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ABSTRACT

Regularization is a required component of geophysical estimation problems that
operate with insufficient data. The goal of regularization is to impose additional
constraints on the estimated model. I introduce shaping regularization, a general
method for imposing constraints by explicit mapping of the estimated model
to the space of admissible models. Shaping regularization is integrated in a
conjugate-gradient algorithm for iterative least-squares estimation. It provides
the advantage of a better control on the estimated model in comparison with
traditional regularization methods and, in some cases, leads to a faster iterative
convergence. Simple data interpolation and seismic velocity estimation examples
illustrate the concepta.

aPresented at the SEG Annual Meeting in 2005

INTRODUCTION

A great number of geophysical estimation problems are mathematically ill-posed be-
cause they operate with insufficient data (Jackson, 1972). Regularization is a tech-
nique for making the estimation problems well-posed by adding indirect constraints
on the estimated model (Engl et al., 1996; Zhdanov, 2002). Developed originally
by Tikhonov (1963) and others, the method of regularization has become an indis-
pensable part of the inverse problem theory and has found many applications in
geophysical problems: traveltime tomography (Bube and Langan, 1999; Clapp et al.,
2004), migration velocity analysis (Woodward et al., 1998; Zhou et al., 2003), high-
resolution Radon transform (Trad et al., 2003), spectral decomposition (Portniaguine
and Castagna, 2004), etc.

While the main goal of inversion is to fit the observed data, Tikhonov’s regulariza-
tion adds another goal of fitting the estimated model to a priorly assumed behavior.
The contradiction between the two goals often leads to a slow convergence of iterative
estimation algorithms (Harlan, 1995). The speed can be improved considerably by
an appropriate model reparameterization or preconditioning (Fomel and Claerbout,
2003). However, the difficult situation of trying to satisfy two contradictory goals si-
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multaneously leads sometimes to an undesirable behavior of the solution at the early
iterations of an iterative optimization scheme.

In this paper, I introduce shaping regularization, a new general method of impos-
ing regularization constraints. A shaping operator provides an explicit mapping of
the model to the space of acceptable models. The operator is embedded in an itera-
tive optimization scheme (the conjugate-gradient algorithm) and allows for a better
control on the estimation result. Shaping into the space of smooth functions can
be accomplished with efficient lowpass filtering. Depending on the desirable result,
it is also possible to shape the model into a piecewise-smooth function, a function
following geological structure, or a function representable in a predefined basis. I il-
lustrate the shaping concept with simple numerical experiments of data interpolation
and seismic velocity estimation.

REVIEW OF TIKHONOV’S REGULARIZATION

If the data are represented by vector d, model parameters by vector m, and their
functional relationship is defined by the forward modeling operator L, the least-
squares optimization approach amounts to minimizing the least-squares norm of the
residual difference Lm− d. In Tikhonov’s regularization approach, one additionally
attempts to minimize the norm of Dm, where D is the regularization operator.
Thus, we are looking for the model m that minimizes the least-squares norm of the

compound vector
[
Lm− d ǫDm

]T
, where ǫ is a scalar scaling parameter. The

formal solution has the well-known form

m̂ =
(
LT L+ ǫ2 DT D

)
−1

LT d , (1)

where m̂ denotes the least-squares estimate of m, and LT denotes the adjoint oper-
ator. One can carry out the optimization iteratively with the help of the conjugate-
gradient method (Hestenes and Steifel, 1952) or its analogs. Iterative methods have
computational advantages in large-scale problems when forward and adjoint opera-
tors are represented by sparse matrices and can be computed efficiently (Saad, 2003;
van der Vorst, 2003).

In an alternative approach, one obtains the regularized estimate by minimizing

the least-squares norm of the compound vector
[
p r

]T
under the constraint

ǫr = d− Lm = d− LPp . (2)

Here P is the model reparameterization operator that translates vector p into the
model vector m, r is the scaled residual vector, and ǫ has the same meaning as
before. The formal solution of the preconditioned problem is given by

m̂ = P p̂ = PPT LT
(
LPPT LT + ǫ2 I

)
−1

d , (3)



Fomel 3 Shaping regularization

where I is the identity operator in the data space. Estimate 3 is mathematically
equivalent to estimate 1 if DT D is invertible and

(
DT D

)
−1

= PPT = C . (4)

Statistical theory of least-squares estimation connects C with the model covariance
operator (Tarantola, 2004). In a more general case of reparameterization, the size of
p may be different from the size of m, and C may not have the full rank. In iterative
methods, the preconditioned formulation often leads to faster convergence. Fomel and
Claerbout (2003) suggest constructing preconditioning operators in multi-dimensional
problems by recursive helical filtering.

SMOOTHING BY REGULARIZATION

Let us consider an application of Tikhonov’s regularization to one of the simplest
possible estimation problems: smoothing. The task of smoothing is to find a model
m that fits the observed data d but is in a certain sense smoother. In this case, the
forward operator L is simply the identity operator, and the formal solutions 1 and 3
take the form

m̂ =
(
I+ ǫ2 DT D

)
−1

d = C
(
C+ ǫ2 I

)
−1

d . (5)

Smoothness is controlled by the choice of the regularization operatorD and the scaling
parameter ǫ.

Figure 1 shows the impulse response of the regularized smoothing operator in the
1-D case when D is the first difference operator. The impulse response has expo-
nentially decaying tails. Repeated application of smoothing in this case is equivalent
to applying an implicit Euler finite-difference scheme to the solution of the diffusion
equation

∂m

∂t
= −DT Dm (6)

The impulse response converges to a Gaussian bell-shape curve in the physical domain,
while its spectrum converges to a Gaussian in the frequency domain.

As far as the smoothing problem is concerned, there are better ways to smooth sig-
nals than applying equation 5. One example is triangle smoothing (Claerbout, 1992).
To define triangle smoothing of one-dimensional signals, start with box smoothing,
which, in the Z-transform notation, is a convolution with the filter

Bk(Z) =
1

k

(
1 + Z + Z2 + · · ·+ Zk

)
=

1

k

1− Zk+1

1− Z
, (7)

where k is the filter length. Form a triangle smoother by correlation of two boxes

Tk(Z) = Bk(1/Z)Bk(Z) (8)

Triangle smoothing is more efficient than regularized smoothing, because it requires
twice less floating point multiplications. It also provides smoother results while having
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Figure 1: Left: impulse response of regularized smoothing. Repeated smoothing con-
verges to a Gaussian bell shape. Right: frequency spectrum of regularized smoothing.
The spectrum also converges to a Gaussian.
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a compactly supported impulse response (Figure 2). Repeated application of triangle
smoothing also makes the impulse response converge to a Gaussian shape but at a
significantly faster rate. One can also implement smoothing by Gaussian filtering in
the frequency domain or by applying other types of bandpass filters.

Figure 2: Left: impulse response of triangle smoothing. Repeated smoothing con-
verges to a Gaussian bell shape. Right: frequency spectrum of triangle smoothing.
Convergence to a Gaussian is faster than in the case of regularized smoothing. Com-
pare to Figure 1.

SHAPING REGULARIZATION IN THEORY

The idea of shaping regularization starts with recognizing smoothing as a fundamental
operation. In a more general sense, smoothing implies mapping of the input model
to the space of admissible functions. I call the mapping operator shaping. Shaping
operators do not necessarily smooth the input but they translate it into an acceptable
model.

Taking equation 5 and using it as the definition of the regularization operator D,
we can write

S =
(
I+ ǫ2 DT D

)
−1

(9)
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or
ǫ2 DT D = S−1

− I . (10)

Substituting equation 10 into 1 yields a formal solution of the estimation problem
regularized by shaping:

m̂ =
(
LT L+ S−1

− I
)
−1

LT d =
[
I+ S

(
LT L− I

)]
−1

SLT d . (11)

The meaning of equation 11 is easy to interpret in some special cases:

• If S = I (no shaping applied), we obtain the solution of unregularized problem.

• If LT L = I (L is a unitary operator), the solution is simply SLT d and does
not require any inversion.

• If S = λ I (shaping by scaling), the solution approaches λLT d as λ goes to
zero.

The operator L may have physical units that require scaling. Introducing scaling
of L by 1/λ in equation 11, we can rewrite it as

m̂ =
[
λ2 I+ S

(
LT L− λ2 I

)]
−1

SLT d . (12)

The λ scaling in equation 12 controls the relative scaling of the forward operator L
but not the shape of the estimated model, which is controlled by the shaping operator
S.

Iterative inversion with the conjugate-gradient algorithm requires symmetric pos-
itive definite operators (Hestenes and Steifel, 1952). The inverse operator in equa-
tion 12 can be symmetrized when the shaping operator is symmetric and representable
in the form S = HHT with a square and invertible H. The symmetric form of equa-
tion 12 is

m̂ = H
[
λ2 I+HT

(
LT L− λ2 I

)
H

]
−1

HT LT d . (13)

When the inverted matrix is positive definite, equation 13 is suitable for an iterative
inversion with the conjugate-gradient algorithm. Appendix A contains a complete
algorithm description.

FROM TRIANGLE SMOOTHING TO TRIANGLE

SHAPING

The idea of triangle smoothing can be generalized to produce different shaping oper-
ators for different applications. Let us assume that the estimated model is organized

in a sequence of records, as follows: m =
[
m1 m2

... mn

]T
. Depending on the

application, the records can be samples, traces, shot profiles, etc. Let us further as-
sume that, for each pair of neighboring records, we can design a prediction operator
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Zk→k+1, which predicts record k + 1 from record k. A global prediction operator is
then

Z =




0 0 0 · · · 0 0
Z1→2 0 0 · · · 0 0
0 Z2→3 0 · · · 0 0
0 0 Z3→4 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · Zn−1→n 0




. (14)

The operator Z effectively shifts each record to the next one. When local prediction is
done with identity operators, this operation is completely analogous to the Z operator
used in the theory of digital signal processing. The Z operator can be squared, as
follows:

Z2 =




0 0 · · · 0 0 0
0 0 · · · 0 0 0

Z2→3 Z1→2 0 · · · 0 0 0
0 Z3→4 Z2→3 · · · 0 0 0
· · · · · · · · · · · · · · · · · ·

0 0 · · · Zn−1→n Zn−2→n−1 0 0




. (15)

In a shorter notation, we can denote prediction of record j from record i by Zi→j and
write

Z2 =




0 0 · · · 0 0 0
0 0 · · · 0 0 0

Z1→3 0 · · · 0 0 0
0 Z2→4 · · · 0 0 0
· · · · · · · · · · · · · · · · · ·

0 0 · · · Zn−2→n 0 0




. (16)

Subsequently, the prediction operator Z can be taken to higher powers. This leads
immediately to an idea on how to generalize box smoothing: predict each record from
the record immediately preceding it, the record two steps away, etc. and average all
those predictions and the actual records. In mathematical notation, a box shaper of
length k is then simply

Bk =
1

k

(
I+ Z+ Z2 + · · ·+ Zk

)
, (17)

which is completely analogous to equation 7. Implementing equation 17 directly
requires many computational operations. Noting that

(I− Z) Bk =
1

k

(
I− Zk+1

)
, (18)

we can rewrite equation 17 in the compact form

Bk =
1

k
(I− Z)−1

(
I− Zk+1

)
, (19)
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which can be implemented economically using recursive inversion of the lower trian-
gular operator I − Z. Finally, combining two generalized box smoothers creates a
symmetric generalized triangle shaper

Tk = BT
k Bk , (20)

which is analogous to equation 8. A triangle shaper uses local predictions from both
the left and the right neighbors of a record and averages them using triangle weights.

Figure 3: Shaping by smoothing along local dip directions according to operator Tk

from equation 20. a: an example image, b: local dip estimation, c: smoothing random
numbers along local dips, d: impulse responses of oriented smoothing for nine different
locations in the image space.

Figure 3 illustrates generalized triangle shaping by constructing a non-stationary
smoothing operator that follows local structural dips. Figure 3a shows a synthetic
image from Claerbout (2006). Figure 3b is a local dip estimate obtained with plane-
wave destruction (Fomel, 2002). Figure 3c is the result of applying triangle smoothing
oriented along local dip directions to a field of random numbers. Oriented smooth-
ing generates a pattern reflecting the structural composition of the original image.
This construction resembles the method of Claerbout and Brown (1999). Figure 3d
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shows the impulse responses of oriented smoothing for several distinct locations in
the image space. As illustrated later in this paper, oriented smoothing can be applied
for generating geophysical Earth models that are compliant with the local geological
structure (Sinoquet, 1993; Versteeg and Symes, 1993; Clapp et al., 2004).

Appendix B describes general rules for combining elementary shaping operators.

EXAMPLES

Two simple examples in data regularization and seismic velocity estimation illustrate
the method of shaping.

1-D inverse data interpolation

I start with a simple 1-D example: a benchmark data regularization test used previ-
ously by Fomel and Claerbout (2003).

(a) (b)

Figure 4: The input data (b) are irregular samples from a sinusoid (a).

The input synthetic data are irregular samples from a sinusoidal signal (Figure 4).
The task of data regularization is to reconstruct the data on a regular grid. The
forward operator L in this case is forward interpolation from a regular grid using
linear (two-point) interpolation.

Figure 5 shows some of the first iterations and the final results of inverse interpola-
tion with Tikhonov’s regularization using equation 1 and with model preconditioning
using equation 3. The regularization operator D in equation 1 is the first finite
difference, and the preconditioning operator P in 3 is the inverse of D or causal
integration. The preconditioned iteration converges faster but its very first itera-
tions produce unreasonable results. This type of behavior can be dangerous in real
large-scale problems, when only few iterations are affordable.

The left side of Figure 6 shows some of the first iterations and the final result
of inverse interpolation with shaping regularization, where the shaping operator S

was chosen to be Gaussian smoothing with the impulse response width of about 10
samples. The final result is smoother, and the iteration is both fast-converging and
producing reasonable results at the very first iterations. Thanks to the fact that the
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Figure 5: The first iterations and the final result of inverse interpolation with
Tikhonov’s regularization using equation 1 (left) and with model preconditioning us-
ing equation 3 (right). The regularization operator D is the first finite difference. The
preconditioning operator P = D−1 is causal integration. The number of iterations is
indicated in the plot labels.
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Figure 6: The first iterations and the final result of inverse interpolation with shaping
regularization using equation 13. Left: the shaping operator H is lowpass filtering
with a Gaussian smoother. Right: the shaping operator H is bandpass filtering with
a shifted Gaussian. Shaping by bandpass filtering recovers the sinusoidal shape of the
estimated model. The number of iterations is indicated in the plot labels.
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Figure 7: Spectrum of the estimated model (solid curve) fitted to a shifted Gaus-
sian (dashed curve). The Gaussian band-limited filter defines a shaping operator for
recovering a band-limited signal.
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smoothing operation is applied at each iteration, the estimated model is guaranteed
to have the prescribed shape.

Examining the spectrum of the final result (Figure 7), one can immediately notice
the peak at the dominant frequency of the initial sinusoid. Fitting a Gaussian shape
to the peak defines a data-adaptive shaping operator as a bandpass filter implemented
in the frequency domain (dashed curve in Figure 7). Inverse interpolation with the
estimated shaping operator recovers the original sinusoid (right side of Figure 6).
Analogous ideas in the model preconditioning context were proposed by Liu and
Sacchi (2001).

Velocity estimation

The second example is an application of shaping regularization to seismic velocity
estimation. Figure 8 shows a time-migrated image from a historic Gulf of Mexico
dataset (Claerbout, 2006). The image was obtained by velocity continuation (Fomel,
2003). The corresponding migration velocity is shown in the right plot of Figure 8.
Shaping regularization was used for picking a smooth velocity profile from semblance
gathers obtained in the process of velocity continuation.

Figure 8: Left: time-migrated image. Right: The corresponding migration velocity
from automatic picking.
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The task of this example is to convert the time migration velocity to the inter-
val velocity. I use the simple approach of Dix inversion (Dix, 1955) formulated as a
regularized inverse problem (Valenciano et al., 2004). In this case, the forward oper-
ator L in equation 11 is a weighted time integration. There is a choice in choosing
the shaping operator H.

Figure 9 shows the result of inversion with shaping by triangle smoothing. While
the interval velocity model yields a good prediction of the measured velocity, it may
not appear geologically plausible because the velocity structure does not follow the
structure of seismic reflectors as seen in the migrated image.

Following the ideas of steering filters (Clapp et al., 1998, 2004) and plane-wave
construction (Fomel and Guitton, 2006), I estimate local slopes in the migration
image using the method of plane-wave destruction (Fomel, 2002) and define a triangle
plane-wave shaping operatorH using the method of the previous section. The result of
inversion, shown in Figures 10 and 11, makes the estimated interval velocity follow the
geological structure and thus appear more plausible for direct interpretation. Similar
results were obtained by Fomel and Guitton (2006) using model parameterization by
plane-wave construction but at a higher computational cost. In the case of shaping
regularization, about 25 efficient iterations were sufficient to converge to the machine
precision accuracy.

Figure 9: Left: estimated interval velocity. Right: predicted migration velocity.
Shaping by triangle smoothing.
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Figure 10: Left: estimated interval velocity. Right: predicted migration velocity.
Shaping by triangle local plane-wave smoothing creates a velocity model consistent
with the reflector structure.
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Figure 11: Seismic image from Figure 8 overlaid on top of the interval velocity model
estimated with triangle plane-wave shaping regularization.
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CONCLUSIONS

Shaping regularization is a new general method for imposing regularization con-
straints in estimation problems. The main idea of shaping regularization is to rec-
ognize shaping (mapping to the space of acceptable functions) as a fundamental
operation and to incorporate it into iterative inversion.

There is an important difference between shaping regularization and conventional
(Tikhonov’s) regularization from the user prospective. Instead of trying to find and
specify an appropriate regularization operator, the user of the shaping regularization
algorithm specifies a shaping operator, which is often easier to design. Shaping op-
erators can be defined following a triangle construction from local predictions or by
combining elementary shapers.

I have shown two simple illustrations of shaping applications. The examples
demonstrate a typical behavior of the method: enforced model compliance to the
specified shape at each iteration and, in many cases, fast iterative convergence of the
conjugate gradient iteration. The model compliance behavior follows from the fact
that shaping enters directly into the iterative process and provides an explicit control
on the shape of the estimated model.
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APPENDIX A

CONJUGATE-GRADIENT ALGORITHM

A complete algorithm for conjugate-gradient iterative inversion with shaping regu-
larization is given below. The algorithm follows directly from combining equation 13
with the classic conjugate-gradient algorithm of Hestenes and Steifel (1952).
Conjugate gradients with shaping(L,H,d, λ, tol, N)
1 p← 0

2 m← 0

3 r← −d

4 for n← 1, 2, . . . , N
5 do

6 gm ← LT r− λm
7 gp ← HT gm + λp
8 gm ← Hgp

9 gr ← Lgm

10 ρ← gT
p gp

11 if n = 1
12 then β ← 0
13 ρ0 ← ρ
14 else β ← ρ/ρ̂
15 if β < tol or ρ/ρ0 < tol
16 then return m

17



sp
sm
sr


←



gp

gm

gr


+ β



sp
sm
sr




18 α← ρ/
[
sTr sr + λ (sTp sp − sTm sm)

]

19



p

m

r


←



p

m

r


− α



sp
sm
sr




20 ρ̂← ρ
21 return m

The iteration terminates after N iterations or upon reaching convergence to the
specified tolerance tol. It uses auxiliary vectors p, r, sp, sm, sr, gp, gm, gr and applies
operators L, H and their adjoints only once per each iteration.
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APPENDIX B

COMBINING SHAPING OPERATORS

General rules can be developed to combine two or more shaping operators for the
cases when there are several features in the model that need to be characterized
simultaneously. A general rule for combining two different shaping operators S1 and
S2 can have the form

S12 = S1 + S2 − S1 S2 , (B-1)

where one adds the responses of the two shapers and then subtracts their overlap. An
example is shown in Figure B-1, where an impulse response for oriented smoothing in
two different directions is constructing from smoothing in each of the two directions
separately.

Figure B-1: Impulse response for
a combination of two shaping op-
erators smoothing in two different
directions.

Combining two operators that work in orthogonal directions can be accomplished
with a simple tensor product, as follows:

Sxy = Sx Sy , (B-2)

where Sx and Sy are shaping operators that apply in orthogonal x- and y-directions,
and Sxy is a combined operator that works in both directions. An example is shown
in Figure B-2, where two two-dimensional shapers working in orthogonal directions
are combined to produce an impulse response of 3-D shaping operator that applies
smoothing along a three-dimensional plane.

Figure B-2: 3-D impulse response
for a combination of two 2-D shap-
ing operators smoothing in in-line
and cross-line directions.

Constructing multidimensional recursive filters for helical preconditioning (Fomel
and Claerbout, 2003) is significantly more difficult. It involves helical spectral factor-
ization, which may create long inefficient filters (Fomel et al., 2003).


