
Shared Event Composition/Decomposition in
Event-B?

Renato Silva? ? ? and Michael Butler

School of Electronics and Computer Science
University of Southampton, UK
{ras07r,mjb}@ecs.soton.ac.uk

Abstract. The construction of specifications is often a combination of
smaller sub-components. Composition and decomposition are techniques
supporting reuse and allowing formal combination of sub-components
through refinement steps. Sub-components can result from a design or
architectural goal and a refinement framework should allow them to be
further developed, possibly in parallel. We propose the definition of com-
position and decomposition in the Event-B formalism following a shared
event approach where sub-components interact via synchronised shared
events and shared states are not allowed. We define the necessary proof
obligations to ensure valid compositions and decompositions. We also
show that shared event composition preserves refinement proofs, that is,
in order to maintain refinement of compositions, it is sufficient to prove
refinement between corresponding sub-components. A case study apply-
ing these two techniques is illustrated using Rodin, the Event-B toolset.

Key words: formal methods, composition, decomposition, reuse, Event-
B, design techniques, specification

1 Introduction

The development of specifications in a “top-down” style starts with an abstract
model of the envisaged system. Systems can often be seen as a combination and
interaction of several sub-specifications (hereafter called sub-components) where
each sub-component has its own functionality aspect. This view introduces mod-
ularity in the system: different sub-components represent a particular functional-
ity and changes in the sub-components are accommodated more gracefully [1] in
the system specification. We use composition to structure specifications through
the interaction of sub-components seen as independent modules. This use of
composition is not new in other formal notations: examples are [2,3,4]. Here
we express how we can use (and reuse) composition for building specifications

? Part of this research was carried out within the European Commission ICT project
214158 DEPLOY (http://www.deploy-project.eu.

? ? ? R. Silva receives a Doctoral Degree Grant sponsored by Fundação Ciência e Tec-
nologia (FCT-Portugal).

http://www.deploy-project.eu

2 R. Silva and M. Butler

in Event-B [5] through the interaction of sub-components (modules) , benefit-
ing from their properties and proof obligations (POs). The interesting part of
composition involves the interaction of sub-components which usually occurs by
means of shared state [6], shared operations [7] or a combination of both (for
example, fusion composition [4]). In CSP [8,9] shared actions labels can be syn-
chronised. We take a similar approach in Event-B and we synchronise events
independently of their labels in a shared event composition approach. Properties
of the CSP synchronisation such as monotonicity remain valid for the shared
event composition. Butler [7] using Action Systems [10] and Classical B [11] de-
fines the parallel composition of action systems including parallel composition
with value-passing. We follow this approach to define the shared event compo-
sition for Event-B.

Decomposition is motivated by the possibility of breaking a complex problem
or system into parts that are easier to conceive, manage and maintain. The par-
tition of a model into sub-components can also be seen as a design/architectural
decision and the further development of the sub-components in parallel is pos-
sible. Besides alleviating the complexity for large systems and the respective
proofs, decomposition allows team development in parallel over the same model
which is very attractive in an industrial environment. Moreover the proof obli-
gations of the original (non-decomposed) model can be reused by the sub-
components. The proof obligations to ensure a valid composition are expressed
including the possibility to reuse the sub-components properties. We present in
more detail the shared event approach applied to composition and decomposi-
tion. The monotonicity property for composition is proved by means of refine-
ment proof obligations. We see decomposition as the inverse operation of com-
position and therefore we can reuse its properties to decompose systems. Guide-
lines for applying a shared event decomposition are presented illustrated by a
case study. The models are developed in Rodin [12], an Event-B toolset [5,13].

This document is structured as follows: Section 2 gives an overview of the
Event-B formal method. Section 3 introduces the notion and motivation for the
shared event approach for composition and decomposition. Composed machines,
properties, proof obligations are described in Sect. 4. Decomposition guidelines
are presented in Sect. 5. Section 6 illustrates the application of composition and
decomposition to a distributed system case study: file access system. Related
work is described in Sect. 7. Conclusions and future work are drawn in Sect. 8.

2 Event-B Language

Event-B, inspired by Action Systems, Classical B and Z [14], is a formal mod-
elling method for developing correct-by-construction hardware and software sys-
tems. An Event-B model is a state transition system where the state corresponds
to a set of variables v and transitions are represented by events. Essential is the
formulation of invariants I(v): safety conditions to be preserved at all times.

An abstract Event-B specification is divided into a static part called context
and a dynamic part called machine as seen in Fig. 1. A context consists of sets

Shared Event Composition/Decomposition in Event-B 3
J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, and Instantiation of Discrete Models 1009

refines

ABSTRACT ABSTRACT
CONTEXT

CONCRETE CONCRETE
CONTEXT

M C

DN

sees

Variables

Invariants

Events

Sets

Constants

Axioms

sees

Variables

Invariants

Events

Sets

Constants

Axioms

MACHINE

MACHINE

extends

Figure 3. Machine Refinement and Context Extension

reality are now revealed by the microscope. An even more powerful microscope will reveal more details, etc. A

refined model is thus one which is spatially larger than its previous abstractions.

In correlation to this spatial extension, there is a corresponding temporal extension: this is because the new

variables can be modified by some transitions, which could not have been present in the previous abstractions,

simply, because the concerned variables did not exist in them. Practically this is realized by means of new events

involving the new variables only (they refine some implicit events doing “nothing” in the abstraction). Refinement

will thus result in a discrete observation of reality, which is now performed using a finer time granularity.

We distinguish two principal uses of refinement, superposition [6] refinement and data-refinement [7]. Super-

position refinement corresponds solely to a spatial and temporal extension of a model. Data-refinement is used in

order to modify the state so that it can be implemented on a computer by means of some programming language.

5.1. Machine Refinement and Context Extension

From a given machineM, a new machine N can be built and asserted to be a refinement ofM. MachineM is said to

be an abstraction of N and machine N is said to be a refinement ofM or a concrete version of it. Likewise, context

C, seen by a machineM, can be extended to a context D, which is then seen by N. This is represented in Fig. 3.

Note that it is not necessary to extend context C when refining machine M. In this restricted case, machine N

just sees context C as does its abstractionM. This is illustrated in Fig. 4.

The sets and constants of an abstract context are kept in its extension. In other words, the extension of a

context just consists of adding new sets t and new constants d. These are defined by means of new axioms

Q(s, t, c, d). Consequently, no specific proof obligations are associated with context extension. In this article we
present singleton context extension and context reference to achieve conceptual simplicity. The generalization to

multiple context extension and reference is not difficult and particularly useful in conjunction with decomposition

as presented in Section 6.

The situation is not the same when refining machines. The concrete machine N (which supposedly “sees”

Fig. 1. Machine and context refinement

s (collection of elements or type definitions), constants c and axioms A(. . .)1
of the system. A machine contains the state (global) variables v whose values
are assigned in events. Events, that can be parameterised by local variables p,
occur when their conditions (called guards G(. . .)) are true and as a result the
state variables may be updated by actions S(. . .). Invariants I(. . .) define the
dynamic properties of the specification and POs are generated to verify that
these properties are always maintained. The most general form of an event is

e b= ANY p WHERE G(s, c, p, v) THEN S(s, c, p, v, v′) END.

where event e is expressed by parameters p, guards G(s, c, p, v) and actions
S(s, c, p, v, v′). When guard G(s, c, p, v) is true then event e is enabled and there-
fore the action S(s, c, p, v, v′) updates the set of variables v to v′ (value of v after
the assignment).

To facilitate the construction of large-scale models, Event-B advocates the
use of refinement : the process of gradually adding details to a model. Refinement
of a machine consists of refining existing events. An Event-B development is a
sequence of models linked by refinement relations. It is said that a concrete model
refines an abstract one. Abstract variables v are linked to concrete variables w
by a gluing invariant J(v, w). POs are generated to ensure that this invariant
is preserved in the concrete model. Any behaviour of the concrete model must
be simulated by some behaviour of the abstract model, with respect to the
gluing invariant J(v, w). New events can be added, refinining skip which may be
declared as convergent, meaning they do not cause divergence. The convergence
is proved if each new event decreases a variant. The variant must be well-founded
and may be an integer or a finite set.

3 Shared Event Approach

The shared event approach is suitable for the development of distributed systems[7]:
sub-components interact through synchronised events in parallel. In CSP, syn-
1 (. . .) refers to the free identifiers in the expression like sets, constants, etc.

4 R. Silva and M. Butler

chronised input or output channels can exchange messages. In Event-B, the
sub-component events can exchange messages via shared parameters which is
useful for modelling message broadcasting systems. Next we describe how we
define a shared event composition in Event-B.

3.1 Shared Event Composition

Sub-component specifications that are part of a full system specification deal
with a particular part of the system being modelled. Sub-component interaction
must be verified to comply with the desired behavioural semantics of the system.
We focus on developments using shared event composition where individual ele-
ments’ properties are conjoined: conjunction of individual invariants, conjoining
variables and synchronisation of events.!"#$%&'()%*+',-./-01+1-*'

Fig. 2. Shared event composition of M1 and M2 (a) resulting in M (b)

Consider Fig. 2 where machine M1 has events e1 and e2 using variable v1.
Moreover machine M2 has events e3, e4 and e5 using variables v2 and v3. Events
e2 and e3 can occur in parallel (independent variables) and can be synchronised.
In Fig. 2, machine M is the result of the shared event composition of machines
M1 and M2 where e2 from machine M1 and e3 from machine M3 are composed:
e2 ‖ e3. The interaction of machines M1 and M2 through their events results
in a composed event sharing two independent variables: v1 and v2.

Butler [7] defines a general definition for the parallel composition of action
systems with value-passing fusion. Based on that work, we can express a general
definition for the parallel composition of generic events ea and eb as Def. 1 :

Definition 1. Composition of events ea and eb with a common parameter p
results in:

ea b=ANY p?, x WHERE G(p?, x, m) THEN S(p?, x, m) END

eb b=ANY p!, y WHERE H(p!, y, n) THEN T (p!, y, n) END

ea ‖ eb b=ANY p!, x, y WHERE G(p!, x, m) ∧ H(p!, y, n)

THEN S(p!, x, m) ‖ T (p!, y, n) END

Shared Event Composition/Decomposition in Event-B 5

where x, y, p are sets of parameters from each of the events ea and eb. Event ea has
p? as an input parameter and eb has p! as an output parameter and the resulting
composition is p! itself an output parameter, modelling the passing of the output
value from the output parameter to the input parameter. This property can be
used to model value-passing systems: eb sends a value to ea using the common
parameter p. Communication between input type parameters is also possible but
not for both output parameters since the output parameters may not be willing
to output the same value, leading to a deadlock state. Although it is possible
to compose events ea and eb even if they share variables, this would lead to a
shared variable decomposition which out of the scope of this document since we
focus on the shared event decomposition that restricts variable sharing. More
information about that kind of composition can be found in [6].

Action systems [10] provide a general description of reactive systems, capable
of modelling terminating, aborting and infinitely repeating systems. Event-B is
inspired by action systems and can be seen as a realisation of actions systems but
using a combination of logic and mathematics. Both formalisms share the same
refinement semantics. Therefore we claim that Event-B has the same semantic
structure and refinement definitions as action systems. It is possible to make a
correspondence between parallel composition in CSP and an event-based view
of parallel composition for action systems [15,16].

Theorem 1. The shared event parallel composition of actions systems corre-
sponds to the CSP parallel composition. The failure-divergence semantics of CSP
can be applied to action systems. The failure divergence semantics of action sys-
tem M in parallel with N, M ‖ N is defined as:

JM ‖ NK = JMK ‖ JNK

where JMK and JNK are the failure divergence semantics of M and N respectively.
The proof of this theorem can be found in [15].

The semantics of the parallel composition of machines M and N corresponds
to the set of failure-divergence for each individual machine in parallel. The par-
allel operator for value-passing action-systems enjoys properties such as mono-
tonicity and associativity [15]. There is a correspondence between action systems
and Event-B. Action system is a predicate transformer from a precondition P to
post-condition Q with variables v possibly being modified. Event-B events are
similar but from a more specific view where the guards correspond to precondi-
tions P, actions R correspond to post-condition Q and the same variables v are
possibly modified:

[ANY x WHERE P (x, v) THEN v :| R(x, v, v′) END]Q

An action in action systems is expressed by:

(∀x·P (x, v)⇒ [v :| R(x, v, v′)]Q)⇔ (∀x·P (x, v)⇒ (∀v ·R(x, v, v′)⇒Q))

Event-B can be seen as a realisation of the generic action system formalism where
there is a direct correspondence between Action System actions and Event-B

6 R. Silva and M. Butler

events. From the correspondence between action systems and Event-B, machines
M and N can be refined independently which is one of the most important and
powerful properties that shared event composition in Event-B inherits from CSP.
The monotonicity property for the shared event composition in Event-B is proved
by means of proof obligation in Sect. 4.3. An advantage of using Event-B is the
tool support available through the Rodin platform where proof obligations are
automatically generated.

When sub-components are composed it is desirable to define properties that
relate the individual sub-components allowing interactions. These properties are
expressed by adding composition invariants ICM (s, c, v1, . . . , vm) to the com-
posed machine constraining the variables of all machines being composed.

Definition 2. The invariant of the parallel composition of machines M1 to Mm

with variables v1 to vm respectively is the conjunction of the individual invariants
and the composition invariant ICM (s, c, v1, . . . , vm):

I(M1 ‖ · · · ‖Mm) b= I1(s, c, v1) ∧ · · · ∧ Im(s, c, vm) ∧ ICM (s, c, v1, . . . , vm). (1)

In Fig. 2, composed machine M has as invariant the conjunction of the individual
invariants I(A ‖ B) =̂ IA(s, c, v1)∧IB(s, c, v2, v3) plus a possible composition in-
variant ICM (s, c, v1, v2, v3). In a shared event composition the sub-components
have independent state space (variables are unique to each machine). Conse-
quently, composition reasoning is simplified, as there are no constraints between
state spaces of sub-components.

3.2 Shared Event Decomposition

Decomposition can be seen as the inverse process of composition: after some re-
finements a larger model may be decomposed into smaller components. This step
might be a consequence of complexity or just as an architectural decision. The
shared event approach is also used: events are shared between sub-components
and variable sharing is not allowed. Butler [17] proposes a shared event decom-
position for Event-B inspired by CSP and action systems with event sharing as
seen in Fig. 3. We follow that work in our approach.

Fig. 3. Shared event decomposition of machine S into T and W sharing e2

Shared Event Composition/Decomposition in Event-B 7

The decomposition is obtained by selecting which variables from the original
model are allocated to which sub-component. Therefore, events using variables
allocated to different sub-components (e2 shares v1 and v2) must be split (de-
scribed in Sect. 5). The part corresponding to each variable (e2’ and e2”) is
used to create partial versions of the original event. After the decomposition,
the individual machines can be further refined since the composition relation
holds. The possible recomposition of the sub-components (or their refinements)
is a refinement of the original composed component although this step should
never be required in practice.

4 Composed Machines: Composition and Refinement

We define a new construct composed machine, representing the shared event com-
position of Event-B machines. We aim to have a construct that remains reactive
to changes in the sub-components. Consequently the composition is structural.
The interaction of sub-components follows a “top-down” approach, representing
a refinement of an existing abstraction. To formalise the composition, it is nec-
essary to define composition and refinement POs. In the following sections, we
introduce the structure of a composed machine, respective POs and prove the
monotonicity property.

4.1 Structure of Composed Machines

A shared event composed machine is expressed as the parallel conjunction of
machines. Machines are composed in parallel including their invariants, variables
and events: CM =̂ M1 ‖ · · · ‖Mm as seen in Fig. 4. Moreover:

– The composed machine variables are all the sub-component variables (v1

from M1, v2 from M2, . . . , vm from Mm) and are state-space disjoint.
– The invariants of the composed machine are defined as Def. 2.
– The composed events are defined according to Def. 1.

COMPOSED MACHINE CM
INCLUDES M1, . . . , Mm

VARIABLES v1, . . . , vm

INVARIANTS ICM (s, c, v1, v2, . . . , vm)
EVENTS

e11 b= M1.e11 ‖ . . . Mm.em1
. . .
e1p b= M1.e1p ‖ . . . Mm.em1 e1p

END

Fig. 4. Composed machine CM composing M1 to Mm and seeing context Ctx

When a composed machine is used as a combination of composition and refine-
ment, it refines an abstract model and just like in an ordinary machine, abstract

8 R. Silva and M. Butler

events must be refined. For instance, a composed machine CM resulting from
the parallel composition of M1 . . . Mm and refining abstract machine M0 can
be expressed as M0 v CM ≡ M0 v M1 ‖ · · · ‖ Mm. Next we present the
required POs to verify composed machines.

4.2 Proof Obligations

POs play an important role in Event-B developments. POs are generated to
verify the properties of a model. For simplicity we define POs in terms of a
composition of two machines M1 and M2 that refine machine M0, but the rules
generalise easily to the composition of n machines. Furthermore context elements
such as sets, constants and axioms (s, c, A(s, c)) that are part of the static side of
a specification, are not considered in the formulas. The POs defined for standard
machines are [5]:

– Consistency: Invariant Preservation (INV) and Feasibility (FIS)
– Refinement: Guard Strengthening (GRD), Simulation/Refinement (SIM)

and Gluing Invariant Preservation (INV)
– Variant: Numeric Variant (NAT), Numeric Variant Decreasing (VAR), Fi-

nite Set Variant (FIN)
– Well-Definedness(WD)

Invariant Preservation and Gluing Invariant Preservation POs differ in that the
first refers to the invariant in the abstract machine while the second refers to
invariant relating abstract and concrete variables in a (concrete) refinement ma-
chine. These POs also are defined for composed machines except the ones related
with variant (no variant for composed machines). We simplify the composed
machines POs by assuming that the POs of the individual machines hold. We
explain and define the additional POs necessary to ensure that the composed
machine satisfies all the standard POs. We consider that the POs of M0, M1

and M2 hold. The respective composition POs are described as follows.

Consistency Consistency POs are required to be always verified. The feasibility
proof obligation for the composed event e1 ‖ e2 is FISe1‖e2.

The Feasibility PO ensures that each non-deterministic action is feasible for
a particular event. The goal is to ensure that values exist for variables v′ such
that the before-after predicate S(p, s, c, v, v′) is feasible.

Theorem 2. The FIS PO of individual events can be reused for proving the
feasibility for each composed event and that is enough to verify this property. The
feasibility PO for the composed event e1 ‖ e2 can be expressed by the feasibility
PO of e1 (FISe1) and e2 (FISe2).

FISe1 : I1(v1) ∧G1(p1, v1) ` ∃v′1 ·(S1(p1, v1, v
′
1)) (2)

FISe2 : I2(v2) ∧G2(p2, v2) ` ∃v′2 ·(S2(p2, v2, v
′
2)) (3)

FISe1‖e2 : ICM (v0, v1, v2) ∧ I1(v1) ∧ I2(v2) ∧G1(p1, v1) ∧G2(p2, v2) (4)

` ∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)).

Shared Event Composition/Decomposition in Event-B 9

Assume: FISe1 and FISe2.
Prove: FISe1‖e2.

Proof. Assume the hypotheses of FISe1‖e2.

ICM (v0, v1, v2)

I1(v1) ∧G1(p1, v1) (5)

I2(v2) ∧G2(p2, v2). (6)

Prove: ∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)). The proof proceeds as follows:

∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2))

≡ ∃v′1 ·(S1(p1, v1, v
′
1)) ∧ ∃v′2 ·(S2(p2, v2, v

′
2)) {disjoint v1 and v2}

⇐ (FISe1 ∧ FISe2). {(2)+(5),(3)+(6)}

Another consistency PO is invariant preservation. In the composed machine,
invariant preservation PO INVCM corresponds to the invariant preservation
in all events from the individual machines that are composed. The invariant
preservation proof obligation for the composed event e1 ‖ e2 is INVe1‖e2.

Theorem 3. This kind of proof obligation ensures that each invariant is pre-
served by each event. The goal is each individual invariant from the set of exist-
ing invariants. For each invariant i from the set of invariants I in a composed
machine, the composition invariant ICM (v0, v1, v2) needs to be verified.

INVe1 : I1(v1) ∧G1(p1, v1) ∧ S1(p1, v1, v
′
1) ` i1(v′1) (7)

INVe2 : I2(v2) ∧G2(p2, v2) ∧ S2(p2, v2, v
′
2) ` i2(v′2) (8)

INVe1‖e2 : ICM (v0, v1, v2) ∧ I1(v1) ∧ I2(v2)

∧G1(p1, v1) ∧G2(p2, v2) ∧ S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)

` i1(v′1) ∧ i2(v′2) ∧ iCM (v0, v
′
1, v

′
2)

Assume: INVe1 and INVe2.
Prove: INVe1‖e2.

Proof. Assume the hypotheses of INVe1‖e2.

ICM (v0, v1, v2)

I1(v1) ∧G1(p1, v1) ∧ S1(p1, v1, v
′
1) (9)

I2(v2) ∧G2(p2, v2) ∧ S2(p2, v2, v
′
2) (10)

Prove: i1(v′1) ∧ i2(v′2) ∧ iCM (v0, v
′
1, v

′
2). The proof proceeds as follows:

i1(v′1) ∧ i2(v′2) ∧ iCM (v0, v
′
1, v

′
2)

⇐ INVe1 ∧ INVe2 ∧ iCM (v0, v
′
1, v

′
2). {(7)+(9),(8)+(10)}

Well-definedness for expressions (guards, actions, invariants, etc) needs to
be verified. These are verified by means of POs in Event-B [18]. For composed
machines, well-definedness POs are only generated for ICM (v0, v1, v2). Other
expressions are verified in the individual machines.

10 R. Silva and M. Butler

Refinement Refinement POs are required when the composed machine refines
an abstract machine. Machine M0 with variables v0, invariant I0(v0) and abstract
event e0 is refined by composed machine CM defined by machines M1 with
variables w1, invariant I1(w1), event e1 and M2 (w2 ; I2(w2); e2) and composition
invariant JCM (v0, w1, w2). The composed event e1 ‖ e2 refines the abstract event
e0. The refinement PO results from the verification of the invariant preservation
JM (v0, wi), the verification of guard strengthening for G0(p0, v0) and simulation
S0(p0, v0, v

′
0) for each concrete event. A general refinement PO (REFei) for a

machine M refining event ei follows from:

REFei b= Ii(vi) ∧ Ji(vi, wi) ∧Hi(qi, wi) ∧ Ti(qi, wi, w
′
i)

` ∃v′i ·Gi(vi) ∧ Si(pi, vi, v
′
i) ∧ Ji(v

′
i, w

′
i) (11)

Theorem 4. For each composed event e1 ‖ e2, refining abstract event e0 through
(gluing) composition invariant in a composed machine, the refinement REF
PO consists in proving the guard strengthening of abstract guards, proving the
simulation of the abstract variables (v′0) and preserving the gluing invariant
(JCM (v′0, w

′
1, w

′
2)). From (11):

INVe1 : I1(w1) ∧H1(q1, w1) ∧ T1(q1, w1, w
′
1) ` i1(w′

1) (12)

INVe2 : I2(w2) ∧H2(q2, w2) ∧ T2(q2, w2, w
′
2) ` i2(w′

2) (13)

REFe0v(e1‖e2) : I0(v0) ∧ I1(w1) ∧ I2(w2) ∧ JCM (v0, w1, w2)

∧H1(q1, w1) ∧H2(q2, w2) ∧ T1(q1, w1, w
′
1) ∧ T2(q2, w2, w

′
2)

` ∃v′0 ·G0(p0, v0) ∧ S0(p0, v0, v
′
0) ∧ I1(w′

1) ∧ I2(w′
2) ∧ JCM (v′0, w

′
1, w

′
2)

Assume: INVe1 (12) and INVe2 (13).
Prove: REFe0v(e1‖e2).

Proof. Assume the hypotheses of REFe0v(e1‖e2). Prove: ∃v′0 ·G0(p0, v0)∧S0(p0, v0, v
′
0)∧

I1(w′
1) ∧ I2(w′

2) ∧ JCM (v′0, w
′
1, w

′
2). The proof proceeds as follows:

∃v′0 ·G0(p0, v0) ∧ S0(p0, v0, v
′
0)

∧ I1(w′
1) ∧ I2(w′

2) ∧ JCM (v′0, w
′
1, w

′
2)

≡ G0(p0, v0) ∧ I1(w′
1) ∧ I2(w′

2)

∧ ∃v′0 ·(S0(p0, v0, v
′
0) ∧ JCM (v′0, w

′
1, w

′
2)) {∧ goal; v0, w

′
1, w

′
2 are free variables}

≡ G0(p0, v0)

∧ ∃v′0 ·(S0(p0, v0, v
′
0) ∧ JCM (v′0, w

′
1, w

′
2)) {from (12) and (13)}

These are the required POs to verify composed machines. Next we show
that composed machines are monotonic which allows to further refine individual
machines preserving composition.

4.3 Monotonicity of Shared Event Composition for Composed
Machines

An important property of the shared event composition in Event-B is monotonic-
ity. We prove it by means of refinement POs confirming that this property holds
as it happens for actions systems and CSP described by Butler [15]. Figure 5

Shared Event Composition/Decomposition in Event-B 11

shows abstract component specification M1 composed with other component
specification N1, creating a composed model M1 ‖ N1. M1 is refined by M2
and N1 by N2 respectively. Once we compose specifications M1 and N1, dis-
charge the required composed POs, M1 and N1 can be refined individually
while the composition properties are preserved without the need to recompose
refinements M2 and N2. We want to formally prove the monotonicity property

Fig. 5. Refinement of composed machine CM1 =̂ M1 ‖ N1 by CM2 =̂ M2 ‖ N2

through refinement POs between composed machines. Therefore if the refine-
ment POs hold between CM1 and CM2 then CM1 v CM2. Events eM1 in
machine M1 and eM2 in machine M2 are represented as:

eM1 b=ANY pM WHERE GM (pM , vM)THEN SM (pM , vM , v′M) END (14)

eM2 b=ANY qM WHERE HM (qM , wM)THEN TM (qM , wM , w′
M) END (15)

The gluing invariant of the refinement between M1 and M2 is expressed as
JM (vM , wM) relating the states of M1 and M2: M1 vJM

M2. We can derive the
refinement PO between M2 and M1 for the concrete event eM2 refining abstract
event eM1.

REFeM1veM2 : IM (vM) ∧ JM (vM , wM) ∧GM (pM , vM) ∧HM (qM , wM)

∧ SM (pM , vM , v′M) ∧ TM (qM , wM , w′
M)

` ∃v′M ·GM (pM , vM) ∧ SM (pM , vM , v′M) ∧ JM (v′M , w′
M). (16)

The refinement PO between N2 and N1 is similar. We refine an abstract event
in CM1 by a concrete one in CM2 and verify that the refinement POs for each
individual machine hold for the composition. Event eM1 from machine M1 and
event eN1 from machine N1 are composed, resulting in the abstract composed
event eM1 ‖ eN1 in CM1 from Fig. 5. The gluing invariant relating the states of
CM1 and CM2 is expressed as the conjunction of the gluing invariants between
(M1 and M2) and (N1 and N2):

JCM (vM , vN , wM , wN) = JM (vM , wM) ∧ JN (vN , wN) (17)

Theorem 5. The refinement POs for composed machines is expressed as the
conjunction of the refinement POs for the individual machines. Therefore the
monotonicity property holds if the refinement POs of individual machines hold.
The refinement PO between concrete composed event eM2 ‖ eN2 and abstract

12 R. Silva and M. Butler

composed event eM1 ‖ eN1 is expressed as:

REF(eM1‖eN1)v(eM2‖eN2) : IM (vM) ∧ IN (vN) ∧ JCM (vM , vN , wM , wN)

∧HM (qM , wM) ∧HN (qN , wN)

∧ TM (qM , wM , w′
M) ∧ TN (qN , wN , w′

N)

` ∃v′M , v′N ·GM (pM , vM) ∧GN (pN , vN)

∧ SM (pM , vM , v′M) ∧ SN (pN , vN , v′N)

∧ JCM (v′M , v′N , w′
M , w′

N). (18)

Assume: REFeM1veM2 and REFeN1veN2 .
Prove: REF(eM1‖eN1)v(eM2‖eN2).

Proof. Assume the hypotheses of REF(eM1‖eN1)v(eM2‖eN2).

JCM (vM , vN , wM , wN) ≡ JM (vM , wM) ∧ JN (vN , wN) {expanding JCM from (17)}
IM (vM) ∧HM (qM , wM) ∧ TM (qM , wM , w′

M) (19)

IN (vN) ∧HN (qN , wN) ∧ TN (qN , wN , w′
N) (20)

Prove: ∃v′M , v′N ·GM (pM , vM) ∧ GN (pN , vN) ∧ SM (pM , vM , v′M) ∧ SN (pN , vN , v′N) ∧
JCM (v′M , v′N , w′

M , w′
N). The proof proceeds as follows:

∃v′M , v′N ·GM (pM , vM) ∧GN (pN , vN)

∧ SM (pM , vM , v′M) ∧ SN (pN , vN , v′N)

∧ JM (v′M , w′
M) ∧ JN (v′N , w′

N) {expanding JCM from (17)}
≡ ∃v′M ·GM (vM) ∧ SM (pM , vM , v′M) ∧ JM (v′M , w′

M)

∧ ∃v′N ·GN (vN) ∧ SN (pN , vN , v′N) ∧ JN (v′N , w′
N) {disjoint v′M ,v′N}

⇐ REFeM1veM2 ∧REFeN1veN2 {(16)+(19),(16)+(20)}

We also need to prove the monotonicity for single (non-composed) events that
appear at both levels of abstraction. We shall prove it using machines M1 and
CM2. In this case, the gluing invariant described in (17) does not use neither
the variables (vN) neither the invariants(IN) neither events (eN1) from N1.
Therefore it can be simplified and rewritten as:

JCM (vM , wM , wN) = JM (vM , wM) ∧ JN (wN) (21)

Deriving from (21), the goal of INVeM2‖eN2 can be expanded to:

jCM (v′M , w′
M , w′

N) ≡ jM (v′M , w′
M) ∧ jN (w′

N) (22)

where jM and jN correspond to each invariant from the set of gluing invariants
JM and JN respectively.

Theorem 6. An individual event eM1 in machine M1 is refined by a composed
event eM2 ‖ eN2 in composed machine CM2. The monotonicity is preserved
if the refinement PO between M1 and M2 hold in conjunction with the gluing
invariant preservation PO for the composed event eM2 ‖ eN2. The refinement

Shared Event Composition/Decomposition in Event-B 13

PO between concrete composed event eM2 ‖ eN2 and abstract non-composed event
eM1:

REFeM1v(eM2‖eN2) : IM (vM) ∧ JCM (vM , wM , wN) ∧HM (qM , wM)

∧HN (qN , wN) ∧ TM (qM , wM , w′
M) ∧ TN (qN , wN , w′

N)

` ∃v′M ·GM (pM , vM) ∧ SM (pM , vM , v′M) ∧ JCM (v′M , w′
M , w′

N)

(23)

Assume: REFeM1veM2 and INVeM2‖eN2 .
Prove: REFeM1v(eM2‖eN2).

Proof. Assume the hypotheses of REFeM1v(eM2‖eN2).

JCM (vM , wM , wN) ≡ JM (vM , wM) ∧ JN (wN) {expanding JCM from (21)}.
IM (vM) ∧HM (qM , wM) ∧ TM (qM , wM , w′

M) (24)

HN (qN , wN) ∧ TN (qN , wN , w′
N)

And the hypotheses of INVeM2‖eN2 :

JCM (vM , wM , wN) ≡ JM (vM , wM) ∧ JN (wN) {expanding JCM from (21)}
IM (vM) ∧HM (qM , wM) ∧ TM (qM , wM , w′

M)

W2(v′M , wM , wN , qM , qN , w′
M , w′

N) (25)

HN (qN , wN) ∧ TN (qN , wN , w′
N) (26)

Prove: ∃v′M ·GM (pM , vM) ∧ SM (pM , vM , v′M) ∧ JCM (v′M , w′
M , w′

N) . The proof pro-
ceeds as follows:

∃v′M ·GM (pM , vM) ∧ SM (pM , vM , v′M)

∧ JCM (v′M , v′N , w′
M , w′

N)

≡ ∃v′M ·GM (pM , vM) ∧ SM (pM , vM , v′M)

∧ JM (v′M , w′
M) ∧ JN (w′

N) {expanding JCM from (21)}
≡ ∃v′M ·GM (pM , vM) ∧ SM (pM , vM , v′M) ∧ JM (v′M , w′

M)

∧ JN (w′
N) {disjoint v′M}

⇐ REFeM1veM2 ∧ JN (w′
N) {(16)+(24)}

⇐ REFeM1veM2 ∧ INVeM2‖eN2 {(22)+(25)+(26)}

New events can be added during refinement. They must respect the refine-
ment POs. The refinement PO proof for new events is similar to the previous
cases but applied to a single event refined by composed event. Due to the lack
of space we do not present it here.

5 Decomposition Guideline

Based on the work developed for composition, its properties and the inverse re-
lation between composition and decomposition, we develop a methodology to
partition models in a shared event style. As described in Sect. 3.2, for a shared

14 R. Silva and M. Butler

event decomposition approach, the variables of a system are separated into dif-
ferent sub-components and consequently the rest of the system is decomposed.
As a restriction of the shared event approach, no variable sharing is allowed. We
present the required steps to process a decomposition, possible problems and
how to tackle them.

Variables: From the modeller’s point of view, the decomposition starts by defin-
ing which sub-components are generated. The following step is to define the
partition of variables over the sub-components. The rest of the model de-
composition (events, parameters, invariants, contexts) is a consequence of
the variable allocation as defined below.

Invariants: The decomposition of the invariants depends on the scope of the
variables. Therefore the minimal set of invariants must include the variable
type definitions. And these are the required invariants for a valid refinement.
Additional ones depend on the user, as they may be useful in later refine-
ments or to help in reusing the sub-components. When an invariant clause is
demanded and uses variables placed outside the scope of a sub-component,
a further refinement of the composed component might be required to make
an explicit separation of the variables.

Events: The partition of the events depends on the partition of the variables.
When the decomposition occurs, parameters are shared between the decom-
posed events. The guard of a decomposed event inherits the guard on the
composed event according to the variable partition. For example, let us con-
sider event e1:

e1 b= WHEN c = TRUE THEN a := b ‖ c := FALSE

where variables a and b are of type DATA and variable c is a Boolean.
This event is enabled when c is TRUE and results in a being assigned the
value of b and this event being disabled by assigning c to FALSE. If this
event is decomposed such that variable a belongs to sub-component M1 and
variables b and c belong to M2, then action a := b needs to be split. This
assignment needs to be rewritten in a way that these variables are not part of
the same expression. A solution is to refine this event in a way that the guards
and actions do not refer to variables allocated to different sub-components.
Before the decomposition, we refine event e1 by adding parameter p:

e1 b= ANY p WHEN c = TRUE ∧ p ∈ DATA ∧ p = b

THEN a := p ‖ c := FALSE

Parameter p receives the value of variable b. Then the value of p is assigned
to variable a. The parameter p is shared between the sub-components and
whereas variable a is within the scope of M1 only containing the guard
p ∈ DATA and the action a := p (e1′), the guard p = b is added to M2
(e1′′):

e1′ b= ANY p WHERE p ∈ DATA THEN a := p

e1′′ b= ANY p WHERE p ∈ DATA ∧ p = b ∧ c = TRUE THEN c := FALSE

Shared Event Composition/Decomposition in Event-B 15

These corresponds to the value passing of parallel events similar to suggested
by Butler [15] for action systems based on CSP: for event e1′′, parameter
p has a output behaviour as it is written by the value of b; in event e1′,
parameter p has an input behaviour as its value is read and assigned to
variable a.

The events in the sub-components resulting from the decomposition maintain
the interface of the original events, preserving the parts corresponding to the
variables that belongs to each sub-component.

6 File Access Management case study

A distributed system is presented where a system is decomposed into two smaller
parts. A specification of a file management system is developed: files containing
DATA can be created, read, overwritten, deleted and sent to other users. Each
file has an owner. The owners are users with clearance level ranging from 1 to
10 where 10 is the highest level. A super user exists with clearance level 10.
Moreover, files have a classification level varying from 1 to 10. Permission is
needed in order to read, modify or delete a file. When the permission is granted,
the requested action can take place.

Machine FileAccessManagement contains variables user, file, fileData (con-
tains the data of each file) and fileStatus (defines the status of a file operation
and can have the states SUCCESS or FAILED). When a file is created or sent,
variable fileStatus is updated accordingly to the result of the operation. The sta-
tus of a file must be reset (in event clearFileStatus) to allow a new operation in
the same file. The access management is defined by variables userClearanceLevel,
permission, fileClassification and fileOwner. A user can change the clearance of
another user as long as the former has a clearance level superior to the latter
as described in event modifyUser (guard grd3 in Fig. 6). For all the other oper-
ations, permission is required and it is granted by the non-deterministic action
in event requestPermission. When a permission is granted, a file can be read,
modified, deleted or sent to another user. A file can only be modified by users
with a clearance level superior to the file classification (guard grd8 in event over-
writeFile). To delete a file, described in event deleteFile, the user must be the
owner of the file or be the super user as described by guard grd5.

Our intention is to separate the management of permissions (administrative
task) from the modification of the files in the disk (writing, reading tasks). The
result are two sub-components, AccessMng and FileMng that deal with different
aspects of the system. An advantage of this separation is to more easily define
specific properties to each part without additional constraints of the other part.
For instance, an administrative task of AccessManagement is to have a quota
of disk per user which is irrelevant to FileMng. Overwriting a file in the disk is
relevant to FileMng but not to AccessMng that deals with the users that are
allowed to execute this action. Therefore we decompose FileAccessManagement
into two sub-components as described in the next section.

16 R. Silva and M. Butler
machine FileAccessManagement

sees User_C0 AccessManagement_C0 FileManagement_C0

variables userClearanceLevel permission

 fileClassification fileOwner user file

 fileData fileStatus

invariants

 @inv1 file ! FILE

 @inv2 user ! USER

 @inv3 userClearanceLevel " user # ClearanceLevel

 @inv4 permission " PERMISSION

 @inv5 fileClassification " file # Classification

 @inv6 fileOwner " file # user

 @inv7 fileData " file # DATA

 @inv8 fileStatus " file $ STATUS

 @inv9 ran(fileStatus) ! {SUCCESS, FAILED}

 @inv10 fileOwner " file # user

 @inv11 %f·f " file &

 userClearanceLevel(fileOwner(f)) > fileClassification(f)

events

 event INITIALISATION

 then

 @act1 userClearanceLevel ' {super(10}

 @act2 permission ' OFF

 @act3 fileClassification ')

 @act4 fileOwner ')

 @act5 user ' {super}

 @act6 file ')

 @act7 fileData ')

 @act8 fileStatus ')

 end

 event addUser

 any uu // changed user

 masterUser // user who will make the change to uu

 newUserClearanceLevel // new user ClearanceLevel

 where

 @grd1 uu " dom(userClearanceLevel)

 @grd2 newUserClearanceLevel " ClearanceLevel

 @grd3 newUserClearanceLevel < userClearanceLevel(uu)

 @grd4 masterUser * uu // the changed user must not be user who makes the change

 @grd5 uu * super

 @grd6 %f·f " dom(fileClassification) + fileOwner(f)=uu &

newUserClearanceLevel>fileClassification(f)

 @grd7 uu , user

 @grd8 masterUser " user

 then

 @act1 userClearanceLevel(uu)' newUserClearanceLevel

 @act2 user ' user - {uu}

 end

 event modifyUser

 any uu // changed user

 masterUser // user who will make the change to uu

 newUserClearanceLevel // new user ClearanceLevel

 event deleteFile

 any ff //file to be deleted

 u //user executes action
 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 permission = ALLOWED

 @grd4 ff ! dom(fileOwner)

 @grd5 u ! {super,fileOwner(ff)}

 then

 @act1 file"file#{ff}

 @act2 fileData"{ff}$fileData

 @act3 fileStatus"{ff}$fileStatus

 @act4 fileClassification"

 {ff}$fileClassification

 @act5 permission " OFF

 @act6 fileOwner"{ff}$fileOwner

 end

 event sendFile

 any ff recipient u fs cl

 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 recipient ! user

 @grd4 ff % dom(fileStatus)

 @grd5 fs ! {SUCCESS,FAILED}

 @grd6 u & recipient

 @grd7 u!dom(userClearanceLevel)

 @grd8 cl ! Classification

 @grd9 permission = ALLOWED

 @grd10 ff ! dom(fileClassification)

 'cl = fileClassification(ff)

 @grd11 userClearanceLevel(u)>cl

 then

 @act1 fileStatus(ff) " fs

 @act2 fileClassification(ff)" cl

 @act3 permission " OFF

 @act4 fileOwner(ff)" u

 end

 event requestPermission

 where

 @grd1 permission & ALLOWED

 then

 @act1 permission:! PERMISSION#{OFF}

 end

 event clearFileStatus

 any ff

 where

 @grd1 ff ! dom(fileStatus)

 @grd2 fileStatus(ff)

 !{SUCCESS,FAILED}

 then

 @act1 fileStatus " {ff}$fileStatus

 end

end !

 event deleteFile

 any ff //file to be deleted

 u //user executes action
 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 permission = ALLOWED

 @grd4 ff ! dom(fileOwner)

 @grd5 u ! {super,fileOwner(ff)}

 then

 @act1 file"file#{ff}

 @act2 fileData"{ff}$fileData

 @act3 fileStatus"{ff}$fileStatus

 @act4 fileClassification"

 {ff}$fileClassification

 @act5 permission " OFF

 @act6 fileOwner"{ff}$fileOwner

 end

 event sendFile

 any ff recipient u fs cl

 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 recipient ! user

 @grd4 ff % dom(fileStatus)

 @grd5 fs ! {SUCCESS,FAILED}

 @grd6 u & recipient

 @grd7 u!dom(userClearanceLevel)

 @grd8 cl ! Classification

 @grd9 permission = ALLOWED

 @grd10 ff ! dom(fileClassification)

 'cl = fileClassification(ff)

 @grd11 userClearanceLevel(u)>cl

 then

 @act1 fileStatus(ff) " fs

 @act2 fileClassification(ff)" cl

 @act3 permission " OFF

 @act4 fileOwner(ff)" u

 end

 event requestPermission

 where

 @grd1 permission & ALLOWED

 then

 @act1 permission:! PERMISSION#{OFF}

 end

 event clearFileStatus

 any ff

 where

 @grd1 ff ! dom(fileStatus)

 @grd2 fileStatus(ff)

 !{SUCCESS,FAILED}

 then

 @act1 fileStatus " {ff}$fileStatus

 end

end !
 event addUser

 any uu //changed user

 masterUser //user ordering the change

 newUserClearanceLevel //new ClearanceLevel
 where

 @grd1 uu ! dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ! ClearanceLevel

 @grd3 newUserClearanceLevel

 < userClearanceLevel(uu)

 @grd4 masterUser " uu

 @grd5 uu " super

 @grd6 #f·f ! dom(fileClassification)

 $ fileOwner(f)=uu %

 newUserClearanceLevel>fileClassification(f)

 @grd7 uu & user

 @grd8 masterUser ! user

 then

 @act1 userClearanceLevel(uu)'

 newUserClearanceLevel

 @act2 user ' user ({uu}

 end

 event modifyUser

 any uu // changed user

 masterUser // user ordering the change

 newUserClearanceLevel //new ClearanceLevel
 where

 @grd1 uu ! dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ! ClearanceLevel

 @grd3 newUserClearanceLevel

 < userClearanceLevel(uu)

 @grd4 masterUser " uu

 @grd5 uu " super

 @grd6 #f·f ! dom(fileClassification)

 $ fileOwner(f)=uu %

 newUserClearanceLevel>fileClassification(f)

 then

 @act1 userClearanceLevel(uu)'

 newUserClearanceLevel

 end

 event overwriteFile

 any ff dd cl u

 where

 @grd1 ff ! file

 @grd2 dd ! DATA

 @grd3 dd " fileData(ff)

 @grd4 u!dom(userClearanceLevel)

 @grd5 cl ! Classification

 @grd6 permission = ALLOWED

 @grd7 ff ! dom(fileClassification)

 % cl = fileClassification(ff)

 @grd8 userClearanceLevel(u)>cl

 then

 @act1 fileData(ff)'dd

 @act2 fileClassification(ff)' cl

 @act3 permission ' OFF

 @act4 fileOwner(ff)' u

 event addUser

 any uu //changed user

 masterUser //user ordering the change

 newUserClearanceLevel //new ClearanceLevel
 where

 @grd1 uu ! dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ! ClearanceLevel

 @grd3 newUserClearanceLevel

 < userClearanceLevel(uu)

 @grd4 masterUser " uu

 @grd5 uu " super

 @grd6 #f·f ! dom(fileClassification)

 $ fileOwner(f)=uu %

 newUserClearanceLevel>fileClassification(f)

 @grd7 uu & user

 @grd8 masterUser ! user

 then

 @act1 userClearanceLevel(uu)'

 newUserClearanceLevel

 @act2 user ' user ({uu}

 end

 event modifyUser

 any uu // changed user

 masterUser // user ordering the change

 newUserClearanceLevel //new ClearanceLevel
 where

 @grd1 uu ! dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ! ClearanceLevel

 @grd3 newUserClearanceLevel

 < userClearanceLevel(uu)

 @grd4 masterUser " uu

 @grd5 uu " super

 @grd6 #f·f ! dom(fileClassification)

 $ fileOwner(f)=uu %

 newUserClearanceLevel>fileClassification(f)

 then

 @act1 userClearanceLevel(uu)'

 newUserClearanceLevel

 end

 event overwriteFile

 any ff dd cl u

 where

 @grd1 ff ! file

 @grd2 dd ! DATA

 @grd3 dd " fileData(ff)

 @grd4 u!dom(userClearanceLevel)

 @grd5 cl ! Classification

 @grd6 permission = ALLOWED

 @grd7 ff ! dom(fileClassification)

 % cl = fileClassification(ff)

 @grd8 userClearanceLevel(u)>cl

 then

 @act1 fileData(ff)'dd

 @act2 fileClassification(ff)' cl

 @act3 permission ' OFF

 @act4 fileOwner(ff)' u

 event deleteFile

 any ff //file to be deleted

 u //user executes action
 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 permission = ALLOWED

 @grd4 ff ! dom(fileOwner)

 @grd5 u ! {super,fileOwner(ff)}

 then

 @act1 file"file#{ff}

 @act2 fileData"{ff}$fileData

 @act3 fileStatus"{ff}$fileStatus

 @act4 fileClassification"

 {ff}$fileClassification

 @act5 permission " OFF

 @act6 fileOwner"{ff}$fileOwner

 end

 event sendFile

 any ff recipient u fs cl

 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 recipient ! user

 @grd4 ff % dom(fileStatus)

 @grd5 fs ! {SUCCESS,FAILED}

 @grd6 u & recipient

 @grd7 u!dom(userClearanceLevel)

 @grd8 cl ! Classification

 @grd9 permission = ALLOWED

 @grd10 ff ! dom(fileClassification)

 'cl = fileClassification(ff)

 @grd11 userClearanceLevel(u)>cl

 then

 @act1 fileStatus(ff) " fs

 @act2 fileClassification(ff)" cl

 @act3 permission " OFF

 @act4 fileOwner(ff)" u

 end

 event requestPermission

 where

 @grd1 permission & ALLOWED

 then

 @act1 permission:! PERMISSION#{OFF}

 end

 event clearFileStatus

 any ff

 where

 @grd1 ff ! dom(fileStatus)

 @grd2 fileStatus(ff)

 !{SUCCESS,FAILED}

 then

 @act1 fileStatus " {ff}$fileStatus

 end

end !

 event deleteFile

 any ff //file to be deleted

 u //user executes action
 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 permission = ALLOWED

 @grd4 ff ! dom(fileOwner)

 @grd5 u ! {super,fileOwner(ff)}

 then

 @act1 file"file#{ff}

 @act2 fileData"{ff}$fileData

 @act3 fileStatus"{ff}$fileStatus

 @act4 fileClassification"

 {ff}$fileClassification

 @act5 permission " OFF

 @act6 fileOwner"{ff}$fileOwner

 end

 event sendFile

 any ff recipient u fs cl

 where

 @grd1 ff ! file

 @grd2 u ! user

 @grd3 recipient ! user

 @grd4 ff % dom(fileStatus)

 @grd5 fs ! {SUCCESS,FAILED}

 @grd6 u & recipient

 @grd7 u!dom(userClearanceLevel)

 @grd8 cl ! Classification

 @grd9 permission = ALLOWED

 @grd10 ff ! dom(fileClassification)

 'cl = fileClassification(ff)

 @grd11 userClearanceLevel(u)>cl

 then

 @act1 fileStatus(ff) " fs

 @act2 fileClassification(ff)" cl

 @act3 permission " OFF

 @act4 fileOwner(ff)" u

 end

 event requestPermission

 where

 @grd1 permission & ALLOWED

 then

 @act1 permission:! PERMISSION#{OFF}

 end

 event clearFileStatus

 any ff

 where

 @grd1 ff ! dom(fileStatus)

 @grd2 fileStatus(ff)

 !{SUCCESS,FAILED}

 then

 @act1 fileStatus " {ff}$fileStatus

 end

end !

 event addUser

 any uu //changed user

 masterUser //user making the change to uu

 newUserClearanceLevel //new user ClearanceLevel
 where

 @grd1 uu ! dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ! ClearanceLevel

 @grd3 newUserClearanceLevel < userClearanceLevel(uu)

 @grd4 masterUser " uu

 @grd5 uu " super

 @grd6 #f·f ! dom(fileClassification) $ fileOwner(f)=uu

 % newUserClearanceLevel>fileClassification(f)

 @grd7 uu & user

 @grd8 masterUser ! user

 then

 @act1 userClearanceLevel(uu)' newUserClearanceLevel

 @act2 user ' user ({uu}

 end

 event modifyUser

 any uu // changed user

 masterUser // user making the change to uu

 newUserClearanceLevel // new user ClearanceLevel
 where

 @grd1 uu ! dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ! ClearanceLevel

 @grd3 newUserClearanceLevel < userClearanceLevel(uu)

 @grd4 masterUser " uu

 @grd5 uu " super

 @grd6 #f·f ! dom(fileClassification)

 $ fileOwner(f)=uu

 % newUserClearanceLevel>fileClassification(f)

 then

 @act1 userClearanceLevel(uu)' newUserClearanceLevel

 end

 event overwriteFile

 any ff dd cl u

 where

 @grd1 ff ! file

 @grd2 dd ! DATA

 @grd3 dd " fileData(ff)

 @grd4 u!dom(userClearanceLevel)

 @grd5 cl ! Classification

 @grd6 permission = ALLOWED

 @grd7 ff ! dom(fileClassification)

 % cl = fileClassification(ff)

 @grd8 userClearanceLevel(u)>cl

 then

 @act1 fileData(ff)'dd

 @act2 fileClassification(ff)' cl

 @act3 permission ' OFF

 @act4 fileOwner(ff)' u

 end

Fig. 6. FileAccessManagement : variables, invariants and some events

6.1 Decomposition: AccessMng and FileMng

Following the steps suggested in Sect. 5, the variables of FileAccessManagement
are allocated to AccessMng and FileMng as described in the following table:

FileMng AccessMng

Variables file,user, userClearanceLevel,permission,
fileData,fileStatus fileOwner,fileClassification

The distribution of events can be seen on the composed machine described in
Fig. 7. Some events are specific to a sub-component: events modifyUser and
requestPermission belong to AccessMng while clearFileStatus belongs to FileMng ;
the other events are shared. In Fig. 8, the invariants include theorems defining the

Shared Event Composition/Decomposition in Event-B 17

COMPOSED MACHINE FileAccessManagement
INCLUDES

AccessMng, FileMng
EVENTS

addUser b= AccessMng.addUser ‖ FileMng.addUser
modifyUser b= AccessMng.modifyUser
createFileb= AccessMng.createFile ‖ FileMng.createFile
readFile b= AccessMng.readFile ‖ FileMng.readFile
overwriteFile b= AccessMng.overwriteFile ‖ FileMng.overwriteFile
deleteFile b= AccessMng.deleteFile ‖ FileMng.deleteFile
sendFile b= AccessMng.sendFile ‖ FileMng.sendFile
requestPermission b= AccessMng.requestPermission
clearFileStatus b= FileMng.clearFileStatus

Fig. 7. Composed machine FileAccessManagement

variable types as suggested in Sect. 5. Moreover for Fig. 8(b), invariants relating
variables for the same sub-component are automatically included. Figure 9 shows
the decomposed events overwriteFile where parameters ff, dd and cl are shared
(value passing from AccessMng to FileMng). Also the actions are split according
to the user’s variable selecting (cf. Table above): fileOwner, fileClassification
and permission belong to AccessMng while fileData belongs to FileMng.

machine AccessMng sees

User_C0 AccessManagement_C0 FileManagement_C0

variables userClearanceLevel permission

 fileClassification fileOwner

invariants

 theorem @typing_userClearanceLevel

 userClearanceLevel ! "(USER # $)

 theorem @typing_fileOwner

 fileOwner ! "(FILE # USER)

 theorem @typing_permission

 permission ! PERMISSION

 theorem @typing_fileClassification

 fileClassification ! "(FILE # $)

events

 event INITIALISATION

 then

 @act1 userClearanceLevel % {super&10}

 @act2 permission % OFF

 @act3 fileClassification % '

 @act4 fileOwner % '

 end

 event modifyUser

 any uu masterUser newUserClearanceLevel

 where

 @typing_uu uu ! USER

 @typing_masterUser masterUser ! USER

 @typing_newUserClearanceLevel newUserClearanceLevel ! $

 @grd1 uu ! dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ! ClearanceLevel

 @grd3 newUserClearanceLevel < userClearanceLevel(uu)

 @grd4 masterUser (uu

 @grd5 uu (super

 @grd6)f·f ! dom(fileClassification) * fileOwner(f)=uu +

newUserClearanceLevel>fileClassification(f)

 then

 @act1 userClearanceLevel(uu)% newUserClearanceLevel

 end

 event createFile

 any ff dd fStatus u cl

 where

 @typing_u u ! USER

 @typing_fStatus fStatus ! STATUS

 @typing_ff ff ! FILE

 @typing_cl cl ! $

 @grd2 dd ! DATA

 @grd3 fStatus ! {SUCCESS}

 @grd5 u!dom(userClearanceLevel)

 @grd6 cl ! Classification

 @grd7 permission = ALLOWED

 @grd8 ff ! dom(fileClassification) + cl = fileClassification(ff)

 @grd9 userClearanceLevel(u)>cl

 then

 @act4 fileClassification(ff)% cl

 @act5 permission % OFF

machine FileMng sees

User_C0 AccessManagement_C0 FileManagement_C0

variables file user fileData fileStatus

invariants

 theorem @typing_fileStatus fileStatus!"(FILE#STATUS)

 theorem @typing_file file ! "(FILE)

 theorem @typing_user user ! "(USER)

 theorem @typing_fileData fileData ! "(FILE # DATA)

 @FileAccessMng_inv1 file $ FILE

 @FileAccessMng_inv2 user $ USER

 @FileAccessMng_inv7 fileData ! file % DATA

 @FileAccessMng_inv8 fileStatus ! file & STATUS

 @FileAccessMng_inv9 ran(fileStatus) $ {SUCCESS, FAILED}

events

 event INITIALISATION

 then

 @act5 user ' {super}

 @act6 file ' (

 @act7 fileData ' (

 @act8 fileStatus ' (

 end

 event createFile

 any ff dd fStatus u cl

 where

 @typing_u u ! USER

 @typing_fStatus fStatus ! STATUS

 @typing_ff ff ! FILE

 @typing_cl cl !)

 @grd1 ff ! FILE*file

 @grd2 dd ! DATA

 @grd3 fStatus ! {SUCCESS}

 @grd4 u ! user

 @grd6 cl ! Classification

 then

 @act1 file'file + {ff}

 @act2 fileData(ff)'dd

 @act3 fileStatus(ff) ' fStatus

 end

 event readFile

 any ff dd u

 where

 @typing_dd dd ! DATA

 @typing_u u ! USER

 @typing_ff ff ! FILE

 @grd1 ff ! file

 @grd2 dd = fileData(ff)

 @grd3 u ! user

 end

(a) (b)

Fig. 8. AccessMng (a) and FileMng (b): variables and invariants

Composition and decomposition are combined: the decomposition partitions
the model in sub-components based on the variables and the composition ex-
presses the events’ interaction. The extensibility of Rodin, allows new function-
alities to be added to the Event-B language. Silva et al [19] developed a semi-
automatic decomposition tool for shared event or shared variable. A composition
tool [20] is also available in the Rodin platform. We use both tools: FileAccess-
Management is decomposed using the decomposition tool and the composition
tool shows the event splitting. In a shared event decomposition, the user does
not control the event splitting since they are a consequence of the variable allo-
cation (selected by the user). Therefore the composition view gives an additional
insight of the entire process, complementing the decomposition view.

18 R. Silva and M. Butler

 @act6 fileOwner(ff)! u

 end

 event readFile

 any ff u

 where

 @typing_u u " USER

 @typing_ff ff " FILE

 @grd4 permission = ALLOWED

 @grd5 u"dom(userClearanceLevel)

 @grd6 ff"dom(fileClassification)

 @grd7 userClearanceLevel(u)#fileClassification(ff)

 then

 @act1 permission ! OFF

 end

event addUser

 any uu masterUser newUserClearanceLevel

 where

 @typing_uu uu " USER

 @typing_masterUser masterUser " USER

 @typing_newUserClearanceLevel newUserClearanceLevel " $

 @grd1 uu " dom(userClearanceLevel)

 @grd2 newUserClearanceLevel " ClearanceLevel

 @grd3 newUserClearanceLevel < userClearanceLevel(uu)

 @grd4 masterUser % uu

 @grd5 uu % super

 @grd6 &f·f " dom(fileClassification) ' fileOwner(f)=uu

 (newUserClearanceLevel>fileClassification(f)

 then

 @act1 userClearanceLevel(uu)! newUserClearanceLevel

 end

 event overwriteFile

 any ff dd cl u

 where

 @grd2 dd " DATA

 @grd4 u"dom(userClearanceLevel)

 @grd5 cl " Classification

 @grd6 permission = ALLOWED

 @grd7 ff " dom(fileClassification) (cl = fileClassification(ff)

 @grd8 userClearanceLevel(u)>cl

 then

 @act2 fileClassification(ff)! cl

 @act3 permission ! OFF

 @act4 fileOwner(ff)! u

 end

 event deleteFile

 any ff u

 where

 @typing_u u " USER

 @typing_ff ff " FILE

 @grd3 permission = ALLOWED

 @grd4 ff " dom(fileOwner)

 @grd5 u " {super,fileOwner(ff)}

 then

 @act4 fileClassification!{ff})fileClassification

 event addUser

 any uu masterUser newUserClearanceLevel

 where

 @typing_uu uu ! USER

 @typing_masterUser masterUser ! USER

 @typing_newUserClearanceLevel

 newUserClearanceLevel ! "

 @grd2 newUserClearanceLevel

 ! ClearanceLevel

 @grd4 masterUser # uu

 @grd5 uu # super

 @grd7 uu $ user

 @grd8 masterUser ! user

 then

 @act2 user % user & {uu}

 end

 event overwriteFile

 any ff dd cl

 where

 @typing_ff ff ! FILE

 @typing_cl cl ! "

 @grd1 ff ! file

 @grd2 dd ! DATA

 @grd3 dd # fileData(ff)

 @grd5 cl ! Classification

 then

 @act1 fileData(ff)%dd

 end

 event deleteFile

 any ff u

 where

 @typing_u u ! USER

 @typing_ff ff ! FILE

 @grd1 ff ! file

 @grd2 u ! user

 then

 @act1 file%file'{ff}

 @act2 fileData%{ff}(fileData

 @act3 fileStatus%{ff}(fileStatus

 end

 event sendFile

 any ff recipient u fs cl

 where

 @typing_u u ! USER

 @typing_ff ff ! FILE

 @typing_cl cl ! "

 @typing_fs fs ! STATUS

 @typing_recipient recipient ! USER

 @grd1 ff ! file

 @grd2 u ! user

(a) (b)

Fig. 9. Decomposed events overwriteFile for AccessMng (a) and FileMng (b)

As we proved in Sect. 4.3, shared event composition is monotonic and con-
sequently sub-components can be further refined independently preserving the
verified properties while composed. For instance, AccessMng can be refined by
defining a more deterministic event requestPermission based on the kind of op-
eration and user. For FileMng, event sendFile can be further refined by introduc-
ing a processing queue where events can be stored. The advance of independent
refinement of sub-components is a separation of behaviours and properties veri-
fiable without the interference of other sub-components.

7 Related Work

Composition allows the interaction of sub-components. Back [21], Abadi and
Lamport[22] studied the interaction of components through shared variable com-
position. Jones [23] also proposes a shared variable composition for VDM by
restricting the behaviour of the environment and the operation itself in order to
consider the composition valid using rely-guarantee conditions. In Z, composi-
tion can be achieved by combining schemas [14] where variables within the same
scope cannot have identical names or by views [1] allowing the development of
partial specifications that can interact through invariants that relate their state
or by operations’ synchronisation. Although systems are developed in single ma-
chines in classical B, Bellegarde et at [24] suggest a composition by rearranging
separated machines and synchronising their operations under feasibility condi-
tions. The behaviour of a component composition is seen as a labelled transition
system using weakest preconditions, where a set of authorised transitions are
defined. The objective is to verify the refinement of synchronised parallel com-
position between components but it is limited to finite state transitions and a
finite number of components. This work differs from ours as it uses a labelled
transition system including a notion of refinement and variable sharing while we
use synchronisation and communication in the CSP style. Butler and Walden [25]
discuss a combination of action systems and classical B by composing machines
using parallel systems in an action system style and preserving the invariants of
the individual machines. This approach allows the classical B to derive parallel

Shared Event Composition/Decomposition in Event-B 19

and distributed systems and since the parallel composition of action system is
monotonic, the sub-systems in a parallel composition may be refined indepen-
dently. This work is closely related to our work with similar underlying semantics
and notion of refinement based on CSP. Abrial et al [6] propose a state-based
decomposition for Event-B introducing the notion of shared variables and exter-
nal events. Although it allows variable sharing, this approach is also monotonic
but its respective nature is more suitable for parallel programs [26].

8 Conclusions

Our Event-B composition and decomposition is based on the close relation be-
tween action systems and Event-B plus the correspondence between action sys-
tems and CSP as described in Sect. 3.1. Composition POs are defined to ensure
valid composed machines and refinements. These can be simplified when machine
POs are reused. We prove that shared event composition is monotonic by means
of POs and “top-down” refinement is allowed. Sub-components interact through
event parameters by value-passing. Event-B is extended to support shared event
composition, allowing combination and reuse of existing sub-components through
the introduction of composed machines. We do not address the step correspond-
ing to the translation of the composition to an implementation. This study needs
to be carried out in the future. Using a case study, composition, decomposi-
tion and refinement are combined, suggesting a methodology for modelling dis-
tributed systems and verifying properties through the generation of POs. A file
access management system is decomposed into two independent parts with a sep-
aration of their logics: file and access management and possible refinements are
suggested. Other case studies have been applying (de)composition with success
such as the decomposition of a safety metro system 2.

References

1. Jackson, D.: Structuring Z specifications with views. ACM Trans. Softw. Eng.
Methodol. 4(4) (1995) 365–389

2. Zave, P., Jackson, M.: Conjunction as Composition. ACM Trans. Softw. Eng.
Methodol. 2(4) (1993) 379–411

3. Jones, C.B.: Wanted: a compositional approach to concurrency. In: Programming
methodology. Springer-Verlag New York, Inc., New York, NY, USA (2003) 5–15

4. Poppleton, M.: The Composition of Event-B Models. In: ABZ2008: Int. Conference
on ASM, B and Z. Volume 5238., Springer LNCS (September 2008) 209–222

5. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

6. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of
Discrete Models: Application to Event-B. Fundam. Inf. 77(1-2) (2007) 1–28

7. Butler, M.: An Approach to the Design of Distributed Systems with B AMN. In:
Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM),
LNCS 1212. (1997) 221–241

2 This case study is available online at http://eprints.ecs.soton.ac.uk/22195/

http://eprints.ecs.soton.ac.uk/22195/

20 R. Silva and M. Butler

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science (1985)

9. Morgan, C.: Of wp and CSP. In: Beauty is our business: a birthday salute to
Edsger W. Dijkstra. Springer-Verlag New York, Inc., New York, NY, USA (1990)
319–326

10. Ralph-Johan R. Back, Kurki-Suonio, R.: Decentralization of Process Nets with
Centralized Control. In: PODC ’83: Proceedings of the second annual ACM sym-
posium on Principles of distributed computing, New York, NY, USA, ACM (1983)
131–142

11. Abrial, J.R.: The B-Book: Assigning programs to meanings. Cambridge University
Press (1996)

12. Rodin: RODIN project Homepage. http://rodin.cs.ncl.ac.uk (September
2008) Online; accessed 27-July-2010.

13. Abrial, J.R., Butler, M.J., Hallerstede, S., Voisin, L.: An Open Extensible Tool
Environment for Event-B. In: ICFEM. (2006) 588–605

14. Spivey, J.M.: The Z Notation: a Reference Manual. Prentice-Hall, Inc. (1989)
15. Butler, M.J.: A CSP Approach to Action Systems. PhD thesis, Oxford University

(1992)
16. Butler, M.: Stepwise Refinement of Communicating Systems. Science of Computer

Programming 27(2) (September 1996) 139–173
17. Butler, M.: Synchronisation-Based Decomposition for Event-B. In: RODIN Deliv-

erable D19 Intermediate report on methodology. (2006) 47–57
18. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

An Open Toolset for Modelling and Reasoning in Event-B. International Journal
on Software Tools for Technology Transfer (STTT) (April 2010)

19. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition Tool for Event-B.
Software: Practice and Experience 41(2) (February 2011) 199–208

20. Silva, R., Butler, M.: Parallel Composition Using Event-B. http://wiki.event-b.
org/index.php/Parallel_Composition_using_Event-B (July 2009) Online; ac-
cessed 27-July-2010.

21. Ralph-Johan R. Back: Refinement Calculus, part II: Parallel and Reactive Pro-
grams. In: REX workshop: Proceedings on Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness, New York, NY, USA, Springer-Verlag
New York, Inc. (1990) 67–93

22. Abadi, M., Lamport, L.: Composing Specifications. In de Bakker, J.W., de Roever,
W.P., Rozenberg, G., eds.: Stepwise Refinement of Distributed Systems - Models,
Formalisms, Correctness. Volume 430., Berlin, Germany, Springer-Verlag (1989)
1–41

23. Woodcock, J., Dickinson, B.: Using VDM with Rely and Guarantee-Conditions.
In: Proceedings of the 2nd VDM-Europe Symposium on VDM—The Way Ahead,
New York, NY, USA, Springer-Verlag New York, Inc. (1988) 434–458

24. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized Parallel Composition
of Event Systems in B. In: ZB ’02: Proceedings of the 2nd International Conference
of B and Z Users on Formal Specification and Development in Z and B, London,
UK, Springer-Verlag (2002) 436–457

25. Butler, M., Waldén, M.: Distributed System Development in B. Technical Report
TUCS-TR-53, Turku Centre for Computer Science (14, 1996)

26. Hoang, T., Abrial, J.R.: Event-B Decomposition for Parallel Programs. Abstract
State Machines, Alloy, B and Z (2010) 319–333

http://rodin.cs.ncl.ac.uk
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

	Renato Silva and Michael Butler

