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Abstract—This work considers the coded caching problem
with shared caches, where users share the caches, and each user
gets access only to one cache. The user-to-cache association is
assumed to be known at the server during the placement phase.
We focus on the schemes derived using placement delivery arrays
(PDAs). The PDAs were originally designed to address the sub-
packetization bottleneck of coded caching in a dedicated cache
setup. We observe that in the setup of this paper permuting
the columns of the PDA results in schemes with different
performance for the same problem, but the sub-packetization
level remains the same. This is contrary to what was observed for
dedicated cache networks. We propose a procedure to identify
the ordering of columns that gives the best performance possible
for the PDA employed for the given problem. Further, some
specific classes of PDAs are chosen and the performance gain
achieved by reordering the columns of the PDA is illustrated.

Index Terms—Coded caching, shared caches, placement de-
livery arrays.

I. INTRODUCTION

Caching is an effective strategy to reduce the traffic con-
gestion experienced during peak hours in content delivery
networks. The memories distributed across the network are
utilized to prefetch contents during off-peak times and this
is called as placement phase. The cached contents are then
used to serve the demands of the users during peak times,
thereby reducing the congestion in the delivery phase. In the
seminal work, [1] by Maddah-Ali and Niesen, it is shown
that apart from the achievable local caching gain, coded
transmissions offer an additional gain called global caching
gain, which is proportional to the total cache size in the
network. The network model considered in [1] is that of a
dedicated cache network where there is a server with N equal-
length files connected to K users through an error-free shared
link. Each user possesses a cache of size equal to M files. The
performance measure is the delivery load which is defined as
the normalized size of the transmission made by the server in
the delivery phase. The coded caching approach has then been
extended to a variety of settings that include decentralized
caching [2], shared cache networks [4]–[7], schemes with less
sub-packetization levels [8], [9] and many more.

To achieve the maximum global caching gain in dedicated
cache network, it is shown that each file needs to be split
into at least

(
K

KM
N

)
parts. The number of parts or packets that

constitute a file is defined as the sub-packetization level in the
coded caching literature. The sub-packetization level required
in the Maddah-Ali Niesen scheme grows exponentially as the
network scales. This makes the practical implementation of
the scheme infeasible. Later, Yan et al. introduced the combi-
natorial structures called Placement Delivery Arrays (PDAs)
[8] which resulted in schemes with low sub-packetization
levels and also characterized the placement and delivery
phases in a single array.

The sub-packetization level requirement of the optimal
coded caching scheme [4] for shared cache networks, where
several users share a cache instead of having a dedicated one,
is also exponential with respect to the number of caches, Λ.
The study of shared cache networks is important as it suc-
cinctly captures more practical settings such as a transmitter
communicating to a set of users with the help of cache-
aided intermediate nodes, where all the users served by a
particular node (that is, users present within the coverage of
an intermediate node) have access to its cache contents. The
sub-packetization level required in [4] is

(
Λ

ΛM
N

)
. Even though

the number of caches is less than or equal to the number of
users, the value of

(
Λ

ΛM
N

)
is significantly large for moderate

values of Λ itself. This problem was addressed in [10] where
the PDAs were leveraged to obtain schemes for shared cache
systems with reduced sub-packetization levels. The shared
cache schemes given in [4] and [10] follow a placement policy
which is independent of the number of users accessing each
helper cache. The number of users accessing each helper
cache is given by the user-to-cache association profile. In
this work, we consider the shared cache schemes obtained
from PDAs and design its placement policy according to the
user-to-cache association profile, thereby achieving a better
performance compared to the scheme in [10].

A. Contributions

The PDA derived schemes in [10] brought down the sub-
packetization level from

(
Λ

ΛM
N

)
to a lower value by paying in

the delivery load. In a dedicated cache setting, the permutation
of columns of the PDA affects the content placement, but the
number of transmissions needed to satisfy the users’ demands
remains the same. Whereas in a shared cache network, rear-
ranging the columns of the PDA that we use affects the cache
placement and the number of transmissions needed. We refer
to the PDAs that differ by column permutations as equivalent
PDAs. In this work, our focus is on finding the equivalent
PDA that results in the least delivery load achievable with
the PDA employed in the given problem. Our contributions
are summarized below.

• For a shared caching scheme derived from PDAs, we
propose a general procedure to identify the best pos-
sible ordering of the columns of the PDA by taking
into account the user-to-cache association profile (Sec-
tion III-B).

• In particular, we choose a class of PDAs obtained using
Construction B in [8] and show how to find the PDA
from the set of equivalent PDAs that results in the
best performance for the given shared caching problem
(Section III-C).
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Fig. 1: Problem setting for a shared cache network.

The reordering of columns of the PDA helps to reduce the
delivery load without increasing the sub-packetization level.

B. Notations

For any integer n, [n] denotes the set {1, 2, . . . , n}. For two
positive integers m and n, [m,n] denotes the set {m,m +
1, . . . , n} and [m,n) denotes the set {m,m+ 1, . . . , n− 1}.
For a set S, |S| denotes its cardinality. Bold uppercase and
lowercase letters are used to denote matrices and vectors,
respectively. The columns of an m× n matrix A is denoted
by a1, a2, . . . , an. The symbol N denotes the set of natural
numbers. The finite field with q elements is denoted by Fq .
For two positive integers m and n, (m+n)q denotes that the
sum is performed under modulo q.

II. PROBLEM SETUP AND BACKGROUND

In this section, we first describe the problem setup followed
by a brief review on PDAs [8] and the shared cache scheme
in [10].

A. Problem Setup

Consider a shared cache network as illustrated in Fig. 1.
There is a server with access to a library of N equal-length
files {W 1,W 2, . . . ,WN}, connected to K users through an
error-free broadcast link. There are Λ ≤ K helper caches,
each of normalized size M/N , and each user gets access to
exactly one helper cache. Each cache can serve an arbitrary
number of users. The number of users connected to each
cache is known to the server at the placement phase itself.
The number of users connected to each cache, λ ∈ [Λ]
is denoted as Lλ and, the overall user-to-cache association
profile is denoted by L = (L1,L2, . . . ,LΛ). We assume that
L is arranged in the non-increasing order; if not, relabel the
caches accordingly. The system operates in two phases:

a) Placement phase: In this phase, the server fills the helper
caches uniformly with contents from the library of files
in an uncoded form, satisfying the memory constraint.
The content placement is independent of the subsequent
demands of the users.

b) Delivery phase: After each user k ∈ [K] gets access
to one of the helper caches, the users request one of
the N files from the server. Let the request or demand
vector be denoted as d = (d1, d2, . . . , dK). On receiving
the demand vector d, the server sends a message X to
satisfy the demands of the users. Each user is able to
retrieve its demanded file using the received message
and its accessible cache contents.

Let R(L,d) denote the normalized size of X . The worst-
case delivery load required for the association profile L

is given by max
d∈[N ]K

R(L,d), and is denoted by R(L). Our

objective is to design the placement and delivery policies
accordingly such that the worst-case delivery load R(L) is
minimum.

B. Overview on PDAs, Generalized PDA and the scheme in

[10]

In this subsection, we first discuss PDAs followed by
Generalized PDAs and then describe how Generalized PDAs
represent a coded caching scheme for shared cache networks.

1) Placement Delivery Array (PDA):

Definition 1. ([8]) For positive integers K,F, Z and S, an

F × K array P = (pj,k), j ∈ [F ] and k ∈ [K], composed

of a specific symbol ⋆ and S positive integers 1, 2, . . . , S, is

called a (K,F, Z, S) placement delivery array (PDA) if it

satisfies the following three conditions:

C1. The symbol ⋆ appears Z times in each column.

C2. Each integer occurs at least once in the array.

C3. For any two distinct entries pj1,k1
and pj2,k2

, pj1,k1
=

pj2,k2
= s is an integer only if

a) j1 6= j2, k1 6= k2, i.e., they lie in distinct rows and

distinct columns, and

b) pj1,k2
= pj2,k1

= ⋆, i.e., the corresponding 2 × 2 sub-

array formed by rows j1, j2 and columns k1, k2 must be

of the following form:(
s ⋆
⋆ s

)
or

(
⋆ s
s ⋆

)

The PDA is said to be a regular PDA if all the integers
occur an equal number of times in the array.

Every (K,F, Z, S) PDA represents a coded caching
scheme for a dedicated cache network with K users and
M
N

= Z
F

. The sub-packetization level required is F (Wn =
{Wn

1 ,W
n
2 , . . . ,W

n
F }, ∀n ∈ [N ]), and the worst-case delivery

load achieved is S
F

. In a (K,F, Z, S) PDA P, the rows
represent subfiles and the columns represent users. For any
k ∈ [K], if pj,k = ⋆, then it implies that the subfiles
Wn

j , ∀n ∈ [N ] are placed in the kth user’s cache. If pj,k = s
is an integer, it means that the user k does not have access
to the jth packet of any of the files. Condition C1 ensures
that all users have access to some Z subfiles of all the files.
Thus, the memory constraint M = NZ/F is satisfied. In the
delivery phase, for a demand vector d = (d1, . . . , dK), the
server sends messages of the form:

⊕

pj,k=s

j∈[F ], k∈[K]

W dk

j , ∀s ∈ [S]. (1)

Condition C2 and (1) together imply that the number of
messages transmitted by the server is S, and the delivery load
required is S

F
. The decodability is guaranteed by condition

C3.
2) Generalized PDAs: Generalized PDA was first intro-

duced in [10] to describe coded caching schemes for shared
caches. It is defined as follows:

Definition 2. ([10]) For positive integers K,F, Z, S and I , an

F×K array G = (gj,k), j ∈ [F ], k ∈ [K] composed of ⋆ and

numerical entries from a subset of [S]× [I] where [S]× [I] :=
{(s, i) : s ∈ [S], i ∈ [I]} is called a (K,F, Z, [S] × [I])
generalized PDA if it satisfies the following conditions:

C1. The symbol ⋆ appears Z times in each column.

C2. Each integer from the sets {1, 2, . . . , S} and

{1, 2, . . . , I} occurs at least once in the array.



Algorithm 1 Construction of Generalized PDA for a given
shared caching problem [10].

Input: (Λ, F, Z, S) PDA P, Number of users K ,
Association profile L = (L1,L2, . . . ,LΛ).

Output: Generalized PDA G = (gj,k)F×K

1: k← 1
2: for λ ∈ [Λ] do

3: if Lλ > 0 then

4: for i ∈ [0,Lλ) do

5: gk = pλ

6: for j ∈ [F ] do

7: if gj,k 6= ⋆ then

8: gj,k = (gj,k, 1)
9: gj,k = gj,k + (0, i).

10: end if

11: end for

12: k ← k + 1
13: end for

14: end if

15: end for

C3. For any two distinct entries gj1,k1
and gj2,k2

, gj1,k1
=

gj2,k2
= (s, i) is a numerical entry only if

a) j1 6= j2, k1 6= k2, i.e., they lie in distinct rows and

distinct columns, and

b) gj1,k2
= gj2,k1

= ⋆, i.e., the corresponding 2× 2 sub-

array formed by rows j1, j2 and columns k1, k2 must

be of the following form:(
(s, i) ⋆
⋆ (s, i)

)
or

(
⋆ (s, i)

(s, i) ⋆

)

C4. For any four distinct entries gj1,k1
, gj1,k2

, gj2,k1
and

gj2,k2
, if gj1,k1

= (s, i1), gj2,k1
= ⋆ and gj1,k2

= (s, i2),
then gj2,k2

= ⋆. It is represented as follows:(
(s, i1) (s, i2)
⋆ ⋆

)

As the name suggests, generalized PDAs were a modified
version of PDAs to accommodate the shared cache setting.
We now describe how a generalized PDA represents a coded
caching scheme for shared caches.

Consider a shared caching problem with K users, Λ caches,
each of normalized size M

N
. To obtain a scheme with less

sub-packetization level for the above problem, we start with
a (Λ, F, Z, S) PDA that conform to Z

F
= M

N
. Each column in

the PDA corresponds to a helper cache and each row, j ∈ [F ]
represents subfiles Wn

j , ∀n ∈ [N ]. The content placement is
performed according to the ‘⋆’s in the corresponding column.
In [10], the user-to-cache association or association profile, L
is known only after the placement phase. Once it is known,
a (K,F, Z, [S] × [L1]) generalized PDA G = (gj,k) is
constructed using Algorithm 1 [10]. Condition C4 ensures
that the users connected to the same cache have the same
side-information. For a demand vector d, the delivery scheme
is as follows:

⊕

gj,k=(s,i)

W dk

j , ∀ (s, i) ∈ G

where, j ∈ [F ] and k ∈ [K]. Thus, the delivery load required
is obtained as:

R(L) =

S∑

s=1

max{i : (s, i) appears in G, i ∈ [L1]}

F
. (2)

Or, equivalently

R(L) =

S∑

s=1

Lτs

F
, τs , min{λ ∈ [Λ], s ∈ pλ}, ∀s ∈ [S].

(3)

The expression in (3) follows from the fact that the maxi-
mum value of ‘i’ associated with each s ∈ [S] depends on the
column index, τs which corresponds to the most populated
cache (cache serving maximum number of users) amongst
those columns in which s occurs in P. Since the association
profile, L is sorted in non-increasing order, τs is defined as
min{λ ∈ [Λ], s ∈ pλ}.

Remark 1. If each cache has got only one user accessing it,

then the entries (s, 1) in the (K,F, Z, [S] × [1]) generalized

PDA G can be replaced by s, and thus G reduces to a

(K,F, Z, S) PDA.

III. PDA BASED SCHEMES FOR SHARED CACHES WITH

USER-TO-CACHE ASSOCIATION PROFILE KNOWN

In this section, we first illustrate how the permutation of
columns of the PDA that we begin with affect the delivery
load, R(L) required for a given shared caching problem.
Then, we propose a set of rules to identify the PDA from the
set of its equivalent PDAs which gives the best performance
for the given problem.

A. Motivating Example

Consider a shared cache network with K = 17 users, N =
17 files, Λ = 6 caches, each with normalized size M

N
= 1

3 .
For this network, we choose a (6, 3, 1, 6) PDA P given in
(4), such that Z

F
= M

N
is satisfied.

P =



⋆ 3 5 ⋆ 1 2
1 ⋆ 6 3 ⋆ 4
2 4 ⋆ 5 6 ⋆


 (4)

Each column in P corresponds to a helper cache. The
contents placed in cache λ is denoted by Zλ. Then,

Z1 = {Wn
1 , ∀n ∈ [17]]},Z2 = {W

n
2 , ∀n ∈ [17]},

Z3 = {Wn
3 , ∀n ∈ [17]},Z4 = {W

n
1 , ∀n ∈ [17]},

Z5 = {Wn
2 , ∀n ∈ [17]},Z6 = {W

n
3 , ∀n ∈ [17]}.

Let the user-to-cache association be such that L =
(5, 4, 3, 2, 2, 1). Then, construct a (17, 3, 1, [6] × [5]) gener-
alized PDA G as described in Algorithm 1. The array G is
given in (8). Each column in G corresponds to a user k ∈ [17],
and the ‘⋆’s in the column represent the subfiles that each user
has access to.

In the delivery phase, the server transmits a message
corresponding to every distinct ordered pair (s, i). Assume
that the kth user demands the kth file, then the transmissions
are as follows:

X(1,1) = W 1
2 ⊕W 15

1 , X(1,2) = W 2
2 ⊕W 16

1 , X(1,3) = W 3
2

X(1,4) = W 4
2 , X(1,5) = W 5

2 , X(2,1) = W 1
3 ⊕W 17

1 ,

X(2,2) = W 2
3 , X(2,3) = W 3

3 , X(2,4) = W 4
3 , X(2,5) = W 5

3 ,

X(3,1) = W 6
1 ⊕W 13

2 , X(3,2) = W 7
1 ⊕W 14

2 , X(3,3) = W 8
1 ,

X(3,4) = W 9
1 , X(4,1) = W 6

3 ⊕W 17
2 , X(4,2) = W 7

3 ,

X(4,3) = W 8
3 , X(4,4) = W 9

3 , X(5,1) = W 10
1 ⊕W 13

3 ,

X(5,2) = W 11
1 ⊕W 14

3 , X(5,3) = W 12
1 ,

X(6,1) = W 10
2 ⊕W 15

3 , X(6,2) = W 11
2 ⊕W 16

3 ,

X(6,3) = W 12
2 .



Thus, the sub-packetization level required is 3 and the
worst-case delivery load is

R(L = (5, 4, 3, 2, 2, 1)) =
2(L1 + L2 + L3)

F
(5)

= 24/3 = 8.

Instead of P, assume that we have started with P′ in (6),
which is also a (6, 3, 1, 6) PDA and, is related to P by column
permutations. Hence, the arrays P and P′ are equivalent
PDAs.

P′ =



⋆ 1 2 3 5 ⋆
1 ⋆ 4 ⋆ 6 3
2 6 ⋆ 4 ⋆ 5


 (6)

For the same user-to-cache association and L considered in
the previous case, we get the (17, 3, 1, [6]× [5]) generalized
PDA G′ as given in (9). The sub-packetization level required
remains the same but the delivery load is given as

R(L = (5, 4, 3, 2, 2, 1)) =
2L1 + L2 + L3 + L4 + L5

F
(7)

= 21/3 = 7.

From the expressions in (5) and (7), it is straightforward
that R(L) in (7) is smaller than the delivery load R(L) in
(5). This observation is in stark contrast to the case with the
coded caching schemes given by PDAs for dedicated cache
networks. In a dedicated cache network model, the equivalent
PDAs result in the same performance but change the content
placement. Hence, for a given shared caching problem, our
objective is to find the best possible arrangement of the
columns of the PDA that is used. From the above discussed
example, it follows that the association profile, L needs to be
considered while placing the contents in the helper caches.

B. Procedure to identify the PDA with the best performance

Consider a shared caching problem with K users, Λ caches
each of normalized size M/N and association profile, L
known a priori. To obtain a scheme for the above, we have
taken a (Λ, F, Z, S) PDA P with Z

F
= M

N
. The value of

‘F ’ is within the allowable sub-packetization level. If the
association profile L is not in the sorted order, relabel and
rearrange the columns of P such that the caches are in the
non-increasing order of its occupancy. With slight abuse of
notation, we continue to call the rearranged array as P itself.
The delivery load expression in (7) gives some insights on
how to find the best arrangement of the columns of P. The
expression in (7) indicates that if some of the integers s ∈ [S]
make its first occurrence in the columns corresponding to the
caches connected with less number of users, then the number
of transmissions gets reduced. This is well illustrated by the
example given in Section III-A. Inspired by this observation,
we give a general rule of thumb to arrive at the best column
permutation of P in the sequel.

Define Iλ as the set of distinct integers appeared till λth

column in P, where λ ∈ [Λ]. Obviously, |I1| = (F − Z)
and |IΛ| = S. In a (Λ, F, Z, S) PDA, it is possible that all
the S integers could have occurred before the last column.
Let α be the first column index such that |Iα| = S, then,
|Iα+1| = |Iα+2| = . . . = |IΛ| = S. We need ‘α’ to
be maximized. Consequently, the number of new integers
appearing in the columns corresponding to more populated
caches gets decreased, thereby gaining in the number of
transmissions needed. Denote α∗ as the first column index

by which all the integers have appeared in the optimal
arrangement. Then, α < α∗, for any other arrangement of
columns.

The parameter τs in (7) can be viewed as the column
index in which the integer s first appears in P, if L is in
the sorted order. If an integer s ∈ [S] occurs gs times in P,
then τs ≤ K − gs + 1. While maximizing α, effectively, we
are maximizing certain τs values. The PDA obtained after
rearranging the columns in an optimal way is denoted by P̂.
The procedure to find P̂ is given below.

1) Choose a pair of columns (λ1, λ2) from the PDA P and,
find the intersection between the set of integers present
in the columns, λ1 and λ2. Repeat this process for all
the

(
Λ
2

)
pairs. Let the cardinality of the intersection set

be called as intersection number. Then, select the pair,
(λ1, λ2) which gives the largest intersection number and,
assign it as the first two columns, p̂1 and p̂2.

2) Find I2, which is the union of the set of integers present
in columns p̂1 and p̂2. That is,

I2 =
⋃

l∈{1,2}

{s : p̂j,l = s, j ∈ [F ]}.

If |I2| = S, arrange the remaining columns in any
random order to obtain P̂. Else, pick each column
from the remaining Λ − 2 columns of P and find its
intersection with I2. The column that gives the largest
intersection number is assigned as p̂3.

3) To identify the remaining columns, p̂l where l ∈
{4, 5, . . . ,Λ}, first obtain

Il−1 = Il−2

⋃
{s : p̂j,l−1 = s, j ∈ [F ]}.

Check if |Il−1| = S. If not, choose each column from the
remaining Λ−l+1 columns and find its intersection with
Il−1. The column with the largest intersection number is
taken as p̂l. This step is repeated till all s ∈ [S] appears
in P̂. Once all the integers have appeared in P̂, the rest of
the columns of P can be put arbitrarily as R(L) depends
only on τs, ∀s ∈ [S].

In the end, we obtain P̂, which is equivalent to P. In
any arrangement or ordering, |I1| = F − Z . Hence, there is
always L1 transmissions associated with every integer present
in the first column. As mentioned before, to gain in R(L), the
number of new integers occurring in p̂2 needs to be reduced,
and this is the reason behind designing Step 1 in the given
way. In Steps 2 and 3 also, we do the same by maximizing the
intersection number. To summarize, the three steps mentioned
above ensure that in P̂, new integers appear more towards the
columns corresponding to less occupied caches. The intuition
and significance behind it is that the coding gain, defined as
the number of users benefiting from a transmission, increases
compared to the delivery policy obtained using P (evident
from the transmissions given by G and G′ in the example in
Section III-A).

Note that the array P̂ obtained at the end of the above
procedure is optimal only if the column that results in
the largest intersection number is unique. If there is more
than one column with the largest intersection number, then
arbitrarily picking one does not work in general. In that
case, the decision depends on the intersection numbers that
are going to obtain at the successive stages. Finding the
subsequent intersection numbers for each available option,
and then making a decision becomes computationally tedious
as Λ scales. But for certain specific PDA constructions, we



G =

(
⋆ ⋆ ⋆ ⋆ ⋆ (3, 1) (3, 2) (3, 3) (3, 4) (5, 1) (5, 2) (5, 3) ⋆ ⋆ (1, 1) (1, 2) (2, 1)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) ⋆ ⋆ ⋆ ⋆ (6, 1) (6, 2) (6, 3) (3, 1) (3, 2) ⋆ ⋆ (4, 1)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (4, 1) (4, 2) (4, 3) (4, 4) ⋆ ⋆ ⋆ (5, 1) (5, 2) (6, 1) (6, 2) ⋆

)

(8)

G′ =

(
⋆ ⋆ ⋆ ⋆ ⋆ (1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (5, 1) (5, 2) ⋆

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) ⋆ ⋆ ⋆ ⋆ (4, 1) (4, 2) (4, 3) ⋆ ⋆ (6, 1) (6, 2) (3, 1)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (6, 1) (6, 2) (6, 3) (6, 4) ⋆ ⋆ ⋆ (4, 1) (4, 2) ⋆ ⋆ (5, 1)

)

(9)

could identify a rule on how to get the best arrangement. For
instance, Construction B given in [8].

C. Finding the optimal ordering for PDAs obtained using

Construction B in [8]

First, we briefly review Construction B. It gives a (q(m+
1), (q − 1)qm, (q − 1)qm−2, qm) PDA P where q,m ∈ N

and q ≥ 2. In P, each integer occurs (q − 1)(m + 1) times
and Z

F
= q−1

q
. The rows of P are indexed using (m + 1)

tuples (jm, . . . , j1, j0)q over Fq, where jm ∈ [0, q − 1) and
j0, j1, . . . , jm−1 ∈ [0, q). The columns are indexed using an
ordered pair (u, v) where, u ∈ [0,m] and v ∈ [0, q). The
q(m+ 1) columns can be split into m+1 sets with each set
containing q columns and each set is being identified by the
value of u.

The symbol ‘⋆’ is placed using the concept of partitions.
Our main focus is on the integers of P, which are represented
using m tuples (sm−1, . . . , s1, s0)q over Fq . Thus, we have
qm integers in total. In columns (u, v) where u ∈ [0,m) and
v ∈ [0, q), all m tuples (sm−1, . . . , s1, s0)q are present except
those with su = v. In columns (u = m, v), all those tuples
satisfying the condition (

∑m−1
i=0 si)q = v − 1 are present.

The PDAs obtained from Construction B [8] is suitable for
shared cache systems with Λ expressible as q(m+1) and M

N
=

q−1
q

, where q ≥ 2. Consider such a shared caching problem
with K users and association profile, L = (L1,L2, . . . ,LΛ)
known. Assume that L is already present in the sorted order.

As mentioned earlier, split the q(m+1) columns into (m+
1) sets based on the value of u. First, pick a column from any
one of these (m + 1) sets. Let (u1, v1) be the index of the
chosen column. The second column should be picked from
any remaining m sets because we aim to find the column
with the largest intersection number. Therefore, it should not
be from the set with u = u1, which follows from the PDA
construction. Choose any one column arbitrarily from the mq
options available. The successive (m − 2) columns should
also be picked from different sets and, this is possible as
there are m+1 sets. By doing so, the intersection number gets
maximized. Since there are many choices available, randomly
pick one as done in the previous case and, it does not affect the
performance. Let the indices of the columns chosen so far be
(u1, v1), (u2, v2), . . . , (um, vm). Then, u1 6= u2 6= . . . 6= um.
The set of integers or m tuples appeared so far are given
by Im. For ease of exposition, assume that u1 = 0, u2 =
1, . . . , um = m− 1. Then,

Im = [0, qm)\(vm, . . . , v2, v1)q.

The set Im contains all the m tuples except (vm, . . . , v2, v1)q ,
hence, |Im| = qm − 1. As done previously, the (m + 1)th

column needs to be chosen from the remaining one set. In that
set, among the q columns, there is only one column which
does not have the vector (vm, . . . , v2, v1). Hence, pick that

column as the (m + 1)th column. Then, Im = Im+1. The
remaining columns can be picked in any way because all
those columns contain (vm, . . . , v2, v1). Thus, α∗ = m + 2.
Effectively, we are proceeding in the same way as described
in the three steps given earlier in this section. When we get
more than one option at any stage, arbitrarily picking one
column helps in Construction B. But it is not true in all the
other constructions, for example, Construction A given in [8].

Remark 2. In a g-regular PDA, all the integers s ∈ [S] occur

g times in the PDA. Then, τs ≤ K − g + 1, ∀s ∈ [S]. In the

optimal arrangement, there exists at least one s ∈ [S] such

that τs = K − g + 1. Then, it implies α∗ = (K − g + 1).
For example, in Construction B, g = (q − 1)(m + 1). In

the optimal ordering, for s = (vm, . . . , v2, v1)q , we obtained

τs = K − g + 1 = m+ 2.

After ordering the columns of P, we get a PDA P̂

equivalent to P. The columns of P̂ represent the helper caches
arranged in the non-increasing order of their occupancy
number. Then, proceed with P̂ to obtain the corresponding
shared cache scheme.

Performance measures: The sub-packetization level re-
quired in the obtained scheme is (q − 1)qm. Using the
expression in (3), the delivery load R(L) obtained with P̂

is:

R(L) =
L1
q

+
L2
q2

+ . . .+
Lm
qm

+
Lm+2

(q − 1)qm
. (10)

The expression in (10) is derived as follows: the first term
in the summand comes from the F − Z = (q − 1)qm−1

integers in the first column. Since the first m+1 columns in
P̂ are picked from m + 1 different sets, the number of new
integers appearing in each column p̂i, i ∈ [m] can be written
as (q − 1)qm−i. This leads to the first m terms in the R(L)
expression in (10). Since there is no new integer appearing
in the (m + 1)th column, |Im| = |Im+1| = qm − 1. The
last term in (10) corresponds to the remaining one integer
s with τs = m + 2. The R(L) in (10) is the best or the
minimum delivery load that we could achieve for a shared
caching scheme using a PDA derived from Construction B.

If we have employed the PDA P directly without ordering,
then R(L) is obtained as:

R(L) =
L1
q

+
L2

q(q − 1)
. (11)

The delivery load obtained in (11) is greater than that in
(10). For association profiles with L2 = L3 = . . . = Lm+1 =
Lm+2, the expressions in (10) and (11) match. That is, we
obtain the same performance with P and P̂.

Next, we present an example that clearly illustrates all the
above discussed procedure.



TABLE I: (9, 18, 12, 9) PDA P obtained using Construction B (q = 3, m = 2) [8].

(j2, j0, j1)3\(u, v) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(0, 0, 0)3 (0, 1)3 ⋆ ⋆ (1, 0)3 ⋆ ⋆ ⋆ (0, 0)3 ⋆

(0, 0, 1)3 ⋆ (0, 2)3 ⋆ (1, 1)3 ⋆ ⋆ ⋆ ⋆ (0, 1)3
(0, 0, 2)3 ⋆ ⋆ (0, 0)3 (1, 2)3 ⋆ ⋆ (0, 2)3 ⋆ ⋆

(0, 1, 0)3 (1, 1)3 ⋆ ⋆ ⋆ (2, 0)3 ⋆ ⋆ ⋆ (1, 0)3
(0, 1, 1)3 ⋆ (1, 2)3 ⋆ ⋆ (2, 1)3 ⋆ (1, 1)3 ⋆ ⋆

(0, 1, 2)3 ⋆ ⋆ (1, 0)3 ⋆ (2, 2)3 ⋆ ⋆ (1, 2)3 ⋆

(0, 2, 0)3 (2, 1)3 ⋆ ⋆ ⋆ ⋆ (0, 0)3 (2, 0)3 ⋆ ⋆

(0, 2, 1)3 ⋆ (2, 2)3 ⋆ ⋆ ⋆ (0, 1)3 ⋆ (2, 1)3 ⋆

(0, 2, 2)3 ⋆ ⋆ (2, 0)3 ⋆ ⋆ (0, 2)3 ⋆ ⋆ (2, 2)3
(1, 0, 0)3 (0, 2)3 ⋆ ⋆ (2, 0)3 ⋆ ⋆ ⋆ ⋆ (0, 0)3
(1, 0, 1)3 ⋆ (0, 0)3 ⋆ (2, 1)3 ⋆ ⋆ (0, 1)3 ⋆ ⋆

(1, 0, 2)3 ⋆ ⋆ (0, 1)3 (2, 2)3 ⋆ ⋆ ⋆ (0, 2)3 ⋆

(1, 1, 0)3 (1, 2)3 ⋆ ⋆ ⋆ (0, 0)3 ⋆ (1, 0)3 ⋆ ⋆

(1, 1, 1)3 ⋆ (1, 0)3 ⋆ ⋆ (0, 1)3 ⋆ ⋆ (1, 1)3 ⋆

(1, 1, 2)3 ⋆ ⋆ (1, 1)3 ⋆ (0, 2)3 ⋆ ⋆ ⋆ (1, 2)3
(1, 2, 0)3 (2, 2)3 ⋆ ⋆ ⋆ ⋆ (1, 0)3 ⋆ (2, 0)3 ⋆

(1, 2, 1)3 ⋆ (2, 0)3 ⋆ ⋆ ⋆ (1, 1)3 ⋆ ⋆ (2, 1)3
(1, 2, 2)3 ⋆ ⋆ (2, 1)3 ⋆ ⋆ (1, 2)3 (2, 2)3 ⋆ ⋆

TABLE II: (9, 18, 12, 9) PDA P̂ which is equivalent to P.

(j2, j0, j1)3\(u, v) (0, 0) (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2)

(0, 0, 0)3 (0, 1)3 (1, 0)3 ⋆ ⋆ ⋆ ⋆ ⋆ (0, 0)3 ⋆

(0, 0, 1)3 ⋆ (1, 1)3 ⋆ (0, 2)3 ⋆ ⋆ ⋆ ⋆ (0, 1)3
(0, 0, 2)3 ⋆ (1, 2)3 (0, 2)3 ⋆ (0, 0)3 ⋆ ⋆ ⋆ ⋆

(0, 1, 0)3 (1, 1)3 ⋆ ⋆ ⋆ ⋆ (2, 0)3 ⋆ ⋆ (1, 0)3
(0, 1, 1)3 ⋆ ⋆ (1, 1)3 (1, 2)3 ⋆ (2, 1)3 ⋆ ⋆ ⋆

(0, 1, 2)3 ⋆ ⋆ ⋆ ⋆ (1, 0)3 (2, 2)3 ⋆ (1, 2)3 ⋆

(0, 2, 0)3 (2, 1)3 ⋆ (2, 0)3 ⋆ ⋆ ⋆ (0, 0)3 ⋆ ⋆

(0, 2, 1)3 ⋆ ⋆ ⋆ (2, 2)3 ⋆ ⋆ (0, 1)3 (2, 1)3 ⋆

(0, 2, 2)3 ⋆ ⋆ ⋆ ⋆ (2, 0)3 ⋆ (0, 2)3 ⋆ (2, 2)3
(1, 0, 0)3 (0, 2)3 (2, 0)3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ (0, 0)3
(1, 0, 1)3 ⋆ (2, 1)3 (0, 1)3 (0, 0)3 ⋆ ⋆ ⋆ ⋆ ⋆

(1, 0, 2)3 ⋆ (2, 2)3 ⋆ ⋆ (0, 1)3 ⋆ ⋆ (0, 2)3 ⋆

(1, 1, 0)3 (1, 2)3 ⋆ (1, 0)3 ⋆ ⋆ (0, 0)3 ⋆ ⋆ ⋆

(1, 1, 1)3 ⋆ ⋆ ⋆ (1, 0)3 ⋆ (0, 1)3 ⋆ (1, 1)3 ⋆

(1, 1, 2)3 ⋆ ⋆ ⋆ ⋆ (1, 1)3 (0, 2)3 ⋆ ⋆ (1, 2)3
(1, 2, 0)3 (2, 2)3 ⋆ ⋆ ⋆ ⋆ ⋆ (1, 0)3 (2, 0)3 ⋆

(1, 2, 1)3 ⋆ ⋆ ⋆ (2, 0)3 ⋆ ⋆ (1, 1)3 ⋆ (2, 1)3
(1, 2, 2)3 ⋆ ⋆ (2, 2)3 ⋆ (2, 1)3 ⋆ (1, 2)3 ⋆ ⋆

Example 2: Consider a shared caching problem with
Λ = 9 helper caches, each of normalized size M/N =
2/3 and K = 110 users. The association profile is L =
(30, 25, 20, 10, 8, 5, 5, 4, 3). The (9, 18, 12, 9) PDA P (ob-
tained using Construction B) given in Table I can be used
for this problem. The corresponding values of q and m are 3
and 2, respectively. The columns of P are split into m+1 = 3
sets. Each set is being identified with the value of u and is
comprised of q = 3 columns. Each column, (u, v) from the
sets u ∈ {0, 1} has all the vectors (s1, s0)3 such that su 6= v.
When u = m, each vector (s1, s0)3 in the column, (u, v)
satisfies (s1 + s0)3 = v − 1.

To obtain P̂, first pick a column from any of the three
sets. We choose p1 which belongs to the set u = 0 and is
indexed as (0, 0). Therefore, p̂1 is (0, 0). Observe that the
set I1 contains all the vectors of the form (s1, s0)3 with
s0 6= 0. If the second column is picked from the same set
with u = 0, we get the intersection number as 3 and, all
the nine integers get appeared by the second column, i.e,
|I2| = 9. Whereas, if we pick a column from any of the
other two sets, the intersection number obtained is 4 and
|I2| = 8. Therefore, pick one column arbitrarily from the
sets with u = 1 or u = 2. We choose p4 which is indexed
as (1, 0). Therefore, p̂2 is (1, 0). Then, I2 contains all the
vectors (s1, s0)3 except (0, 0)3. The third column needs to
be taken from the remaining one set, which corresponds to
u = 3. Since the objective is to maximize the intersection
number, the column that does not contain (0, 0)3 needs to be

picked. Hence, the column p7 indexed as (2, 0) is chosen.
Therefore, p̂3 is (2, 0). The remaining six columns of P

can be arranged in any order as it all contains the vector
(0, 0)3. Thus, the columns of P̂ are as follows: p̂1 = (0, 0),
p̂2 = (1, 0), p̂3 = (2, 0), p̂4 = (0, 1), p̂5 = (0, 2),
p̂6 = (1, 1), p̂7 = (1, 2), p̂8 = (2, 1), p̂9 = (2, 2). The
array P̂ is given in Table II. Once P̂ is obtained, the ternary
representation of the integers are changed to decimal format
before proceeding further. For the given association profile,
L = (30, 25, 20, 10, 8, 5, 5, 4, 3), the equivalent PDA P̂ in
Table II gives the best performance. The construction of
GPDA and the transmissions are not illustrated here for the
sake of brevity. We directly look at the performance of the
obtained scheme.

The sub-packetization level required in the obtained scheme
is 18. The delivery load required by using P̂ is R(L) =
30.6+25.2+10.1

18 = 240/18 ≈ 13.333. Instead, if we start with
P, R(L) = 30.6+25.3

18 = 275/18 ≈ 15.278. Thus, we could
gain in R(L) just by rearranging the columns of the PDA
without incurring any penalty. For this network parameters,
the optimal scheme in [4] requires the sub-packetization level,
F = 84 and the delivery load, R(L) ≈ 12.321. Thus, by
rearranging the columns of the PDA, the performance of the
PDA derived scheme moves closer to that of the optimal
scheme.



D. Effect of rearranging the columns on Maddah-Ali Niesen

PDA (MN PDA)

The PDA that represents the Maddah-Ali Niesen scheme
[8] is often called as MN PDA. The MN PDA for a (K,M,N)
coded caching scheme is defined as (K,

(
K
t

)
,
(
K−1
t−1

)
,
(

K
t+1

)
),

where t , KM
N

. As discussed in [10], for a given shared
caching problem, the scheme in [4] can be recovered us-
ing an MN PDA defined for Λ users, which is given as
(Λ,
(
Λ
t

)
,
(
Λ−1
t−1

)
,
(

Λ
t+1

)
).

Consider a shared caching problem where we start with an
MN PDA Q. When the aforementioned 3 steps are performed
on Q, we obtain more than one option for the column with
the largest intersection number. We can randomly choose one
column whenever we confront such situations with Q. The
performance obtained by using Q or any other PDA that is
equivalent to Q is same, as the scheme in [4] is optimal
under uncoded placement. Hence, there is no need to order the
columns of an MN PDA according to the association profile,
L as it does not improve R(L).

Remark 3. To find the best arrangement of the columns,

the exact user-to-cache association profile is not required for

content placement. Instead, we need to know only the order

of the helper caches in terms of the number of users served by

it. That is, our proposed procedure needs only the knowledge

about which cache serves the highest number of users, the

second-highest number of users, and so on (the exact number

Li, i ∈ [Λ] is not essential). It is possible to obtain this order

from statistical knowledge in many practical scenarios.

IV. DISCUSSION AND RELATED WORK

For comparison, we considered only the scheme in [10]
and the optimal scheme (under uncoded placement) in [4].
There are other centralized shared cache schemes in the
literature [5], [7]. The scheme in [5] caches both uncoded and
coded portions of files by taking into account the association
profile. The association profile, L should be known exactly at
the placement phase itself and, the scheme outperforms the
optimal scheme in [4] significantly if L is highly skewed.
But, the scheme in [5] finds the parameters of the caching
scheme (for example, size of the subfiles) by solving a linear
program. In [7], contrary to the conventional shared cache
setting, the authors assumed a cumulative memory constraint
and assigned heterogeneous memory sizes for each helper
cache depending on the number of users connected to it. By
following an optimized memory allocation across the caches,
the scheme proposed in [7] outperforms the scheme in [4]
but the sub-packetization level required is larger than that is
needed in [4].

V. CONCLUSION

In this work, we considered the coded caching schemes for
shared caches obtained from PDAs. The PDA that we choose
to start with determines the placement and delivery policies,
as each column represents a helper cache. Therefore, instead
of following an association profile independent placement,
we make use of the knowledge about the occupancy number
of each helper cache and, accordingly, order the columns
of the PDA. The concept of equivalent PDAs is introduced,
and a general rule of thumb is proposed on finding the
best ordering. The main point to emphasize here is that the
equivalent PDAs need not result in the same delivery load for
a given association profile. Hence, it is imperative to order

the columns of the PDA that we choose, before proceeding
further.
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