GSa/s each by four analog-to-digital
converters (ADCs) in a real-time oscilloscope. The digitized waveforms are
resampled at 157.5 GSa/s, which will eventually lead to an oversampling factor of 2
for any NSC . Chromatic dispersion is digitally compensated for in the combined
NSC symbol streams. Each of the NSC symbol streams is then frequency-shifted to
baseband, match-filtered by an RRC filter with a pass bandwidth of RSym=NSC GHz,
and down-sampled to 2 samples per symbol. For each separated symbol stream,
after recovery of the symbol timing50, real-valued PDM equalization51 is performed
in the frequency domain with carrier phase recovery based solely on pilot symbols.
We calculate SNREff in Fig. 5(c) by dividing the total signal power for NSC symbol
streams by the total ASE plus NLI power for NSC symbol streams. Likewise, the
NDR in Fig. 5(c) is calculated on an optical carrier basis.

Data availability
The raw data underlying Figs. 2 and 3(a) are available at https://figshare.com/articles/
dataset/Shaping_Lightwaves_in_Time_and_Frequency/17029454. The raw data
underlying all other figures can be reproduced easily using a computer, or their
approximate values may be readily obtained from the figures, and are provided from the
corresponding author upon reasonable request.
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