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Shaping the topology of folding pathways in
mechanical systems
Menachem Stern1, Viraaj Jayaram1 & Arvind Murugan 1

Disordered mechanical systems, when strongly deformed, have complex configuration

spaces with multiple stable states and pathways connecting them. The topology of such

pathways determines which states are smoothly accessible from any part of configuration

space. Controlling this topology would allow us to limit access to undesired states and select

desired behaviors in metamaterials. Here, we show that the topology of such pathways, as

captured by bifurcation diagrams, can be tuned using imperfections such as stiff hinges in

elastic networks and creased thin sheets. We derive Linear Programming-like equations for

designing desirable pathway topologies. These ideas are applied to eliminate the exponen-

tially many ways of misfolding self-folding sheets by making some creases stiffer than others.

Our approach allows robust folding by entire classes of external folding forces. Finally, we find

that the bifurcation diagram makes pathways accessible only at specific folding speeds,

enabling speed-dependent selection of different folded states.
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W
hen a heterogeneous mechanical structure like an
elastic network or a thin sheet with creases is strained
to large extents, it typically shows multiple stable

states1,2. As we vary the strain level, these states can smoothly
deform and appear or disappear in bifurcations, creating a
complex network of pathways in configuration space. The geo-
metry and topology of such pathways determines which config-
urations are smoothly accessible from a given part of
configuration space and which ones are not. The response of the
material to applied forces is strongly shaped by the network of
such pathways3–5.

Such nonlinear features of configuration spaces have proven to
be a double-edged sword. When designed, multiple pathways and
multistability can be exploited to create mechanical switches,
shapeable sheets, and many other metamaterials2,6–12. However,
such nonlinear features can also create problems10,13–15. For
example, self-folding origami, despite the name, has an expo-
nential number of misfolding pathways that meet at a “branch
point” at the flat state13,16–19, making it nearly impossible to fold
into the desired folding mode14,15,20,21. Similar “branch points” in
mechanical linkages pose challenges in robotics and other
applications22–24.

In this work we suggest a new design principle that sculpts the
topology of dynamical pathways to desired and undesired states.
We focus on elastic networks and creased sheets where rods or
plates are connected at flexible joints. We show that hetero-
geneous stiffness in such joints can completely change the
topological connectivity of nonlinear pathways in configuration
space. With a distribution of stiffnesses predicted by our equa-
tions, undesired pathways can be arranged to end in saddle-node
bifurcations. Such bifurcations make undesired states inaccessible
from parts of configuration space, at least in the limit of adiabatic
folding. Finally, we find that pathways are accessible only at
specific folding speeds, allowing dynamical selection between
distinct behaviors.

While similar design principles to eliminate dynamical path-
ways to undesired states are commonplace in protein folding and
self-assembly of macromolecular structures and viruses25–28, such
ideas have not been systematically explored in metamaterials
design.

Designing the topology of the bifurcation diagram presents
several benefits. Once this topology has been designed for a
material, it is not modified by entire classes of applied folding
forces, but determines the response to such forces. For example,
in the context of self-folding origami, other approaches5 have
attempted to find fine-tuned folding forces that will fold a creased
sheet successfully. In contrast, our approach produces systems
that are truly “self-folding”29, i.e., our stiffened sheets fold along
the desired pathway for almost arbitrary applied forces. Similarly,
other approaches6 have sought to introduce directional asym-
metry so that, e.g., individual creases will fold in one way (say,
Mountain) but not the other (Valley). Counter-intuitively, our
approach shows that even symmetric stiffness in individual
creases—an inevitable feature of real materials—can effectively
pick a global Mountain–Valley pattern through their collective
behavior.

We begin by showing that heterogeneous stiffness in hinges of
a mechanical linkage changes the topology of folding pathways by
creating saddle-node bifurcations. We show that hinge stiffness
predicted from a linear (or quadratic) programming problem can
eliminate exponentially many undesired pathways at saddle-node
bifurcations and demonstrate such an elimination for folding
pathways present at the flat state of thin creased sheets. We show
that such a stiffened thin sheet is truly “self-folding” since the
sheet can be folded robustly by a host of folding protocols and

forces without any fine-tuning. Finally, we show that controlling
the position of saddle-node bifurcations in configuration space,
specific folding pathways can be made accessible at specific
folding speeds. Consequently, we find that folding speed can
select between different target structures.

Results
Avoided bifurcation in linkage networks. We first demonstrate
our ideas on a simple but canonical model, namely the 4-bar
mechanical linkage30,31 in Fig. 1a, b. While the structure has only
one Maxwell degree of freedom, the flat state is a special point—it
sits at a bifurcation where the degree of freedom is branched (and
associated with a self-stress mode)32. When compressed as
shown, the linkage must choose one of the two distinct zero
energy motions that conserve rod lengths. The associated energy
landscape, at some fixed compression, has two minima corre-
sponding to these motions with an energy barrier (transition state
(TS)) between them; see Fig. 1a. (See Supplementary note 1 for
precise energy model.) Many studies3,4,24 have sought to predict
and eliminate such “branch points” in complex mechanisms
because one of the modes is usually desired and functional, while
the other is undesired.

We take a different approach and observe that experimental
realizations of such mechanisms33–35 have imperfections that lift
the energies of all the modes. If an imperfection can raise the
energy of the undesired zero mode more than it raises the
energies of the desired mode and the TS, the undesired mode
would disappear in a saddle-node bifurcation with the transitions
state.

One such imperfection is stiffness in the joints. We model the
stiffness of joint i by a torsional spring of stiffness κi that is
relaxed in the flat configuration shown, i.e., at the branch point.
That is, we assume a joint energy Ei ¼ κiρ

2
i =2, ρi being the folding

angle measured from the flat state configuration.
We find that if the joints have unequal stiffness κi, the energies

of different modes are lifted to different extents. In fact, one of the
modes undergoes a saddle-node bifurcation with the TS
separating the two modes (see Fig. 1c, d) at a finite folding
extent ρ= ρc where ρ � ρk k. The distance ρc is given by a
competition between rod compression (or bending in alternative
models) at the TS ~Kρ4, with K a compression modulus, and the
spring energy ~κρ2; as shown in Supplementary Note 1,

ρc �
ffiffiffiffiffiffiffiffiffi

κ=K
p

. Other choices of κi can eliminate the other mode.
Thus joint stiffnesses change the topological connectivity of

undesired modes in state space; see Fig. 1d. As a result, the
undesired mode can be made inaccessible from the flat state,
which now continuously connects with only the desired mode. If
the network is actuated slowly relative to relaxation timescales of
the stiff joints, the network will fold into the desired mode and
stay in that state even for ρ > ρc, despite the reappearance of the
undesired mode at finite ρ.

Misfolding in self-folding sheets. Self-folding sheets (or self-
folding origami) are structures programmed to have one unique
low- or zero-energy mode6,29,36. However, self-folding sheets,
even when programmed with a single zero-energy mode, have
been shown to have exponentially many undesirable misfolding
modes accessible from the flat state14,15. We show how crease
stiffness can change the topological connectivity of these modes
and leave only the desired folding mode accessible from the flat
state.

To solve the misfolding problem for diverse folding forces, our
approach intentionally ignores external folding forces when
reprogramming the topological connectivity of modes. Since
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folding success relies on the bifurcation diagram topology, our
results are mathematically robust to several classes of folding
forces as shown later.

Avoided bifurcation in a 4-vertex. The atomic unit of self-
folding origami is a 4-vertex37. Much like the 4-bar linkage, the 4-
vertex has one degree of freedom but the flat unfolded 4-vertex is
at a branch point, a meeting point of two distinct folding

motions2,5, distinguished by the Mountain–Valley states of the
creases (Fig. 2a)38,39. These two motions are shown as zero energy
minima in Fig. 2a using a model of vertex energy presented in
Supplementary Note 2, with a TS separating them. This binary
choice is the origin of the exponentially many misfolds of large
self-folding sheets.

As with the 4-bar linkage, we wish to lift and eliminate one of the
two folding motions, making it inaccessible from the flat state. We
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as minima in the energy landscape at a fixed total strain ρ. c, d We can eliminate a chosen motion in a saddle-node bifurcation at ρc by making the joints

stiff to different extents (i.e., adding torsional springs that are relaxed in the flat state; larger orange circles denote stiffer springs). The bifurcation

diagram shows that such a stiffness profile changes the connectivity of the two nonlinear modes. One of the two modes is destroyed in a saddle-node
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Saddle-node

constraint Minimize distortion

Predicted

stiffness 

Stiff

creases

LP

TS
Saddle-node bifurcation

–8

In
 (

G
e
o
m

e
tr

ic
 d

is
to

rt
io

n
)

–9

–10

–11

–12

–13

–14

–15

–20 –18

In (Energy distortion)

–16 –14 –12

a b

d e f g

QP

1

2

3

4

1

2

3
4

1

2

3

4

c

4

E

In
E

In
E

π
2
π

4
3π π

�

4
π

2
π

4
3π π

�

Ki profile

LP

QP

Random

ρ
D

–n

K1

K1

Ki

Ki

Ki > 0Kn

Kn

φ2 φ1 φ2 φ1

Fig. 2 Heterogeneous stiff creases can simplify the landscape of self-folding sheets near the flat state. a An origami 4-vertex has a choice between two

distinct folding modes at the flat state (ϕ—null space angle variable, see Supplementary Note 2). b Stiff creases completely eliminates a chosen mode by

combining it with a nearby transition state (TS) in a saddle-node bifurcation (thickness of orange strip indicates stiffness.) c Trade-off: stiff creases distort

the desired mode while eliminating undesired modes. Stiffness profiles that minimize energy distortion (e.g., the linear programming (LP) method) cause

large geometric distortion and vice versa (e.g., the quadratic programming (QP) method). d The exponentially many misfolding modes of large sheets are

all eliminated if the stiffness profile κi satisfies a linear constraint, shown here as a simplex. e We can minimize distortion (energy or geometry) of the

desired mode by optimizing crease stiffness on this simplex. f, g All but one chosen minimum in a pattern’s energy landscape (at small overall folding) can

be eliminated by stiff creases predicted by the procedure in (e)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06720-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4303 | DOI: 10.1038/s41467-018-06720-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


introduce stiffness at the creases, an inevitable feature of most
material implementations. We model such stiffness of crease i, as a
torsional spring with ρ= 0 rest angle and energy ECrease; i ¼ κiρ

2
i =2.

The energy of the origami vertex is,

E ¼ EVertex þ ECrease; ð1Þ

where EVertex accounts for bending of vertex faces37 and ECrease ¼
P

i κiρ
2
i =2 accounts for crease stiffness. For details on the energy

model see Supplementary Note 2. Crucially, EVertex scales with a
high power ρ4 for the two special folding motions.

Let us find the conditions on κi for lifting and eliminating a
chosen mode—the “undesired mode”—of the 4-vertex. We
assume the folding angles of the undesired mode and the desired
mode are ~ρU and ~ρD, respectively and that of the TS separating
them is ~ρTS, all assumed to be defined near the flat state and
normalized (with unity magnitude); see Fig. 2a.

Let ETS(ρ) be the energy of TS at some chosen total folding
ρ � ρk k. As the vertex null space (at fixed ρ) is one-dimensional
and compact14, these features (~ρU, ~ρD, ~ρTS, and ETS) can all be
computed numerically efficiently using peak analysis. Here, we
will focus on eliminating the undesired minimum up to a distance
ρc from the flat state and return to larger folding behaviors later.
To lift and eliminate the undesired minimum, we should choose a
heterogeneous stiffness profile that raises the undesired mode
more than the TS. This constraint—requiring a saddle-node
bifurcation—can be written as,

1

2
ρ
2
c

X

i2 creases

κi ~ρU

� �2

i
� ~ρTS

� �2

i

h i

� ETS: ð2Þ

In addition, all crease stiffnesses must be nonnegative:

κi � 0: ð3Þ

Note that both constraints are linear in the stiffnesses κi.
Any set κi satisfying the above constraints that predominantly

raises the undesired mode will eliminate it will eliminate the
undesired mode in a saddle-node bifurcation at a total folding
distance ρc, making it inaccessible from the flat state.

Only the desired mode is stable in the neighborhood of the flat
state but it can be significantly distorted by the stiff creases. As
shown in Fig. 2, with stiff creases, the desired mode is of nonzero
energy (“Energy distortion”) and can also have distorted folding
angles (“Geometric distortion”, defined by one minus the
normalized dot product of the desired mode and the obtained
minimum). We wish to formulate design principles for choosing
stiffness profiles κi, consistent with the above constraints, that
best facilitate designed folding motions.

We devise two design strategies: (1) minimizing energy of the
desired mode (energy optimization) and (2) minimizing geo-
metric distortion of the desired mode (geometric optimization).
We find that different crease stiffness profiles generally trade-off
energy and geometric distortion.

Energy optimization is simple: the desired mode has non-zero
energy EðρDÞ ¼

P

κiðρDÞ
2
i =2 because of crease stiffness. As this

function is linear in κi, optimization subject to the saddle-node
constraints equations (2) and (3) is equivalent to a Linear

Programming (LP) problem40,41:

minimize

κi

EðρDÞ ¼
1
2

P

i

ðρDÞ
2
i κi

subjectto ρ
2
c

P

i

ð~ρUÞ
2
i � ð~ρTSÞ

2
i

� �

κi � 2ETS;

κi � 0; i 2 creases:

ð4Þ

LP problems are solved in polynomial time, as long as an
efficient algorithm is used. Further, the optimal stiffness profile κi
is generically guaranteed to be sparse. In a 4-vertex, only one
crease needs to be stiff.

Geometric distortion is minimized if fold angles in the
surviving minimum with stiff creases closely corresponds to the
fold angles ρD of the desired mode without stiff creases. Here,
we use the gradient of the energy with stiff creases, but
evaluated at ρD, as a proxy for such geometric distortion. As
shown in Supplementary Note 4, this proxy, after projecting

out the component of the gradient in the ρD direction, is FQP ¼

ρ
2
D

P

i2creases κ
2
i ðρDÞ

2
i �

P

i;j κiκjðρDÞ
2
i ðρDÞ

2
j : FQP is a positive

semidefinite quadratic function of κi. Optimization of FQP—with
the linear constraints in Eqs. (2) and (3)—is facilitated by efficient
Quadratic Programming (QP) algorithms.

In practice, the LP and QP prescriptions do well at optimizing
their respective strategies (i.e., energy and geometry) for a single
vertex. Figure 2c shows how these prescriptions indeed do better
than choosing random stiffness profiles that satisfy the con-
straints. The black line κi � ðρDÞ

�n
i for positive n, shows that

stiffness profiles trade-off energetic and geometric distortion.

Stiffness profiles in large self-folding sheets. Large origami
patterns have exponentially many distractor minima states,
making them near impossible to fold correctly14,15. Still, the ideas
of the previous section can be used to lift all but one of these
minima at small folding angles. Crucially, the desired self-folding
motion of a large pattern35,42 is consistent with exactly one of the
two folding modes for each of its constituent 4-vertices. Thus, for
a pattern with V vertices, the saddle-node constraint in Eq. (2)
generalizes to V linear constraints, one for each vertex v:

ρ
2
c

X

i2 creasesofv

κi ð~ρU;vÞ
2
i � ð~ρTS;vÞ

2
i

h i

� 2ETS;v: ð5Þ

Note that the constraints are dependent since vertices share
creases. These linear constraints, along with κi > 0, define a
simplex in the space of crease stiffnesses as shown in Fig. 2d. We
can still use LP and QP algorithms as before to find optimized
stiffness profiles.

Larger folding angles and adiabatic folding. Figure 2f, g shows
that applying a LP stiffness profile to a quad pattern lifts all but
one minimum close to the flat state. Sampling many large pat-
terns shows that LP and QP indeed optimize their respective
strategies However, while folding the quad with stiff creases in
Fig. 2g retrieved the desired structure, we noticed that folding
beyond a certain angle gives rise to many new minima (Fig. 3a).
To understand this, note that the saddle-node bifurcation con-
straint, Eq. (2), only ensures the absence of undesired modes up
to a total folding ρc at which ETS(ρc) is computed. Intuitively,
crease stiffness (~ρ2) becomes less important than face bending
(~ρ4) as folding proceeds and undesired modes are restored in a
series of saddle-node bifurcations.
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At first sight, the reappearance of undesired modes at large
ρ might seem disappointing. However, if folding is carried out
adiabatically—i.e., slowly relative to hinge relaxation timescales—
these modes do not impact folding at all. Adiabatic folding,
by definition, will follow the continuous deformation of the
unique low-ρ minimum (blue paths in Fig. 3b, c), even if it
is significantly distorted relative to the desired state. Thus,
for successful adiabatic folding, the only condition is that
the unique low-ρ mode is continuously deformed to the desired
structure at large ρ (Fig. 3b). Figure 3(c) show the bifurcation
diagram for a 16-vertex pattern with stiff creases predicted by LP.
The unique low-ρ mode is significantly distorted relative to the
desired state (i.e., has low-dot product). Nevertheless, this mode is
continuously deformed to the desired state along the blue
path, which was followed in slow folding simulations. Undesired
states, on the other hand, are not continuously connected to the
low-ρ mode.

To test whether our stiff crease prescriptions are able to
consistently create such adiabatic pathways, we sampled 50
random patterns, each with a programmed low-energy motion
using the loop equations of ref.35,42. Such patterns are expected to
have ~103 higher energy undesired modes14, corresponding to
motions that jam close to the flat state. Accordingly, we almost
never succeed in folding in the desired low-energy mode with
generic folding torques. and thus folding almost always fails
(Fig. 3d).

We then augmented the sampled patterns with stiff creases
resulting from LP and QP prescriptions and simulated folding at
varying speeds. In simulations, we assume the crease hinges
follow a first-order equation with a relaxation timescale τrelax; this
timescale is known to vary with material implementation43. These
stiff patterns achieve a success rate in excess of 90% when folded
slowly (Fig. 3d), compared with the expected <0.1% success rate
with free folding creases. Thus our stiffness heuristics are useful
for slow folding, yet imperfect.

The small fraction of failed cases represent patterns where the
unique low-ρmode and the desired high-ρmode undergo distinct
saddle-node bifurcations at intermediate ρ and thus do not
connect up. Such bifurcations are mathematically forbidden if
these states are the lowest energy states for all ρ. Complex
optimization methods that account for details of nonlinear energy
landscape at all intermediate ρ might be able to better protect
from such bifurcations. However, we find that simple heuristics,
e.g., based on the energy of low- and high-ρ states alone, are
sufficient to protect the adiabatic pathway from bifurcations for
complex patterns. See Supplementary Note 5 for more analysis of
failures.

External folding forces applied to creases. Our crease stiffness
prescriptions are meant to eliminate undesired modes in the
intrinsic energy landscape of a sheet and not just for a particular
model of folding—hence no particular folding forces are assumed.
Once undesired modes are eliminated, many typical classes of
folding forces cannot reintroduce such modes near the flat state.

Besides strain-controlled folding tested above, another impor-
tant class of folding forces6,44 involves folding torques Fi applied
to specific creases i; see Fig. 4. A related method involves
setting target folding angles ρ

target
i for particular creases (see

Supplementary Note 3). Near the flat state, both of these methods
change the energy landscape by a linear tilt (~Fiρi). Mathema-
tically, such tilts cannot create new undesired minima close
enough to the flat state. We tested folding success in these
methods of actuation as a function of the number of actuated
creases. Folding success is enhanced by orders of magnitude due
to the stiff creases predicted here as shown in Fig. 4. Hence, our
approach to modifying the topology of the bifurcation diagram is
also useful when external folding forces are present—in fact, such
a modification is necessary for successful folding.

Earlier works5 have tried to find such specific folding torques
or folding springs to fold along a desired mode. Mathematically,
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such approaches appear similar to ours since they both involve
quadratic modifications to the energy function. However, our
crease stiffness is a quadratic potential centered at the branch
point (i.e., the flat state), and hence is able to modify the
topology of that point successfully while springs with finite target
angles5 are effectively linear tilts at the branch point. As noted
in ref. 5, successfully folding the pattern using such a method
requires undesired branches to have negative dot products
with the desired branch, a very unlikely scenario for larger
patterns. In contrast, our quadratic potentials at the flat state face
no such restriction and thus work in a dramatically larger context.

Our approach is also different in practice. Prior approaches5,14

sought sheets with freely folding creases that must be carefully
actuated using calculated folding forces. Our approach designs
sheets with calculated crease stiffness profiles that can be
carelessly actuated.

Folding speed-dependent target structures. We have seen that
the unique low-ρ minimum funnels adiabatic folding to the

desired state in a glassy landscape, even if the unique low-ρ mode
is significantly distorted relative to it. However, the success rate
drops with folding rate; see Fig. 3d.

Such a drop in success rate is to be expected since very fast
folding essentially takes the pattern from the unique low-ρ state to
high-ρ state with quenched geometry and then relaxes to the nearest
minimum. Thus, as suggested by Fig. 5a, fast folding from the
unique low-ρminimum reproducibly picks the folded configuration
with closest geometric resemblance to the low-ρ minimum.

These considerations suggest an intriguing possibility—pro-
gramming the bifurcation diagram using stiff creases can
program different folding pathways that are followed at different
speeds of folding.

We tested this hypothesis on a 16-vertex pattern with LP
springs whose unique low-ρ mode has significant geometric
distortion relative to the adiabatic folding outcome; see Fig. 5b.
We systematically folded this structure at increasing speeds
relative to its hinge relaxation timescale. We find three completely
distinct but reproducible folded structures in regimes of slow,
intermediate and fast folding; see Fig. 5c.
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b Patterns folded using springs of given target angle ρ
target
i

on select random creases i. Successful folding into the desired mode is dramatically improved in

patterns with stiff (LP predicted) creases compared to free folding creases. Even a single actuator is successful a significant fraction of the time (data

averaged over ten random 16-vertex patterns)
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mode at low strain ρ (blue), fast folding results in a state that most “resembles” that low-ρmode (green). If the unique low-ρmode is significantly distorted

in geometry relative to the slow folding target, slow and fast folding can result in very different outcomes. b, c We systematically attempted folding at

different strain rates (relative to a fixed hinge relaxation timescale) for the 16-vertex pattern with stiff creases shown. We find three distinct outcomes at

slow, intermediate, fast rates that completely differ in their Mountain-valley states, geometry and energy. The slow folding outcome corresponds to

following the blue path in (b) while the intermediate and fast pathways cross over from blue to the magenta and green modes, respectively, at some

intermediate folding angles
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Discussion
In this paper, we argued that metamaterials design should
be conceptualized as targeted design of an entire dynamic
pathway that avoids undesired behaviors, and not just target a
desired final state. We showed how such pathways and their
topological connectivity can be programmed by controlling the
bifurcation diagram; we applied our method to remove the
exponentially many misfolding motions intrinsic to self-folding
origami.

We showed that the bifurcation diagram can be modified by
stiff joints, an inevitable feature of most experimental realizations
of origami, linkage networks, and other metamaterials. Thus, our
proposal is conservative—it does not require specific directional
information at hinges6, temporal staging45, or using nonflat
sheets37. Our general approach applies to any other hetero-
geneous bulk imperfection that couples to different folding modes
unequally.

A particularly intriguing direction suggested by our work is the
ability to geometrically program different behaviors at different
speeds. These outcomes can have independently tuneable
mechanical properties, such as energy absorption35. While such
complex speed-dependent phenomena are actively studied in
materials (e.g., cornstarch46,47), our approach suggests that speed-
dependent behaviors can be dictated simply by the bifurcation
geometry of the metamaterial. A recent study48 independently
demonstrates how heterogeneous stiffness can shape multi-stage
folding pathways, allowing robust and predictable folding of
metamaterials.

Code availability. MATLAB code to compute LP and QP stiff-
ness profiles is given as Supplementary Software.

Data availability
Data supporting the findings of this study are available from the corresponding author

on request.

Received: 4 June 2018 Accepted: 21 September 2018

References
1. Liu, B. et al. Topological kinematics of origami metamaterials. Nat. Phys. 14,

811–815 (2018).
2. Waitukaitis, S., Menaut, R., Chen, B. G.-G. & van Hecke, M. Origami

multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503
(2015).

3. Wampler, C. W. Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods. IEEE T. Syst. Man Cyb. 16,
93–101 (1986).

4. Wampler, C. W., Hauenstein, J. D. & Sommese, A. J. Mechanism mobility and
a local dimension test. Mech. Mach. Theory 46, 1193–1206 (2011).

5. Tachi, T. & Hull., T. C. Self-foldability of rigid origami. J. Mech. Robot. 9,
021008 (2017).

6. Peraza-Hernandez, E. A., Hartl, D. J., Malak, R. J. Jr & Lagoudas, D. C.
Origami-inspired active structures: a synthesis and review. Smart Mater.
Struct. 23, 094001 (2014).

7. Silverberg, J. L. et al. Using origami design principles to fold reprogrammable
mechanical metamaterials. Science 345, 647–650 (2014).

8. Pellegrino S. Deployable Structures (Springer, New York City, NY, USA, 2014).
9. Reis, P. M., Jaeger, H. M. & van Hecke, M. Designer matter: a perspective.

Extreme Mech. Lett. 5, 25–29 (2015).
10. Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical

metamaterials. Nat. Rev. Mater. 2, 17066 (2017).
11. Oppenheimer, N. & Witten, T. A. Shapeable sheet without plastic

deformation. Phys. Rev. E 92, 052401 (2015).
12. Florijn, B., Coulais, C. & van Hecke, M. Programmable mechanical

metamaterials. Phys. Rev. Lett. 113, 175503 (2014).
13. Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature

using origami tessellations. Nat. Mater. 15, 583–588 (2016).
14. Stern, M., Pinson, M. B. & Murugan, A. The complexity of folding self-folding

origami. Phys. Rev. X 7, 041070 (2017).

15. Chen, B. Gin-ge & Santangelo, C. D. Branches of triangulated origami near the
unfolded state. Phys. Rev. X 8, 011034 (2018).

16. Lang, R. J. The science of origami. Phys. World 20, 30 (2007).
17. Demaine E. D. & O’Rourke J. Geometric Folding Algorithms: Linkages,

Origami, Polyhedra (Cambridge University Press, Cambridge, UK, 2008).
18. Tachi, T. Generalization of rigid foldable quadrilateral mesh origami. J. Int.

Assoc. Shell Spat. Struct. 50, 173–179 (2009).
19. Tachi T. One DOF of cylindrical deployable structures with rigid quadrilateral

panels. Evolution and Trends in Design, Analysis and Construction of Shell and
Spatial Structures: Proceedings (2010).

20. Chen, Y. & Chai, W. H. Bifurcation of a special line and plane symmetric
bricard linkage. Mech. Mach. Theory 46, 515–533 (2011).

21. Rocklin D., Vitelli V. & Mao X. Folding mechanisms at finite temperature.
Preprint at http://arXiv.org/abs/1802.02704 (2018).

22. Myszka D. H., Murray A. P., & Wampler C. W. Mechanism branches, turning
curves, and critical points. In ASME 2012 International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference. 1513–1525 (American Society of Mechanical Engineers, Chicago,
IL, USA, 2012).

23. Myszka, D. H., Murray, A. P. & Wampler, C. W. Computing the branches,
singularity trace, and critical points of single degree-of-freedom, closed-loop
linkages. J. Mech. Robot. 6, 011006 (2013).

24. Kieffer, J. Differential analysis of bifurcations and isolated singularities for
robots and mechanisms. IEEE Trans. Robot. Autom. 10, 1–10 (1994).

25. Deeds, E. J., Ashenberg, O., Gerardin, J. & Shakhnovich, E. I. Robust protein
protein interactions in crowded cellular environments. Proc. Natl Acad. Sci.
USA 104, 14952–14957 (2007).

26. Murugan, A., Zou, J. & Brenner, M. P. Undesired usage and the robust self-
assembly of heterogeneous structures. Nat. Commun. 6, 6203 (2015).

27. Jacobs, W. M. & Shakhnovich, E. I. Evidence of evolutionary selection for
cotranslational folding. Proc. Natl Acad. Sci. USA 114, 11434–11439 (2017).

28. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).
29. Santangelo, C. D. Extreme mechanics: self-folding origami. Annu. Rev.

Condens. Matter Phys. 8, 165–183 (2017).
30. Hartenberg R. S. & Denavit J. Kinematic Synthesis of Linkages (McGraw-Hill,

New York City, NY, USA, 1964).
31. McCarthy J. M. Geometric Design of Linkages, Vol. 11 (Springer Science &

Business Media, Berlin, Germany, 2006).
32. Chen, B. Gin-ge, Upadhyaya, N. & Vitelli, V. Nonlinear conduction via

solitons in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111,
13004–13009 (2014).

33. Howell L. L. Compliant Mechanisms (John Wiley & Sons, Hoboken, NJ, USA,
2001).

34. Kota, S. & Ananthasuresh, G. K. Designing compliant mechanisms. Mech.
Eng. CIME 117, 93–97 (1995).

35. Pinson, M. B. et al. Self-folding origami at any energy scale. Nat. Commun. 8,
15477 (2017).

36. Miura, K. Method of packaging and deployment of large membranes. In Proc.
31st Congr. Int. Astronaut. Fed. (1980).

37. Huffman, D. A. Curvature and creases: a primer on paper. IEEE Trans.
Comput. 25, 1010–1019 (1976).

38. Kawasaki, T. On the relation between mountain-creases and valley-creases of
a flat origami. In Proc. 1st International Meeting of Origami Science and
Technology, 229–237 (1989).

39. Hull T. On the mathematics of flat origamis. Congr. Numer. 100, 215–224
(1994).

40. Chvatal V. et al. Linear Programming (Macmillan, London, UK, 1983).
41. Vanderbei R. J. et al. Linear Programming (Springer, New York City, NY,

USA, 2015).
42. Tachi, T. Design of infinitesimally and finitely flexible origami based on

reciprocal figures. J. Geom. Gr. 16, 223–234 (2012).
43. Holmes, D. P., Roché, M., Sinha, T. & Stone, H. A. Bending and twisting of

soft materials by non-homogenous swelling. Soft Matter 7, 5188–5193 (2011).
44. Silverberg, J. L. et al. Origami structures with a critical transition to bistability

arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
45. Hawkes, E. et al. Programmable matter by folding. Proc. Natl Acad. Sci. USA

107, 12441–12445 (2010).
46. Brown, E. et al. Generality of shear thickening in dense suspensions. Nat.

Mater. 9, 220–224 (2010).
47. Lin, N. Y. C., Ness, C., Cates, M. E., Sun, J. & Cohen, I. Tunable shear thickening

in suspensions. Proc. Natl Acad. Sci. USA 113, 10774–10778 (2016).
48. Coulais, C., Sabbadini, A., Vink, F. & van Hecke, M. Multi-step self-guided

pathways for shape-changing metamaterials. Nature 561, 512–515 (2018).

Acknowledgments
We thank Alfred Crosby, Heinrich Jaeger, Sidney Nagel, Jiwoong Park, and Thomas

Witten for insightful discussions. We acknowledge NSF-MRSEC 1420709 for funding

and the University of Chicago Research Computing Center for computing resources.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06720-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4303 | DOI: 10.1038/s41467-018-06720-1 | www.nature.com/naturecommunications 7

http://arXiv.org/abs/1802.02704
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Author contributions
M.S., V.J., and A.M. developed the theoretical tools, carried out simulations, analysis, and

wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

018-06720-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06720-1

8 NATURE COMMUNICATIONS |  (2018) 9:4303 | DOI: 10.1038/s41467-018-06720-1 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-06720-1
https://doi.org/10.1038/s41467-018-06720-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Shaping the topology of folding pathways in mechanical systems
	Results
	Avoided bifurcation in linkage networks
	Misfolding in self-folding sheets
	Avoided bifurcation in a 4-vertex
	Stiffness profiles in large self-folding sheets
	Larger folding angles and adiabatic folding
	External folding forces applied to creases
	Folding speed-dependent target structures

	Discussion
	Code availability

	References
	References
	Acknowledgments
	ACKNOWLEDGEMENTS
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


