
Shaping Methods for Low-Density Lattice Codes
Naftali Sommer, Meir Feder and Ofir Shalvi
Department of Electrical Engineering - Systems

Tel-Aviv University, Tel-Aviv, Israel
Email: meir@eng.tau.ac.il

Abstract—Low density lattice codes (LDLC) are recently-
proposed lattice codes that can be decoded efficiently and
approach the capacity of the additive white Gaussian noise
(AWGN) channel. In LDLC a codeword x is generated directly
at the n-dimensional Euclidean space as a linear transformation
of a corresponding integer message vector b, i.e., x = Gb, where
H = G−1 is restricted to be sparse. In order to design practical
lattice codes, the infinite lattice should be combined with a
shaping algorithm, that maps information bits to lattice points
and ensures that the power of the lattice codewords is properly
constrained. This work proposes several efficient and practical
shaping algorithms for LDLC.

I. INTRODUCTION

An n dimensional lattice in Rm is defined as the set of all
linear combinations of a given basis of n linearly independent
vectors in Rm with integer coefficients. The matrix G, whose
columns are the basis vectors, is called a generator matrix of
the lattice. Every lattice point is therefore of the form x = Gb,
where b is an n-dimensional vector of integers. From now on,
we shall assume that n = m and that the lattice generator
matrix is square, but the results can be easily extended to the
non-square case.

A lattice code of dimension n is defined by a (possibly
shifted) lattice G in Rm and a shaping region B ⊂ Rm,
where the codewords are all the lattice points that lie within
the shaping region B.

Lattice codes can be regarded as the Euclidean space ana-
logue of linear binary codes. It is known for a long time that
lattice codes can achieve the capacity of the AWGN channel
[1]. Also, in lattice codes both the encoder and the channel
use the same real algebra which is natural for the continuous-
valued AWGN channel. However, practical coding schemes
for the AWGN channel are commonly based on finite alphabet
codes, since practical lattice codes with efficient encoding and
decoding schemes are not yet available.

Recently, LDLC were proposed [2]. In LDLC, a codeword
x is generated directly at the n-dimensional Euclidean space
as a linear transformation of a corresponding integer message
vector b, i.e., x = Gb, where the parity check matrix of
the lattice code, defined as H = G−1, is restricted to be
sparse. The fact that H is sparse was utilized to develop
a linear-time iterative decoding scheme which attains, as
demonstrated by simulations, good error performance within
∼ 0.5dB from capacity at block length of n = 100, 000
symbols. Furthermore, recently proposed parametric versions
of the iterative decoding scheme [3], [4] have low complexity
and storage requirements that can compete with any proposed

scheme based on finite alphabet codes. Therefore, LDLC have
a potential to become a practical and efficient coding scheme
for the AWGN channel as well as for Multi-Input, Multi-
Output (MIMO) communication systems, where the channel
itself generates a lattice.

In [2], methods to construct lattices with good coding gain
were discussed, as well as decoding algorithms. Regarding
the encoding operation, the LDLC encoder has to calculate
x = G · b, where b is an integer message vector. Unlike
H , G = H−1 is not sparse, in general, so the calculation
requires computational complexity and storage of O(n2). This
is not a desirable property because the decoder’s computational
complexity is only o(n), so it was suggested in [2] to use
the iterative Jacobi method [5] to solve H · x = b, which
is a system of sparse linear equations. However, for practical
use with the power constrained AWGN channel, the encoding
operation must be accompanied by shaping, in order to prevent
the transmitted codeword’s power from being too large, by
making sure that only lattice points that belong to the shaping
region B are actually used. This shaping region may be,
for example, an n-dimensional sphere. Therefore, instead of
mapping the information vector b to the lattice point x = G·b,
it should be mapped to some other lattice point x′ = G · b′,
such that the lattice points that are used as codewords belong
to the shaping region. The shaping operation is the mapping
of the integer vector b to the integer vector b′.

The need for shaping is stronger for LDLC than for
conventional coding schemes that are based on binary (or
finite-alphabet) codes. For these schemes, the coded bits or
symbols are mapped to a finite constellation, so the resulting
transmitted signal components are uniformly distributed. Such
a signal has a shaping penalty of only 1.53dB relative to
optimal shaping where the transmitted signal codewords are
contained in a hypersphere, and each codeword component has
a Gaussian distribution [6]. On the other hand, for LDLC, even
if the integer vector b is uniformly distributed, the codeword
x = G · b may have very large energy. Therefore, a shaping
algorithm is necessary for LDLC, even in order to make the
codeword components uniformly distributed, and preferably to
achieve the optimal shaping gain.

Practical and efficient shaping methods for LDLC are not
yet available. In [2], the simulations were performed with the
infinite lattice (no shaping region), and results were compared
to the generalized capacity of the the AWGN channel without
restrictions, which was defined in [7] as the maximal possible
codeword density that can be recovered reliably. A lattice

2009 IEEE Information Theory Workshop

978-1-4244-4983-5/09/$25.00 © 2009 IEEE 238

that achieves the generalized capacity of the AWGN channel
without restrictions, also achieves the channel capacity of the
power constrained AWGN channel, with a properly chosen
spherical shaping region [1]. A shaping algorithm for LDLC,
based on the iterative LDLC decoding algorithm, was sug-
gested in [8], and was demonstrated for small dimensions. In
this paper, several shaping methods for LDLC are proposed.
The methods are demonstrated by simulations to give good
shaping gains for practical dimensions.

II. USING A LOWER TRIANGULAR PARITY CHECK
MATRIX

In [2], Latin square LDLC were defined. In a Latin square
LDLC, every row and column of the parity check matrix H
has the same d nonzero values, except for a possible change
of order and random signs. The sorted sequence of these d
values h1 ≥ h2 ≥ ... ≥ hd > 0 is referred to as the generating
sequence of the Latin square LDLC.

We would like to use a simpler structure for H , which
will be more convenient for encoding and shaping. First, it
is assumed that all the values on the main diagonal of H
are 1. This can be assumed, without loss of generality, for
any Latin square LDLC that one of its generating sequence
elements is 1, by permuting rows and columns of H and by
multiplying whole rows by −1 as necessary. Also, we would
like H to have a lower triangular structure. Obviously, a parity
check matrix of an LDLC can not be lower triangular, since
the upper rows (as well as the rightmost columns) can not
contain d nonzero elements. Therefore, it is suggested that the
column degree of the rightmost column of H will start from
1 and gradually increase until d. In the same manner, the row
degree of the top row will be 1, and it will gradually increase
until d.

The following matrix is an example of such a matrix with
dimension n = 8, degree d = 3 and generating sequence
(1, 0.7, 0.5). The two rightmost columns have a single nonzero
element, the next two have 2 nonzero element and the 4
leftmost columns have the final degree d = 3. The same is
true for the matrix rows, starting from the top.

1.0 0 0 0 0 0 0 0
0 1.0 0 0 0 0 0 0

0.7 0 1.0 0 0 0 0 0
0 0 −0.7 1.0 0 0 0 0

−0.5 0 0 0.7 1.0 0 0 0
0 −0.7 0 0.5 0 1.0 0 0
0 −0.5 0 0 0.7 0 1.0 0
0 0 −0.5 0 0 0.7 0 1.0

Such a lower triangular matrix can be generated with similar

methods to those described in [2] for Latin square LDLC,
where the location of each element of the generating sequence
in each row can be described by a permutation (since each
element appears once, and only once, in each row and column).
The difference is that here, instead of a permutation, we shall
use a mapping from a subset of the rows (starting at the first
row where this element appears, ending at the bottom row) to a

subset of the columns (starting at the leftmost column, ending
at the rightmost column where this element still appears).

As explained in the next section, the lower triangular struc-
ture is very convenient for encoding and shaping. However, it
has a drawback: the codeword components whose respective
H columns have low degree are less protected. For example,
an element whose column has a single nonzero element is
effectively uncoded, since it only takes place in a single check
equation. As a result, the information integers whose check
equations involve less protected codeword components should
contain a smaller amount of information, i.e. belong to a
smaller constellation. For example, we can use the following
constellations for the integers in the example matrix above.
The first 2 integers can assume one of 2 possible integer
values (i.e. contain 1 bit of information). The next 2 integers
can assume one of 4 integer values and contain 2 bits of
information, where all the other integers can assume one of 8
possible values and contain 3 bits of information. As shown
in Section IV, the rate loss due to this selective constellation
reduction can be made relatively small, especially for large
codeword length n.

We note that for a lower triangular H , the LDLC shaping
problem becomes similar to shaping of signal codes [9], [10].
Signal codes are lattice codes for which encoding is done by
convolving the information integers with a fixed, finite-length
filter. The resulting lattice generator matrix has a Toeplitz
structure, which is close to being lower-triangular.

III. SHAPING METHODS FOR LDLC
For the methods in Sections III-A-III-C below, it is assumed

that H is lower triangular with ones on the diagonal, as
defined in Section II. In Section III-D, the methods of Sections
III-A and III-C are extended to an arbitrary H . We shall
assume that each information integer bi is drawn from the finite
constellation {0, 1, ..., L − 1}, where L is the constellation
size. As discussed above, we may want to use a different
constellation size for each integer, so the constellation size
of the ith integer bi will be denoted by Li.

A. Hypercube Shaping
Hypercube shaping finds b′ such that the components of

x′ = Gb′ are uniformly distributed. To achieve that, we shall
assume that

b′i = bi − Liki, (1)

where ki is an integer. The method starts from the first (top)
check equation, i.e., from i = 1, and continues to i = n. For
each equation, the value of ki is chosen such that |x′i| ≤ Li/2,
where x′i is the resulting codeword element, i.e.

ki =

⌊
1
Li

(
bi −

i−1∑
l=1

Hi,lx
′
l

)⌉
(2)

The modified integer b′i is then calculated according to (1),
and the codeword element x′i is then easily calculated as:

x′i = b′i −
i−1∑
l=1

Hi,lx
′
l (3)

239

Since H is sparse, the overall computational complexity
is O(nd). At the decoder, the information integers bi are
recovered from b′i by a simple modulo Li operation: bi = b′i
mod Li.

This method can be interpreted as a generalization of
the Tomlinson-Harashima precoding scheme for Inter-Symbol
Interference (ISI) channels [11], [12]. Here, the ISI is the
contribution of the x′i components that were already calculated.
Therefore, except for singular cases of matrix coefficients, the
codeword components will be uniformly distributed.

B. Systematic Shaping

A systematic binary code is defined as a code where the
information bits are part of the codeword components. For
such codes, the information bits can be easily extracted from
the decoded codeword. Also, the information can be easily
extracted from an error-free codeword, by simply taking the
corresponding systematic bits. This definition can be extended
to lattice codes. We shall define a systematic lattice code as a
lattice code for which the information integers can be extracted
from a noiseless codeword by rounding the codeword compo-
nents (or some of them, in case of a non-square generator
matrix): bi = bx′ie.

In order for the shaping and encoding to generate a system-
atic lattice code, we shall assume that

b′i = bi − ki, (4)

where ki is an integer. The method starts from the first (top)
check equation. For each equation, the value of ki is chosen
such that |x′i − bi| ≤ 1

2 , where x′i is the resulting codeword
element, i.e.

ki = −

⌊
i−1∑
l=1

Hi,lx
′
l

⌉
(5)

The modified integer b′i is then calculated according to (4), and
the codeword element x′i is then easily calculated according to
(3). At the decoder, the LDLC decoding algorithm naturally
estimates x′i, so bi can be recovered by simple rounding: bi =
bx′ie. Alternatively, after estimating b′i, the values of x′i can
be generated by solving a triangular linear system of sparse
equations H · x′ = b′, and then the values of bi are obtained
by rounding x′i.

This method can be interpreted as a generalization of
the flexible precoding scheme for ISI channels [13]. With
systematic shaping, the coded signal equals the uncoded signal
plus an additive “dither” signal, that has magnitude less than
1
2 . Surprisingly, such a small dither signal can yield substantial
coding gains.

Unlike hypercube shaping, where the coded signal is always
mapped to a hypercube, systematic shaping can be combined
with standard constellation shaping algorithms, such as trellis
shaping [14] or shell mapping [15], such that additional
shaping gain of up to 1.53dB can be potentially obtained. This
can be done by applying a constellation shaping algorithm to
the uncoded sequence bi prior to LDLC shaping and encoding.
The LDLC encoding and systematic shaping do not alter the

shaping properties of the input signal significantly, since they
are equivalent to adding a small dither.

C. Nested Lattice Shaping
The hypercube shaping algorithm results in a hypercube

shaping domain. As discussed above, it is beneficial to use a
spherical shaping domain, since additional 1.53dB of shaping
gain can be achieved. However, mapping to a hypersphere is
complex, and it is desirable to find simple ways to approximate
it.

Consider the hypercube shaping operation b′i = bi − Lki

(for simplicity, we shall assume that the constellation size of
all integers is equal to L, but the results can be easily extended
to the general case). Suppose that instead of setting ki in a
memoryless manner as in (2), we choose a sequence {ki}
that minimizes the energy of the resulting codeword

∑
i |x′i|2.

Using vector notations, we have

b′ = b− Lk. (6)

Denote the non-shaped lattice point by x = Gb. From (6), we
then have x′ = Gb′ = x − LGk. Choosing k that minimizes
‖x′‖2 is essentially finding the nearest lattice point of the
scaled lattice LG to the non-shaped lattice point x. Therefore,
the codewords will be uniformly distributed along the Voronoi
cell of the coarse lattice LG. The resulting shaping scheme is
equivalent to nested lattice coding [16], [1], where the shaping
domain of a lattice code is chosen as the Voronoi region of a
different, “coarse” lattice, usually chosen as a scaled version
of the coding lattice.

Finding the nearest lattice point is exactly the operation of
the iterative LDLC decoder. Moreover, unlike decoding, for
shaping applications it is not critical to find the exact nearest
lattice point, as the result will only be a slight penalty in
signal power. Unfortunately, simulations show that the iterative
decoding finds a vector k with poor shaping gain. The reason
is that for shaping, the effective noise is much stronger than
for decoding, and the iterative decoder fails to find the nearest
lattice point (or even an approximation of it) if the noise is
too large.

Therefore, alternative algorithms should be considered for
finding an approximate nearest lattice point. The triangular
structure of H suggests a tree search over all possible se-
quences k, starting at the first component and adding the
next component in each layer of the tree. Practically, this
tree search can be done with simple sub-optimal sequential
decoders such as the M -algorithm [17]. This algorithm starts
from the first row of H , and sequentially goes down along
the rows. The input at row i is a list of up to M candidate
sequences for k1, ..., ki−1 (where for i = 1 the list is initialized
with a single empty sequence). Each of the M sequences is
extended with all possible values for ki, and each extended
sequence is assigned a score of

∑i
j=1 |x′i|

2. The scores are
sorted, and the M sequences with smallest score are kept as
input to the next row. k is finally chosen as the sequence with
smallest score after processing of the last row i = n. The
value of M determines both the storage and the computational

240

complexity of the shaper, which is O(ndM). Note that for
an M -algorithm with M=1, nested lattice shaping reduces to
Hypercube shaping, where for M = ∞, the algorithm is a full
exponential tree search that finds the exact solution for k.

D. Extending the Shaping Methods to a Non-Triangular H

The hypercube and nested lattice shaping methods can be
extended to an arbitrary LDLC parity check matrix H . First,
we can decompose H = TQ, where T is lower triangular and
Q is orthonormal (using QR decomposition of Ht). Assuming
that b′i and bi are related by b′ = b−Lk, we want to find k such
that x′ that satisfies Hx′ = b′ is bounded in a hypercube (for
hypercube shaping) or has minimal power (for nested lattice
shaping). Substituting H = TQ, we get T x̃ = b′, where
x̃ = Qx′. Now, T is lower triangular, so we can use the back
substitution procedure of (2),(3) in order to calculate k such
that x̃ is bounded in a hypercube. Alternatively, we can use a
sequential algorithm such as described in Section III-C in order
to calculate k such that x̃ has minimal power. Then, since Q
is orthonormal, the actual LDLC codeword x′ = Qtx̃ has the
same power as x̃, i.e. the same shaping gain. For hypercube
shaping, x′ will now belong to a rotated hypercube, and its
components will no longer be uniformly distributed, but the
overall shaping gain is maintained.

Practically, we do not want to actually handle (and store)
the matrix Q. Therefore, instead of finding the codeword x′

by x′ = Qtx̃, we can use k to calculate b′, and then solve
Hx′ = b′ using methods for solving systems of sparse linear
equations, as described in Section I.

The triangular matrix T differs from the triangular matrices
that were considered in Sections III-A-III-C in two main as-
pects. First, the on-diagonal elements of T are not necessarily
1. Therefore, equations (2) and (3) should be modified to ki =⌊

1
Li

(
bi −

∑i−1
l=1 Ti,lx̃l

)⌉
and x̃i =

(
b′i −

∑i−1
l=1 Ti,lx̃l

)
/Ti,i,

respectively. Also, the constellation size for symbol i should
be chosen as Li = b|Ti,iL|c, where L is the “nominal” con-
stellation size, in order to guarantee that |x̃i| ≤ L/2. Second,
T is not necessarily sparse. As a result, the computational
complexity and storage requirements of the shaping algorithm
are O(n2). To improve that, we can keep only the J nonzero
values of T that have the largest absolute values, and nullify
all other elements of T . This results in a trade-off between
computational complexity and shaping gain: using a larger
number of nonzero elements J will enable better shaping gain
but at the cost of higher complexity.

IV. SIMULATION RESULTS

The first three proposed shaping methods were simulated for
an LDLC with dimension n = 10, 000 and degree d = 7. The
LDLC generating sequence was {1, 1√

7
, 1√

7
, 1√

7
, 1√

7
, 1√

7
, 1√

7
}.

The degree of the rows gradually increased from 1 to d,
starting at the first row, as described in Table I. The choice of
the row where the constellation size increases has been done
via some trial-and-error. This point can be further examined to
come up with the optimal choice. The degree of the columns is
the same as the degree of the rows, starting from the rightmost

TABLE I
ROW/COLUMN DEGREE AND CONSTELLATION SIZE FOR AN UPPER

TRIANGULAR LDLC

rows degree constellation size of
appropriate integer

1-50 1 2
51-150 2 2

151-250 3 4
251-500 4 4

501-1,000 5 8
1,001-2,000 6 8

2,001-10,000 7 8

17.5 18 18.5 19 19.5 20 20.5 21

10
-5

10
-4

10
-3

10
-2

10
-1

SNR [dB]
S

y
m

b
o

l
E

rr
o

r
R

a
te

capacity for
2.935 bits/cell
(uniform input
distribution) hypercube/

systematic
shaping

nested lattice
 shaping

capacity for
2.935 bits/cell

Fig. 1. Simulation results

column and increasing to the left. The table also shows the
constellation that was used for each integer. In principle, the
constellation can increase one integer at a time instead of
one bit at a time, but integer numbers of bits were used for
convenience. The shaping algorithm was simulated with the
AWGN channel and the LDLC decoder, as described in [2],
such that the input to the decoder was yi = x′i+ni, where ni is
white Gaussian noise with variance σ2 and x′i is the codeword
component. The constellation for each integer was shifted such
that its mean is zero. SNR was defined as the ratio between
the average signal energy E

{
x′2i
}

and the noise variance σ2.
If we could use a constellation size of 8 for all integers, the

information rate was 3 bits/integer. Practically, the information
rate will be lower, due to the decrease in constellation size
for the less-protected integers, as explained in Section II. The
effective rate is then (150 · 1 + 350 · 2 + 9500 · 3)/10000 =
2.935 bits/integer, which reflects a loss of 0.065 bits/integer.
As noted above, with a more careful choice this loss may be
reduced. Channel capacity for 3 bits/cell transmission is at
SNR=18dB, where for 2.935 bits/cell it is 17.6dB. Therefore,
the information rate loss is equivalent to an SNR loss of 0.4dB.
Under uniform channel input distribution constraint, capacity
is approximately 1.5dB higher than unconstrained capacity.

Figure 1 shows the symbol error rate (SER) as a function
of SNR (where a symbol refers to an information integer).
As expected, hypercube shaping and systematic shaping have
the same performance, since both generate a signal which
is uniformly distributed. These shaping methods can achieve
SER of 10−5 for SNR of 1.3dB from the channel capacity
under uniform distribution constraint (2.8dB away from the
unconstrained channel capacity). For ideal shaping, it was

241

demonstrated in [2] that for n = 10, 000 the gap to capacity at
SER=10−5 is 0.8dB. The remaining loss is therefore related to
the shaping algorithm. In further study we plan to utilize the
option of trellis shaping or shell mapping over the constellation
for the systematic shaping scheme, hoping to achieve this way
much of the possible 1.53dB shaping gain.

The nested lattice shaping gives better results than the other
schemes by 0.4dB. This is rather disappointing, as it could be
expected to give a gain of up to the optimal shaping gain
of 1.53dB. Moreover, for signal codes, this method indeed
gives close to optimal shaping gains [10]. The reason for the
smaller gain here may be the fact that in signal codes, G is
Toeplitz, so the nonzero elements in a column are concentrated
in a small number of consecutive rows. The sequential M -
algorithm works well, since the values that are set for ki

only influence several consecutive rows. On the other hand, in
LDLC the nonzero elements in a column may be spread along
the column. Values that are set for ki in a certain row, may
influence a distant row, but when the M -algorithm reaches the
distant row, the correct paths are already thrown away.

Finally, the method of Section III-D was simulated for
a non-triangular Latin square H with the same generating
sequence as above, using hypercube shaping. Due to compu-
tational complexity constraints, the QR decomposition could
only be used for dimensions of up to 1000. For dimension
1000, the simulation used nominal data rate of L = 3
bits/integer, where the constellation of each integer was set to
Li = b|Ti,iL|c, as explained in Section III-D, resulting in an
average data rate of 2.9 bits/integer, for which unconstrained
channel capacity is at SNR=17.4dB and the capacity under
uniform input constraint is approximately 18.9dB. SER=10−5

was achieved at SNR of 20.5dB, 20.6dB, 21.1dB, 22.2dB
for J=500000, 200000, 100000, 50000, respectively, where
J indicates the number of nonzero elements that were used
in the triangular matrix T . For J=500000 (which effectively
means no truncation at all, since for dimension n=1000 this
is approximately the number of nonzero elements in a full
triangular matrix) the distance from constrained capacity is
1.6dB. For ideal shaping, it was demonstrated in [2] that
for n = 1000 the gap to capacity at SER=10−5 is 1.5dB,
which means that the shaping algorithm loss is only 0.1dB.
For J=200000 (average of 200 nonzero elements per row),
the algorithm has 0.2dB loss, where for 100 and 50 average
nonzeros per row the loss increases to 0.7dB and 1.8dB,
respectively. Note that for the shaping algorithms that use a
triangular H , the number of nonzeros per row is d = 7, which
results in much smaller complexity and storage.

V. CONCLUSION

Low density lattice codes provide, for the first time, close
to optimal, practical lattice codes that can be encoded and
decoded efficiently. Originally, the performance of these codes
has been considered due to their structure as infinite lattices.
However, for practical application in communication, the lat-
tice codewords should be constrained to a shaping region. This
paper describes methods that can efficiently generate power

limited lattice points.
The common theme behind these methods is to build the

“parity-check” matrix of the lattice (the inverse of its generator
matrix) as a triangular matrix, or to convert it to this form
using QR decomposition. As demonstrated in this paper, the
resulting practical codes can be about 0.8-1.3dB from the
uniform prior capacity, which is 1.53dB above the (Gaussian)
Shannon capacity. For further study, the paper also discusses
techniques with potential to close much of this gap.

One additional interesting point presented in the paper is the
notion of “systematic lattice codes” where the integer infor-
mation symbols can be obtained by rounding the components
of the real lattice codeword. We believe that this notion can
be useful to shaping (as discussed above) but also for further
efficient decoding at high SNR, and may guard the code from
error floor phenomena. The study of these topics is left for
further research.

ACKNOWLEDGMENT

The authors would like to thank Mr. Yair Yona for discus-
sions on this subject and on efficient LDLC decoding methods,
and Prof. Ehud Weinstein for his support and for interesting
discussions. The authors also like to thank the anonymous
reviewers for their thorough review and valuable comments.

REFERENCES
[1] U. Erez and R. Zamir, “Achieving 1/2 log(1 + SNR) on the AWGN

channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, pp. 2293-2314, Oct. 2004.

[2] N. Sommer, M. Feder and O. Shalvi, “Low Density Lattice Codes,” IEEE
Trans. Inform. Theory, vol. 54, pp. 1561-1585, April 2008.

[3] B. M. Kurkoski and J. Dauwels, “Message-Passing Decoding of Lattices
Using Gaussian Mixtures,” Proceeding of the Int. Symp. on Inform.
Theory, ISIT 2008, Toronto, Canada, July 2008.

[4] Y. Yona and M. Feder, “Efficient Parametric Decoder of Low Density
Lattice Codes”, Proceeding of the Int. Symp. on Inform. Theory, ISIT
2009, Seoul, Korea, June 2009.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematic (SIAM), 2nd edition, 2003.

[6] G. D. Forney Jr. and G. Ungerboeck, “Modulation and coding for linear
Gaussian channels,” IEEE Trans. Inf. Theory, pp. 2384–2415, Oct. 1998.

[7] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
IEEE Trans. Inform. Theory, vol. 40, pp. 409-417, Mar. 1994.

[8] B. M. Kurkoski, J. Dauwels and H. A. Loeliger, “Power-Constrained
Communications Using LDLC Lattices”, Proceeding of the Int. Symp. on
Inform. Theory, ISIT 2009, Seoul, Korea, June 2009.

[9] O. Shalvi, N. Sommer and M. Feder, “Signal Codes,” proceedings of the
Information theory Workshop, 2003, pp. 332–336.

[10] O. Shalvi, N. Sommer and M. Feder, “Signal Codes,” sub-
mitted to IEEE Transactions on Information Theory, available at
http://arxiv.org/PS cache/arxiv/pdf/0806/0806.4773v1.pdf.

[11] M. Tomlinson, “New automatic equalizer employing modulo arithmetic,”
Elect. Letters, pp. 138–139, March 1971.

[12] G. D. Forney and M. V. Eyuboglu, “Combined equalization and coding
using precoding,” IEEE Commun. Mag., vol. 29, pp. 25-34, Dec. 1991.

[13] R. Laroia, S. A. Tretter and N. Farvardin, “A Simple and Effective
Precoding Scheme for Noise Whitening on Intersymbol Interference
Channels,” IEEE trans. comm., vol. 41, pp. 1460-1463, Oct. 1993.

[14] G. D. Forney Jr., “Trellis Shaping,” IEEE Tran. Inform. Theory, vol.
IT-38(2), pp. 281–300, March 1992.

[15] R. Laroia, N. Farvardin and S. A. Tretter, “On optimal shaping of
multidimensional constellations,” IEEE Trans. Inform. Theory, vol. 40,
pp. 1044-1056, July 1994.

[16] J. H. Conway and N. J. A. Sloane, “A Fast Encoding Method for Lattice
Codes and Quantizers,” IEEE Trans. Inf. Theory, pp. 820–824, Nov. 1983.

[17] T. Aulin, “Breadth-First Maximum Likelihood Sequence Detection:
Basics,” IEEE Trans. Comm., vol. 47(2), pp. 208–216, Feb 1999.

242

