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RESEARCH ARTICLE
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Abstract

Genetic variants underlying complex traits, including disease susceptibility, are enriched

within the transcriptional regulatory elements, promoters and enhancers. There is emerging

evidence that regulatory elements associated with particular traits or diseases share similar

patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpres-

sion) may help prioritise loci associated with a given trait, and help to identify underlying bio-

logical processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and

enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of

RNAs originating from trait-associated regulatory regions using a novel quantitative method

(network density analysis; NDA). For most traits studied, phenotype-associated variants

in regulatory regions were linked to tightly-coexpressed networks that are likely to share

important functional characteristics. Coexpression provides a new signal, independent of
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phenotype association, to enable fine mapping of causative variants. The NDA coexpres-

sion approach identifies new genetic variants associated with specific traits, including an

association between the regulation of the OCT1 cation transporter and genetic variants

underlying circulating cholesterol levels. NDA strongly implicates particular cell types and

tissues in disease pathogenesis. For example, distinct groupings of disease-associated reg-

ulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative

colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our func-

tional analysis of genetic predisposition to disease defines new distinct disease endotypes.

We predict that patients with a preponderance of susceptibility variants in each group are

likely to respond differently to pharmacological therapy. Together, these findings enable a

deeper biological understanding of the causal basis of complex traits.

Author summary

We discover that genetic variants associated with specific diseases have more in common

with each other than we have previously seen. Specifically, variants associated with the

same disease tend to be in parts of the genome that are turned on or off in similar complex

patterns across many different cell types. We discover that genetic variants associated with

specific diseases are found within regulatory elements that share patterns of expression.

Specifically, variants associated with the same disease tend to be in parts of the genome

that are turned on or off together in similar complex patterns across many different cell

types. Knowing this helps us to find new variants associated with some diseases, and to

better understand the genetic causes of other diseases. Furthermore, we discover that the

genetic causes of inflammatory bowel disease fall into two distinct patterns, indicating

that two aetiologically-distinct endotypes of this condition exist. Unlike other methods to

learn about disease mechanisms from genetic information, our approach does not require

any knowledge or assumptions about the genes themselves–it depends only on the pat-

terns in which parts of the genome are activated in different cell types.

Introduction

Genome-wide association studies (GWAS) have considerable untapped potential to reveal

new mechanisms of disease[1]. Variants associated with disease are over-represented in regu-

latory, rather than protein-coding, sequence; this enrichment is particularly strong in promot-

ers and enhancers[2–4]. There is emerging evidence that gene products associated with a

specific disease participate in the same pathway or process[5], and therefore share transcrip-

tional control[6].

We have recently shown that cell-type specific patterns of activity at multiple alternative

promoters[7] and enhancers[3] can be identified using cap-analysis of gene expression

(CAGE) to detect capped RNA transcripts, including mRNAs, lncRNAs and eRNAs[3,5]. In

the FANTOM5 project, we used CAGE to locate transcription start sites at single-base resolu-

tion and quantified the activity of 267,225 regulatory regions in 1824 human samples (primary

cells, tissues, and cells following various perturbations)[8].

Unlike analysis of chromatin modifications or accessibility, the CAGE sequencing used in

FANTOM5 combines extremely high resolution in three relevant dimensions: maximal spatial

Coexpression of GWAS hits
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resolution on the genome, quantification of activity (transcript expression) over a wide

dynamic range, and high biological resolution–quantifying activity in a much wider range of

cell types and conditions than any previous study of regulatory variation[2,4]. Since a majority

of human protein-coding genes have multiple promoters[5] with distinct transcriptional regu-

lation, CAGE also provides a more detailed survey of transcriptional regulation than microar-

ray or RNAseq resources. Heritability of traits studied by some GWAS is substantially

enriched in these FANTOM5 promoters[9][10].

Genes that are coexpressed are more likely to share common biology[11,12]. Similarly, reg-

ulatory regions that share activity patterns are more likely to contribute to the same biological

pathways[5]. We have previously shown transcriptional activity of regulatory elements (both

promoters and enhancers[3]) is associated with variable levels of expression arising at these

elements in different cell types and tissues[5]. Informative regulatory networks can be derived

from predicted transcription factor interactions with FANTOM5 regulatory regions[6]. We

therefore use transcript expression here as a surrogate for transcriptional regulatory activity.

In contrast to previous studies[6,13,14], we sought to explore the similarities in activity at

disease-associated sets of regulatory regions, rather than genes, and independent of transcrip-

tion factor binding predictions.

In order to determine whether coexpression of regulatory elements can provide additional

information to prioritise genome-wide associations that would otherwise fall below genome-

wide significance, we developed network density analysis (NDA). The NDAmethod combines

genetic signals (disease association in a GWAS) with functional signals (correlation in pro-

moter and enhancer-associated transcript levels measured by CAGE across numerous cell

types and tissues, Fig 1), by mapping genetic signals onto a pairwise coexpression network of

regulatory regions, and then quantifying the density of genetic signals within the network.

Every expressed regulatory region that contains a GWAS SNP associated with a given trait is

assigned a score quantifying its proximity in the network to every other regulatory region con-

taining a GWAS SNP for that trait. We then identified specific cell types and tissues in which

there is preferential activity of regulatory elements associated with selected disease-related phe-

notypes, thereby providing appropriate cell culture models for critical disease processes.

Methods

Regulatory regions

For the purpose of this analysis, promoters identified in the FANTOM5 dataset were defined

as the region from -300 bases to +100 bases from a transcription start site[15]. Previous analy-

sis demonstrated that this covers the areas of maximal sequence conservation across species

and the core region of transcription factor binding. Enhancers are widely transcribed across

the human genome (eRNAs). Since eRNA TSS are considerably longer than promoter TSS

(median length(IQR) 272(173–367) vs 15(9–26)), enhancers were defined by the range covered

by eRNA transcription start sites.

Coexpression algorithm

For each GWAS study, SNPs were identified that lie within either a functional promoter or

enhancer. Any promoter or enhancer that contained a variant putatively associated with a

given phenotype was considered to be candidate phenotype-associated regulatory region. A

pairwise matrix was then generated from the full FANTOM5 dataset of promoters and

enhancers, in which each node is a regulatory region, and edges reflect the similarity in activity

(expression) patterns arising at these regulatory regions, across different cell types and tissues.

Coexpression of GWAS hits
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To test the hypothesis that regulatory regions genetically associated with a given phenotype

are more likely to share activity patterns, we devised the NDAmethod, which quantifies the

strength of coexpression among a chosen pool of putative phenotype-associated regulatory

regions. This approach avoids arbitrary cut-offs between clusters (or “communities”) of nodes,

and yields a single value for each node, quantifying the closeness with all other nodes in a par-

ticular subset (network density). NDA was used to integrate the putative association between a

regulatory sequence and the phenotype of interest (indicated by the presence of a phenotype-

associated SNP), with the coexpression similarity between this node with other nodes that are

also putatively associated with the same phenotype.

Principle of network density analysis (NDA)

NDA integrates information from two distinct and independent sources: the relationships

between nodes in the network, and the choice of subset. In the present work, nodes are

Fig 1. Use of NDA to detect coexpression. (a) A subset of regulatory elements is identified containing disease-associated SNPs. (b) The strength of the links between
pairs of these regulatory regions is quantified, first as the Spearman correlation, then as the –log10 p-value quantifying the probability, specific to this regulatory region,
of a Spearman correlation of at least this strength arising by chance. This is determined from the empirical distribution of correlations between this regulatory region
and all other regulatory regions in the entire network of all regulatory regions in the genome. (c) The subset of regulatory regions containing disease-associated SNPs
form an unexpectedly dense grouping in the network, but this may not be visible in a two-dimensional representation (for illustration, this network shows all
correlations between regulatory regions with Spearman r> 0.7, layout generated by the FMMM algorithm). The NDA score assigned to any one node is the sum of the
links it shares with other nodes in the chosen subset (see Supplementary Methods for a full explanation). d) NDA scores from the input subset of regulatory elements are
compared with NDA scores from permuted subsets of regulatory elements in order to quantify the false discovery rate (FDR).

https://doi.org/10.1371/journal.pcbi.1005934.g001
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regulatory regions, the subset is those regulatory regions that contain variants associated with

a particular phenotype. Spearman’s rank correlation was chosen to quantify pairwise relation-

ships, in view of the robustness of this measure in a variety of different distributions. However,

the NDA approach is generalisable to any network of pairwise relationships.

Within a network of all possible pairwise relationships between nodes, a subset of nodes is

selected that share a particular characteristic. Within this subset of nodes, every pair of nodes

is considered. Each relationship between two nodes is expressed as the –log10 of the empirical

probability of a relationship at least as strong occurring between the chosen node and another,

randomly-chosen, node from anywhere in the network. These probabilities are specific to each

node and are directional. The NDA score is the sum of the –log10(p) values for a node in the

chosen subset and all other nodes within the subset. The NDA score therefore quantifies the

density of this subset of nodes in network space. The purpose of using the empirical probability

of a correlation, rather than the raw correlation metric, is to control for bias in favour of

highly-connected nodes, as would occur if one expression profile were very common. Finally,

the NDA score is assigned its own p-value by comparison to that obtained using randomly per-

muted subsets (see below). If the network contains no additional information about this subset

of nodes, then the relationships between nodes in the chosen subset will be no stronger than

the relationships seen in permuted subsets.

Application to coexpression of regulatory regions

From the set of all nodes in a network, a subset is selected because they share some characteris-

tic. In the case of the genomic analyses reported here, the nodes are TSS, and the subset of

interest is those TSS that contain a variant that has some evidence of association with a particu-

lar trait. Throughout this paper, we have defined the set of phenotype-associated transcription

start sites, R, as follows: the set of regulatory elements associated with phenotype-associated

single nucleotide polymorphism within 300bp (promoters) or 0bp (enhancers) upstream from

a FANTOM5 transcription start site (TSS) and 100bp (promoters) or 0bp (enhancers) down-

stream. In order to enable the detection of new associations, we use a deliberately permissive

threshold. We define as “putatively-significant” a SNP-phenotype association of p< 5 × 10−6.

Let the integer variable i be used to index the base pairs (bp) of the genome. For a given trait,

the set of input SNPs, K, are those that have a putatively-significant association with that trait

at our chosen threshold. If we let TSSstart equal the base pair index 300bp (promoters) or 0bp

(enhancers) upstream from a FANTOM5 transcription start site (TSS) and TSSend 100bp (pro-

moters) or 0bp (enhancers) downstream, the set, P, of putative trait-associated promoters is

given by:

P ¼ fi : i 2 K;TSSstart � 300 � i � TSSend þ 100g

and the set E of enhancers containing a putative trait-associated SNP is given by:

E ¼ fi : i 2 K;TSSstart � i � TSSendg

giving a total set of regulatory regions:

R ¼ P [ E

Linkage disequilibrium (LD)—Grouping nearby regulatory regions

Input SNPs from GWAS results tend to be in LD with nearby variants. There is therefore a

risk of spurious coexpression, since nearby regulatory regions are also likely to share regula-

tory influences, such as chromatin accessibility, enhancers, and lncRNAs. One solution to this

would be to filter input SNPs by LD. However this would require that LD relationships for all

Coexpression of GWAS hits
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SNPs be known for all of the populations from which SNP association data were derived,

which is not the case. It would also risk removing functionally important regulatory regions

from the analysis, by choosing only one SNP per LD block.

In order to overcome these problems, we sought to identify those regulatory region-associ-

ated SNPs within a given region that are most likely to contribute to a given subnetwork of puta-

tive phenotype-associated regulatory regions. By the definitions described above, these will be

those regulatory regions with the highest NDA score. Regulatory regions are considered for

combination if they are separated by 100,000bp or less. If any regulatory region within this range

has a correlation p -value of less than 0.1 with any other regulatory regions in the range, they are

combined. A single representative regulatory region is then chosen—the regulatory region with

the largest NDA score in the group, derived from a network comprised of all other groups.

In order to confirm that spurious coexpression signals are not being generated solely

because of LD, we used the ENSEMBL Perl API for the 1000 genomes phase 3 data (CEU) to

search for variants in LD with each SNP lying within the chosen regulatory region for each

group. Variants in LD with a variant in any other chosen regulatory region are reported.

Coexpression matrix

A is defined as the set of all nodes in the whole network. Each member of A is a node in an

interaction network. For each i 2 R, Spearman’s rank correlation, x, is calculated with each

other node in R. The probability, p, of a correlation as strong as, or stronger than, the index

correlation, x, arising by a chance pairing between the index node and any other node (n(r>x))

is inferred from the empirical distribution of all correlations (r) of the index node in A.

p ¼
nðr>xÞ

nA

Network density analysis

For every node in the set R, a score s is calculated to summarise the strength of interactions

with all other nodes in R. Since the only thing that the elements of R have in common is that

they are TSS identified by the set of input SNPs, unexpectedly strong inter-relationships

between elements of R are taken as indirect evidence of a relationship between the input SNPs

themselves. The NDA score, s, is defined as the sum of –log10(p) values for interaction strength

within the matrix.

s ¼
Xn

p¼0

� log
10
ðpÞ

Raw p-values are calculated from the empirical distribution of values of s for 10000 per-

muted networks. The Benjamini-Hochberg method is used to estimate false discovery rate

(FDR). Significant network density scores are taken as those with FDR< 0.05. In order to

enable comparison of coexpression scores between different analyses, the raw coexpression

score (s) is corrected by dividing by the total number of independent groups of regulatory

regions included in each analysis, nres, yeilding a corrected coexpression score, ccs:

ccs ¼ s=nres

Iterative recalculation

The node in the network with the highest NDA score has, by definition, numerous strong cor-

relations with other nodes in the subset R. The NDA scores assigned to these other nodes are

therefore inflated by their association with the stongest node. This inflation may reflect

Coexpression of GWAS hits
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biological reality, since both TSS have a putative genetic association with the phenotype of

interest, and both share strong links. However, there is a risk that TSS sharing a chance associ-

ation with a strongly coexpressed TSS will be spuriously inflated to significance. For this rea-

son, we have applied a stringent correction in order to ensure that we have confidence in each

significantly coexpressed TSS independently of all TSS with stronger coexpression in the net-

work: the NDA score for each TSS is calculated after removing all TSS with stronger NDA

scores from the network.

Input datasets

Of 267,225 robust promoters and enhancers identified by FANTOM5, 93,558 (50.6%) were pro-

moters within 400 bases of the 50 end of a known transcript model. These were annotated with

the name of the transcript. Alternative promoters were named in order of the highest transcrip-

tional activity. Where necessary, coordinates for GWAS SNPs were translated to hg19 coordi-

nates using LiftOver, or coordinates were obtained for SNP IDs from dbSNP version 138.

Permutations

A circular permutation method was devised to prevent systematic bias by maintaining the

underlying structure of GWAS SNP data. The NDA score for a given regulatory region was

compared with NDA scores obtained from randomly permuted subsets of genes to give an

empirical p-value for coexpression. If permuted networks consist of randomly-selected regula-

tory regions, then this p-value quantifies coexpression alone; if the permuted networks are gen-

erated by mapping randomly-selected SNPs to regulatory regions, then the final p-value is a

composite of two measures: coexpression, and the enrichment for true GWAS hits in regula-

tory sequence.

Pre-mapping permutations

Pre-mapping permutations use a random set of SNPs generated by rotation of the input set of

SNPs, K, on a concatenated circular genome. The choice of background is critical—some more

recent GWAS studies consider only a subset of variants with a high probability of association

with a given trait. In the present analyses, background data were chosen to reflect as accurately

as possible the pool of variants included in the original study. For this reason, results are pre-

sented only for phenotypes for which the the entire summary dataset was available, including a

p-value for every SNP, so that the background used to generate permuted networks is exactly

the same background from which the real dataset is drawn.

Post-mapping permutations

In order to quantify the effect of coexpression alone (i.e. eliminating the inflation of NDA

scores that occurs due to enrichment of trait-associated SNPs in regulatory regions), permuted

networks were generated after mapping to TSS regions. This is analogous to randomly reas-

signing the labels in the network, but aims to preserve the local relationships between regula-

tory regions, since we cannot assume that regulatory regions are randomly distributed on the

genome, and since regional regulatory events, such as chromatin reorganisation, are expected

to lead to coexpression between nearby regulatory regions.

Where A is defined as a list of regulatory regions comprising the whole set of FANTOM5

TSS, post-mapping permutations select a subset of A in a similar circular manner, by displac-

ing the members of the set R by a random number of places on the list. Where the displace-

ment pushes members of R off the end of the list, they are re-entered at the beginning.

Coexpression of GWAS hits
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This process generates a pool of variants that are likely to be grouped in a similar distribu-

tion on the genome to the input set. If the input set contains a large group of TSS regions in

close proximity to each other on the genome, it is likely that this group of TSS regions will be

joined as a single unit (see above) for analysis. During generation of permutations, the same

number of consecutive TSS regions elsewhere on the genome may not be in sufficient proxim-

ity (and expression correlation) to be grouped together. This would create extra network

nodes, potentially inflating the NDA scores in the permuted sets. To mitigate against this,

those TSS from each permutation that do not conform to the input set distribution are re-

entered into a further circular permutation until an identical distribution is found. If no

matching grouping is found after 8 repeat permutations, additional regulatory regions are

added from consecutive positions above and below whichever group is nearest in size to the

relevant group in the original input dataset.

False discovery rates (FDR) are calculated using the Benjamini-Hochberg method.

Choice of samples and regulatory regions

The enrichment for GWAS hits from a pooled resource comprising the NCBI GWAS catalog

and the GWASdb database (observed SNPs per Mb: expected SNPs per Mb) was quantified at

increasing search window sizes upstream and downstream from the transcription start site

(TSS). A table of GWAS hits for a broad range of phenotypes was obtained from the NCBI

GWAS catalog and from a larger, less selective catalog of GWAS p-values meeting permissive

criteria for genome-wide significance, GWASdb. The GWASdb dataset is less curated than the

NCBI GWAS catalog, but contains a much greater range of SNPs since it does not restrict

inclusion to the strongest associations, or to putative causative variants. Because both data-

bases are limited by the variation in reporting, and quality, of the original GWAS studies from

which data are drawn, this analysis was restricted to variants meeting genome-wide signifi-

cance at a widely-accepted threshold (p< 5 × 10−8). These catalogues were combined and fil-

tered to remove duplicate entries. Data were obtained from:

• NHGRI GWAS catalog, June 2014 http://www.genome.gov/gwastudies

• GWASdb2, June 2014 update ftp://147.8.193.36/GWASdb/20140629/gwasdb_20140629_

snp_trait.gz

Overlapping phenotypes, such as “urate” and “uric acid” were manually merged. Pheno-

types that were considered to be too broad to be informative were excluded, as were those that

were not related to human disease. A complete table of phenotypes in GWASdb and NCBI

GWAS catalog, showing mergers and inclusion/exclusion in the present work, is provided in a

supplementary file (S2 Table).

Anti-correlation

Strong anti-correlation between pairs of TSS associated with the same phenotype may have

biological importance, such as down-regulation at one TSS but expression at another, or nega-

tive regulation of a signalling pathway on which expression of a TSS is dependent. For this rea-

son, anti-correlations may improve detection of true associations in this analysis. However, in

order to confer an overall improvement on the performance of the algorithm, true inverse

expression relationships between phenotype-associated TSS would need to be sufficiently com-

mon to overcome the noise added by incorporating all strong anti-correlations into the NDA

score. Anti-correlations do not contribute any net improvement to the NDA scores for a train-

ing set (Crohn’s disease, 50% of all SNPs, chosen at random), and were therefore excluded.
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GWAS data sources

Full GWAS or meta-analysis data, reporting every SNP genotyped or imputed in a given

study, are required in order to permute subsets against the appropriate background for a given

study. These were obtained from the following sources:

• Crohn’s disease summary p-values were obtained from the International Inflammatory

Bowel Disease Genetics Consortium ftp://ftp.sanger.ac.uk/pub4/ibdgenetics/cd-meta.txt.gz

• Ulcerative colitis summary p-values were obtained from the International Inflammatory

Bowel Disease Genetics Consortium ftp://ftp.sanger.ac.uk/pub4/ibdgenetics/ucmeta-

sumstats.txt.gz

• Summary p-values for human height were obtained from the GIANT consortium https://

www.broadinstitute.org/collaboration/giant/images/4/47/GIANT_HEIGHT_

LangoAllen2010_publicrelease_HapMapCeuFreq.txt

• Summary p-values for total cholesterol, LDL cholesterol, HDL cholesterol and triglycerides

were obtained from the Global Lipids Consortium http://csg.sph.umich.edu/abecasis/public/

lipids2013/

• Summary p-values for systolic and diastolic blood pressure. were obtained from the Interna-

tional Consortium on Blood Pressure study http://www.georgehretlab.org/icbp_

088023401234-9812599.html

Cell type specificity

In order to better understand the pathophysiological implications of disease variants in regula-

tory regions, we sought to identify whether these regions exhibit unexpectedly specific expres-

sion in any given cell types or tissue samples. In order to reduce noise, technical and biological

replicates were averaged for this and subsequent analyses. The full table of samples in FAN-

TOM5, showing which samples were averaged as technical replicates, and which were

excluded, is in S2 Table (S2 Table).

For a given trait, we took the subset of regulatory regions for which a significant coexpression

pattern was detected for that trait (coexpression FDR� 0.05). For each regulatory region, we cre-

ated a list of all cell types in which that region was active, ranked by expression level. We then

combined the cell type lists for each regulatory region using a robust rank aggregation (RRA).

There are several possible sources of bias in this raw measurement. For example, some cell

types have more cell-type specific transcriptional activity, perhaps because these cell types fulfil

a specialised role; other cell types are particularly well-represented in the FANTOM5 samples.

We therefore controlled for the probability that a given cell type would be highly ranked in the

initial RRA analysis, by permuting RRA results for at least 100,000 random selections of n reg-

ulatory regions. We then calculated the empirical p-value for each cell type, i.e. the probability

that this cell type would be assigined a raw RRA p-value at least as strong by random chance.

We then corrected for multiple comparisons using the Benjamini-Hochberg method to esti-

mate false discovery rate (FDR).

Code availability

Computer code required to run the NDAmethod, specifically for the detection of coexpres-

sion in FANTOM5 regulatory regions, can be obtained from https://github.com/baillielab/

coexpression/
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Results

Evaluation of the NDAmethod and FANTOM5 input dataset

Our initial evaluation demonstrated that coexpression is stronger among regulatory regions

containing variants with low GWAS p-values (Fig 2). The coexpression signal obtained for the

test input set was evaluated using different subsets of FANTOM5 samples (cell lines, time-

courses following a perturbation in primary cells or selected cell lines, tissue samples, primary

cells, or various combinations of these), and different types of regulatory region (enhancers,

promoters assigned to annotated genes, other promoters, or all regulatory regions combined)

(Fig 3). The strongest coexpression is seen in the combined sample set. A “minimal detail”

sample set was also tested, comprising a single average value for each of the timecourses, pri-

mary cell types and tissue types, and excluding data from unstimulated cell lines. The complete

dataset, including all cell types and tissues, provided the strongest signal, demonstrating that

there is additional biologically-relevant information contained in the expression profiles from

all sample subsets (Fig 3).

The difference between the distributions of NDA scores derived from pre- and post-map-

ping permutations reveals the different components of the measure. When compared to a ran-

dom pool of SNPs (pre-mapping permutations), two factors inflate the NDA scores for real

GWAS data: firstly, more regulatory regions are identified because true GWAS hits are

enriched within regulatory regions; secondly, the coexpression signal itself is greater for real

data. In contrast, post-mapping permutations have precisely the same number of regulatory

Fig 2. Optimisation of GWAS p-value threshold. Coexpression signals are shown for six different –log10(p) bins for GWAS p values from a single study of Crohn’s
disease. From each bin, 800 SNPs were selected at random. No signal for coexpression is detected at weak p-values.

https://doi.org/10.1371/journal.pcbi.1005934.g002
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Fig 3. (a) Enrichment (y axis, observed SNPs perMb: expected SNPs per Mb) at increasing search window sizes (x axis) upstream and downstream from the
transcription start site (TSS) for increasingly strong GWAS signals (z axis, −log10p). (b) Change in coexpression signal using different subsets of the FANTOM5
dataset, using the Crohn’s disease GWAS as the input set. Q:Q plots of observed:expected NDA scores obtained using a given subset of samples (see methods for full
description of each subset). Rows indicate the subset of regulatory regions used in each analysis. Percentage of significantly coexpressed entities (hits, FDR< 0.05) and
p-value (Kolmogorov-Smirnov test) comparing observed (blue) and expected (red) distributions are shown below each plot.

https://doi.org/10.1371/journal.pcbi.1005934.g003
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regions included as the real dataset, so there is no component of inflation due to enrichment

in regulatory regions. The effects of these different components are shown in Fig 4, which

reveals the NDA score to be a composite measure of both signals.

Similar expression profiles are often seen arising from regulatory regions that are close to

each other on the same chromosome, which may also span linkage disequilibrium blocks. The

effect of this on the coexpression signal was mitigated by grouping nearby (within 100,000bp)

regulatory regions into a single unit, unless they have notably different expression patterns.

SNPs in nearby regulatory regions are also more likely to be in linkage disequilibrium, and

these regulatory regions themselves are more likely to share cis- (or short-range trans-) regula-

tory signals in common. We checked for significant linkage disequilibrium between regulatory

regions assigned to independent groups. At a threshold of r2 > 0.8, there is no linkage disequi-

librium between significantly coexpressed groups; three examples of weaker linkage relation-

ships were detected with 0.08� r2� 0.6 (Supplementary results).

Fig 4. (Top panels) Circular plots of coexpression links between different locations on the genome, illustrating the spatial separation of highly-
correlated regulatory regions. The coloured outer circle shows an end-to-end concatenated view of the human chromosomes. The black inner circle shows –
log10GWAS p-values for included SNPs. Links depict an association between two regulatory regions containing these SNPs and are coloured according to –
log10(p) (line colour indicates –log10(p): red>3, blue> 2, green> 1.5). (Bottom panels) Quantile-quantile plots showing observed and expected coexpression
scores. Expected coexpression scores are derived from circular permuted subsets of regulatory regions (post-mapping permutations; black circles) or SNPs
chosen by circular permutations against the background of all SNPs genotyped in each study. Data are shown for high-density lipoprotein (HDL), low-density
lipoprotein (LDL), and total cholesterol. See supplementary results for full results of all analyses.

https://doi.org/10.1371/journal.pcbi.1005934.g004
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Fine mapping

Regulatory regions around individual TSS with higher coexpression scores contain variants with

stronger GWAS p-values (Fig 5A), indicating that this independent signal provides additional

information that may be used for fine-mapping causative loci (Fig 6; Supplementary results).

Where data are available, we have compared our results to the recent fine mapping study by

Huang et al, who use high-resolution genotyping in 67,852 subjects with inflammatory bowel

disease to quantify the probability that a given variant is causal. A total of 9 variants with a causal

probability> 0.1 lie within 150,000bp of a significantly coexpressed region; of these, 7 lie imme-

diately adjacent to the most significantly coexpressed promoter/enhancer in the region.

Discovery and prioritisation of GWAS hits in regulatory sequence

In order to enable the detection of new regulatory regions with strong coexpression relation-

ships, we chose a permissive threshold at GWAS p< 5 × 10−6. GWAS data for Crohn’s disease

[16] were used for initial optimisation of the NDA approach. Of the 8 GWAS datasets for phe-

notypes that were not used in algorithm development (i.e. all apart from Crohn’s disease), 6

showed evidence of significant coexpression (Table 1). Among these, between 17 and 24% of

regulatory regions identified as containing a GWAS SNP were found to be significantly coex-

pressed with other regulatory elements associated with the same phenotype (FDR< 0.05, com-

pared with 100 permuted subsets of equal size; see Methods).

Although many coexpressed regulatory regions are not promoters for annotated genes

(supplementary results; Fig 3), we compared the named genes in our results with gene-level

burden of significance scores from PASCAL[17] analysis of the original GWAS studies. Since

the coexpressed regulatory regions were detected due to the presence of a variant with a low

p-value, it is expected that the genes with coexpressed promoters will be highly ranked in a

gene-level analysis. However, the weak but significant correlation (Spearman r = 0.30; p =

1.9 × 10−5) between the approaches provides further evidence that the coexpression signal itself

provides additional information which successfully prioritises regulatory regions (Fig 5B).

Fig 5. (a) Relationship between GWAS p-value for a SNP, and coexpression scores of individual promoters assigned to that SNP for all phenotypes for which
significant coexpression was detected. Top panel: GWAS p-values (log scale) vs corrected coexpression scores. Bottom panel: linear regression lines for data in top
panel; Spearman’s r and associated p-values are shown for each trait. Only significantly coexpressed (FDR<0.05) promoters are included. (b) Rank comparison of
named genes compared with gene-level burden of significance in original GWAS studies (PASCAL sum genescore). Log rank is shown on each axis (Rank 1 = highest
scoring gene) for the subset of coexpression scores obtained for promoters of named genes. Open squares indicate significant coexpression (FDR<0.05).

https://doi.org/10.1371/journal.pcbi.1005934.g005
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For a given disease, regulatory regions containing GWAS variants are coexpressed if they

share similar activity patterns (i.e. similar expression patterns among transcripts arising from

these regulatory regions) with other regulatory regions implicated in that disease. Fig 7A

shows significant coexpression superimposed on a two-dimensional representation of the

entire network of pairwise correlations. Since activity (transcript expression) was measured in

many samples, the true proximity of regulatory regions to one another cannot be accurately

Fig 6. Examples of detail of chromosomal regions surrounding regulatory regions significantly coexpressed in ulcerative colitis (TSS
+/-150Mb). (a) Region surrounding IL10 (b) Region surrounding C1orf106. Top panel: Coloured rectangles show genomic location of
individual regulatory regions (promoters or enhancers). Height of regulatory regions on y-axis depicts the coexpression score assigned to this
regulatory region; groups of regulatory regions considered as a single unit (see Methods) share the same colour. Black circles show GWAS p-
values for individual SNPs. Red circles show causative probabilities estimated by Huang et al for specific variants, where available. Bottom
panel: genomic locations of known protein coding transcripts in sense (green) and antisense (purple).

https://doi.org/10.1371/journal.pcbi.1005934.g006
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represented in two dimensions–a perfect representation would require as many dimensions as

there are unique samples. In contrast, the NDAmethod quantifies proximity of regulatory

regions in true network space without artificial dimensionality reduction. Thus significantly

Table 1. Results of coexpression analysis for a range of human traits for which high-quality data are available: Crohn’s disease, ulcerative colitis, high-density lipo-
protein (HDL), low-density lipoprotein (LDL), total cholesterol, triglycerides, height, systolic blood pressure (SBP) and diastolic blood pressure (DBP).

Trait SNPs included,
p<5e-6 (SNPs per
million bases)

Regulatory regions
containing a SNP (SNPs
per million bases)

Fold enrichment for
SNPs in regulatory
regions

Distinct
regulatory
regions

Significantly coexpressed
TSS (FDR<0.05)(% of
distinct regions)

p (KS
test)

Crohn’s
disease

1924 (0.6) 133 (3.5) 5.7 70 23 (33%) 1.61e-05

Ulcerative
colitis

2162 (0.7) 146 (3.8) 5.5 83 20 (24%) 2.28e-06

LDL 4644 (1.5) 205 (5.2) 3.5 92 19 (21%) 1.48e-04

Total
cholesterol

6421 (2.0) 316 (8.3) 4.1 128 29 (23%) 6.55e-07

Triglycerides 4863 (1.5) 254 (7.0) 4.6 97 23 (24%) 8.35e-06

Height 8882 (2.8) 358 (7.6) 2.7 166 29 (17%) 1.25e-06

HDL 5410 (1.7) 260 (7.2) 4.2 101 17 (17%) 3.51e-04

SBP 417 (0.1) 20 (0.4) 3.0 13 0 (0%) 4.89e-01

DBP 711 (0.2) 20 (0.4) 1.9 14 0 (0%) 5.41e-01

KS test: Kolmogorov-Smirnov test comparing distribution of coexpression scores for this study with permuted values.�Initial optimisation and parameterisation of the

algorithm was undertaken using a random subset of data from this study.

https://doi.org/10.1371/journal.pcbi.1005934.t001

Fig 7. Examples of detail of chromosomal regions surrounding regulatory regions significantly coexpressed in
ulcerative colitis ($TSS+/-150Mb$). (a) Region surrounding IL10 (b) Region surrounding C1orf106. Top panel:
Coloured ectangles show genomic location of individual regulatory regions (promoters or enhancers). Height of
regulatory regions on y-axis depicts the coexpression score assigned to this regulatory region; groups of regulatory
regions considered as a single unit (see Methods) share the same colour. Black circles show GWAS $p$-values for
individual SNPs. Red circles show causative probabilities estimated by Huang \emph{et al} for specific variants, where
available. Bottom panel: genomic locations of known protein coding transcripts in sense (green) and antisense
(purple).

https://doi.org/10.1371/journal.pcbi.1005934.g007
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coexpressed elements are detected even if they are not directly adjacent on a two-dimensional

representation of the network (Fig 7).

We saw no evidence of spurious coexpression due to genomic proximity with shared regu-

latory influences (see Methods). In each of the GWAS analyses for which significant coexpres-

sion was detected, strong coexpression links were seen between loci that were widely separated

on the genome (Fig 4; supplementary results).

The coexpression signal essentially combines the signal for association in a GWAS with the

location and activity pattern of regulatory regions on the genome. We deliberately chose a per-

missive GWAS p-value threshold in order to enable the detection of new signals that did not

achieve genome-wide significance in the original studies. For example, we found that coex-

pressed transcripts for both LDL and total cholesterol (TC) arise from promoters for well-stud-

ied genes such as APOB[18] and ABCG5[19], but also from regulatory regions not previously

associated with cholesterol levels. A promoter for SLC22A1, which encodes an organic cation

transporter, OCT1[20], is strongly coexpressed among elements associated with LDL and TC

(Supplementary results). OCT1 transcription is regulated by cholesterol[21] and the trans-

porter regulates hepatic steatosis through its role in thiamine transport[22]. This action of

OCT1 is inhibited by metformin[22], an oral hypoglycaemic agent whose cholesterol-lowering

effect[23] is not well understood[24]. Full results of coexpression analyses are in the supple-

mentary results, and online at http://baillielab.net/coexpression.

Cell-type and tissue specificity

The significantly-coexpressed networks detected here could be regarded as revealing the signa-

ture expression profile, at least within the FANTOM5 dataset, for a given disease or trait. We

next explored whether these signature expression patterns reveal cell types or biological pro-

cesses that may contribute to the trait or disease susceptibility.

We therefore ranked cell types and tissues by transcriptional activity for each of the signifi-

cantly-coexpressed loci for each trait, and combined the rankings using a robust rank aggrega-

tion[25]. By first detecting the characteristic expression signature associated with a given

phenotype using only high-resolution GWAS data, and then detecting the cell type and tissue

activity profiles that underlie this signature, we improve on the statistical power of previous

methods that have attempted to detect cell-type specific signatures of disease[4,6,26]. Signals

that are strong enough to be detected in previous, less powerful studies are highly significant

in our analysis; for example genetic loci associated with cholesterol are transcriptionally active

in hepatocytes and liver tissue[6](Supplementary results).

Discussion

The development of high-throughput genotyping methods has led to an explosion of associa-

tions between genetic markers and human diseases[27]. The results presented here are a step

towards overcoming the next challenge for this field: making sense of these associations to

advance the practice of medicine. There has been increasing recognition of the potential to uti-

lise prior knowledge to improve detection and interpretation of genome-wide signals[28]. The

results of our analysis demonstrate that there is biological information in the coexpression of

genetic variants associated with a particular disease that can provide the basis for prioritising

variants that would not otherwise meet standard thresholds for genome-wide statistical

significance.

We report relationships between numerous regulatory regions that are not associated with

named genes–a restriction that has previously limited the transition from genetic discovery to

biological understanding[14,29–32]. Our analysis reveals the impact of specific enhancers and
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promoters that may be remote from the genes they regulate, or may contribute to tissue-spe-

cific regulation of a gene that may otherwise appear to be more widely-expressed.

Even for those disease-associated variants that can be reliably assigned to a named gene,

previous attempts to draw functional inferences have, by necessity, relied on published data

[29], annotated biological pathways[33], or gene sets[32,34]. Although many important

insights have been gained from these approaches, they share a fundamental limitation: reliance

on existing knowledge. This restricts the ability to exploit the potential of genomics to deliver

insights into new, previously unseen, mechanisms of disease[35].

Results for Crohn’s disease and ulcerative colitis were compared to the report by Huang et al

[15], who used high-resolution genotyping in a large cohort, together with publicly-available func-

tional genomics data, to identify immune cell signatures implicated in Crohn’s disease, and gut-

specific cell types in ulcerative colitis. Our analysis, conducted in parallel and without knowledge

of these findings, discovered the same associations, but goes further. Firstly, we demonstrate with

a higher level of statistical confidence that these cell type associations are real (supplementary

results). This is important in itself, because it is consistent with the view that ulcerative colitis, in

which disease processes are primarily restricted to the colon and rectum, is a consequence of dys-

regulation of processes that are intrinsic to the large bowel, including epithelial barrier function

[36], whereas Crohn’s disease is a multisystem autoimmune disorder with more diverse extra-

intestinal manifestations[37], consistent with a primary innate immune aetiology affecting mono-

cyte-macrophage differentiation and response to micro-organisms[38].

Secondly, our analysis extends current knowledge by revealing two distinct groups of signif-

icantly-coexpressed regulatory regions for each of these diseases, with differing expression pro-

files. For Crohn’s disease, one group is restricted to immune cells, particularly monocytes

exposed to inflammatory stimuli, while another group of regulatory regions is active in epithe-

lial cells. In contrast, cell type associations with ulcerative colitis were statistically significant in

rectum, colon and intestine samples, and in a distinct group of immune cells: macrophages

exposed to bacterial lipopolysaccharide (Fig 7; S5 Table 1.2). Based on the fundamental

assumption of coexpression—that expression profile relates to function—we interpret this as

evidence that two distinct biological processes are implicated in each of these diseases. This

may be because a “two-hit” mechanism is required for disease pathogenesis. Alternatively

these distinct processes may indicate genetically- (and hence aetiologically-) distinct sub-syn-

dromes, or disease endotypes[39], within both Crohn’s disease and ulcerative colitis.

In either case the predominance of each process in an individual patient is likely to have

therapeutic relevance. For example, the highly variable clinical response to immunomodula-

tory therapies, such as methotrexate[40] or anti-TNF monoclonal antibodies[41], may be

influenced by the burden of disease-associated variants in Crohn’s disease Group 1 (Fig 7).

This represents a conceptually new application of network theory to the detection of disease

endotypes, and is likely to have more direct clinical consequences than other methods[42].

The data used for development and testing of the coexpression approach were from large

meta-analyses that incorporate genotyping (or imputation) of genetic variants at extremely

high resolution, increasing the probability that variants will be found within regulatory

regions. In future, the availability of whole-genome sequencing can reasonably be expected to

produce many additional high-quality datasets for coexpression analysis. In principle, the

NDA approach can be generalised to any network in which it is desirable to quantify the prox-

imity of a subset of nodes.

The scale, depth and breadth of the FANTOM5 expression atlas enable detection of subtle

coexpression signals for regulatory regions that have previously been undetectable. The NDA

approach developed here enables the identification of cell types and regulatory regions impli-

cated in disease pathogenesis, and contributes a new independent signal to fine mapping of
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causative loci. As additional genetic studies become available at greater genotyping resolution,

we anticipate that this method will detect new genetic associations with disease and coex-

pressed modules underlying pathogenesis. The NDAmethod will enable the identification of

critical cell types and processes implicated in mechanisms of disease, and enable further

genetic stratification of disease endotypes by underlying mechanism.

Data access

The FANTOM5 atlas is accessible from http://fantom.gsc.riken.jp/data/

An online service running the coexpression method is available at http://baillielab.net/

coexpression

Code delivering the NDA coexpression method is available at https://github.com/baillielab/

coexpression
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