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Abstract

A growing number of studies clearly demonstrate a substantial link between metabolic dysfunction 

and the risk of Alzheimer’s disease (AD), especially glucose related dysfunction; one hypothesis 

for this comorbidity is the presence of a common genetic etiology. We conducted a large-scale 

cross-trait GWAS to investigate the genetic overlap between AD and 10 metabolic traits. Among 

all the metabolic traits, fasting glucose, fasting insulin and HDL were found to be genetically 

associated with AD. Local genetic covariance analysis found 19q13 region had strong local 

genetic correlation between AD and T2D (P=6.78×10−22), LDL (P=1.74×10−253) and HDL 

(P=7.94×10−18). Cross-trait meta-analysis identified 4 loci that were associated with AD and 

fasting glucose, 3 loci that were associated with AD and fasting insulin, and 20 loci that were 

associated with AD and HDL (Pmeta<1.6×10−8, single trait P < 0.05). Functional analysis revealed 

that the shared genes are enriched in amyloid metabolic process, lipoprotein remodeling and other 

related pathways; pancreas, liver, blood and other tissues. Our work identifies common genetic 
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architectures shared between AD and fasting glucose, fasting insulin and HDL, and sheds light on 

molecular mechanisms underlying the association between metabolic dysregulation and AD.

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and devastating neurodegenerative disorder 

characterized by impairments of memory, cognitive function, language and behavior (Craft 

2009; Vemuri et al. 2017). In 2016, over 44 million people worldwide were estimated to be 

affected,(Alzheimers.net 2016) and by 2050, the prevalence will nearly triple. (Brookmeyer 

et al. 2007) While aging is the major risk factor for the vast majority of cases, susceptibility 

is also influenced by genetics. During the last decade, 19 loci have been identified for AD, a 

number of which are related to metabolism. The link between metabolic dysregulation and 

impaired cognition has recently become clearer, leading some to consider late-onset AD a 

“metabolic” disease (Craft 2009; Demetrius and Driver 2013; Fabbri et al. 2015; Leoni et al. 

2010). Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), increases the risk of AD four-

fold. The metabolic syndrome, a clinical entity including abdominal obesity, hypertension, 

low HDL, hyperglycemia and hypertriglyceridemia (Milionis et al. 2008; Pasinetti and 

Eberstein 2008) is associated with cognitive decline and structural brain changes such as 

cortical thinning(Schwarz et al. 2018).

One hypothesis to account for the link between metabolism and AD is a common genetic 

etiology. Metabolic traits and AD may have similar clinical or epidemiological risk factors, 

and these risk factors can be originated from the same genetic variants. Specifically, our 

initial hypothesis was that AD is associated with glucose-related traits, represented by T2D, 

fasting glucose and fasting insulin. The sharing of multiple risk factors for two complex 

diseases could be due to an overlap in causal genes and pathways. Thus, grouping the 

genetic variants common to multiple diseases or traits could provide insight into specific 

biological processes underlying their comorbidity; in addition, except for population 

stratification bias which were usually accounted for using principal components of genome-

wide association studies (GWAS) data, these shared genetic variants are not likely affected 

by confounding factors at the phenotypic level, such as diet and other environmental factors. 

For example, we recently identified 38 loci that shared by asthma and allergic diseases and 

these loci were found to be enriched in epithelium and immune related biological process 

(Zhu et al. 2018b); and we also found 11 loci shared by AD and 5 common cancers (Feng et 

al. 2017). Genetic factors play a significant role in AD, as evidenced by twin data indicating 

heritability varying between 58% and 79%, even after accounting for shared environmental 

influences(Gatz et al. 2006; Pedersen 2010). The co-occurrence of metabolic disorders and 

AD in the same individual suggests the potential of pleiotropic effects, which may have a 

substantial genetic contribution. A recent study assessed the genetic causality between AD 

and metabolic traits (Østergaard et al. 2015). However, no genome-wide study has been 

conducted to identify the shared genetic loci between AD and metabolic traits and provide 

biological interpretation of the shared loci. We therefore conducted a large-scale cross-trait 

GWAS analysis to investigate the shared heritability between AD and 10 metabolic traits, at 

both globally whole-genome level and individual variant level.
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METHODS

Study design, data summary and quality control (QC)

The overall study design is shown in Supplementary Figure 1. We retrieved summary 

statistics from publically available GWAS studies, including AD from the International 

Genomics of Alzheimer’s Project (IGAP) consortium (N = 54,162), body mass index (BMI) 

(Locke et al. 2015) (N= 236,231 ) and waist-to-hip ratio (WHR) (Shungin et al. 2015) (N= 

142,762 ) from the GIANT Consortium, T2D from the DIAGRAM Consortium (Scott et al. 

2017) (N= 159,208 ), fasting glucose (N= 58,047) and fasting insulin (N=51750 ) from the 

MAGIC Consortium (Dupuis et al. 2010), and blood lipids (HDL-C [N= 60,812], LDL-C 

[N= 58,381], TC [N= 60,027], and TG [N= 62,166]) from ENGAGE Consortium (Surakka 

et al. 2015). Details of each of the datasets can be found in supplementary table 1.

We applied standardization of GWAS summary data to minimize potential biases due to the 

different array platforms and QC procedures. First, we used the LiftOver (http://

genome.sph.umich.edu/wiki/LiftOver) tool to convert any GWAS summary data that have 

reference genome NCBI36/hg18 to GRCh37/hg19. We further filtered out variants with a 

minor allele frequency (MAF) <1%. In this study, we restricted our analysis to autosomal 

chromosomes.

LD score regression analysis

We conducted post-GWAS genome-wide genetic correlation analysis by LD score regression 

(LDSC) using all SNPs after merging with HapMap3 SNP excluding the HLA region. LDSC 

estimates genetic correlation between the true causal effects of two traits (ranging from −1 to 

1) from summary statistics using the fact that the GWAS effect size estimate for each SNP 

represents the effects of all SNPs in linkage disequilibrium with that SNP. SNPs in a high 

linkage disequilibrium region would have higher χ2 statistics than SNPs in a low linkage 

disequilibrium region, and a similar relationship is observed when single-study test statistics 

are replaced with the product of the z-scores from two studies of traits with some correlation 

(Bulik-Sullivan et al. 2015a). LDSC applied a self-estimated intercept during the analysis to 

account for shared subjects between studies (Bulik-Sullivan et al. 2015b).

Partitioned genetic correlation analysis

To characterize the genetic overlap at the level of functional categories, we estimated genetic 

correlation between AD and 3 metabolic traits in 11 large genomic functional annotation 

using partitioned LDSC, where each annotation contains more than 200,000 SNPs that are in 

common with our GWAS data. These annotations included transcribed region, transcription 

factor binding sites (TFBS), Super Enhancer, intron, DNaseI digital genomic footprinting 

(DGF) region, DNase I hypersensitivity sites (DHSs), fetalDHS and histone marks H3K9ac, 

H3K4me1, H3K4me3, H3K27ac (Finucane et al. 2015). For each annotation, we re-

calculated LD scores for SNPs assigned to that particular category and then used the 

annotation-specific LD scores for estimating the AD-metabolic trait genetic correlation for 

each partition separately.
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Local genetic covariance analysis

To investigate whether there is local genetic correlations between AD and metabolic traits, 

we performed ρ-HESS (Shi et al. 2017), a method to estimate the local genetic correlation 

between a pair of traits at each LD independent region in the genome. Approximately 

independent LD blocks with average 1.5Mb long were used for the calculation of each local 

genetic heritability and genetic covariance. The traits were included in this nalysis based on 

2 criteria: the genome-wide genetic correlation estimate from LDSC analysis is greater than 

10%, the summary statistic data is based on 1000 genome imputation to ensure non-zero 

number of variants in each local region in ρ-HESS, thus three traits pairs were included in 

this analysis, AD and T2D, AD and LDL, AD and HDL.

Meta-analysis of fasting glucose and fasting insulin (FG-FINS meta-analysis)

The fasting glucose and fasting insulin GWAS summary statistics were derived from the 

MAGIC consortium, with a sample size of 58,047 and 51,750 respectively. All participants 

were adults with European ancestry. Both traits were measured from whole blood, plasma or 

serum with standard and used for GWAS linear regression model. However, the power of 

each GWAS trait was limited by their sample size in terms of their genetic correlation with 

AD. Thus in order to boost the power of GWAS for glucose metabolism phenotype, we used 

inverse-variance-weighted meta-analysis from METAL (Willer et al. 2010) to combine the 

GWAS summary statistics from fasting glucose and fasting insulin. We flipped the sign of 

effect estimates of fasting insulin before the meta-analysis in order to incorporate the known 

negative biological relationship between insulin and glucose. To account for the genomic 

inflation due to shared samples where the two GWAS summary statistics were calculated, Z-

score output from METAL meta-analysis were further adjusted by dividing the square root 

of LDSC intercept (1.333) of meta-analysis summary statistics (Bulik-Sullivan et al. 2015b). 

P-values were re-calculated based on adjusted Z-scores. Thus, the adjusted genomic 

inflation factor for fasting glucose and fasting insulin meta-analysis result is 1.061.

Cross-trait meta-analysis

After assessing genetic correlations among all traits, we applied cross-trait GWAS meta-

analysis by using the R package Cross Phenotype Association (CPASSOC) to combine the 

association evidence for AD with fasting glucose, fasting insulin and HDL respectively at 

individual variants as exploratory post-hoc analysis based on the criteria of both Rg>10% 

and P<0.05 from LDSC(Zhu et al. 2015). This method combines effect estimate and 

standard error of the GWAS summary statistics to test hypothesis of association between the 

SNP with both traits, for example AD and fasting glucose, or AD and fasting insulin, or AD 

and HDL. A heterogeneous version of CPASSOC (SHet) was used in this study.

SHet is a cross phenotype meta-analysis method based on fixed effect model. It can be 

viewed as the maximum of weighted sum of trait-specific test statistics, which is closely 

related to a gamma distribution. It is more powerful when there is heterogeneous effect 

present between studies, which is common in meta-analysis of different phenotypes(Lee et 

al. 2019; Zhu et al. 2015; Zhu et al. 2018a). SHet uses the sample size for a trait as a weight 

instead of variance. It can also account correlation due to overlapping or related subjects 

within and among different studies or cohorts.
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We applied PLINK clumping function (parameters: --clump-p1 1.6e-8 --clump-p2 1e-5 --

clump-r2 0.2 --clump-kb 500) to determine top loci that are independent to each other, i.e. 

variants with P-value less than 1×10−5, has r2 more than 0.2 and less than 500 kb away from 

the peak will be assigned to that peak’s clump. We identified all genes falling within each 

clump region. A P-value of 1.6×10−8 (5×10−8/3) was used as genome-wide significance 

level for cross-trait meta-analysis to account of 3 meta-analysis testing.

Pathway analysis, tissue enrichment analysis and transcriptome-wide association analysis 

(TWAS)

In order to understand the biological insights of the shared genes between 3 trait pairs, AD 

and fasting glucose, AD and fasting insulin, AD and HDL, we have performed multiple 

post-GWAS functional analyses using shared genes identified from cross-trait meta-analysis. 

We used the WebGestalt tool (Zhang et al. 2005) to assess overrepresented enrichment of the 

identified shared gene set between AD and 3 metabolic traits in the Gene Ontology (GO) 

biological process functional categories. The Benjamini-Hochberg procedure was used for 

correcting multiple testing in pathway analysis. The GTEx tissue (Consortium et al. 2017) 

enrichment analysis was performed based on 30 general tissue types(Watanabe et al. 2017). 

Integrative transcriptome-wide association analyses was performed using FUSION package 

based on 44 post-mortal GTEx (version 6) tissues(Consortium et al. 2017) expression 

weights. In order to identify association between AD and metabolic traits with gene 

expressions in specific tissues, we conducted a TWAS using FUSION software package 

based on 44 post-mortal GTEx (version 6) tissues expression weights(Gusev et al. 2016). 

Bonferroni correction was applied for each trait’s all gene-tissue pairs on TWAS P-values to 

account for multiple testing.

Prioritization of candidate genes

We used 2 methods to prioritize the genes to be discussed among the candidates within the 

region boundaries from cross-trait meta-analysis. First, we prioritized the genes that are 

overlap with TWAS functional analysis. When there is not overlapped genes with TWAS, we 

review the literature for all genes within the boundaries, and then discuss genes/gene 

families with the most biologically relevance to our traits.

Mendelian Randomization (MR) analysis

We performed MR analysis using MR-PRESSO(Verbanck et al. 2018) between 2 types of 

continuous traits (fasting glucose and HDL) and AD in since they are genetically correlated. 

We built the MR instruments based on LD-independent SNPs. We did not include fasting 

insulin trait because no genome-wide significant SNPs was presented.

RESULTS

Genetic correlation between AD and metabolic traits

We evaluated the genetic correlation of AD and 10 metabolic traits using cross-trait LD 

score regression from both GWASs to estimate their genetic relationship. Fasting glucose 

and fasting insulin both have substantial magnitude of genetic correlation with AD, though 

statistical significance were marginal (Rg = 0.169, P= 0.081 for fasting glucose; Rg = 

Zhu et al. Page 5

Hum Genet. Author manuscript; available in PMC 2020 May 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



−0.196, P= 0.087 for fasting insulin). Their genetic correlations with AD were in opposite 

direction with similar magnitude. We did not observe substantial genetic correlation between 

AD and obesity traits (BMI and WHR, both Rg<0.05 and P>0.3), T2D (Rg=0.106, P>0.2) 

and other lipid traits (LDL, TC and TG, Rg= 0.104, −0.076, 0.022, respectively, all P>0.17) 

(Table 1). Considering the well-known inverse direct relationship between glucose and 

insulin, we carried out cross-trait meta-analysis between FG and FINS to boost GWAS 

power for glucose regulation effect. This meta-analysis would increase the power to detect 

genetic effects that increase glucose level via reduction of insulin secretion. We observed 

that FG-FINS meta-analysis effect have an even greater magnitude of genetic correlation 

with AD and is statistically significant (Rg = 0.254, P=0.016). We also observed that HDL 

had a significant genetic correlation with AD (Rg = −0.137, P=0.0436).

Analysis of partitioned genetic correlation by functional category

In partitioned LDSC analysis, we evaluated the genetic correlation between AD and 3 

metabolic traits by 11 functional annotations to pin down specific regions on the genome 

that may explain more of the genetic effect sharing than others. In this analysis, we found 

AD and metabolic traits to have a similar genetic correlation pattern.

The genetic correlation suggested various signals but with similar trends in all the regions. 

Notably, the Rg estimate was negatively correlated between AD and fasting insulin, AD and 

HDL, among all partitioned categories. We identified intron had the highest level of genetic 

correlation between AD and fasting insulin (Rg= −0.366) (Figure 1 and Supplementary 

Table 2), which does not involved in coding of mRNA but might harboring genetic variants 

related to alternative splicing. In addition, the transcribed region was found to have the 

highest level of genetic correlation between AD and HDL (Rg= −0.1471), where this region 

can transcribe DNA sequence to mRNA.

On the contrary, positive genetic correlations were observed among fasting glucose and the 

FG-FINS meta-analysis in almost all the functional categories for AD. Specifically, we 

identified intron had the highest level of genetic correlation between AD and FG-FINS 

meta-analysis (Rg= 0.1946) (Figure 1 and Supplementary Table 2).

Local genetic correlation between AD and metabolic traits

Although the genome-wide genetic correlation between AD and some metabolic traits was 

not significant, we additionally performed ρ-HESS to investigate whether a specific region 

of genome can be genetically correlated between them. In the analysis among 3 trait pairs 

(AD-T2D, AD-LDL, AD-HDL), we identified 1 region (chromosome 19: 44744108–

46102697) that showed a strong local genetic correlation between each of the 2 traits 

(P=6.78×10−22 for AD-T2D, 1.74×10−253 for AD-LDL, 7.94×10−18 for AD-HDL) (Figure 2 

and Supplementary Table 3–5). This region is known for the APOE gene, who serves as a 

modulator between AD and T2D.
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Cross-trait meta-analysis between AD and metabolic traits

We used CPASSOC to perform genome-wide meta-analysis to identify genetic loci that were 

associated with both AD and metabolic traits (meta-analysis P<5×10−8, and trait-specific 

P<0.05).

AD and fasting glucose

After pruning, we found 4 loci that were associated with both AD and fasting glucose at the 

genome wide significance level in the cross-trait meta-analysis (Table 2). The first locus 

(index SNP: rs10501320, Pmeta=2.80×10−16), was in close proximity to genes MADD, 

ACP2 and AGBL2, which was found to play roles in insulin sensitivity (Wagner et al. 2011), 

lysosome and cerebellar function (van de Bunt et al. 2015) and immune complexes (Zhang 

et al. 2014). The second loci (index SNP: rs12805422, Pmeta=1.57×10−13) was mapped to 

the genes C11orf94 and CRY2 which encode for a flavin adenine dinucleotide-binding 

protein involved in regulating the circadian clock. The third loci (index SNP rs1483121 

Pmeta=6.10×10−10) was in close proximity to an intergenic region closest to the OR4S1 gene, 

which is related to G-protein coupled receptor activity and transmembrane signaling 

receptor activity. In addition, we found that genetic loci represented by rs17747324 

(Pmeta=4.52×10−9) on TCF7L2 is associated with both AD and fasting glucose after meta-

analysis. Notably, TCF7L2 is a well-known risk gene for diabetes, which exerts a strong 

inhibitory effect on glucose-induced insulin secretion (Gloyn et al. 2009).

AD and Fasting insulin

A total of 3 loci were identified after meta-analysis of AD and fasting insulin (Table 3). The 

first one (index SNP: rs2279590, Pmeta=1.14×10−17) was mapped on CLU, a gene that 

encodes a secreted chaperone protein involved in basic biological events such as cell death, 

tumor progression, and neurodegenerative disorders. The second locus represented by 

rs6656401 (Pmeta=3.71×10−15) was mapped on CR1 and CR2, genes encoding for 

membrane protein. The third locus (index SNP: rs4803750, Pmeta=6.54×10−13) located in 

close proximity to BCL3, which encodes the apolipoprotein J/clusterin, whose 

polymorphisms have been related to AD susceptibility in published GWAS (Lancaster et al. 

2015).

AD and HDL

The cross phenotype meta-analysis between AD and HDL identified 20 genome-wide 

significant loci (Supplementary Table 6). The most significant locus is characterized by the 

APOE/APOC1 gene (index SNP rs157595, Pmeta=1.21×10−97). We noticed that this locus 

was not only significant after meta-analysis, but also reached genome-wide significance in 

both single trait GWAS of AD (P=3.76×10−101) and HDL (P=1.92×10−8). Among 20 

independent loci, eight of them were from 19q13.32 region, which is known for the APOE/

APOC1/APOC2 gene cluster. In addition, BIN1 on 2q14.3 (index SNP rs6733839, 

Pmeta=3.19×10−25) and CCDC116 on 22q11.21 (index SNP rs5754166, Pmeta=3.61×10−12) 

showed moderately strong association with both AD and HDL, which drove the overall 

significance of the meta-analysis.
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Overlap between cross-trait meta-analysis results and genotype–protein associations 

(pQTL)

For assisting in further functional annotation, we checked our cross-trait meta-analysis for 

the 3 pairs with recent published study pQTL study (Sun et al. 2018). We compared the 

genomic position of our significant SNP clumps with the pQTL genomic regions for overlap 

checking (Table 2–3 and Supplementary Table 6–8). A total of 23 loci are overlap with 

pQTL regions. Notably, we identified 19q13.32 (known for APOE) and 19q13.42 (known 

for LILRA3) regions were associated with many correlated proteins.

Biological pathway, tissue enrichment and TWAS

Pathway analyses were performed to identify biological pathways enriched of shared loci 

(Pmeta<1.6×10−8) related to AD and metabolic traits. We found that AD shared amyloid 

metabolic process pathways with both fasting glucose trait and fasting insulin trait 

(FDR<0.01), and shared protein lipid remodeling reverse cholesterol transport and sensory 

perception related pathways with HDL trait (FDR<0.01) (Supplementary Table 9–11).

The GTEx enrichment analysis identified five independent tissues expression that were 

significantly enriched (after Benjamin-Hochberg correction) for expression of cross-trait 

associated genes for each of the 3 trait pairs, including blood, heart, liver, muscle and 

pancreas for AD and fasting glucose; blood, liver, pancreas, small intestine and spleen for 

AD and fasting insulin; blood esophagus, heart, liver and pancreas for AD and HDL (Figure 

3). Among them, the most strongly enriched tissue was part of the hormone and enzyme 

producing system (pancreas).

In order to identify association between AD and metabolic traits with gene expressions in 

specific tissues, we conducted a TWAS in 44 GTEx tissues (Supplementary Table 12–14). 

We used the Bonferroni correction for each trait’s all gene-tissue pairs on TWAS P-values to 

account for multiple testing. A total of 33 gene-tissue pairs were significantly associated 

with AD, 66 gene-tissue pairs with fasting glucose, and 37 gene-tissue pairs with fasting 

insulin. Specifically, MADD, a gene expressed in multiple tissues, such as pituitary, artery 

and esophagus, was shared by AD (PTWAS=2.49×10−8) and fasting glucose trait 

(PTWAS=4.5×10−10). Interestingly, MADD was also found to be genome-wide significant in 

AD and fasting glucose cross-trait meta-analysis (Pmeta=2.80×10−16).

DISCUSSION

To our knowledge, this is the first study to identify genome-wide genetic correlation and 

shared genetic variants between AD and metabolic traits. Specifically, we found a genetic 

correlation between AD and fasting glucose, fasting insulin and HDL. In the LDSC analysis 

between AD and metabolic traits (Table 1), only FG-FINS meta-analysis and HDL had a 

statistically significant genetic correlation with AD.

These findings are consistent with the known association between higher glucose levels and 

cognitive impairment, including AD (Carantoni et al. 2000; Craft et al. 1999; Crane et al. 

2013). Previous studies also found HDL is negatively correlated with AD (Atzmon et al. 

2002; Carantoni et al. 2000; Merched et al. 2000). Our findings suggest that the phenotypic 
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correlation between AD and metabolic traits were due to a common genetic predisposition 

base. However, we did not observe genetic correlation between AD and obesity traits, which 

suggests that the phenotypic association between AD and BMI may due to environmental 

factors, such as lifestyle (Kivipelto et al. 2018). In the analysis of partitioned co-heritability 

by functional categories, we observed positive genetic correlation between AD and fasting 

glucose or FG-FINS meta-analysis, and negative genetic correlation between AD and 

fasting insulin or HDL in different functional categories. We found the genetic correlation 

estimates were significant in super enhancer, H3K9ac, H3K27ac and DGF for AD-sugar 

traits pairs (Figure 1a); and genetic correlation estimates were significant in transcribed, 

TFBS, super enhancer, H3K4me1, H3K27ac and DGF in AD-HDL trait pair (Figure 1b). 

This indicates the possible role of genetic correlation with respect to these functional 

categories in the shared genetic etiology of AD and these traits.

With regard to fasting glucose, we found 6 significant loci related to AD, including the 

genes MADD, CRY2 and OR4S1. MADD has been shown to play a critical role in glucose-

induced insulin release as well as AD (Cornes et al. 2014; Huyghe et al. 2013; Lambert et al. 

2013; Li et al. 2014). The reduced expression of MADD was found to link with declined 

long-term neuronal viability in late-onset AD (Lambert et al. 2013). With regard to fasting 

insulin, our results indicated 3 significant loci related to AD. The top locus is CLU, which 

induces the differentiation of pancreatic duct cells into insulin-secreting cells (Kim et al. 

2006). CLU has also been found to be increased in affected cortical areas in AD and is 

present in amyloid plaques and in the cerebrospinal fluid of patients with ADs. (Harold et al. 

2009)

Twenty loci were identified from the cross-trait meta-analysis of HDL and AD. Among 

them, the most significant gene was APOE, a well-established risk factor for late-onset AD 

(Coon et al. 2007; Genin et al. 2011; Green et al. 2009; Schuff et al. 2009). Notably, in the 

single trait GWAS analysis, APOE also achieved genome-wide significance with HDL level 

(P=1.92×10−8) (Supplementary Table 6) (Surakka et al. 2015), indicating a potential 

important pleotropic effect. Recent studies suggest that APOE is the major cholesterol 

carrier in the central nervous system, and that APOE-containing HDL contributes to the 

redistribution of cholesterol for cellular remodeling and repair in the brain (Rasmussen 

2016; Takahashi et al. 2016).

In local genetic correlation analysis, we also found the APOE region to have a strong genetic 

correlation with both AD and T2D. The presence of APOE in T2D cases with AD is 

associated with increased neurofibrillary tangles, amyloid plaques, and cerebral amyloid 

angiopathy (Jayaraman and Pike 2014; Peila et al. 2002).

In addition, we also tested SNPs that were identified from our cross-trait meta-analysis in 3 

AD related endophenotypes: hippocampal volume, Alzheimer’s disease progression score 

and cortical amyloid beta load (Scelsi et al. 2018), to see if these SNPs are also nominally 

significant in these additional 3 GWAS results (Supplementary Table 15). We found 

rs2279590 was significant in cortical amyloid beta load (P=0.0197) and rs157595 was 

significant in hippocampal volume (P=0.0265), which may provide additional insight of 

these shared loci in terms of endophenotypes of AD.
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The post-GWAS functional analyses provided biological insights into the shared genes 

between AD and 3 metabolic traits. The GTEx tissue enrichment analysis identified shared 

genes enriched in several tissues, such as pancreas, liver and spleen, which are known to 

play important roles in regulating the hormone and enzyme function. These hormones and 

enzymes can further impact the glucose and lipid level in the blood or brain (Sridhar et al. 

2015). Blood, as a transporting carrier for nutrients, hormones and enzymes, was also found 

the be enriched in all 3 trait pairs. From TWAS analysis, we identified 14 significant unique 

gene-tissue pairs associated with AD, 21 with fasting glucose, and 5 with fasting insulin. Of 

these, MADD was the only gene significantly associated with AD and fasting glucose, 

exclusively in pituitary tissue; it is also the only shared gene found in both cross-trait meta-

analysis and TWAS. MADD is known to improve insulin sensitivity, especially proinsulin-

to-insulin conversion, for the variant with higher fasting glucose (Wagner et al. 2011). The 

pituitary plays a central role the endocrine axis because its hormones regulate the function of 

other endocrine glands. The relationship between diabetes and pituitary function is well 

known (Arrais and Dib 2006; Chan et al. 2003; Yi et al. 2010), but research has also noted 

an association between pituitary function and AD (Mrak and Griffin 2005; Pomara et al. 

2003). Our results thus supported the hypothesis that the pituitary may link fasting glucose 

and AD. Even though MADD was only found to be significantly associated with AD in 

pituitary tissue, we found this gene expressed in 4 other tissues in fasting glucose trait, 

including the tibial artery, the aorta, and the muscularis and mucosa of the esophagus, which 

showed the importance of vascular and epithelium system in AD and neurodegeneration 

(Karlsson et al. 2017; Vemuri et al. 2017).

The genetic correlation between AD and metabolic traits may be due to both pleiotropy and 

causality(Chung et al. 2019). Our MR analysis showed no causal relationship between 

fasting glucose or HDL and AD after adjusting pleiotropy (Supplementary Table 16). These 

results further supported our findings that the shared genetic effects between metabolic traits 

and AD are more likely to be pleiotropic effects, rather than causal etiology or mechanism.

In addition to the genetic contribution to AD and metabolic traits, environmental and 

behavioral factors also play important role in their comorbidity. The combination of diet and 

exercise, and some drugs that modulate metabolism, are a few interventions that have been 

shown to improve cognition in AD, and currently represent the most hopeful approach to its 

prevention and treatment (Cheng et al. 2012; Marengoni et al. 2017).

We also acknowledge the limitations of our work. First, our study power is also limited by 

the sample size of the AD IGAP consortium. A larger sample size AD or its related 

endophenotypes, such as infarcts, amyloid, tau accumulation and vascular dementia, are 

needed to identify more novel shared loci between AD and metabolic traits. With the 

understanding that the power of individual GWAS traits are limited, we seek evidences 

based on multiple analyses from the genome-wide level, to locus, gene and genetic variant 

level, where we can take advantage of the benefit of each methods. For example, LDSC can 

be used to determine the genome-wide genetic correlation, which takes the sum of local 

genetic covariance but diminishes the power of each individual locus, where ρ-HESS can 

help to unveil. The TWAS and cross-trait meta-analysis can further investigate genetic 

overlap on gene and genetic variant level, which provide higher functional significance. 
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There were 2 reasons we did not apply Bonferroni correction for 10 traits in this study. Our 

primary focus is based on glucose-related traits, given the high correlation between T2D, 

fasting glucose and fasting insulin; the Bonferroni correction would seem too conservative. 

Nevertheless, it is still significant after accounting for 2 traits: T2D and FG-FINS analysis 

(p<0.025). In addition, our study is based on publicly available GWAS summary statistics. 

Even though we have tried to standardize the data using ImpG summary statistic imputation 

to the 1000 Genome reference panel, the fasting glucose and fasting insulin summary 

statistics did not yield good quality imputed data, with only ~1.5 million SNPs’ imputation 

quality having a r2pred >0.6. Thus, we kept original fasting glucose and fasting insulin 

summary statistics data for downstream analysis, which is based on HapMap 2 imputation. 

However, the HapMap 2 platform can also provide powerful and accurate results for the 

entire genome (International HapMap et al. 2007).

CONCLUSION

In conclusion, our novel genome-wide cross-trait analysis reinforced the idea that AD and 

disorders of metabolism are connected. Evaluation of the genetic overlap between AD and 

metabolic traits can be beneficial to understand the shared biological mechanisms 

underlying this comorbidity. We highlighted the key roles of APOE and MADD genes 

played for shared etiology between AD and metabolic traits. More work is needed to fully 

characterize the heritable component of the metabolic origins of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Partitioned genetic correlation. a. Genetic correlation between Alzheimer’s disease and 

sugar traits by functional category. b. Genetic correlation between Alzheimer’s disease and 

HDL by functional category category. Vertical axis represents the genetic correlation 

estimate Rg (standard error), horizontal axis represents 11 functional categories. Asterisk 

represents significance (P<0.05). DGF: DNaseI Digital Genomic Footprinting; DHS: DNase 

I hypersensitivity Site; TFBS: Transcription Factor Binding Sites. AD: Alzheimer’s disease; 
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FG: fasting glucose; FINS: fasting insulin; FGFINSmeta: meta-analysis of fasting glucose 

and fasting insulin.
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Figure 2. 
Local genetic correlation and local SNP-heritability between Alzheimer’s disease and T2D 

(2a), LDL (2b) and HDL (2c) respectively. For each sub-figure, top part represents local 

genetic correlation, middle part represents local genetic covariance, and significant local 

genetic correlation and covariance after multiple testing correction are highlighted in blue; 

bottom part represents local SNP-heritability for individual trait.
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Figure 3. 
GTEx tissue enrichment analysis. a. GTEx tissue enrichment analysis of AD and fasting 

glucose. b. GTEx tissue enrichment analysis of AD and fasting insulin. c. GTEx tissue 

enrichment analysis of AD and HDL. Red bar represents significant tissue enrichment after 

Benjamin-Hochberg correction.
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