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Abstract—Mobility-on-demand systems consisting of shared
autonomous vehicles (SAVs) are expected to improve the effi-
ciency of urban mobility through reduced vehicle ownership and
parking demand. However, several issues in their implementation
remain open, such as unifying the vehicle and ride-sharing
assignment with rebalancing non-occupied vehicles. Furthermore,
proposed SAV systems are evaluated in isolation from other
traffic; no congestion is taken into account when assigning
requests or calculating routes. To address this gap, we present
Shared Autonomous Mobility-on-Demand system (SAMoD), a
reinforcement learning-based approach to vehicle relocation and
ride-sharing request assignment. Each vehicle learns its pick-up
and rebalancing behaviour based on local current and observed
historical demand. We evaluate SAMoD on Manhattan network
using NYC taxi data in microsimulator SUMO. We investigate
SAMoD performance in the presence of congestion generated
by private vehicles, as well as investigate impact of different
percentages of SAMoD vehicles in the system on overall traffic
network performance.

Index Terms—ride-sharing, mobility on demand, traffic con-
gestion, shared autonomous vehicles

I. INTRODUCTION

The advent of autonomous cars and car-sharing systems
revealed the potential of Shared Autonomous Vehicles (SAV)
to act as a promising Mobility-on-Demand (MoD) system in
cities. Reduced waiting and travel times in such systems are
expected [1] under the assumption that citizens are willing to
share rides, and that autonomous cars can relocate themselves
to the areas with high demand. Efficient relocation strategies
are of crucial importance, as travel patterns in cities signifi-
cantly vary during the day but can also vary daily.
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Fig. 1: Pick-ups and drop-offs number imbalance

To illustrate this, Figure 1 shows an example of an observed
imbalance in New York City (NYC) taxi trip data [2] during
the morning and evening rush hours. Ride-sharing in MoD
systems has a strong potential, since most of the vehicles travel
with only a few passengers, as illustrated in Figure 2.
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Fig. 2: Sample taxi trip occupancies

Using the same data as in the previous figure, we observed
an average occupancy of only 1.6 passenger per car. While
the morning and evening rush hours follow a similar pattern,
the majority of trips (over 70%) served 1 passenger only,
which highlights the potential of ride-sharing enabled systems.
Recent ride-sharing research [3], [4] confirms the importance
of ride-sharing to significantly increase the level of service
using high-occupancy shared vehicles.

However, a number of gaps are observed in existing work.
Ride-sharing and rebalancing strategies are addressed using
separate approaches, i.e., only unoccupied vehicles can re-
balance. In combined approaches, partially-occupied vehicles
could also be taken into account as they can serve further
requests along their route, effectively rebalancing to the areas
they are travelling through. Another factor that needs to be
considered is the willingness of citizens to adopt ride-sharing
systems. In a survey of 1233 residents of Dublin, Ireland,
which we conducted, only 5% were willing to give up their
private vehicle in favour of shared MoD systems. However,
54% of respondents were willing to replace some trips with the
shared ones. Further, 14% of respondents were willing to adopt
autonomous vehicles as soon as they become available, while
49% indicated they would wait 5 years or longer. Therefore,
evaluation of autonomous ride-sharing systems needs to take
different adoption rates into account. Another major issue is
that the performance of ride-sharing systems has so far been
evaluated only in isolation from other traffic; either analytical
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models are used to calculate travel/waiting times assuming
straight-line distances, or simulation is used, but no other
types of vehicle is simulated. Therefore, it is uncertain whether
performance of the existing models holds true in the presence
of other traffic on real road networks, as congestion will
directly impacts SAV travel times, and therefore their ability
to arrive to the location of the requests in time.

In our previous work [5], we introduced a decentralized
Shared Autonomous Mobility-on-Demand system (SAMoD),
a reinforcement learning (RL) based decentralized approach
to vehicle rebalancing as well as ride request assignment in
shared mobility-on-demand systems. In this paper we reiterate
the main features of this approach, but go further by extending
SAMoD algorithm to make request assignment and rebalanc-
ing decisions based on real-world road network and in the
presence of congestion simulated in micro-simulator SUMO.
We investigate the behaviour of SAMoD in the presence of
congestion generated by private vehicles, as well as investigate
impact of different percentages of SAMoD vehicles in the
system on overall traffic network performance.

Therefore, the main contributions of this paper are:
• Extending SAMoD algorithm to take congestion into

account when making request assignment and vehicle
routing decisions

• Evaluating SAMoD in the presence of congestion in
SUMO micro-simulator using the real-world map of
Manhattan. As ride-sharing systems are usually evaluated
in isolation, this work represents the first evaluation of a
ride-sharing and rebalancing system in a microsimulation
with other traffic present.

• Investigating the impact that shared vehicles have on
overall congestion, by varying the numbers and ratio of
shared vehicles and private vehicles in the simulation.

II. RELATED WORK

Algorithms for on-demand ride-sharing are increasingly
investigated in literature with the aim to increase the efficiency
of SAV systems. Table I shows the most relevant approaches.

While the initial work, e.g., [6], [7], [8], [9] focuses only on
ride-sharing, approaches in [10], [4], [3], [11], [12] combine
rebalancing and ride sharing as their mutual impact has been
recognized. Rebalancing in these is, however, done either at
fixed intervals rather than dynamically [10], or using a central-
ized approach [4], [13], [12], [14]. A decentralized rebalancing
approach is presented in [11], but in combination with a
centralized request and ride-sharing assignment. Apart from
computational efficiency (and therefore more responsive real-
time adaptivity to new requests), a benefit of decentralizing
both dispatch and rebalancing is that vehicles do not have to
be part of the same fleet, and the city-wide system can consist
of individual either driver-operated or autonomous vehicles.

Only a minority of research uses a microscopic traffic
simulation to evaluate the performance of an AMoD system
[15], [16]. However it still does not feature dynamic ride-
sharing, and when rebalancing is available, it relies on human
operators [16].

The only approaches that consider congestion with ride-
sharing and/or rebalancing are [9], [12], [13], [14]. However

TABLE I: Main dynamic ride-sharing (DRS) and rebalancing
(RB) approaches, using microscopic simulation for Shared
Autonomous Vehicles and Congestion-Aware Routing (CAR)
strategies

Reference DRS RB Micro-sim CAR
Maciejewski and Bischoff [15] 8 8 3 3
Hörl et al. [13] 8 3 8 8
Zhang et al. [6] 3 8 8 8
Simonetto et al. [7] 3 8 8 8
Lu et al. [8] 3 8 8 8
Levin et al. [9] 3 8 8 3
Martinez et al. [16] 8 3 3 8
Fagnant and Kockelman [3] 3 3 8 8
Fiedler [10] 3 3 8 8
Alonso-Mora et al. [4] 3 3 8 8
Wen et al. [11] 3 3 8 8
Vosooghi et al. [12] 3 3 8 8
Ruch et al. [14] 3 3 8 8
SAMoD Guériau and Dusparic [5] 3 3 8 8
This paper 3 3 3 3

none uses a congestion-aware routing strategy to react to ob-
served congestion level. [9], [12] only account for congestion
generated by the fleet of SAVs themselves rather than other
vehicles, and in [14], [13] the agent-based simulation used
relies on a simplified queue-based model for traffic congestion
instead of more realistic car-following behaviours. In other
approaches, simplifications were used to mimic the behaviour
in the presence of congestion, e.g., modifying the speed of
SAVs per simulated period: one speed at rush hour, and
another during the quiet period [6]. Some approaches aim to
estimate travel times more realistically, e.g., by using a micro-
scopic simulator to estimate finer travel time per link [16], or
OpenStreetMap (OSM) data to simulate time-varying traffic
condition by applying a hourly velocity ratio [7]. While those
contributions allow for more realistic SAV travel times, the
effect of traffic on SAVs remains to be assessed. The only work
that models traffic and SAVs at the same time is [15], which
simulated private vehicles mixed with autonomous taxis and
assessed the potential impact on traffic congestion, however
taxis did not feature ride-sharing or relocation strategies. With
ride-sharing and rebalancing enabled, SAV systems could have
a strong impact on regular traffic and vice versa, effect of
which still remains to be evaluated.

To address this gap, we evaluate the influence of regular
traffic, i.e., private cars, on the behaviour of a fleet of SAVs, as
well as the influence of varying sizes of SAV fleets on regular
traffic. We extend our previous work SAMoD [5] in which we
proposed a fully decentralized RL approach to ride-sharing
and vehicle rebalancing. We investigate whether SAMoD’s
achieved behaviour holds in the presence of congestion, and
what effect does it have on the overall traffic flow. We use
microscopic simulation to reproduce a realistic traffic flow in
NYC network, and modify the algorithm to take the congestion
into account when calculating routing and pick up decisions.

III. ON-DEMAND AUTONOMOUS RIDE-SHARING
ENABLED MOBILITY

This section presents the details of a single SAMoD agent
design, and the overall system architecture and behaviour aris-
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ing from individual agents operating in the same environment.

A. SAMoD agent

Each vehicle in SAMoD is controlled by an intelligent
learning-based SAMoD agent. To implement the learning pro-
cess, we use Q-learning [17], a widely used RL algorithm. In
Q-learning, for each state (set of environment conditions), an
agent, in interaction with environment from which it receives
rewards (reinforcements), learns the most suitable actions to
perform in the long-term.

SAMoD agent’s main goal (Q-learning policy) is to serve
ride requests, i.e., to pick up passengers. RL reward is given
to an agent if the vehicle has passenger(s) and no reward
is given otherwise. This goal can be achieved in two ways:
serving current pending requests, including additional ride-
sharing requests, and, if there are no requests in agent’s
vicinity, by rebalancing to the areas where there are requests
or from where historically the most requests originate. Each
agent, by receiving this reward signal, learns its own way to
best maximise the cumulative reward, by learning the actions
for each of its states that lead to maximizing it.

The environment is divided into zones, provided during
the system implementation, and requests are classified de-
pending on the origin and destination zones. Each agent
makes action decisions considering only a subset of zones:
the zone it is currently in, and its direct neighbouring
zones. The full RL agent state consists of (i) vehicle state
(empty, hasPassengers, full), (ii) presence of current re-
quests in agent’s zone (yes, no) and (iii) presence of current
active in neighbouring zones (yes, no). We make a distinction
between full and hasPassengers rather than just mark the
vehicle as occupied, to denote if vehicle is available for
further ride-sharing requests. An agent can execute three basic
actions: pickUp, rebalance and doNothing. Pick-up action
can refer to picking up the first passenger, or picking up a
ride-sharing request. With respect to rebalancing, agents learn
to choose between a number of strategies: (i) rebalance to
a neighbouring zone with the most current pending requests,
(ii) rebalance to a neighbouring zone with the biggest gap
between vehicle supply and number of requests, (iii) rebal-
ance to a neighbouring zone which historically has the most
requests, or (iv) rebalance to a neighbouring zone which
historically has the biggest gap between vehicle supply and
number of requests. At the start of the learning process, agent
does not have historical information; as learning episodes are
executed, an agent records the observed requests in each zone
it operates in and builds up the required information for the
more sophisticated rebalancing strategies.

SAMoD learning process is summarized in Algorithm 1.
A new learning episode is triggered by either dropping off
passengers or by finishing rebalancing to a different zone.

B. SAMoD system

SAMoD agents are designed to be a part of fully flexible
stationless shared on-demand mobility system, in which ride-
sharing requests are considered in real-time as they come
up; no knowledge of future requests is assumed, although

Algorithm 1 SAMoD Agent Learning Process
1: // execute on learning event trigger
2: state← MAPLOCALENVTOSTATE(environment)
3: action← QLEARNING.PICKACTION(state)
4: // if picking up new (ride-sharing) passengers
5: if action == ”pickUp” and state! = ”full” then
6: request← NEARESTREQUEST(roadNetwork)
7: if state! = ”empty” then
8: request←RIDESHARINGREQUEST(roadNetwork)
9: end if

10: route← CALCROUTE(roadNetwork, trafficData)
11: PICKUPPASSENGERS(request)
12: // if rebalancing, determine the zone to rebalance to
13: else if action == ”rebalance” then
14: current← GETPENDINGREQUESTS(zones)
15: historical← GETHISTORICALREQUESTS(zones)
16: zone←SELECTZONE(current, historical)
17: route← CALCROUTE(roadNetwork, trafficData)
18: REBALANCETO(zone, route)
19: TRIGGERNEWEVENT(Rebalanced)
20: end if
21: // serve requests and finish learning episode
22: if state! = ”empty” then
23: route← CALCROUTE(roadNetwork, trafficData)
24: DROPOFFPASSENGERS(request, route)
25: TRIGGERNEWEVENT(DropOff )
26: end if
27: UPDATEENVIRONMENTHISTORICALDATA(request)
28: UPDATEQLEARNINGPROCESS(request)

historical data is gathered throughout an agent’s lifetime to
learn where requests typically originate.
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Fig. 3: Example learnt behaviour of a SAMoD. Numbers refer
to passengers count per request and car occupancy.

Figure 3 depicts the learnt SAMoD behaviour. At the start of
an episode, agent receives information on available requests in
its own zone and picks up the nearest request. After pick-up,
the vehicle drives to the rider destination (top right image).
The original route can be modified if the vehicle detects
further requests eligible for ride sharing. Action pickUp is
then executed to pick another passenger, route and destination
are updated to include additional passengers, and passengers
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are dropped off to their respective destinations (bottom right
image). Upon completion of this episode, if there are requests
in its own zone, vehicle can assign itself to the nearest one,
and go through the same cycle again. If there are no requests,
as is the case in the depicted example, vehicle learns to
either wait in the same zone or relocate itself to one of the
neighbouring zones. No direct collaboration or coordination
between vehicles exist. Vehicles instead coordinate indirectly
through the environment; each agent has visibility of how
many other vehicles are present in their zone, so can decide to
rebalance to the zone with the biggest gap between requests
and vehicle supply (or be purely guided by requests and to
remain ”competing” with other vehicles in the same zone).

An advantage of this decentralized approach is that no
adjustment is needed to the system or algorithm if a vehicle
joins or leaves the system (unlike in centralized approaches
where recalculation/reassignment is needed).

Figure 4 depicts the SAMoD environment and the inter-
actions between agents and the environment, from which the
overall SAMoD system performance arises in a decentralized
bottom-up manner. System provides the map of the operating
environment, which includes the road network as well as its
division into ”zones”, smaller segments of the map introduced
to discretize the environment. Upon joining the system, each
agent/vehicle initializes its learning process; first time it joins
it starts from no knowledge and builds it up as it operates
Each agents has access to the information about its own local
environment only - number of the requests and other vehicles
in its own zone and neighbouring zones.

The framework is designed to allow a straightforward
porting of SAMoD to a real fleet of SAVs. The update
of vehicles position and speed is performed by a separate
process, in this case a microscopic traffic simulation. While
SAMoD environment simulates the requests, SAMoD cars
behave and learn independently. Their current position is
given by the traffic simulation at every time step, and allow
them to compute distances to requests in their zone. The
key difference here, when compared to most of state of

the art approaches, is that our modelling allows vehicles to
compute distances to potential requests based on the network
representation, i.e., based on the shortest path between the
vehicle position and the waiting rider (Algorithm 1, lines 6
and 8). In addition, our framework allows SAVs to update
their route dynamically based on current traffic conditions.
SAVs receive information about the current average travel time
on each link of the network, and based on this compute the
fastest route (in terms of estimated travel time) towards their
next destination. In Algorithm 1, we show how congestion-
awareness is incorporated into agents actions: the dynamically
computed route is passed as a parameter into pick-up (line 11),
drop-off (line 24) and rebalance (line 18) methods. This allows
SAMoD cars to adapt their route to current traffic, hence
avoiding the most congested links on the network.

IV. EXPERIMENTAL SETUP

The evaluation of SAMoD is implemented in a microsimula-
tor SUMO [18]. Vehicle speed and position are updated using
a car-following model, reproducing high-level traffic behaviour
such as congestion.

We used the open NYC taxi dataset [2] to generate ride
requests in the lower Manhattan area. The road network, its
division into zones, speed limits and traffic lights positions
were extracted from Open Street Maps data and include 1450
nodes, 2846 links and 877 traffic lights, divided into 19
provided zones.

To generate the ride-sharing requests, we extracted the
trips from 50 consecutive Tuesdays between July 2015 and
June 2016 to represent typical weekday demand. We chose
to examine the morning rush hour (7-10am), which in the
data set is the highest demand period. We obtained a total
of 184,938 trips (with a total of 294,977 passengers). Each
SAV has a capacity of 4 passengers. Customers request trips,
indicating their origin location (GPS coordinates) and the
number of passengers. They wait for a maximum of 10
minutes before a SAV is assigned (or self-assigns) to their
request. After that time, unassigned requests are cancelled
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from the system and marked as ”not served”. After pick-
up, based on desired passenger destination, SAV dynamically
recomputes the route to the nearest destination among its
current passengers.

To implement a realistic evaluation of SAMoD in the pres-
ence of traffic congestion, personal vehicle trips were gener-
ated using a uniform distribution, ensuring spread-out network
occupancy. SAVs use SUMO’s routing component to receive
updated information on average travel time and continually
recompute their routes towards pick-up requests and drop-offs.
Routes for privately owned vehicles are randomly generated.
Even though AVs and human-driven vehicles will highly
likely exhibit different longitudinal behaviours in the future,
currently proposed AV car-following models are not validated
in urban scenarios, so in this work both AVs and private
vehicles are ruled by SUMO’s default car-following Krauss
model. However, behaviour of SAMoD vehicles differs from
that of the privately owned ones in other aspects: private cars
drive from an origin to a destination, when AVs continuously
circulate through the system dynamically changing their route
to satisfy requests. In addition, each pick up and drop off
action of a SAV is associated with a 3 second stop on the road
to allow passengers to board and leave the car. In addition,
we assume SAVs can park on the side of the road after they
drop their last passenger and when they reach a rebalancing
location, an assumption in line with all of the other related
work [19], [3], [4], [11].

V. EVALUATION, RESULTS AND ANALYSIS

Evaluation of SAMoD approach focuses on two aspects: (i)
evaluating the performance of a learnt car- and ride-sharing
strategy applied by a fleet of AVs in the presence of other
traffic, to observe any potential differences between naive
evaluations used by state of the art approaches (and our
previous work) which simulate only SAVs (Section V-A); and
(ii) evaluating the overall performance of traffic with varying
SAV fleet sizes and private vehicles vs. SAV vehicles ratios
(Section V-B).

A. SAMoD performance in the presence of congestion

In this section, we compare the performance of a fleet
composed of SAMoD vehicles in the original simulation
framework [5] which did not consider congestion, and in the
new framework which integrates traffic and a realistic road
network. Travel times were computed by assuming a speed
of 21 mph (33.8 km/h) for peak hours and of 30 mph (as
in [6]). We use SUMO microsimulation to simulate actual
speeds of SAVs and private vehicles taking congestion and
traffic controllers in account. Therefore, current simulation
gives more realistic travel and waiting times. We use a fixed
fleet size of 200 SAVs.

In order to evaluate different features of SAMoD, we com-
pare our proposed approach to several baselines combining
centralized assignment, decentralizing assignment, rebalancing
and ride sharing, defined as follows:

• Centralized assignment (C): a central controller assigns
nearest vehicle to the request with highest waiting time.

• Decentralized assignment (D): vehicles self-assign to the
request with the highest waiting time.

• Rebalancing (RB): the vehicle drives towards the centre
of its ”home” zone.

• Ride sharing (RS): a vehicle can serve multiple requests
in the same or neighbouring zone simultaneously, until
reaching maximum occupancy.

TABLE II: Simulated configurations: 4 baseline scenarios and
3 configurations of SAMoD

Summary Assignment Rebalancing Ride sharing
C Centralized No No
D Decentralized No No

C RB RS Centralized Yes Yes
D RB RS Decentralized Yes Yes

S RB Learnt Learnt No
S RB RS Learnt Learnt Learnt current zone

S RB RS+1 Learnt Learnt Learnt current zone+1

We combined these behaviours into 4 baseline scenarios and
we evaluate 3 different configurations of SAMoD agent. The
scenarios are summarized in Table II.

Ride-share requests can be served only in the zone vehicle
is already due to travel through, or diversions of maximum
one zone are allowed. Rebalancing actions are learnt by an
agent, and vehicles are allowed rebalance as many times as
needed to move to desired area. For all SAMoD scenarios,
SAVs Q-learning process uses an ε-greedy policy with 50%
exploration rate (probability of taking a random action) during
training, performed on the first 40 days of the dataset, and
0% during the last 10 days, i.e. for the presented results. Q-
learning parameters learning rate α and the discount factor γ
are both set to 0.1.

As a measure of performance, we compare three sets of
indicators: system metrics, rider metrics, and vehicle metrics.
We evaluate the overall system performance with respect to the
number and percentage of served and timed-out (not served
after 10 minutes) requests. For the riders, we measure the
waiting time tw between the request is sent and the rider
picked up, detour time td, i.e., the time of the detour required
to serve additional ride-sharing requests, and the total travel
time TT . For the vehicles, we measure a number of Vehicle
Miles Travelled (VMT) metrics: empty VMT, engaged VMT,
and shared VMT, as well as the vehicle occupancy.

The results obtained are summarized in Table III. For com-
pletion and consistency the table includes the performance of
centralized and decentralized baselines without ride-sharing or
rebalancing, however, as these are significantly outperformed
by approaches which include ride-sharing and rebalancing,
we only focus on those in our discussion. First, we observe
the performance of SAMoD against the baselines. SAMoD
with ride-sharing and rebalancing outperforms both centralized
(C RB RS) and decentralized (D RB RS) baselines in terms
of vehicle occupancy (3.2 versus 3.1 and 2.9 in decentralized
and decentralized baselines). It also achieves significantly
lower waiting times (3.8 min vs 4.31 and 4.1 in decentralized
and decentralized baselines), and a higher distance travelled
with more than one passenger. This improvement, however, is
achieved at the cost of a higher empty VMT (67 vs. 52 for both
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Original version of SAMoD [5] SAMoD-Sumo
No RB, No RS RB and RS SAMoD No RB, No RS RB and RS SAMoD

C D

C
RB

RS

D
RB

RS

S
RB

S
RB

RS

S
RB

RS
+1

C D

C
RB

RS

D
RB

RS

S
RB

S
RB

RS

S
RB

RS
+1

Sy
st

em

Satisfied requests 29667 35388 38346 38407 35691 37790 37679 24062 31607 35879 36092 32089 33959 34244
% of total requests 76.4 91.13 98.75 98.91 91.91 97.32 97.03 62.34 81.89 92.96 93.51 83.14 87.98 88.72
Not served requests 8675 3098 0 11 2903 693 726 14049 6565 2037 1818 6203 4106 3700
% of total requests 22.34 7.98 0 0.03 7.48 1.78 1.87 36.4 17.01 5.28 4.71 16.07 10.64 9.59

R
id

er
s Avg tw (min) 11.63 5.48 2.1 2.6 2.87 2.46 2.27 16.44 7.9 4.65 4.11 4.31 4.12 3.78

Avg TT (min) 5.8 5.69 10.19 8.73 5.69 9.11 12.03 6.62 6.5 16.95 15.72 6.49 13.29 17.88
Avg td (min) 0 0 4.44 2.99 0 3.39 6.31 0.13 0.06 10.5 9.28 0.05 6.89 11.48

V
eh

ic
le

s

Avg VMT 863.8 735.79 760.06 845.02 882.85 865.94 869.94 315.62 282.3 302.91 303.35 320.28 303.7 308.35
Avg empty VMT 428.48 228.29 181.56 268.52 371.95 352.6 335.81 171.39 97.94 52.06 52.83 133.31 81.73 67.12
Avg engaged VMT 435.32 507.5 578.5 576.5 510.91 513.34 534.13 144.23 184.36 250.86 250.52 186.97 221.97 241.23
Avg shared VMT 103 120.55 376.86 301.96 115.84 330.3 433.86 33.31 43.6 197.66 183.89 40.4 149.19 199.76
Avg occupancy 1.47 1.48 2.63 2.27 1.45 2.52 3.13 1.46 1.47 3.1 2.93 1.41 2.57 3.2

TABLE III: SAMoD [5] original version (left) and new Sumo framework (right) for 7-10am period (10 days)

baselines), as the dynamic relocation strategy makes the vehi-
cles travel a lot more. In addition, SAMoD serves 5% less re-
quests than the baselines. Therefore, SAMoD outperforms the
baselines in terms of passenger metrics (shorter waiting time)
and vehicle/driver metric (increased vehicle occupancy result-
ing in increased profits), while it performs worse with respect
to overall system metrics (number of requests served). The
improvement on passenger and vehicle side is not surprising,
as our implementation of RL-based agents receives rewards for
picking up passengers. Potential real-world deployments might
require a more fine-tuned balance between these metrics using
more sophisticated multi-objective optimization strategies, and
could be modified to include rewarding agents for reaching
service targets to increase the number of requests served.

The second conclusion arising from the results is that
the SAV fleet exhibits a similar general behaviour in both
original naive simulation and SUMO framework using real
road network and congestion. However, the impact of traffic
congestion is clearly visible. For instance, while a fleet of
200 SAVs was sufficient to serve nearly all requests in the
original framework with enabled ride-sharing and rebalancing,
a significant proportion of requests (around 10 %) are now
missed by both SAMoD and the baselines. The explanation
lies in the average distance travelled by the vehicles, which
is significantly reduced in the presence of traffic congestion,
resulting from lower average speeds (the original version of
SAMoD was assuming fixed speed values).

Also, as the objective of SAMoD vehicles is to travel with
passengers, ride-sharing requests are preferred, and adapting
the reward could result in a better balance between level of
service and share rides. Similarly, the detour time for ride-
sharing enabled configuration is now almost doubled (e.g.,
from 6.31 to 11.48 min when picking additional passengers
in neighbouring zones is allowed), as vehicles travel the same
distance but with a lower average speed. Note that within the
SUMO framework, detour time is computed from the expected
travel time is estimated from current traffic conditions, hence it
shows some variation with actual measurements (i.e., it should
be zero for both C and D baselines). The observed values of
travel and detour time in SUMO framework suggests that the
system would benefit from an adjusted behaviour accounting

for congestion, or that vehicles should learn improved as-
signment and rebalancing strategies which include the current
congestion level. We further discuss this in Section VI, as
we believe that such congestion-awareness in assignment and
rebalancing is a crucial feature SAVs need to have for real-
life deployments, and as such will be investigated in a further
development of SAMoD.

B. Impact of SAMoD system on traffic

In this section we investigate the impact of SAMoD on
private vehicle traffic, by simulating several adoption scenarios
for SAVs, as summarized in Table IV.

TABLE IV: Different SAV + private vehicles scenarios

Scenario No of private
vehicles (obs.)

No of
SAVs

Total no of
vehicles (obs.)

SAV
%

No of
people

1 2000 (1991.547) 0 2000 (1991.55) 0% 3000
2 1900 (1905.706) 100 2000 (2005.71) 5% 3150
3 1800 (1787.693) 200 2000 (1987.69) 10% 3300
4 2000 (1956.172) 200 2200 (2156.17) 9% 3600

The Table specifies the targeted number of cars in the
simulation at the same time, but since traffic generation is done
stochastically by SUMO, the observed number of vehicles
slightly differs (the average number of vehicles is listed in
parenthesis in the table). Designed scenarios investigate dif-
ferent penetration rates (i.e., percentage) of SAVs and several
levels of demand. The total number of people travelling in the
network is calculated by assuming an occupancy of 1.5 for
private cars (rounding down the actual figure of 1.6 observed
in real data, Section I) and 3 for SAVs (rounding down the
figure of 3.2 observed in experiments in Section V-A).

Scenario 1 shows a baseline configuration where there are
no SAVs present and 2000 private vehicles travel the network
at any point in time. Scenarios 2 and 3 represent the 5% and
10% penetration rates for SAVs, i.e., scenarios in which 100
and 200 vehicles out of 2000 private ones were replaced by
a SAV. Scenario 3 represents the same configuration used
in experiments in Section V-A. Scenarios 1, 2, and 3 are
therefore designed to evaluate the impact of different private
vs. SAV vehicle ratios on the overall traffic. Scenario 4 shows
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a pessimistic case where SAVs do not replace any private
vehicles, but are added to the existing private vehicles from
Scenario 1. This represents the scenario where additional 10%
of SAVs are added but this increased demand is generated by
people previously using other non-private vehicle modes of
transport (e.g., public transport, cycling, walking). The results
were obtained by performing 10 runs for each scenario. As in
Section V-A, SAMoD vehicles were given 40 days to learn
the behaviours, and the metrics recording started from day 40
and ended at day 50 (the recording period represents 30 hours
of simulated requests).

To compare the performance between the different scenarios
for private vehicles we measure average speed, average travel
time and average delay (i.e., the time that was added on to the
optimal travel time due to congestion). For SAVs we focus on
rider metrics, and, same as in Section V-A, present average
travel time and average detour time (i.e., the time that was
added on to the trip due to ride-sharing).

TABLE V: Average travel time, delay time per mile and speed
of normal traffic for all scenarios (10 simulations)

Scenario 1 2 3 4
Average travel time per mile (min) 1.810 1.813 1.807 1.817
Average delay time per mile (min) 0.943 0.946 0.94 0.951

Average speed in mph (km/h) 12.80
(20.59)

12.78
(20.56)

12.82
(20.64)

12.75
(20.52)

Table V shows the private vehicle metrics across the four
scenarios, averaged over 10 runs. The differences between the
scenarios are very minor, and follow the overall number of
vehicles rather than the ratio of private vehicles and SAVs. The
lowest travel time of 1.807 minutes is observed in Scenario 3
(with 1987 vehicles), followed by Scenario 1 (1991 vehicles,
1.81 minutes), Scenario 2 (2005 vehicles, 1.812 minutes), and
finally Scenario 4 (2156 vehicles, 1.817 minutes). Scenario 3,
with 10% of SAVs has lower travel time than the baseline
scenario with no SAVs, while Scenario 2, with 5% of SAVs
has longer travel time than the baseline.
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Fig. 5: Travel and detour times for SAVs trips (10 runs)

Figure 5 shows the SAV metrics across three scenarios
containing SAVs (Scenarios 2, 3 and 4). Similarly to pri-
vate vehicle metrics, the differences between scenarios are
negligible, and mean travel time for all scenarios is about
11.5 minutes, with about 8 minutes spent on detour time to
meet additional ride-sharing requests. This is not surprising as
the number of private vehicles between scenarios ranges only
between 1800 and 2000, and the biggest impact has already
been observed in Section V-A, when private vehicles have

been added to the simulation. Based on the lack of pattern
in ratio of SAVs and private vehicles relationship with travel
time, we conclude that, at low penetration rates of 5-10% of
SAVs, private vehicles and SAVs can co-exist without impact
on the overall congestion, despite SAVs making more trips
for rebalancing. They do however carry more passengers, due
to ride-sharing capabilities, and as such improve the passenger
capacity of the network. In Section VI we discuss the need for
further evaluation of different penetration rates and congestion
levels to estimate if, and at which point, SAVs would have a
significant impact on overall traffic.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an extended version of SAMoD: a de-
centralized RL-based shared autonomous mobility-on-demand
system with dynamic ride-sharing and rebalancing strategies
where vehicles take congestion into account in their decisions.
SAMoD was evaluated in the simulation of a real road
network in SUMO, using NYC taxi data, and in the presence
of congestion generated by private vehicles. This use of a
realistic microsimulation framework fills an important gap
in literature by being the first to carry out an evaluation of
shared mobility in the presence of other traffic, as well as
investigation of the impact of SAVs on congestion and vice
versa. We observe that overall pattern of SAMoD behaviour
with and without congestion is similar (i.e., it achieves an
increased occupancy and significantly lower waiting times than
the baselines but at the expense of higher distance travelled to
allow for ride-sharing). However, the impact of congestion is
clear when looking at absolute performance of both baseline
and SAMoD; up to 10% of the requests are not served and
detour time for ride-sharing is doubled in the presence of
congestion. Implications of this result are twofold. Contrary
to the standard in the current literature, this paper shows that
the evaluation of SAV approaches needs to take congestion
into account to accurately estimate level of service. In addition,
results highlight the need for SAV assignment and rebalancing
algorithms to be congestion-aware. In the future, vehicles
should incorporate congestion information into its learning
processes, to learn over time the most congested areas and/or
times of the day (using techniques akin to RL-based traffic
lights control responding to congestion [20] or by dynamically
building the RL state space [21]). We have also evaluated
the impact of SAMoD on travel times of private vehicles. At
low penetration rates expected in the early deployments (5-
10%), SAVs have no negative impact on the overall congestion,
despite making more trips for rebalancing and having frequent
stops, and are therefore unlikely to affect traffic, while having
the benefit of carrying more passengers. Potential real-world
deployments of SAMoD will require using fine-tuned multi-
objective techniques (e.g., DWL [22]) to balance the trade-
offs between passenger, vehicle and system objectives, as
litterature pointed out the importance of these factors for
ensuring AMoD systems acceptability [6], [10]. Knowledge
sharing between SAMoD agents could be used to improve the
learnt behaviours and increase the speed of learning, via, e.g.,
transfer learning [23]. While this paper presents an important
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first step in integrating ride-sharing and congestion evaluation,
more extensive evaluation of impact of SAVs on traffic and
vice versa needs to be performed, with more realistic traffic
patterns using real traffic data, taking into account higher
penetration rates, specific car-following models for AVs, and
removing parking availability assumptions.

ACKNOWLEDGEMENTS

This research has been sponsored in part by a research grant
from Science Foundation Ireland (SFI) under Grant Number
16/SP/3804 and by the Irish Research Council through ”Sur-
pass: how shared autonomous cars will transform cities” New
Horizons award.

REFERENCES

[1] J. Miller and J. P. How, “Predictive positioning and quality of service
ridesharing for campus mobility on demand systems,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 1402–1408.

[2] NYC Taxi and Limousine Commission, “Tlc trip record data,” 2017.
[Online]. Available: http://www.nyc.gov

[3] D. J. Fagnant and K. M. Kockelman, “Dynamic ride-sharing and fleet
sizing for a system of shared autonomous vehicles in austin, texas,”
Transportation, vol. 45, no. 1, pp. 143–158, 2018.

[4] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle assign-
ment,” Proceedings of the National Academy of Sciences, vol. 114, no. 3,
pp. 462–467, 2017.

[5] M. Guériau and I. Dusparic, “Samod: Shared autonomous mobility-
on-demand using decentralized reinforcement learning,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 1558–1563.

[6] W. Zhang, S. Guhathakurta, J. Fang, and G. Zhang, “The performance
and benefits of a shared autonomous vehicles based dynamic ridesharing
system: An agent-based simulation approach,” in Transportation Re-
search Board 94th Annual Meeting, January 2015.

[7] A. Simonetto, J. Monteil, and C. Gambella, “Real-time city-scale
ridesharing via linear assignment problems,” Transportation Research
Part C: Emerging Technologies, vol. 101, pp. 208–232, 2019.

[8] M. Lu, M. Taiebat, M. Xu, and S.-C. Hsu, “Multiagent spatial simu-
lation of autonomous taxis for urban commute: Travel economics and
environmental impacts,” Journal of Urban Planning and Development,
vol. 144, no. 4, p. 04018033, 2018.

[9] M. W. Levin, K. M. Kockelman, S. D. Boyles, and T. Li, “A general
framework for modeling shared autonomous vehicles with dynamic
network-loading and dynamic ride-sharing application,” Computers,
Environment and Urban Systems, vol. 64, pp. 373 – 383, 2017.
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