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Recently, a model for supervised learning of probabilistic transduc
ers represented by suffix trees was introduced. However, this algo
rithm tends to build very large trees, requiring very large amounts 
of computer memory. In this paper , we propose anew, more com
pact, transducer model in which one shares the parameters of distri
butions associated to contexts yielding similar conditional output 
distributions . We illustrate the advantages of the proposed algo
rithm with comparative experiments on inducing a noun phrase 
recogmzer . 

1 Introduction 

Learning algorithms for sequential data modeling are important in many applica
tions such as natural language processing and time-series analysis, in which one has 
to learn a model from one or more sequences of training data. Many of these algo
rithms can be cast as weighted transducers (Pereira, Riley and Sproat, 1994), which 
associate input sequences to output sequences, with weights for each input/output 
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sequence pair. When these weights are interpreted as probabilities, such models are 
called probabilistic transducers. In particular, a probabilistic transducer can rep

resent the conditional probability distribution of output sequences given an input 
sequence. For example, algorithms for combining several transducers were found 
useful in natural language and speech processing (Riley and Pereira, 1994). Very 

often, weighted transducers use an intermediate variable that represents "context", 
such as the state variable of Hidden Markov Models (Baker, 1975; Jelinek, 1976). A 
particular type of weighted transducer, called Input/Output Hidden Markov Model, 

is one in which the input-to-context distribution and context-to-output distribution 
are represented by flexible parameterized models (such as neural networks) (Bengio 

and Frasconi, 1996) . In this paper, we will study probabilistic transducers with a 
deterministic input-to-state mapping (i.e., a function from the past input subse
quence to the current value of the context variable). One such transducer is the one 
which assigns a value of the context variable to every value of the past input sub

sequence already seen in the data. This input-to-state mapping can be efficiently 
represented by a tree. Such transducers are called suffix tree transducers (Singer, 

1996). 

A problem with suffix tree transducers is that they tend to yield very large trees 
(whose size may grow as O(n2) for a sequence of data of length n). For example, in 
the application studied in this paper, one obtains trees requiring over a gigabyte of 
memory. Heuristics may be used to limit the growth of the tree (e.g., by limiting 
the maximum depth of the context, i.e., of the tree, and by limiting the maximum 
number of contexts, i.e., nodes of the tree). In this paper, instead, we propose a 

new model for a probabilistic transducer with deterministic input-to-state function 
in which this function is compactly represented, by sharing parameters of contexts 
which are associated to similar output distributions. Another way to look at the 
proposed algorithm is that it searches for a clustering of the nodes of a suffix tree 
transducer. The data structure that represents the contexts is not anymore a tree 
but a single-root acyclic directed graph. 

2 Background: Suffix Tree Probabilistic Transducers 

The learning algorithm for suffix tree probabilistic transducers (Singer, 1996) con

structs the model P(Yilxi) from discrete input sequences xi = {Xl,X2, ... ,Xn} 
to output sequences yi = {Y1, Y2, ... , Yn}, where Xt are elements of a finite alphabet 
Ein. This distribution is represented by a tree in which each internal node may have 
a child for every element of Ein, therefore associating a label E Ein to each arc. A 
node at depth d is labeled with the sequence ut of labels on arcs from root to node, 
corresponding to a particular input context, e.g., at some position n in the sequence 
a context of length d is the value ut of the preceding subsequence x~_d l' Each 
node at depth d is therefore associated with a model of the output distribution in 

this context, P(Yn IX~-d+1 = ut) (independent of n). 

To obtain a local output probability for Yn (i.e., given xi), one follows the longest 
possible path from the root to a node a depth d according to the labels xn, xn -1, 

... Xn-d+1. The local output probability at this node is used to model Yn' Since 

p(yflxf) can always be written n~=1 P(Yn Ixi)' the overall input/output condi
tional distribution can be decomposed, according to this model, as follows: 

T 

p(yflxf) = II P(YnIX~_d(x~)+l)' (1) 
n=1 

where d(xi) is the depth of the node of the tree associated with the longest suffix 

uf = x~_d+1 of xi. Figure 1 gives a simple example of a suffix tree transducer. 
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Figure 1: ExampJe of suffix tree transducer (Singer, 1996). The input alphabet, 

E in = {O, I} and the output aJphabet, EotJt = {a, b, c}. For instance, P(aIOOllO) = 
P(alllO) = 0.5 . 

3 Proposed Model and Learning Algorithm 

In the model proposed here, the input/output conditional distribution p(yT I xI) 
is represented by a single-root acyclic directed graph. Each node of this graph is 

associated with a set of contexts Cnode = {(jt·}, corresponding to all the paths i 
(of various lengths di ) from the root of the tree to this node. All these contexts are 
associated with the same local output distribution P(Yn Ix? has a suffix in Cnode). 

Like in suffix tree transducers, each internal node may have a child for every element 
of E in . The arc is labeled with the corresponding element of ~in . Also like in suffix 
tree transducers, to obtain P(Ynlx~), one follows the path from the root to the 
deepest node called deepest(x?) according to the labels Xn, Xn-l, etc .. . The local 
output distribution at this node is used to predict Yn or its probability. The overall 
conditional distribution is therefore given by 

T 

P(yilxf) = II P(Ynldeepest(x~)) (2) 
n=l 

where the set of contexts Cdeepe3t(x~) associated to the deepest node deepest(xl) 
contains a suffix of x? The model can be used both to compute the conditional 
probability of a given input/output sequence pair, or to guess an output sequence 
given an input sequence. Note that the input variable can contain delayed values 
of the output variable (as in Variable Length Markov Models). 

3.1 Proposed Learning Algorithm 

We present here a constructive learning algorithm for building the graph of the 
model and specify which data points are used to update each local output model 
(associated to nodes of the graph). The algorithm is on-line and operates accord
ing to two regimes: (1) adding new nodes and simply updating the local output 
distributions at existing nodes, and (2) merging parts of the graph which represent 
similar distributions. If there are multiple sequences in the training data they are 
concatenated in order to obtain a single input/output sequence pair. 

(1) After every observation (xn, Yn), the algorithm updates the output distributions 
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of the nodes for which Cnode(x~) contains a suffix of Xl, possibly adding new nodes 

(with labels x~_d.) until xl E Cnode for some node. 

(2) Every Tmerge observations, the algorithm attempts to merge sub-graphs which 
are found similar enough, by comparing the N (N - 1) /2 pairs of sub-graphs rooted 
at the N nodes that have seen at least minn observations. Merging two subgraphs 
is equivalent to forcing them to share parameters (as well as reducing the size of 
the representation of the distribution). A merge is performed between the graphs 

rooted at nodes a and b if Ll(a, b) < mina and the merge succeeds. The details of 
the similarity measure and merging algorithm are given in the next subsections. 

3.2 Similarity Measure Between Rooted Subgraphs 

In order to compare (asymmetrically) output distributions P(yla) 
two nodes a and b, one can use the Kullback-Liebler divergence: 

_ ~ P(ylb) 
Ii. L(a, b) = L...J P(ylb) log P(yla) 

yEEout 

and P(ylb) at 

(3) 

However, we want to compare the whole acyclic graphs rooted at these 2 nodes. In 
order to do so, let us define the following. Let s be a string of input labels, and b 

a node. Define desc(b, s) as the most remote descendant of b obtained by following 

from b the arcs whose labels correspond to the sequence s. Let descendents(a) be 
the set of strings obtained by following the arcs starting from node a until reaching 
the leaves which have a as an ancestor. Let P(sla) be the probability offollowing the 
arcs according to string s, starting from node a. This distribution can be estimated 
by counting the relative number of descendents through each of the children of each 
node. 

To compare the graphs rooted at two nodes a and b, we extend the KL divergence 
by weighing each of the descendents of a, as follows: 

W K L(a, b) = L P(sla)K L(desc(a, s), desc(b, s)) (4) 
3 E de3cendent8 (a) 

Finally, to obtain a symmetric measure, we define 

Ll(a,b) = WKL(a,b) + WKL(b,a) (5) 

that is used in the merge phase of the constructive learning algorithm to decide 
whether the subgraphs rooted at a and b should be merged. 

3.3 Merging Two Rooted Subgraphs 

If Ll (a, b) < mina (a predefined threshold) we want to merge the two subgraphs 
rooted at a and b and create a new subgraph rooted at c. The local output distri
bution at c is obtained from the local output distributions at a and b as follows: 

P(Yn Ic) = P(Ynla)P(ala or b) + P(Ynlb)P(bla or b) (6) 

where we define 
ad(a) 

P(ala or b) = ad(a) + ad(b) , (7) 

where d(a) is the length ofthe longest path from the root to node a, and a represents 
a prior parameter (between 0 and 1) on the depth of the acyclic graphs. This prior 
parameter can be used to induce a prior distribution over possible rooted acyclic 

graphs structures which favors smaller graphs and shorter contexts (see the mixture 
of probabilistic transducers of (Singer, 1996)). 

The merging algorithm can then be summarized as follows: 
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• The parents of a and b become parents for c. 

• Some verifications are made to prevent merges which would yield to cycles in the 
graph. The nodes a and b are not merged if they are parents of one another. 

• We make each child of a a child of c. For each child u of b (following an arc labeled 
l), look for the corresponding child v of c (also following the arc labeled l) . If there 
is no such child, and u is not a parent of c, make u a new child of c. Else, if u and 
v are not parents of each other, recursively merge them. 

• Delete nodes a and b, as well as all the links from and to these nodes. 

This algorithm is symmetric with respect to a and b except when a merge cannot 
be done because a and b are parents of one another. In this case, an asymmetric 
decision must be taken: we chose to keep only a and reject b. Figure 2 gives a 
simple example of merge. 

Figure 2: This figure shows how two nodes are merged. The result is no longer a 

tree, but a directed graph. Some verifications are done to avoid cycles in the graph. 
Each node can have multiple labels, corresponding to the multiple possible paths 
from the root to the node. 

4 Comparative Experiments 

We compared experimentally our model to the one proposed in (Singer, 1996) on 
mixtures of suffix tree transducers, using the same task. Given a text where each 
word is assigned an appropriate part-of-speech value (verb, noun, adjective, etc), 
the task is to identify the noun phrases in the text. The UPENN tree-bank corpus 
database was used in these experiments. The input vocabulary size, IEinl = 41, 
is the number of possible part-of-speech tags, and the output vocabulary size is 
IEouti = 2. The model was trained over 250000 marked tags, constraining the 
tree to be of maximal depth 15. The model was then tested (freezing the model 
structure and its parameters) over 37000 other tags. Using the mixture of suffix tree 
transducers (Singer, 1996) and thresholding the output probability at 0.5 to take 
output decisions, yielded an accuracy rate of 97.6% on the test set, but required 
over 1 gigabyte of computer memory. 

To make interesting comparisons with the shared context transducers, we chose 
the following experimental scheme. Not only did we fix the maximal depth of the 
directed graph to 15, but we also fixed the maximal number of allocated nodes, i.e., 
simulating fixed memory resources. When this number was reached, we froze the 
structure but continued to update the parameters of the model until the end of the 
training database was reached. For the shared context version, whenever a merge 
freed some nodes, we let the graph grow again to its maximal node size. At the end 
of this process, we evaluated the model on the test set. 
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We tested this method for various values of the maximum number of nodes in the 
graph. For each experiment, we tried different values of the other parameters (the 
similarity threshold min~ for merging, the minimum number of observations miIln 
at a node before it can be considered for a merge, and the delay Tmerge between two 
merging phases), and we picked the one which performed the best on the training 

set. Results are reported in figure 3. 

maximal with without 
005 

number merge merge 09 

of nodes (%) (%) 085 

20 0.762 0.584 01 

50 0.827 0.624 
075 

100 0.861 0.727 
500 0.924 0.867 

07 

1000 0.949 0.917 
085 

2000 0.949 0.935 01 

5000 0.952 0.948 055 

Figure 3: This figure shows the generalization accuracy rate of a transducer with 
merges (shared contexts graph) against one without merges (suffix tree), with dif
ferent maximum number of nodes. The maximum number of nodes are in a loga
rithmic scale, and the accuracy rates are expressed in relative frequency of correct 
classification. 

As can be seen from the results, the accuracy rate over the test set is better for 
transducers with shared contexts than without. More precisely, the gain is greater 
when the maximum number of nodes is smaller. When we fix the maximum number 
of nodes to a very small value (20), a shared context transducer performs 1.3 times 
better (in classification error) than a non-shared one. This gain becomes smaller 
and smaller as the maximum size increases. Beyond a certain maximum size, there 
is almost no gain, and one could probably observe a loss for some large sizes. We 
also need to keep in mind that the larger the transducer is, the slower the program 
to create the shared context transducer is, compared to the non-shared one. Finally, 
it is interesting to note that using only 5000 nodes, we were able to obtain 95.2% 
accuracy, which is only 2.4% less than those obtained with no constraint on the 
number of nodes. 

5 Conclusion 

In this paper, we have presented the following: 

• A new probabilistic model for probabilistic transducers with deterministic 
input-to-state function, represented by a rooted acyclic directed graph with 
nodes associated to a set of contexts and children associated to the different 
input symbols. This is a generalization of the suffix tree transducer. 

• A constructive learning algorithm for this model, based on construction and 
merging phases. The merging is obtained by clustering parts of the graph 
which represent a similar conditional distribution. 

• Experimental results on a natural-language task showing that when the size 
of the graph is constrained, this algorithm performs better than the purely 
constructive (no merge) suffix tree algorithm. 
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