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Abstract

Categorical diagnoses from the Diagnostic and Statistical Manual of Mental Disorders (DSM) or International

Classification of Diseases (ICD) manuals are increasingly found to be incongruent with emerging neuroscientific

evidence that points towards shared neurobiological dysfunction underlying attention deficit/hyperactivity disorder

and autism spectrum disorder. Using resting-state functional magnetic resonance imaging data, functional

connectivity of the default mode network, the dorsal attention and salience network was studied in 1305 typically

developing and diagnosed participants. A transdiagnostic hierarchical Bayesian modeling framework combining

Indian Buffet Processes and Latent Dirichlet Allocation was proposed to address the urgent need for objective brain-

derived measures that can acknowledge shared brain network dysfunction in both disorders. We identified three main

variation factors characterized by distinct coupling patterns of the temporoparietal cortices in the default mode

network with the dorsal attention and salience network. The brain-derived factors were demonstrated to effectively

capture the underlying neural dysfunction shared in both disorders more accurately, and to enable more reliable

diagnoses of neurobiological dysfunction. The brain-derived phenotypes alone allowed for a classification accuracy

reflecting an underlying neuropathology of 67.33% (+/−3.07) in new individuals, which significantly outperformed the

46.73% (+/−3.97) accuracy of categorical diagnoses. Our results provide initial evidence that shared neural

dysfunction in ADHD and ASD can be derived from conventional brain recordings in a data-led fashion. Our work is

encouraging to pursue a translational endeavor to find and further study brain-derived phenotypes, which could

potentially be used to improve clinical decision-making and optimize treatment in the future.

Introduction

Attention deficit/hyperactivity disorder (ADHD) and

autism spectrum disorder (ASD) are both disabling and

heritable neurodevelopmental disorders that manifest early

in life and have well-documented consequences for well-

being. Both disorders are associated with high levels of

family dysfunction, social interaction problems, academic

failure, and unemployment and thus constitute a significant

burden for children, their families, and society as a whole1–3.

ADHD is characterized by developmentally inap-

propriate levels of inattention, impulsivity, and hyper-

activity. In contrast, ASD is defined by core symptoms of

persistent and pervasive deficits in social communication

and interaction along with repetitive behavioral patterns

and restricted interests or activities. However, these see-

mingly disparate disorders have clinical overlap4: 30–80%
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of all ASD children meet the diagnostic criteria for ADHD

and, conversely, 20–50% of children diagnosed with

ADHD also meet the diagnostic criteria for ASD. Both

disorders also show similar associated clinical features,

including poor social skills, language delay, oppositional

defiant behavior, and difficulty with attention and emo-

tion regulation4,5. This begs the question whether despite

superficial differences in clinical presentation both ADHD

and ASD share a fundamental mechanism of dysfunction.

Consistent with the hypothesis that both ASD and

ADHD depend in part on shared underlying dysfunction,

genetic and twin studies show familial associations for

both disorders6,7. Twin studies suggested that 50–72% of

phenotypic features are shared by these disorders, poten-

tially reflecting genetic factors common to both ADHD

and ASD8,9. Additionally, genome-wide association studies

as well as linkage and candidate gene studies identified a

number of genetic risk variants common to both dis-

orders10. At the neuropsychological level, there are several

domains in which both ASD and ADHD have a pattern of

common deficits. These include executive function11,

emotion recognition12, affective feedback processing13, as

well as sustained attention, and sensory functioning14,15.

Independent functional magnetic resonance imaging

(fMRI) experiments in ADHD or ASD patients have

revealed a substantial role of aberrant connectivity in

large-scale networks in both disorders (for reviews see

refs.16,17). Prior evidence has emphasized the importance

of the default mode network (DMN) and attention-related

macroscopical network as a key to both ADHD and ASD

dysfunction18–20. In a seminal cross-diagnostic neuroi-

maging study, Di Martino et al.20 examined network

centrality metrics in ADHD and ASD patients. Abnorm-

alities were identified in cortical and subcortical areas,

some of which were common to both disorders, including

the posteromedial cortex. In contrast, some aberrations,

such as limbic areas in the bilateral medial temporal lobe,

were more closely related to ASD. Moreover, it has been

suggested that the salience network (SN) is intimately

related to the interplay between the DMN and DAN21, and

aberrant coupling patterns between the SN, DMN, and

DAN have been reported in both ASD18,22 and ADHD23,24.

The collection of genetic, neuropsychological, and

neuroimaging evidence emphasizes the need to under-

stand the common patterns of neural dysfunction that

link ADHD and ASD. Both disorders may be best

understood from a dimensional point of view with

patients who suffer from either disorder located at distant

points on a symptom continuum8. This intuition is

advertised by the Research Domain Criteria (RDoC)

initiative of the National Institute of Mental Health25

proposed as an alternative research framework to inves-

tigate psychopathological disorders, including ADHD and

ASD. Within this framework, mixed dimensional

abnormalities of brain circuits are conceptualized as an

underlying dysfunction that can contribute to clinically

diverging mental disorders to varying degrees26,27. In the

present study, we tested a dimensional view of ADHD and

ASD combining resting-state brain connectivity and

emerging tools from the machine learning domain. In a

transdiagnostic fashion, we hypothesized that brain var-

iation in large-scale network connectivity in the DMN,

DAN, and SN can be used to identify shared fundamental

network dysfunction in both disorders.

Methods

Data resources and preprocessing

Already preprocessed neuroimaging data were obtained

from two large, publicly available datasets: ADHD-200

(http://fcon_1000.projects.nitrc.org/indi/adhd200/) and

ABIDE (Autism Brain Imaging Data Exchange; http://

fcon_1000.projects.nitrc.org/indi/abide/). All data were

anonymized, and collected with the approval of the

respective ethics boards. Experienced psychiatrists per-

formed patient diagnoses. The ADHD-200 data set pro-

vides demographic and clinical information, including

age, sex, and measures of symptom severity as assessed by

the ADHD rating scale (ADHD-RS). The ABIDE data

provide subject information, including age, sex, and

measures of symptom severity as assessed by the Autism

Diagnostic Observation Schedule (ADOS). Both con-

sidered data repositories were preprocessed using the

NeuroImaging Analysis Kit (NIAK, http://preprocessed-

connectomes-project.org, for in-depth description see

refs.28,29). Particular care has been devoted to help miti-

gate motion artefacts: Scrubbing30 was used to remove

volumes with excessive motion. Rigid-body motion was

then estimated within and between runs. The first prin-

cipal component accounting for 95% of the variance of the

six rigid-body motion parameters, as well as their squares

was regressed out in nuisance removal. The available

pipeline was additionally modified using a standard

removal of linear effects with site as a regressor of no

interest to control for certain acquisition-related effects.

To help minimize confounding factors, inclusion was

restricted to children and adolescents who were male and

between 7 to 21 years of age to study the neural

mechanism of both disorders during development. Diag-

nosed and typically developing (TD) participants were

age-matched in each dataset (see Table 1 for details). This

was motivated by previous evidence showing that ASD

affects the brains of children and adults differently31.

Further, we included only male participants because (i)

both disorders are more prevalent in males32,33, and (ii) to

exclude gender-specific differences in brain hetero-

geneity34,35. Based on these selection criteria, 587 age-

matched participants (303 TD) from ADHD-200, and 718

age-matched participants (349 TD) from the ABIDE
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repository were eligible. This amounted to a total of n=

1305 participants.

Target network definition

For each participant, the preprocessed resting-state con-

nectivity was summarized in network-coupling statistics. We

examined several subregions within each of the four DMN

nodes (Fig. 1a) as used in a recent computational psychiatry

study (see ref.[36; available for re-use at http://neurovault.org/

collections/2216/): four subregions in the dorsomedial pre-

frontal cortex (dmPFC), four subregions in the posteromedial

cingulate cortex (PMC), and two subregions in the right and

left temporoparietal junction (TPJ) were drawn from a

recently completed quantitative meta-analytical atlas of the

DMN derived by connectivity-based parcellation37–40. The

DMN nodes were supplemented by coordinate-based meta-

analyses of closely interacting multi-modal networks (Fig.

1b): the salience network, composed of the anterior insula

Table 1 Sample details

ADHD-200 (n=587) ADHD TD p-value (t-test) ABIDE (n=718) ASD TD p-value (t-test)

n 284 303 n 369 349

Age 11.99 11.89 >0.99 age 13.53 13,54 >0.99

ADHD subtypes ASD subtypes

Inattentive (%) 35.00 0.00 Autism (%) 75.00 0,00

Hyperactive/ Impulsive (%) 4.00 0.00 Asperger (%) 18.00 0,00

Combined (&) 61.00 0,.0 PDD-NOS (%) 7.00 0,00

ADHD symptom severity 62.00 38.00 <0.001 ADOS total 12.00

Inattention 55.00 33.00 <0.001 ADOS communication 4.00

Hyperactivity/Impulsivity 52.00 32.00 <0.001 ADOS social interaction 8.00

ADOS stereotyped behaviors 3.00

Fig. 1 Target network definitions. The regions of interest (ROIs) used for all present analyses are rendered on the MNI standard brain with frontal,

diagonal, and top views. a The four main default mode network (DMN) nodes are subdivided into 12 ROIs reflecting distinct subregions (dmPFC1–4,

PMC1–4, left and right TPJ1–2)37–40. b The DMN subregions are supplemented by nine ROIs for the dorsal attention network (DAN) and salience

network (SN), drawn from previously published quantitative meta-analyses. The DAN was composed of the dorsolateral prefrontal cortex (dlPFC) and

intraparietal sulcus (IPS) bilaterally42. The SN included the anterior insula (AI), midcingulate cortex (MCC), and amygdala (AM) bilaterally41. NeuroVault

permanent link to all ROI definitions used in the present study: http://neurovault.org/collections/2216/
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(AI), midcingulate cortex (MCC), and amygdala (AM)41; and

the dorsal attention network (DAN), composed of the dor-

solateral prefrontal cortex (dlPFC) and intraparietal sulcus

(IPS)42. This approach yielded a total of 21 nodes with 210

edges capturing functional network coupling between all

possible connectivity pairs. The fMRI signal was summarized

by an average time-series for each node, standardized by

zero-meaning and unit-variance scaling, and detrended.

Pearson’s correlations were then computed between each

possible pair of the network nodes. In this way, we effectively

reduced each individual’s resting-state whole-brain informa-

tion to an interpretable set of connectivity variables. In sum,

the set of coupling measures reflects each subject’s specific

connectivity profile—analogous to a fingerprint of brain

network connectivity. Constructing analogous connectivity

variables from networks in the Yeo atlas43—without DMN,

DAN, and SN—yielded only 52.65% accuracy in the autism-

health distinction and 56.06% accuracy in the ADHD sample

(100 cross-validation folds, 90% train, and 10% test set, linear

support vector machine (SVM)).

Statistical analysis

In this study, we devised an innovative hierarchical

Bayesian modeling strategy (Fig. 2) to address the urgent

need for objective brain-derived measures that can

acknowledge shared dysfunction leading to different brain

disturbances across disorders, including ADHD and ASD.

The applied transdiagnostic framework is able to reflect

the premise that different underlying pathophysiological

mechanisms contribute to mental disorders to varying

degrees26,27. In the following, we will now describe step-

by-step what key advantages the applied framework offers.

Identification of underlying disease dimension

In a first step, we wanted to identify the hidden compo-

nents of disease variability underlying the connectivity pro-

files. The challenges implicated are to do so in a data-led

fashion, imposing minimal constraints (such as selecting a

pre-specified number of components), and to allow for the

contribution of multiple shared components at the same

time. In an early application in neuroimaging, we used

Indian Buffet Processes (IBP)44 to allow for the derivation of

the relative contributions of hidden properties in the con-

nectivity profiles across all participants. Rather than

extracting a pre-specified number of components, as com-

monly used in principal or independent component analysis,

IBP enables formal inference on the number of unknown

components. This non-parametric model hence auto-

matically determines the number of underlying components

flexibly adapted to the richness of the available directional

functional-connectivity data. Additionally, IBP does not

perform hard assignments; instead it associates hidden

properties to patterns of continuous variation in particular

node–node couplings rather than to binary differences.

Hierarchical Bayesian modeling

The identified hidden properties in functional network

coupling then provided the basis for drawing inference of

coherent group-overarching structure (i.e., factors) by

means of Bayesian hierarchical modeling. Using Latent

Dirichlet Allocation (LDA)45 we imposed a hierarchy of

pre-specified k number of factors onto the connectivity

fingerprints based on their association with the hidden

properties. In previous research, LDA was successfully

applied after engineering structural brain data into posi-

tive integers46. But LDA alone is not suited to handling

negative-valued, non-discrete input, such as connectivity

strengths. Here, the realized combination of IBP and LDA

modeling naturally suggests itself because IBP can seam-

lessly transform the continuous information encoded in

the individual connectional fingerprints into discrete,

positive-valued vectors indicating the assignment to the

underlying hidden properties. For ease of interpretation,

LDA then reduced the obtained set of assignments to

hidden properties into a small set of overarching con-

nectivity archetypes (i.e., factors). A key advantage of

combining IBP and LDA is that it enables us to derive

hidden sources of variation with mixed memberships.

This avoids the necessity of assigning a connectional

fingerprint of a participant to only one factor. Instead,

each particular individual’s connectional fingerprint could

hence be modeled as being generated by k factors (i.e.,

endo-phenotypes) simultaneously.

Deriving biological labels from the neuroimaging-derived

phenotypes

We generated an unbiased set of new labels indicating

an assignment to a ‘neurobiological group’ based on the

dimensional factors constituting the brain phenotypes for

all individuals. To avoid circularity, we translated a sta-

tistical modeling scheme, called pre-validation47, to the

neuroimaging domain. As a variant of cross-validation,

pre-validation was applied to obtain a fairer evaluation of

the group labels48. While cross-validation yields reason-

ably unbiased estimates of the model’s expected error rate

in other observations, pre-validation produces a new set

of unbiased data or labels that mimic the model perfor-

mance in later recruited subjects labeled as patients and

controls49. These authors emphasize that the key feature

of pre-validation is that each label is derived from the

entire data set and independently of its response value.

Therefore, each label can be treated as if it was derived

from a data set completely separate from the test-data.

The biological group labels hence are statistically inde-

pendent from the information encoded in the connec-

tional fingerprints48–51, and act as if they were derived

from separate data.

We divided the data into m= 10 pseudo-randomized

splits to ensure balanced groups in both training and test
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set. The biological labels for all individuals in a given m-th

data split were generated by fitting an LDA model on

combined brain data from the nine remaining data splits

and used to infer factor weights for all observations of the

m-th data split. In each m-th data split, pre-validated

biological labels were hence estimated by LDA (i.e., the

“internal model”) without access to any actual clinical

labels (TD versus ADHD versus ASD) or any brain data

from the held-out m-th data split. This procedure gen-

erated a new set of labels that was then used to evaluate

the out-of-sample prediction of the groups based on a

linear classification algorithm (whereas classical cross-

validation directly selects models and evaluates their

prediction performance). The biological labels were tested

for diagnostic relevance based on linear SVMs (i.e., the

“external model”) by training on each combination of m

−1 training data splits and testing on the respective

remaining test-data split.

Results

A hierarchical Bayesian approach was used to identify

distinct patterns of DMN coupling with other large-scale

brain networks. These functional network patterns were

consistently expressed in each of the 1305 TD, ADHD,

and ASD individuals from two multisite repositories (i.e.,

ADHD-200 and ABIDE). The applied transdiagnostic

modeling strategy reflects the premise that different bio-

logical phenotypes contribute to clinically diverging

mental disorders to varying degrees26,27. After automatic

extraction of distinct variability components in DMN

coupling (i.e., hidden properties), we inferred a hierarchy

of sources of variation (i.e., factors) that compile the

variability in network connectivity of the DMN in TD and

diagnosed participants.

The hidden properties of disease variability underlying

the connectivity profiles were identified in a data-driven

fashion across all participants without knowing to which

clinical group (TD, ADHD, or ASD) they belonged to.

The applied non-parametric model automatically deter-

mined 45 hidden properties as the number of components

adapted to the complexity of the underlying the available

data. We then investigate whether distinct disorder-

specific clusters would emerge. However, while every

hidden property was observed to be present to different

Fig. 2 Workflow. a DMN, DAN, an SN network coupling was studied in a composite sample of 1,305 TD, ADHD, and ASD individuals taken from two

multisite open-data repositories (ADHD-200 and ABIDE). b In a data-driven fashion, Indian Buffet Processes (IBP) automatically derived the number of

hidden properties in the connectional fingerprints across participants without recourse to their clinical status. Automatic detection and weighing of

shared and distinct unknown biological causes prompts its use in the identification of endo-phenotypes. c Latent Dirichlet Allocation (LDA) then

inferred three overarching factors of underlying brain variation. Importantly, LDA allowed to derive hidden variability factors with mixed membership.

Therefore, each participant’s connectional fingerprint was modeled to be simultaneously caused by multiple implicit neurobiological factors. d Each

individual composition of the three neurobiological factors (representing distinct network-coupling profiles, lower section) was related to their

respective clinical diagnoses (TD, ADHD, and ASD). In a preliminary analysis based on t-distributed stochastic neighbor embedding (t-SNE; ref.62),

biological subtypes can be identified from network connectivity patterns that are partly shared across TD, ADHD, and ASD
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extents in each diagnostic group, no property was found

to be uniquely associated with only one group (Fig. 3).

Together this provides initial evidence that different bio-

logical phenotypes are partly shared among individuals

and contribute to the clinical presentation of ADHD and

ASD to varying degrees.

To aid interpretability, we then used Bayesian inference

to reduce the obtained set of hidden properties into a

smaller set of overarching patterns by imposing a latent

hierarchy of k factors. In the k= 2 solution, the underlying

factors were only related in opposite directions and were

hence not able to capture subtle effects in overall network

coupling. In wanting to choose the lowest yet most

informative number of hidden factors, we favored a

solution with k= 3 factors. Hypothetically, if the three

clinical groups were to be neurobiologically consistent,

three learned LDA components would suffice to describe

the underlying dysfunctional pattern. For instance, LDA

factor 1 could be related to healthy subjects, LDA factor 2

to ADHD, and factor 3 to ASD. However, following the

shared hidden properties, we found that the three factors

did not align in a one-on-one fashion with the clinical

groups (cf. Fig. 1d). Consistent with our hypothesis, the

shared influence of three connectivity factors was asso-

ciated with aspects of both ASD and ADHD. The iden-

tified factors yielded the following coupling weights (Fig.

4): Factor 1 showed high DMN-DAN, medium DMN-SN,

and low intra-DMN coupling weights, while factor 2

exhibited positive weights for connections between DMN

subregions, most pronounced for the right and left pos-

terior TPJ, and between the right and left AM. The

highest negative weights of factor 2 were observed for

connections between the dmPFC subregions and the right

and left dlPFC, closely followed by the right and left IPS.

Factor 3 exhibited subtle effects for connections between

DMN subregions. The connections between the right

posterior TPJ and the PMC, and between the right and

left posterior TPJs showed particularly high negative

weights. In sum, each of the biological three factors

reflected a coherent pattern of resting-state connectivity

between the DMN, DAN, and SN. Capitalizing on the

mixed memberships approach of our framework, each

individual’s resting-state network connectivity could

hence be expressed as a flexible recombination of only

these three factors.

Clinical associations of the biological phenotypes

We then examined the subject-by-subject expression of

the imaging-derived endo-phenotypes (i.e., factors 1–3) in

regard to the clinical questionnaires and assessments

available from the ADHD-200 and ABIDE repositories.

The subject-by-subject expression of factor 1 showed the

highest positive associations with ADHD symptom mea-

sures, including the level of inattention (r= 0.26, p <

0.001) and hyperactivity/impulsivity (r= 0.24, p < 0.001),

as well as a negative association with performance, verbal,

Fig. 3 Hidden properties in connectivity profiles. Healthy (middle section in the columns), ADHD (upper section in the columns), and ASD (lower

section in the columns) participants are compared with regard to the relative occurrence of each distinct hidden component (columns). Each hidden

property resulted directly from the Indian Buffet Process and is depicted here with its occurrence (present versus not present) added up across all

participants. These were automatically discovered in the whole-brain connectivity profiles without knowing to which of the three groups each

participant belonged. Visibly, the identified connectivity features are dispersed across the participant groups. No single connectivity feature was

exclusively associated with only one group

Kernbach et al. Translational Psychiatry  (2018) 8:133 Page 6 of 11



Fig. 4 Three neurobiological factors of variation with distinct connectivity patterns. Bayesian inference allowed extracting a hierarchy of brain-

defined subgroups, without access to the clinical diagnoses. Each of the three biological factors reflected a coherent pattern of resting-state

connectivity between the default mode network (dmPFC-1/2/3/4, PMC-1/2/3/4, and bilateral TPJ-1/2), dorsal attention network (bilateral dlPFC and

IPS), and salience network (bilateral AI, MCC, and AM). In each TD, ADHD, or ASD individual, the resting-state measurements of overall network-

coupling patterns were driven by flexible recombinations of these three factors of connectivity variation. L/R left/right hemisphere
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and total IQ scores (r=−0.13/−0.15/−0.13, each p <

0.05). In contrast, factor 2 showed the highest associations

with ASD diagnosis (r= 0.15, p < 0.05), and positive

associations with verbal and total IQ (r= 0.21/0.14, p <

0.001/0.05), as well as negative associations with ADHD

diagnosis (r=−0.22, p < 0.001) and hyperactivity/impul-

sivity (r=−0.21, p < 0.001). Factor 3 did not show sig-

nificant associations with any behavioral items.

Validating the predictive nature of the biological

phenotypes against clinical diagnoses

In a final step, we explored the association between the

discovered brain-derived connectivity factors and the

biological and categorical labels (Fig. 5). Note that the

connectivity factors and biological labels were derived

without using the original disease group labels or any

questionnaire scores. To enable systematic assessment of

the predictive accuracy added by the discovered dimen-

sional endo-phenotypes, we generated an unbiased set of

new data-derived neurobiological labels for all individuals.

The neurobiological labels were then systematically

compared against the clinical labels by testing for diag-

nostic relevance based on linear SVMs. We conducted

three plausibility tests to provide quantitative answers to

different questions.

(1) We asked whether the new data-derived neurobio-

logical labels capture the neural dysfunction encoded in

the connectional fingerprints more accurately than the

categorical labels (i.e., TD versus ADHD versus ASD) (Fig.

5a). We would like to point out that all biological labels

were statistically independent of the connectivity finger-

print and therefore act just like a regular input variable

(c.f. pre-validation in methods)50,51. SVMs correctly pre-

dicted the independent neurobiological label from con-

nectional fingerprints in unseen participants 67.33 ±

3.07% of the time (chance is at 33.33%). Predicting the

original categorical diagnoses provided by board-certified

psychiatrists achieved only an accuracy of 46.73 ± 3.97% in

new participants. This difference in classification accuracy

across predictions was statistically significant at p < 0.0001

as evaluated by a t-test. This finding indicates that the

imaging-derived neurobiological labels captured the

underlying variation of disease dimension within the

connectivity information more accurately than the origi-

nal categorical group labels.

(2) We explored whether the categorical diagnostic

labels could be better predicted from the individual con-

nectional fingerprint (i.e., the full node–node connectivity

information for each participant) if the factor weights

were added to the explanatory variables (Fig. 5b). We

hence asked whether adding the information about the

individual factor weights (i.e., three continuous numbers)

to the connectional fingerprint enhances the diagnostic

classification to capture the underlying shared pathology

Fig. 5 Evaluation of predictability, robustness, and expressiveness of the transdiagnostic brain phenotypes for clinical validation.

Evaluating intra-subject predictions, the clinical usefulness of the measured network connectivity strengths (blue) was systematically evaluated

against the discovered neurobiological endo-phenotypes (green). Violin plots are similar to box plots in showing the median (white point), quartiles

(thick black lines), and outliers (below/above thin black whiskers), but also expose the probability densities of the data points (sideways shapes). a

Classification performance (1.0= all subjects correct, 0.33= chance as red line) of predicting the original diagnosis groups (TD, ADHD, and ASD)

versus the neurobiologically derived groups (indicated by the most important factor in each participant) based on the overall brain connectivity. The

data-derived disease factors could be much better predicted in connectivity profiles from new, previously unseen participants (p < 0.0001). b

Classification performance of predicting the original diagnosis groups based on connectivity profiles versus connectivity profiles and additional factor

weights. Knowledge of the brain-derived disease factors much decreased the variance (concentration around medium), thus decreasing the

uncertainty of each prediction for a given participant. c Group prediction performance from full connectivity profile versus exclusive knowledge of

the brain-derived factor weights. Without direct access to the original brain connectivity measurements, three factor weights summarizing each

subject were sufficient for non-inferior prediction (p= 0.47). The brain-imaging-derived phenotypes hence improved predictability, robustness, and

expressiveness
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more accurately. The classification accuracy on the ori-

ginal connectivity fingerprints alone reached 46.73 ± 3.97

percent (chance still at 33.33%), whereas the original

features supplemented with the weights of biological

factors reached 46.61 ± 1.98%. When adding the dimen-

sional information of the biological groups, there was

hence no statistically significant difference in out-of-

sample prediction accuracy (p= 0.73). However, notably,

the prediction model improved according to another

clinically relevant performance metric: The variance of

the prediction model was reduced by a factor of 2. This

finding indicated that aiding the prediction model based

on categorical group labels by adding information on the

biological groups did not enhance categorizing the shared

neuropathology reflected in the sets of connectivity fea-

tures on average across predictions, but made prediction

in a given individual more reliable.

(3) We compared the predictability of the categorical

labels based on the full connectional fingerprint with the

predictability based on the three factor weights alone (i.e.,

a total of 3 numbers per participant; Fig. 5c). The analysis

achieved a classification performance of 44.48 ± 9.11%

accuracy in unseen participants based on the factors, and

was very close to the 46.73 ± 3.97% accuracy in prediction

of the clinical labels based on the full connectivity matrix.

This difference in prediction performance was not sta-

tistically significant (p= 0.47). To emphasize the impor-

tance of this finding: Reducing the 210 node–node

connectivity features to three indicators of biological

phenotypes in each individual still allowed for classifica-

tion of TD, ADHD, and autistic participants with essen-

tially identical predictive performance.

In summary, we identified imaging-derived brain phe-

notypes based on large-scale network connectivity in the

DMN, DAN, and SN using a hierarchical Bayesian fra-

mework. The phenotypes were derived in a data-driven

fashion without access to any clinical or diagnostic

information, and were gradually shared across TD,

ADHD, and ASD individuals. Finally, we demonstrated

that these brain endo-phenotypes were reliable to

enhance categorical diagnoses made by board-certified

psychiatrists to capture the underlying neural dysfunction

shared in both disorders more effectively.

Discussion

The present computational investigation sought formal

models to capture the shared neural dysfunction in

ADHD and ASD. Given the overlap in clinical presenta-

tion (i.e., exo-phenotypes), we hypothesized that distinct

neural signatures (i.e., endo-phenotypes) can be found to

describe the common underlying brain network dys-

function. We introduced a novel framework of hier-

archical Bayesian inference to identify brain phenotypes of

DMN coupling, which were gradually shared across 1305

TD, ADHD, and ASD individuals. We showed that both

disorders could be situated along three dimensions of

neurobiological variation. We decided to focus our study

on previous empirical evidence for shared abnormal large-

scale network function in ADHD and ASD. The present

data hence suggest that the clinical overlap seen in ADHD

and ASD is caused by a shared underlying pattern of brain

network dysfunction characterized by distinct coupling

patterns of the temporoparietal cortices in the DMN with

the DAN and SN. In the following, we discuss the cou-

pling patterns of each factor in the light of the current

neuroimaging literature.

Factor 1 was characterized by high DMN-DAN, med-

ium DMN-SN, low intra-DMN, and low intra-DAN

coupling weights. The subject-by-subject expression of

this factor showed the highest positive associations with

ADHD symptom measures. These observations largely

confirm previous findings that the manifestation of

ADHD symptoms involves altered DMN-DAN interac-

tions, e.g. as implicated in attentional lapses52. Our

results are consistent with reports of decreased con-

nectivity within the DMN and DAN in ADHD popula-

tions19,23, which the investigators proposed to explain

attention deficits. In contrast to the behavioral associa-

tions of factor 1, the subject-specific expression of factor

2 was positively correlated with ASD diagnosis. On a

network level, factor 2 showed high negative functional

connectivity for DMN-DAN, low DMN-SN and AI-AM

connections. This confirmed and expanded previous

findings of observed hypo-connectivity within the sal-

ience network itself and between the SN and DMN in

ASD18,53. The aberrant DMN-SN interaction might

potentially be the origin of deficits seen in ASD regarding

impaired emotional awareness of the self and others, and

impaired reorienting to salient social or emotional

stimuli.

Finally, factor 3 showed negative coupling relations

among the DMN and between DAN nodes. In particular,

the posterior subregion of the right TPJ depicted lower

functional coupling than the anterior subregion, while no

such dissociation was observed in the left TPJ. In contrast,

factor 2 showed the inverse coupling pattern, while overall

showing more positive associations with ASD than

ADHD. Earlier studies found a functional separation of

the anterior and posterior rTPJ37,54: While the anterior

subregion was shown to be closely related to the reor-

ientation of attention, the posterior cluster was func-

tionally associated with Theory-of-Mind and social

cognition. Across brain phenotypes, distinct patterns of

dysconnectivity in the rTPJ effectively differentiated

between ADHD and ASD. We hence suggest that a shared

expression of factors 2 and 3 may play a critical role in

contributing to the variability of shared deficits seen in

both disorders.
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Connectivity-derived biomarkers anchored in the partly

shared functional architecture of the DMN may further

disentangle the observed heterogeneity in ADHD and

ASD diagnostics and potentially lead to targeted treat-

ment options in the future. In ADHD, Peterson and col-

leagues specifically reported that psychostimulants may

improve ADHD related symptoms by normalizing dys-

functional connections between DMN and DAN related

activity in adolescents55. ASD, in turn, was reported to

show aberrant intra-DMN coupling and diminished

antagonistic correlation with task-positive networks, such

as DAN and SN56,57. However, dedicated translational

research will be needed to extend the search for trans-

diagnostic biomarkers and eventually evaluate their

potential use in treatment.

In conclusion, we used an innovative hierarchical

Bayesian modeling strategy to identify and formalize

intermediate brain phenotypes to interrogate our

hypothesis of shared dysfunctional connectivity in the

DMN, DAN, and SN. The endo-phenotypes derived in a

data-driven fashion without access to any clinical or

diagnostic information were gradually shared across the

neurodevelopmental disorders of ADHD and ASD. We

demonstrated that hundreds of resting-state brain scans

for each participant could be re-expressed in only three

numbers that captured hidden heterogeneity in DMN

coupling. The derived brain endo-phenotypes were then

demonstrated to enhance categorical diagnoses made by

board-certified psychiatrists to capture the neural dys-

function shared in both disorders more accurately. The

realized analysis strategy is not constrained to ADHD and

ASD, but may be applied to a variety of major psychiatric

disorders. Further investigations may target not only

shared dysfunction58 but also individual treatment

response, similar to recent work in depression59. Identi-

fying and validating brain-based endo-phenotypes will

most likely be and continue to be an unavoidable cor-

nerstone for personalized medicine in child psychiatry26,60

and general psychiatry26,27,61.

Data availability

All used data are open-access (ABIDE and ADHD-200)

and are readily accessible to the reader.
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