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Abstract

Rationale:Heterogeneity in the septic response has hindered efforts
to understand pathophysiology and develop targeted therapies.
Source of infection, with different causative organisms and temporal
changes, might influence this heterogeneity.

Objectives: To investigate individual and temporal variations in the
transcriptomic response to sepsis due to fecal peritonitis, and to compare
these with the same parameters in community-acquired pneumonia.

Methods:We performed genome-wide gene expression profiling in
peripheral blood leukocytes of adult patients admitted to intensive care
with sepsis due to fecal peritonitis (n = 117) or community-acquired
pneumonia (n = 126), and of control subjects without sepsis (n = 10).

Measurements and Main Results: A substantial portion of the
transcribed genome (18%) was differentially expressed compared
with that of control subjects, independent of source of infection, with
eukaryotic initiation factor 2 signaling being the most enriched

canonical pathway. We identified two sepsis response signature
(SRS) subgroups in fecal peritonitis associated with early mortality
(P = 0.01; hazard ratio, 4.78). We defined gene sets predictive of SRS
group, and serial sampling demonstrated that subgroupmembership
is dynamic during intensive care unit admission. We found that SRS
is the major predictor of transcriptomic variation; a small number of
genes (n = 263) were differentially regulated according to the source
of infection, enriched for IFN signaling and antigen presentation.We
define temporal changes in gene expression from disease onset
involving phagosome formation as well as natural killer cell and IL-3
signaling.

Conclusions: The majority of the sepsis transcriptomic response is
independent of the source of infection and includes signatures reflecting
immune response state and prognosis. Amodest number of genes show
evidence of specificity. Our findings highlight opportunities for patient
stratification and precision medicine in sepsis.
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Sepsis is the life-threatening organ
dysfunction caused by a dysregulated host
response to infection (1). Therapeutic
options remain limited despite extensive
efforts to develop and refine treatment
strategies (2). New insights into
pathophysiology and the development
of targeted treatments appropriate for
individual patients at specific stages of the

illness are urgently required (3). To be
successful, this approach requires clearer
understanding of heterogeneity in the sepsis
response, in which proinflammatory and
immunosuppressed states are dynamic and
frequently coexist (4). We recently
identified distinct transcriptomic sepsis
response signatures (SRSs) in peripheral
blood leukocytes from patients with
community-acquired pneumonia (CAP)
that are informative for immune response
states and outcome (5). In particular,
patients with SRS1 exhibit an
immunosuppressed phenotype associated
with higher early mortality, with features of
endotoxin tolerance, T-cell exhaustion, and
downregulation of HLA class II.

It is not yet known whether comparable
SRSs are present in sepsis caused by other
sources of infection. Additionally, the extent
to which the source of infection contributes
to heterogeneity in the transcriptomic
response is unclear, although there is
evidence that gene expression signatures can
distinguish between gram-positive, gram-
negative, and viral etiologies, and these
signatures may be useful in the diagnosis of
CAP (6–13). In fecal peritonitis (FP), sepsis
is triggered by a polymicrobial infection
within the peritoneal cavity, complicated by
the release of damage-associated molecular
patterns (DAMPs) and the effects of
anesthesia (14). Conversely, CAP is caused
by specific bacterial or atypical pathogens,
and it is commonly preceded or caused by
viral infection (15). Antibiotic choice, such
as macrolides for CAP, may also have
immunomodulatory effects (16, 17).
Finally, whereas patients with FP usually
have a rapid onset of illness, patients with
CAP are often unwell for many days prior
to intensive care unit (ICU) admission.

FP is a common cause of sepsis with a
high mortality (18) in which longitudinal
analysis is tractable, given that a defined
time of onset can be estimated. We
hypothesized that SRSs similar to those
seen in CAP would be present in patients
with FP, but that aspects of the
transcriptomic host response would be
dependent on the source of infection and
stage of illness. In the present study, we
investigated how patterns of gene
expression in leukocytes are influenced by
source of infection in FP and CAP, as well as
how they vary between individual patients
and within patients over time. Some of the
results of these studies were previously
reported in the form of abstracts (19, 20).

Methods

Study Design and Participants

The objective was to characterize the
transcriptomic response to sepsis caused by
FP, including an analysis of temporal
changes and a comparison with sepsis
caused by CAP. The subjects were adult
patients admitted to the ICU with sepsis as
part of the UK Genomic Advances in Sepsis
(GAinS) study (www.ukccg-gains.org) with
predefined inclusion and exclusion criteria
(described in the online supplement). FP
was diagnosed at laparotomy as
inflammation of the peritoneal membrane
secondary to large bowel perforation and
fecal contamination (18). CAP was defined
as a febrile illness associated with cough,
sputum production, breathlessness,
leukocytosis, and radiological features of
pneumonia acquired in the community or
within 2 days of ICU admission (21, 22).

This was a prospective observational
study. The transcriptomic response was
investigated in peripheral blood leukocytes
and compared between patients and over time,
and with control subjects undergoing elective
cardiac surgery (described in the online
supplement). Discovery and validation
cohorts were used to identify shared and
specific gene expression patterns among
patients with FP and patients with CAP (see
Figure E1 in the online supplement).

Sample Collection

Blood samples (5 ml) were collected
(VACUETTE ethylenediaminetetraacetic
acid–coated tubes; Greiner Bio-One,
Kremsmünster, Austria) on the first, third,
and/or fifth day after ICU admission. The
total blood leukocyte population was isolated
using LeukoLOCK filters (Life Technologies,
Carlsbad, CA) and then stabilized using
RNAlater (Life Technologies), followed by
total RNA extraction (described in the online
supplement). Extensive, anonymized clinical
information was recorded using an electronic
case report form (5).

Microarray Analysis

Genome-wide gene expression was
quantified using Illumina HumanHT-12 v4
Expression BeadChips (47,231 probes;
Illumina, San Diego, CA) with sample
processing, data preparation, background
subtraction, transformation, and
normalization using the vsn package (23)
(described in the online supplement). Gene

At a Glance Commentary

Scientific Knowledge on the

Subject: There is significant
heterogeneity in the septic response,
which has hindered efforts to
understand pathophysiology and
develop targeted therapies. Molecular
approaches may provide insights into
variation in the host response, enabling
biomarker development. Recent
evidence suggests that transcriptomic
sepsis response signatures (SRSs) can
define patient subgroups associated
with early outcome in sepsis due to
community-acquired pneumonia
(CAP).

What This Study Adds to the

Field: This study provides the first
substantive analysis of the
transcriptomic response in patients
admitted to intensive care with sepsis
due to fecal peritonitis. Comparison
with sepsis due to community-
acquired pneumonia and with
nonseptic control subjects
demonstrated a shared sepsis response,
independent of source of infection, that
involved a significant proportion of the
transcribed genome and overlapped
with the “genomic storm” following
trauma. We found evidence of SRS
groups in patients with fecal
peritonitis predictive of early
mortality, with group membership
changing over time in some patients.
We show that the major predictor of
variation in gene expression between
patients with sepsis is SRS group
rather than source of infection, with
only a small number of genes
differentially regulated according to
the latter, enriched for IFN signaling
and antigen presentation. These
findings highlight opportunities for
patient stratification in sepsis.
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expression data are available through the
ArrayExpress database (accession number
E-MTAB-5273/E-MTAB-5274).

Statistical Analysis

Analysis was performed using the R
statistical software package (R Foundation
for Statistical Computing, Vienna, Austria)
unless otherwise specified, with statistical
tests, power calculations, differential gene
expression, enrichment testing, predictive
modeling, and cluster analysis described in
the online supplement.

Results

Transcriptomic Response to FP:

Identification of SRSs

We quantified genome-wide gene
expression for 117 adult patients with FP

and 126 adult patients with CAP admitted to
the ICU with sepsis, analyzing RNA from
blood leukocytes rapidly isolated at the
bedside. All patients showed evidence of
organ dysfunction based on Sequential
Organ Failure Assessment (SOFA) scores
during ICU admission. These patients were
recruited concurrently and processed in
parallel as discovery (64 with FP, 73 with
CAP) and validation cohorts (53 with FP, 53
with CAP; the 53 patients with CAP were
previously published [5]). We also analyzed
samples obtained from 10 subjects prior to
elective cardiac surgery as nonseptic control
subjects in the discovery cohort.
Demographics and clinical covariates for
the discovery set (FP, n = 64 patients; CAP,
n = 73 patients; 221 samples; see Figure E1)
are shown in Tables 1 and E1A.

We investigated whether sepsis
response subgroups based on global patterns

of gene expression were present in FP. The
combined FP cohort (147 samples from 117
patients) had a 28-day mortality of 13%; the
mean age was 66 years, and 50.4% of
patients were male (Table 2, Table E1B). We
applied two complementary approaches to
this FP cohort: (1) hypothesis-free
unsupervised hierarchical clustering based
on observed patterns of variation in gene
expression and (2) assignment based on
expression of a specific seven-gene set
previously shown to be predictive of SRS
group membership in CAP (5).

We first analyzed variation in global
gene expression (2,716 probes representing
the top 10% most variably expressed genes)
using agglomerative hierarchical clustering
followed by consolidation of group
membership using k-means. This approach
revealed two distinct patient groups:
SRS1_FP (n = 68 [46%]) and SRS2_FP

Table 1. Comparison of Clinical Characteristics of Patients with Sepsis, Based on Source of Infection in the Discovery and

Validation Cohorts for the First Available Sample for Each Patient

Discovery Cohort Validation Cohort

CAP (n = 73) FP (n = 64) P Value CAP (n = 53) FP (n = 53) P Value

Age, yr 60.6 (15.6) 65.1 (17.5) NS 68.4 (13.7) 68 (12.7) NS
Male sex 37 (50.6%) 28 (43.7%) NS 37 (69.8%) 31 (58.5%) NS*
APACHE II score on Day 1 in the ICU 18 (6.2) 15 (5.9) 0.005 19.7 (6.1) 15.7 (5.9) 0.0008
SOFA score on day of sampling 6.8 (3.5) 5.4 (4.0) 0.03 6.2 (3.8) 6.3 (3.5) NS
Mortality
14 d 8 (11.0%) 6 (9.4%) NS† 7 (13.2%) 6 (11.3%) NS†

28 d 13 (17.8) 8 (12.5%) NS† 7 (13.2%) 7 (13.2%) NS†

6 mo 17 (23.3%) 11 (17.2%) NS† 11 (20.8%) 12 (22.6%) NS†

Infection
Gram-positive bacteria 14 (19.2%) 7 (13.2%)
Gram-negative bacteria 8 (11.0%) 5 (9.4%)
Viral 6 (8.2%) 5 (9.4%)

Mechanical ventilation 51 (69.9%) 34 (53.1%) 0.05 19 (35.8%) 21 (39.6%) NS*
Respiratory rate, breaths/min 29.2 (9.2) 20.0 (8.2) ,0.0001 31.1 (8.7) 22.7 (9.0) ,0.0001
Days of respiratory support 9.6 (13.5) 4.7 (8.1) 0.01 8.8 (12.1) 9.3 (14.8) NS
Oxygenation index 19.3 (9.9) 30.9 (12.3) ,0.0001 21.2 (7.5) 28.2 (12.2) ,0.0001
Vasopressors/inotropes NS NS*
No dose 37 (50.7%) 35 (54.7%) 36 (67.9%) 27 (50.9%)
Low dose 1 (1.4%) 1 (1.6%) 0 (0%) 0 (0%)
Medium dose 10 (13.7%) 5 (7.8%) 7 (13.2%) 6 (11.3%)
High dose 24 (32.9%) 23 (35.9%) 10 (18.9%) 20 (37.7%)

Mean arterial pressure, lowest, mm Hg 65.0 (12.8) 67.7 (12.5) NS 69.6 (11.1) 67.5 (14.6) NS
Temperature, low, 8C 36.4 (0.8) 36.1 (0.7) 0.018 36.0 (1.0) 36.1 (0.6) NS
Hematocrit, % 35.4 (6.9) 30 (5.9) ,0.0001 35.0 (7.9) 31.5 (6.6) 0.02
Proportion of leukocytes
Lymphocytes 9.17% 6.52% 0.008 9.05% 8.77% NS
Polynucleocytes 84.10% 87.98% 0.029 83.40% 85.30% NS
Mononucleocytes 6.73% 5.50% NS 7.51% 5.95% NS

Bicarbonate, mmol/L 25.0 (6.8) 22.1 (5.1) 0.008 24.6 (6.8) 23.1 (5.0) NS
Renal replacement therapy 6 (8.2%) 5 (7.8%) NS 5 (9.4%) 8 (15.1%) NS*

Definition of abbreviations: APACHE II = Acute Physiology and Chronic Healthy Evaluation II; CAP = community-acquired pneumonia; FP = fecal peritonitis;
ICU = intensive care unit; NS = not significant; SOFA = Sequential Organ Failure Assessment.
Data are count (percent) or mean (SD) unless otherwise specified. Statistical analysis was done by t test unless otherwise specified.
*Chi-square test.
†Log-rank test.
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(n = 79 [54%]) (Figures 1A and 1B).
Following group assignment, 1,075 genes
were found to be differentially expressed
between these groups (Figure 1C, Table
E1C), showing strong correlation with
those previously observed in patients with
CAP (5) (Pearson’s r = 0.791) (Figure E2).
To determine the functional overlap with
SRS groups identified in CAP, we
performed pathway, function enrichment,
and upstream regulator analysis (Figure 1D,
Table E1D). Cell death, apoptosis, necrosis,
T-cell activation, and endotoxin tolerance
were significantly enriched biological
functions in SRS1 for both sources of
infection. We proceeded to test for
association with outcome in FP and found
that SRS1_FP group membership was
associated with higher early mortality (14-d
mortality log-rank test P = 0.0096; 18.8% vs.
4.3%; hazard ratio, 4.78; 95% confidence
interval, 1.29–17.65) (Figure 1E). The effect
of SRS group membership remained after
inclusion of age, SOFA score, Charlson
comorbidity index, and sex in a Cox
proportional hazards model (P = 0.037;
hazard ratio, 4.23; 95% confidence interval,
1.09–16.39).

To further validate our findings, we
adopted a second approach, namely
assignment of SRS group membership in
this FP cohort using the seven-gene set
(DYRK2, CCNB1IP1, TDRD9, ZAP70,
ARL14EP, MDC1, and ADGRE3) we

previously established in patients with CAP
(5) (Figure E3). This showed strong
concordance with the results obtained by
unsupervised analysis (misclassification
rate, 21.1%; area under the curve [AUC],
0.923) (Figure 1F). The groups defined
using the seven-gene set showed a
significant difference in early mortality
rates (log-rank test P = 0.030 for patients
with FP), a differential gene expression
signature strongly correlated with that seen
in the original CAP analysis (r = 0.845), as
well as pathway enrichment comparable to
findings in patients with CAP. We also
derived a six-gene set (CD163, ZDHHC19,
MME, FAM89A, ZBP1, and B3GNT2) from
the FP data predictive of SRS_FP group
membership, with a 4.1% misclassification
rate based on internal leave-one-out cross-
validation (AUC, 0.975) (Figure 1F). When
applied to the original CAP cohort (5), this
six-gene set again performed well
(misclassification rate, 27.9%; AUC, 0.931).

A poor outcome subgroup has
previously been reported in children with
sepsis (24). We investigated the similarity
between pediatric endotype A and SRS1 by
comparative differential gene expression
analysis. Although there was some overlap
in pathway enrichment (e.g., T- and B-cell
receptor signaling), the gene expression
patterns that distinguish SRS groups were
not enriched in the pediatric endotype
contrast (Figure E4).

Temporal Changes in SRSs

Serial sampling on Day 1, Day 3, and Day 5
following ICU admission provides the
opportunity to investigate the relationship
between SRS group membership and disease
progression. We found that 11 (46%) of 24
patients with FP with serial samples moved
between groups over time; 10 moved from
SRS1 to SRS2, only 1 of whom died
(Figure 1G). Thirteen patients (54%)
remained in the same SRS group; three of
seven patients remaining in SRS1 died,
compared with no deaths among the six
remaining in SRS2. This movement
between SRS groups involves large changes
in gene expression, illustrated by CD163,
encoding an innate immune sensor for
bacteria, and one of the six gene classifiers
for SRS_FP (Figures 1H and E5).

Influence of Source of Infection on the

Transcriptomic Response

We proceeded to further characterize and
compare gene expression in patients with FP
and patients with CAP to determine the
relative importance of shared and specific
features of the transcriptomic response. As
expected, in the discovery cohort,
gastrointestinal comorbidities were more
common in patients with FP, whereas
patients with CAP had more respiratory
comorbidities, higher respiratory rates and
oxygenation requirements, and higher
lymphocyte counts (Table 1 and Table
E1A). Although mortality did not differ
significantly, patients with CAP had higher
Acute Physiology and Chronic Healthy
Evaluation II and SOFA scores than
patients with FP (Table 1).

To understand the relationships
between source of infection, SRS group, and
heterogeneity in the septic response, we
performed principal component analysis
using the top 10% most variably expressed
transcripts. Nonseptic control subjects
clustered together and were clearly distinct
from septic patients (Figure 2A). Among
the combined population of patients with
sepsis, there was clear segregation based on
SRS group but not source of infection
(Figure 2A).

To further elucidate the drivers of
variation in the septic response, we
calculated correlations between the
observed variance in global gene expression
for the sepsis samples (the first six principal
components of variance, representing
approximately 50% of the variance in the

Table 2. Characteristics of Patients with Fecal Peritonitis (All Patients) on Day 1

Characteristics Data

Number of patients 117
Age, yr, mean6 SD 66.4 (615.5)
Male sex, % 50.4%
Median (range) APACHE II score 15 (2–40)
Median (range) SOFA score on day of sampling 5 (0–18)
Mortality
14 d 12 (10.3%)
28 d 15 (12.8%)
6 mo 23 (19.7%)

Cause of peritonitis
Diverticular disease 30 (25.6%)
Surgical anastomosis breakdown 28 (23.9%)
Malignancy 14 (12%)
Trauma 3 (2.6%)
Other/unknown 42 (35.9%)

Mechanical ventilation 55 (47%)
Vasopressors 55 (47%)
Renal replacement therapy 13 (11%)
Mean (SD) arterial pressure, lowest, mm Hg 68.2 (14.8)

Definition of abbreviations: APACHE II = Acute Physiology and Chronic Healthy Evaluation II;
SOFA = Sequential Organ Failure Assessment.
Data are count (percent) unless otherwise specified.
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data), a comprehensive set of clinical
covariates, and SRS group (Figure 2B, Table
E1E). This showed that variation in gene
expression was most strongly correlated
with SRS group membership (PC1 r = 0.77;
false discovery rate [FDR], ,2.23 10216).
More modest correlation was seen with
source of infection (PC1 r =20.417; FDR,
6.123 1029), bicarbonate levels (PC1 r =
0.35; FDR, 2.23 1028), and neutrophil
count (PC1 r =20.29; FDR, 2.03 1023).
When the dataset was divided into CAP
and FP samples and the analysis repeated,
we found that SRS remained the most
significant correlate (Figure E6).

When we compared all patients in the
discovery cohort (FP, n = 64; CAP, n = 73)
with nonseptic control subjects (n = 10), we
found that sepsis was associated with
differential regulation of a large proportion
of the transcribed genome (18.0% of
transcripts assayed; 4,881 probes; .1.5-fold
change [FC]; FDR, ,0.05) (Table E1F).
Pathway analysis showed that eukaryotic
initiation factor 2 signaling was the top
canonical pathway, consistent with the
reported role for this translational initiation
factor in response to viral and bacterial
infection (25), and predicted key upstream
regulators IL-13, ATB1, TGFB1, and
IL-2 (Table E1G). We used the same
methodology to compare gene expression
in trauma patients with healthy subjects,
using the previously published genomic
response to trauma dataset (26) but
restricting this to samples from the same
time frame as the sepsis cohort (5 d
following injury). We found that, of the
genes differentially expressed in the sepsis
response and measured in the trauma
cohort, the majority (n = 1,884 [64%]) were
also differentially expressed in trauma
(Figure 2C). Commonality was seen with
eukaryotic initiation factor 2 signaling and
inflammation-related pathways enriched in
both sepsis and trauma responses, whereas
the inflammatory response to organismal
injury was specific to trauma and tumor
necrosis factor receptor 1 (TNFR1)

signaling was specific to sepsis (Figure 2C,
Table E1H).

When we compared patients with CAP
versus control subjects and patients with FP
versus control subjects, we observed that
gene expression patterns were highly
correlated, demonstrating that most sepsis
response pathways are common and
independent of source of infection (Figures
2D, 3A, and 3B; Tables E1I and E1J). To
further investigate differential gene
expression between patients with sepsis due
to FP or CAP, we compared the first
available samples for each patient following
ICU admission (FP, n = 64; CAP, n = 73).
We found 310 probes (263 genes)
differentially expressed between the two
sources of infection (FC, .1.5; FDR,
,0.05) (Figure 3C, Table E1K),
significantly more than expected by chance
based on permutation analysis (Figure E7).
We noted significant differences in total
and differential cell counts between CAP
and FP. The inclusion of differential cell
counts in the regression model had
minimal influence, with a similar list of
differentially regulated genes and FCs
strongly correlated with the original
analysis (Figure E8, Table E1K). IFN
signaling (P = 6.13 10210) and antigen
presentation (P = 1.63 1028) were the
most significant enriched canonical
pathways, upregulated in patients with CAP
compared with FP (Figure 3D, Table E1L).
Enriched networks involved IFN-a/b and
the antimicrobial/inflammatory response
(P = 13 10239) (Figure 3E). IFIT1, IFIT2,
and IFIT3 (IFN-induced antiviral genes),
BTN3A3 (major histocompatibility
complex class I gene), IFIH1 (sensor of viral
nucleic acids), and OAS2 (IFN-induced
antiviral enzyme) were all upregulated in
patients with CAP. IFNs, endotoxins, and
TNF were found to be significant upstream
regulators (Figure 3D, Table E1L).

We confirmed our findings in a
validation set comprising 53 patients with
FP and 53 patients with CAP prospectively
recruited to the UK GAinS study (Figure

E1). We found SRS group, source of
infection, cell count, and day of sampling
were strongly associated with the first six
principal components of gene expression;
genes differentially expressed between
FP/CAP correlated with those found in the
discovery cohort (Pearson’s r = 0.83; P,
2.23 10216) (Table E1M). Pathway
analysis demonstrated high concordance of
enriched pathways and functions
(Figure 3D, Table E1N). We found that a
gene set comprising EPHB1, NQO2, ARG1,
HMGB2, FGL2, and GPR162 was predictive
of source of infection (FP or CAP) for the
discovery cohort. We applied a sparse
regression method to show that, for the
discovery cohort, the misclassification rate
was 29.9% with internal leave-one-out
validation (AUC, 0.760); for the validation
cohort, the test error was 28.3% (AUC,
0.798) (Figure E9). There was no difference
in the proportion of different sampling days
following ICU admission between FP and
CAP samples in the analyzed cohorts (chi-
square P = 0.350) (Figure E10).

Given a prominent viral signature
among genes differentially expressed
between patients with FP and patients with
CAP, we investigated if this came from a
subset of patients with CAP with a viral
infection. Only 6 of 73 patients with CAP in
the discovery cohort had a confirmed viral
infection; we therefore analyzed the
transcriptomic differences between patients
with and without confirmed viral infection
in our larger, previously published CAP
cohort (25 vs. 240 patients) (5). We
identified 39 differentially expressed genes
(FDR, ,0.05; FC, .1.5) (Figure 3F, Table
E1O), including IFI27, an IFN-a–inducible
protein reported as a marker of influenza
infection (27), and LAMP3, a dendritic cell
glycoprotein induced by influenza A
infection (28). Pathway analysis showed the
most significant enrichment for pattern
recognition receptors, IFN signaling, and
IFN regulatory factors (Table E1P). We
then compared this gene set to the genes
differentially expressed between patients

Figure 1. (Continued). phenotypes, and predicted upstream regulators derived from differentially expressed probes in FP SRS groups and compared

with the previously published community-acquired pneumonia (CAP) dataset. Enrichment was also seen for an endotoxin tolerance gene expression

signature we previously defined (5) using publicly available datasets (42, 43) in SRS1_FP relative to SRS2_FP, tested using ROAST (rotation gene set

testing), a gene set enrichment test (P, 13 1025). (E) Kaplan-Meier survival plot by SRS group (shaded areas, 95% confidence intervals [CIs]) with a

single sample selected at random for those patients with multiple samples to assign SRS membership. (F) The performance of the SRS group assignment

models (gene sets) which were derived and tested in the FP and previously published CAP datasets, are shown by receiver operating characteristic

curves, and the area under the curve (AUC) is given for each. (G) Time course of patient SRS-FP group membership using serial samples and days from

disease onset. (H) Expression of CD163 over time from disease onset in samples from the 11 patients with FP who moved between SRS groups. Each

point represents a sample, colored according to SRS group assignment, with lines linking samples from the same patient. HR = hazard ratio.
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Figure 2. Transcriptomic response to sepsis. (A) First two principal components (PCs) of gene expression data plotted with the proportion of variance

explained by each component shown. Solid circles represent fecal peritonitis (FP) discovery samples (n = 94), and open circles represent community-

acquired pneumonia (CAP) discovery samples (n = 127). Samples are colored according to sepsis response signature (SRS) group assignment,

showing that sepsis response states have considerable overlap between sources of infection. Control subjects (n = 10) are indicated by x. (B) Heatmap

ORIGINAL ARTICLE

334 American Journal of Respiratory and Critical Care Medicine Volume 196 Number 3 | August 1 2017



with FP and patients with CAP and found
significant enrichment of 24 of 39 genes
(P, 13 1024).

Temporal Changes in Gene

Expression

Interpretation of gene expression patterns in
sepsis may be complicated by dynamic
differences in the host response over time
(10, 29). We explored temporal changes in
gene expression for patients with FP and
patients with CAP from whom serial
samples following ICU admission were
available. We first sought to identify genes
that varied over time using a repeated
measures regression model. We found that
714 genes were significantly differentially
expressed in patients with FP sepsis
between Days 1 and 5, compared with only
80 genes in patients with CAP (FDR,
,0.05; FC, .1.5) (Figure 4A, Table E1Q).
We further analyzed our data using a
multivariate empirical Bayes model that
ranks genes based on differential expression
for longitudinal series involving multiple
biological conditions (30), restricting this
analysis to patients from whom samples
were available at all three time points.
Notably, temporal changes in gene
expression were again more pronounced in
patients with FP (Table E1R), and the
specific genes whose expression changed
over time differed between FP and CAP
(Figures 4B and C).

In patients with FP, it was possible to
estimate with reasonable accuracy the time
of onset of the acute event. We calculated
days from disease onset for each FP sample
and used this to investigate temporal
changes. Using a linear model with limma
analysis, we found that 140 genes showed
significant changes in expression over time
(FDR, ,0.05) (Table E1S), including AAK1
and SNN (Figure 4D). Pathway analysis was
significant for genes involved in phagosome
formation; natural killer cell and IL-3
signaling with evidence of enrichment for
specific biological functions, notably
cellular degranulation, chemotaxis,
leukocyte activation, macrophage adhesion,
phagocytosis, and bacterial infection
(Table E1T).

Discussion

We have characterized the transcriptomic
response to sepsis caused by FP and found
evidence of SRSs associated with outcome,
with patients in SRS1 having higher early
mortality. Transcriptomic features of
endotoxin tolerance and pathway
enrichment for cell death, apoptosis,
necrosis, and T-cell exhaustion are
consistent with animal models and human
studies demonstrating the importance of
immune compromise in sepsis pathogenesis
and as a determinant of poor outcomes
(4, 31, 32). The FP dataset allowed us to
explore evolution of SRS membership. We
found a significant number of patients
(46%) switched SRS groups in the first 5
days of ICU admission, with the majority
moving from SRS1 to SRS2. Persistence of
SRS1 is associated with a poor outcome,
whereas maintenance or recovery of
immune competence (SRS2) is associated
with survival. These findings further
support the concept that SRS group
membership reflects clinically important
biological differences (5) and suggest that, if
used as a biomarker, the transcriptomic
response signature should be determined at
the time a therapeutic intervention is being
considered. Establishing the immune
response state of a patient could enable
individually tailored immunotherapy and
monitoring of the response to treatment.

We found that the transcriptomic
response is, to a large extent, shared between
the two sources of infection we analyzed,
with the expression of only a modest
number of genes being dependent on source
of infection. This shared sepsis response
involves a significant proportion of the
transcribed genome and overlapped with the
“genomic storm” following trauma,
although we observed some differences
involving, for example, TNFR1 signaling
(26). Regarding gene expression between
FP and CAP, the most enriched
networks involved IFN-a/b and the
antimicrobial/inflammatory response.
These differences seem to be driven
predominantly by viral respiratory infection

within the CAP cohort; however, given
current difficulties in pathogen detection,
the biological and clinical interpretation of
such transcriptomic differences remains
challenging. Whereas some previous studies
have supported a common transcriptional
septic response independent of pathogen
(33), others have reported that expression
signatures can discriminate between
infecting organisms (6–8, 13), although
these findings remain controversial (9, 10).
For patients admitted to the ICU with
suspected CAP, a 78-transcript signature
has been reported to differentiate cases of
CAP from non-CAP, with the FAIM3:
PLAC8 gene expression ratio proposed as a
diagnostic biomarker (11).

We found that temporal changes were
more pronounced in patients with FP, with
more than eight times as many genes
differentially expressed between admission
and Day 5 than in patients with CAP, and
these changes involved phagosome
formation, natural killer cell signaling, IL-3
signaling, leukocyte activation, mitochondrial
damage, and apoptosis. To date, time series
analyzing changes in gene expression have
been focused on animal models of sepsis (34),
the endotoxin response in healthy volunteers
(35), the response to trauma and subsequent
infection (26), and early events in sepsis (29),
and authors of a recent analysis of time-
matched cohorts defined a gene set
distinguishing sterile inflammation from
infectious inflammation (12). In general,
clearer resolution of temporal differences is
critical to resolving heterogeneity in observed
sepsis responses within and between patients.

Future work should include
comprehensive pathogen phenotyping, such
as by using metagenomic sequencing, given
the recognized high proportion of culture-
negative patients with sepsis (36, 37).
Comparison of patients with FP with
specific control subjects, such as a group of
patients undergoing laparotomy for
noninfectious indications, would control
for the effects of damage-associated
molecular pattern–mediated signaling due
to the surgical procedure as well as any
modulating influences on the transcriptome
due to general anesthesia, whereas inclusion

Figure 2. (Continued). showing correlation between the first six PCs, SRSs, and clinical covariates for sepsis samples (FP, n = 94; CAP, n = 127). (C)

Venn diagram showing the overlap in differential gene expression versus control subjects in the sepsis response and the response to trauma (false

discovery rate [FDR], ,0.05; fold change [FC], .1.5; first 5 d). Selected condition-specific enriched pathways and biological functions are noted.

(D) Volcano plot of differentially expressed probes for FP (n = 94; left) and CAP (n = 127; right) versus control subjects (n = 10) (red coloring shows FC.1.5,

FDR ,0.05). APACHE= Acute Physiology and Chronic Health Evaluation; EIF2 = eukaryotic initiation factor 2; NFAT = nuclear factor of activated

T cells; SOFA = Sequential Organ Failure Assessment; TNFR1 = tumor necrosis factor receptor 1.
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Figure 4. Dynamics of gene expression in sepsis due to fecal peritonitis (FP) and community-acquired pneumonia (CAP). (A) Volcano plot of the
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of patients undergoing laparotomy for
gastric or small bowel perforation would to
some extent control for different pathogens.
Differences in differential cell count are
potential confounders in transcriptomic
analysis (10), and, although the results
presented were robust to differential
leukocyte count, cell-type–specific
transcriptomic profiling will be important
for future studies (38).

Defining the most robust and
informative predictive gene set for SRS
membership on the basis of transcriptomics
requires prospective large-scale validation
using an appropriate point-of-care test. We
note that the current seven-gene set
established in patients with CAP and
validated in patients with FP is consistent
with a key role for a dysfunctional immune
response in sepsis. This predictive gene set

includes genes involved in cell growth
(DYRK2), cell cycle (CCNB1IP1), stem cell
maintenance (TDRD9), and DNA damage
(ADGRE3), consistent with the observed
pathway enrichment (cell death, apoptosis,
necrosis) and with immune response
through lymphocyte activation (ZAP70),
major histocompatibility complex class II
export (ARL14EP), and myeloid cell
interactions in immunity (MDC1). The lack
of overlap with pediatric sepsis endotypes
that we observed requires further validation
and may reflect developmental differences
impacting pathophysiology and host
immune dysfunction (39, 40).

We have addressed sepsis heterogeneity
using a transcriptomic approach in
patients with FP and patients with CAP,
demonstrating a shared sepsis response with
distinct SRS groups that are dynamic, reflect

the underlying biological response, and are
informative for prognosis. Our findings also
provide some evidence for differential
patterns of expression between CAP and FP,
two of the most common causes of sepsis.
Our analysis, coupled with recent advances
in the field (3, 4, 11, 41), highlights the
opportunity to develop novel therapeutic
interventions that can be targeted and
appropriately timed to individual patients
on the basis of their transcriptomic
signatures, providing opportunities for
precision medicine in sepsis. n
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