
Shared genetic basis for migraine and
ischemic stroke
A genome-wide analysis of common variants

ABSTRACT

Objective: To quantify genetic overlap between migraine and ischemic stroke (IS) with respect

to common genetic variation.

Methods: We applied 4 different approaches to large-scale meta-analyses of genome-wide data

on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls).

First, we queried known genome-wide significant loci for both disorders, looking for potential

overlap of signals. We then analyzed the overall shared genetic load using polygenic scores

and estimated the genetic correlation between disease subtypes using data derived from these

models. We further interrogated genomic regions of shared risk using analysis of covariance

patterns between the 2 phenotypes using cross-phenotype spatial mapping.

Results: We found substantial genetic overlap between migraine and IS using all 4 approaches.

Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than

migraine with aura (MA). The strongest overlap existed between MO and large artery stroke

(LAS; p 5 6.4 3 10228 for the LAS polygenic score in MO) and between MO and cardioembolic

stroke (CE; p 5 2.7 3 10220 for the CE score in MO).

Conclusions: Our findings indicate shared genetic susceptibility to migraine and IS, with a partic-

ularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms.

Our observations on MA are consistent with a limited role of common genetic variants in this

subtype. Neurology® 2015;84:2132–2145

GLOSSARY

CE 5 cardioembolic stroke; CPSM 5 cross-phenotype spatial mapping; GWAS 5 genome-wide association studies; IHGC 5

International Headache Genetics Consortium; IS 5 ischemic stroke; LAS 5 large artery stroke; LD 5 linkage disequilibrium;
MA 5migraine with aura; MO 5migraine without aura; SNP 5 single nucleotide polymorphism; SVD 5 small vessel disease.

Migraine is a primary headache disorder characterized by recurrent attacks of severe, often throb-

bing, headache associated with autonomic dysfunction. Although the majority of patients have

migraine without aura (MO), one third have headaches preceded by transient neurologic distur-

bances (migraine with aura [MA]).1 Ischemic stroke (IS) is etiologically heterogeneous and a

leading cause of premature death and disability.2

Results of epidemiologic studies show increased risk of IS in migraine patients.3 A large meta-

analysis of case-control and observational cohort studies reported an increased risk of IS for

patients with MO and MA,4 whereas more recent meta-analyses reported the association to be

restricted to MA.3,5,6 Pathophysiology linking these neurovascular disorders remains poorly

understood; suggested mechanisms include cortical spreading depression,7 endothelial dysfunc-

tion,8 enhanced platelet activation,9 and vasoconstriction.10

Recent genome-wide association studies (GWAS) identified common genetic variants asso-

ciated with migraine11 and its subtypes MO12 and MA.13 Similarly, GWAS results point to

variants associated with IS subtypes such as large artery atherosclerotic14,15 and cardioem-

bolic.16 We combined GWAS from the International Headache Genetics Consortium

(IHGC)11 and METASTROKE15 to assess shared genetic bases for migraine and IS. We first
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examined known genome-wide risk loci in

the respective phenotypes. Using 2 method-

ologies, we then evaluated shared genetic risk

for migraine with IS: (1) analysis of shared

polygenic risk with subsequent estimation of

genetic correlation between phenotypes and

(2) detailed investigation of overlapping

regions.

METHODS Standard protocol approvals, registrations,

and patient consents. Ethics statement. For all study cohorts,

all participants gave informed consent and local research ethics

boards approved all protocols.11,15

Cohorts. Investigators of the IHGC study, a meta-analysis of

GWAS data, enrolled 23,285 patients with migraine and 95,425

population-based or headache-free controls from 29 studies.11

When possible, researchers considered subclassifications of

migraine with (MA: 5,118 cases vs 74,239 controls) or without

aura (MO: 7,107 cases vs 69,427 controls). The META-

STROKE study consists of combined data from 15 GWAS of IS

(12,389 cases vs 62,004 controls).15We used TOAST criteria17 to

classify IS as large artery stroke (LAS) (2,167 cases/49,159 con-

trols from 11 studies), cardioembolic stroke (CE) (2,365 cases/

56,140 controls from 13 studies), and small vessel disease (SVD)

(1,894 cases/51,976 controls from 12 studies) (tables e-1 and e-2

on the Neurology® Web site at Neurology.org).11,15 We removed

overlapping controls between the migraine and stroke samples

from deCODE, WTCCC2 (B58C and KORA), and the Rot-

terdam studies from the stroke datasets for polygenic score

analyses, cross-phenotype spatial mapping (CPSM), and corre-

lation analyses to avoid inflation of statistics.

Genome-wide association studies. Both the IHGC

migraine11 and METASTROKE15 studies consisted of indepen-

dently performed genome-wide single nucleotide polymorphism

(SNP) genotyping using standard technologies and imputation to

HapMap release 21 or 22 CEU phased genotype18 or 1000 Genome

reference panels. Investigators contributed summary statistical data

from association analyses using frequentist additive models for meta-

analysis after application of appropriate quality control measures

(e-Methods). Subtle differences in allele frequencies between

migraine and stroke could lead to deviation from the expected test

statistic. Thus, as a final quality control step, we meta-analyzed re-

sults from the IHGC study and the METASTROKE study and

constructed quantile-quantile plots (figure e-1).

Statistical analysis. For analysis of previously discovered risk

loci for IS or migraine, we extracted relevant loci from the litera-

ture and the 2 described consortia.11,15 We examined all SNPs

within a window of 650 kb surrounding the original reported

risk SNP (coordinates from human genome build hg18) and

reported the most significant p values of all genotyped or imputed

SNPs within this window. We applied Bonferroni correction for

association, integrating all tested SNPs for IS risk loci (650 tested

SNPs), migraine risk loci (1,175 tested SNPs), and MO risk loci

(213 tested SNPs) with resulting p value thresholds of 7.69E-5,

4.25E-5, and 2.30E-4, respectively.

Polygenic scores reveal combined effects of multiple nonsignif-

icant variants derived from a derivation sample and tested in an

independent replication sample. We derived polygenic scores for

multiple p value cutoffs (0.5, 0.25, 0.1, 0.05, 0.01, 0.001, and

0.0001) in derivation samples. Further, we performed testing on

summary statistics using the grs.summary function of the gtx pack-

age for R, a technique previously used in multiple studies, which

estimates the polygenic component with high reliability.19 We use

the term replication to describe analyses across phenotypes.

Use of linkage disequilibrium (LD) pruned data (r2 . 0.25)

ensured approximate independence of SNPs. We retained the

SNP with the lowest p value in an independent region and cal-

culated the proportion of variance explained in the testing set by

the polygenic scores using Nagelkerke’s pseudo R2. Outcome

measures include the p value of the association of the polygenic

score in the testing dataset and the variance explained.

CPSM identifies genomic windows exhibiting similar associ-

ation patterns across 2 phenotypes using a signal processing

approach. CPSM allows analysis of pleiotropy across multiple dis-

eases. Peak heights serve as an intuitive measure for description of

shared risk loci in different phenotypes. This method corrects for

background noise in the p value distribution and is thus superior

to comparisons of single p values. We computed Pearson covari-

ance between p values from 2 traits across a 60-kb sliding win-

dow. In each iteration, the window slides to the next SNP; thus,

we obtained a covariance coefficient for each SNP in the analysis.

We then detected signal peaks across the genome in the covari-

ance trace and calculated the signal sn for a given SNP with index

n, position bn (base pairs), and association p values p1,n, p2,n for 2

phenotypes as follows:
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where each biЄ bj,.bk is the position of SNPiwithin the window of

SNPsj,.,k containing SNPn. For a given window size d (base pairs),

the window of SNPsj,.,k is defined such that j is the smallest

SNP index where bn2bj #
d

2
and k is the largest SNP index where

bk2bn #
d

2
.

After constructing the CPSM signal for all SNPs, we cor-

rected for strong associations identified in only one phenotype

by permuting the association p values for one phenotype 1,000

times while holding the other phenotype constant, and then

recalculating CPSM signals. From the total set of 2,000 permu-

tation signals (1,000 per phenotype), we subtracted the upper

0.95 quantile at each SNP as the background signal threshold

from the observed covariance as a correction. We then identified

regions of shared association as peaks above the 99.95 (approxi-

mately corresponding to a height of 1.5) percentile of the covari-

ance signal. We highlighted regions with a height .2.5

(corresponding to approximately 99.985 percentile) and with a

height .5 (corresponding to approximately 99.998 percentile).

CPSM only provides a signal when the effect in 2 traits is the

same, implying shared causality in the discovered regions.

Utilizing a recently developed framework for polygenic anal-

yses and based on the number of SNPs, the dataset sample sizes,

and estimates of disease prevalence and pseudo-heritability, we

estimated the power to detect an association indexing on a given

degree of genetic correlation between the 2 phenotypes. We used

the same framework, including p values from polygenic analysis,

to estimate the overall degree of genetic correlation between each

of the IS and migraine phenotypes, a posteriori to the polygenic
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analysis. We estimated genetic correlation in both the forward

direction (using results from polygenic analysis of IS and subtypes

as a discovery sample and migraine and subtypes as a replication

sample) and the reverse direction (using results from the poly-

genic analysis from migraine and subtypes as a discovery sample

and stroke and subtypes as a replication sample) to evaluate con-

sistency of results using the estimateCorrFromP method. An

implementation of the procedure was downloaded from

http://sites.google.com/site/fdudbridge. This method approxi-

mates SNP correlation from cross-disorder applications of pol-

ygenic scores and can be compared to GREML-SNP genetic

correlation. All analyses used R statistical software (http://www.

R-project.org). Using stroke prevalence data from the British

Heart Foundation for IS20 (1.7% in the United Kingdom) and

the proportional incidence of IS events from all stroke events in

the OXVASC study21 (59%), we estimated the prevalence of IS

(;1%). We then used the proportion of IS subtypes (CE, LAS,

or SVD) from a meta-analysis of population-based incidence

studies22 to estimate the prevalence of each subtype. We esti-

mated stroke heritability on a liability scale.23 Although we

acknowledge that migraine prevalence may vary across coun-

tries, we estimated migraine prevalence to be 17% for all

migraine, 11% for MO, and 5% for MA based on published

data.1,24 Migraine heritability estimates vary in the literature,

with MA being highest. We chose heritability measures of 0.65

for MA25 and 0.61 for MO26 and a more conservative measure

of 0.57 for all migraine.

RESULTS Information on clinical subtypes was avail-

able for 12,225 (52.5%) of the migraine and for 6,426

(51.9%) of the IS patients (tables e-1 and e-2). We

identified 38,338 potentially overlapping controls

and excluded them from analyses where necessary.

QQ plots revealed no inflation of test statistics (lambda

inflation factors below 1.05 in all analyses of migraine

subtypes vs all IS; figure e-1 and e-Methods).

All migraine. We first evaluated risk loci identified in

previous GWAS on IS or its subtypes,15 in all

migraine11 and vice versa. Although we identified sev-

eral variants reaching nominal association (p, 0.05),

when controlling for all tested SNPs, none of the

Figure 1 Results from polygenic score analysis using ischemic stroke as a discovery phenotype

(A) All ischemic stroke. (B) Large artery stroke. (C) Cardioembolic stroke. (D) Small vessel disease. Migraine was used as a

replication phenotype. The x-axis describes the p value cutoffs used in the polygenic score; the y-axis describes the

pseudo-R2 variance explained by the score. Asterisks on top of a bar designate p values , 0.05. Raw values can be found

in table e-5.
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tested variants surpassed Bonferroni-corrected p value

thresholds (tables e-3 and e-4).

Polygenic scores. Scores derived from LAS, CE, and

SVD each showed significant associations with all

migraine (figure 1, tables 1 and e-5) with replication

p values ranging from 2.7E-9 for LAS to 0.017 for

SVD. Explained variance ranged from 0.005% to

0.03% (figure 1, table 1). Conversely, polygenic

scores derived from all migraine significantly associ-

ated with LAS, CE, and SVD (figure 2, tables 1 and

e-5) with replication p values between 8E-9 (replica-

tion in LAS) and 0.03 (replication in SVD) and an

explained variance between 0.008% and 0.065%

(figure 2, tables 1 and e-5). Calculated estimates of

genetic correlation between all migraine and IS

ranged from approximately 3% for correlation with

all IS to 38% for correlation with LAS (table 2).

CPSM analysis. The most significant loci reaching

an arbitrary peak height cutoff of 2.5 for CPSM

are summarized in table 3 (full results, table e-6).

Using this height cutoff, there were 5 shared loci

for all IS and all migraine with the strongest signal

at chromosome 12q24 (height 5 7.2). For LAS

and all migraine, we found 3 shared loci, with

the LMOD2-WASL region on chromosome 7q31

showing the strongest signal (height 5 7.2). CE

and SVD showed 8 and 3 shared loci with all

migraine, respectively (maximum height, 4.94

for CE and all migraine; 3.99 SVD and all

migraine).

Migraine without aura (MO). A single variant in the

9p21 region, previously associated with LAS,14 sur-

passed the Bonferroni-corrected threshold for

association with MO (p 5 4.0E-5). Focusing on 2

Table 1 Polygenic score results

Discovery
set

Replication
set

p Value
cutoff No. SNPs

p Value replication
set

R2 variance
explained, %

OR replication set
(95% CI)

All migraine All IS 0.5 88,479 0.384178 0.0010 1.003 (0.996–1.009)

All migraine LAS 0.5 88,479 7.99E-9 0.0650 1.041 (1.027–1.055)

All migraine CE 0.5 88,479 1.46E-7 0.0473 1.035 (1.022–1.049)

All migraine SVD 0.5 88,479 0.082929 0.0056 1.013 (0.998–1.028)

MO All IS 0.5 87,163 3.89E-10 0.0526 1.011 (1.008–1.015)

MO LAS 0.5 87,163 6.59E-24 0.1978 1.039 (1.031–1.046)

MO CE 0.5 87,163 9.10E-15 0.1026 1.028 (1.021–1.035)

MO SVD 0.5 87,163 0.00970 0.0124 1.010 (1.003–1.018)

MA All IS 0.5 87,674 0.001920 0.0129 0.995 (0.992–0.998)

MA LAS 0.5 87,674 0.002842 0.0174 1.010 (1.003–1.017)

MA CE 0.5 87,674 0.4001 0.0012 1.003 (0.996–1.009)

MA SVD 0.5 87,674 0.3432 0.0017 1.003 (0.996–1.010)

All IS All migraine 0.5 84,947 0.13043 0.0019 1.003 (0.999–1.006)

All IS MO 0.5 84,947 6.02E-11 0.0559 1.021 (1.015–1.028)

All IS MA 0.5 84,947 0.00227 0.0117 0.989 (0.982–0.996)

LAS All migraine 0.5 84,258 2.67E-9 0.0298 1.005 (1.003–1.007)

LAS MO 0.5 84,258 6.43E-28 0.1566 1.017 (1.014–1.020)

LAS MA 0.5 84,258 0.00489 0.0010 1.005 (1.001–1.008)

CE All migraine 0.5 82,187 5.94E-7 0.0209 1.005 (1.003–1.006)

CE MO 0.5 82,187 2.74E-20 0.1112 1.016 (1.012–1.019)

CE MA 0.5 82,187 0.92492 1.12E-5 1.000 (0.996–1.004)

SVD All migraine 0.5 81,946 0.01640 0.0049 1.002 (1.000–1.004)

SVD MO 0.5 81,946 0.001091 0.0139 1.005 (1.002–1.008)

SVD MA 0.5 81,946 0.17365 0.0023 1.002 (0.999–1.006)

Abbreviations: CE 5 cardioembolic; CI 5 confidence interval; IS 5 ischemic stroke; LAS 5 large artery stroke; MA 5

migraine with aura; MO 5 migraine without aura; OR 5 odds ratio; SNP 5 single nucleotide polymorphism; SVD 5 small

vessel disease.

The results for a p value cutoff of 0.5 are shown. For full results, see table e-5. p Value is the p value of the 1 df test of the

risk score in the replication set. R2 variance explained is the pseudovariance explained by the risk score model in the

replication dataset (3100 to display percentage). Odds ratios were calculated from the estimated coefficient for regress-

ing the response onto the risk score and are given as an increase of 1 standard deviation of the polygenic score.
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loci previously known to be associated with MO but

not MA,11 we identified no variants surpassing the

Bonferroni-corrected p value threshold (table e-4).

Polygenic scores. Scores derived from all IS, LAS,

CE, and SVD each showed significant associations

with MO (figure 1, tables 1 and e-5); replication p

values ranged from 6.43E-28 for LAS polygenic

score to 1.47E-5 for SVD polygenic score. The

highest percentage of explained variance occurred

for scores derived from LAS and CE (0.157% and

0.111%, respectively), and was higher in MO than

in all migraine across all p value cutoffs (figure 1, B

and C). Conversely, polygenic scores derived from

MO significantly associated with all IS, LAS, CE,

and SVD (figure 2, tables 1 and e-5) with replica-

tion p values between 6E-24 (replication in LAS)

and 0.004 (replication in SVD) and an explained

variance between 0.015% and 0.198% (figure 2,

tables 1 and e-5). Estimates of genetic correlation

with IS were markedly higher than observed for all

migraine (estimates ranged from 25% for correla-

tion with all IS to 83% for correlation with LAS;

table 2).

CPSM analysis.Using a cutoff of 2.5, we detected 4

shared loci between MO and all IS. MO and LAS

shared 3 loci, with the strongest signal at chromosome

9p21 (signal height, 7.7). CE and MO shared 6 loci

(maximum height5 3.87), and MO and SVD shared

4 loci (2 loci reaching maximum heights of 6.7 and

6.3). The former was near the CISD2 gene on chro-

mosome 4q24, the latter in a gene-rich region on

chromosome 17q21 including the Tau locus (tables

3 and e-6).

Migraine with aura (MA). None of the variants previ-

ously associated with IS surpassed the Bonferroni-

corrected p value threshold of 7.69E-5 when tested

for association with MA. There were no genome-wide

significant loci11 for MA.

Figure 2 Results from polygenic score analysis using migraine as a discovery phenotype

(A) All migraine. (B) Migraine without aura. (C) Migraine with aura. Stroke was used as a replication phenotype. The x-axis

describes the p value cutoffs used in the polygenic score; the y-axis describes the pseudo-R2 variance explained by the

score. Asterisks on top of a bar designate p values , 0.05. Raw values can be found in table e-5.
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Polygenic scores. Scores derived from IS, LAS, and

CE all showed significant associations with MA

(figure 1, tables 1 and e-5) with replication p values

ranging from 0.002 for the all IS polygenic score to

0.04 for the CE polygenic score. Explained variance

ranged from 0.010% (LAS) to 0.012% (IS). Polygenic

scores derived fromMA significantly associated with all

IS and LAS (figure 2, tables 1 and e-5) with replication

p values of 0.0017 and 0.0005, and an explained var-

iance of 0.013% and 0.023%, respectively. Estimates

of genetic correlation ranged from 8% for correlation

with CE to 28% for correlation with LAS (table 2).

CPSM analysis. We found several shared regions

between MA and stroke subtypes. Using a cutoff of

2.5, we found 2 shared loci between all IS and MA

with a maximum height of 3.15 and 2 loci shared

between LAS and MA with a maximum height of

3.53 in the LMOD2/WASL gene region. CE and

MA shared no loci using this cutoff and SVD and

MA shared 1 locus with a maximum height of 2.83

(tables 3 and e-6).

DISCUSSION We demonstrated that the combined

contributions of common genetic variants at a num-

ber of loci influence risk for both migraine and IS.

This is supported by results from 4 investigative ap-

proaches: (1) analysis of common variants at loci

reaching genome-wide significance for potential

signal overlap; (2) investigation of shared genetic

load using polygenic score models; (3) estimation of

genetic correlation between disease subtypes using

data derived from these models; and (4)

highlighting regions of shared risk by analysis of

covariance patterns between phenotypes using

CPSM. We found stronger signal overlap between

MO and IS than between MA and IS; overlap is

stronger for LA and CE stroke than for SVD.

Finally, we identified several individual loci with a

strong signal for association with both phenotypes.

Polygenic scores, estimates of genetic correlation,

and CPSM results all demonstrated a stronger genetic

overlap of IS with MO compared to MA. Polygenic

scores from MO replicated in overall IS and IS sub-

types across a wide range of p value cutoffs, while

scores derived from IS behaved similarly when tested

in MO. Scores derived fromMA demonstrated weaker

association with IS. The variance explained by poly-

genic scores of each IS subtype was consistently higher

for MO (figures 1 and 2). Also, estimates of genetic

correlation with IS and its subtypes were consistently

higher for MO than for MA (table 2).

Unexpectedly, CPSM revealed that the number of

loci reaching a peak height .2.5 was larger for MO

and IS than for MA and IS (table 3). Recent epide-

miologic studies suggest an association between IS

risk and MA but not MO,3,6 but other data suggest

that patients with MO are at increased risk of IS.4

One potential explanation is that genetic risk for

MA may be more restricted to rare variants not cap-

tured by GWAS strategies as suggested by the larger

number of genome-wide significant loci for MO

compared to MA despite comparable sample sizes.11

However, estimated heritability for MA is as least as

high as for MO.25,26 Larger samples together with

sequencing efforts or rare variant assays might help

to determine whether rare variants indeed influence

MA risk and whether the same variants also contrib-

ute to IS risk. The same might be true for SVD, for

which there are no existing identified genome-wide

loci. Hence, we might have underestimated genetic

overlap between migraine subtypes and SVD.

We found particularly strong genetic overlap for

migraine with LAS and CE. Polygenic scores analyses

showed the strongest overlap with LAS for all forms

of migraine regardless of whether polygenic scores were

derived from LAS and tested in migraine or vice versa.

In a recent small population-based study of 360 mi-

graineurs and 617 controls, researchers reported no

association between migraine and intima media thick-

ness,27 but more advanced stages of atherosclerosis

were not assessed. Most previous studies examining

the relationship between migraine and IS did not dis-

tinguish among stroke subtypes. Migraineurs display

enhanced platelet aggregation,9 which together with

other factors might contribute to overlap with LAS.

Table 2 Estimation of genetic correlation with the Dudbridge Method

Stroke
subtype

Migraine
subtype

Forward estimated genetic
correlation, % (95% CI)

Reverse estimated genetic
correlation, % (95% CI)

All IS All migraine 4.47 (0.007–10.26) 2.96 (0.007–9.63)

All IS MO 25.83 (18.09–33.56) 25.68 (17.64–33.72)

All IS MA 14.39 (5.15–23.64) 15.28 (5.45–24.18)

LAS All migraine 33.98 (22.79–45.17) 38.47 (25.41–51.53)

LAS MO 83.55 (68.61–98.47) 81.06 (65.33–96.78)

LAS MA 25.64 (7.79–43.53) 28.80 (9.88–47.71)

CE All migraine 29.32 (17.81–40.83) 36.19 (22.71–49.68)

CE MO 72.40 (57.04–87.76) 64.26 (48.02–80.49)

CE MA 8.83 (0.007–19.26) 8.37 (0.007–27.85)

SVD All migraine 20.82 (3.81–37.82) 17.17 (0.007–37.7)

SVD MO 37.86 (15.14–60.58) 31.77 (7.69–55.84)

SVD MA 18.84 (0.007–45.92) 13.95 (0.007–42.85)

Abbreviations: CE 5 cardioembolic; CI 5 confidence interval; IS 5 ischemic stroke; LAS 5

large artery stroke; MA 5 migraine with aura; MO 5 migraine without aura; SVD 5 small

vessel disease.

Genetic correlation is estimated using results from polygenic score analysis, taking into

account the number of single nucleotide polymorphisms used, number of subjects in the

analysis, and prevalences and heritability estimates of the 2 phenotypes. The forward

experiment uses the stroke subtype as the discovery set and the migraine subtype as the

testing set. The reverse experiment uses the migraine subtype as the discovery set and the

stroke subtype as the testing set.
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Table 3 Most significant loci detected by the cross-phenotype spatial mapping method

Migraine
phenotype

Stroke
phenotype Chr band Position, Mb Locus size Peak SNP

Same
directional
effecta

Peak
height Genes within locus

All
migraine

All IS 5p14.1 29.0-29.1 126 kB rs1692345 Y 4.18 —

6q16.1 96.9-97.2 206 kB rs12213426 N 2.82 KIAA0776, FHL5

12q24.11b 110.2-111.5b 1.26 MBb rs7962138b Yb 7.20b CUX2, SH2B3, ATXN2, BRAP, ACAD10, ALDH2,
MAPKAPK5, TMEM116, ERP29, nap1, TRAFD1, RPL6,
PTPN11b

14q13.2 35.2-35.4 190 kB rs10141289 N 3.17 GARNL1, BRMS1L

21q21.2 23.0-23.1 107 kB rs7280779 Y 2.80 —

LAS 7q31.32b 123.0-123.2b 203 kBb rs1008539b Nb 7.18b ASB15, LMOD2, WASLb

10q24.1 99.1-99.2 85 kB rs2297668 Y 3.06 RRP12, PGAM1, EXOSC1

10q24.33 104.9-105.1 237 kB rs1063461 N 3.94 INA, PCGF6, TAF5, USMG5, PDCD11

CE 2q32.2 190.2-190.4 169 kB rs7571089 Y 2.54 ANKAR, OSGEPL1, ORMDL1, PMS1

6q16.1 97.0-97.1 67 kB rs12207471 Y 3.16 KIAA0776

10q22.1 73.8-74.0 218 kB rs7918099 Y 3.03 DNAJB12, CBARA1

12q13.12 48.2-48.5 257 kB rs4641552 Y 3.07 SPATS2, KCNH3, MCRS1, FAM186B, PRPF40B,
FMNL3, TMBIM6

14q13.2 35.1-35.4 377 kB rs4981309 N 4.83 GARNL1, BRMS1L

14q23.2 62.9-63.0 108 kB rs7140274 Y 4.12 PPP2R5E

17p13.1 7.3-7.4 129 kB rs9890920 N 4.94 TMEM102, FGF11, CHRNB1, ZBTB4, POLR2A,
TNFSF12

20p11.21 25.8-24.9 112 kB rs6050070 Y 2.62 —

SVD 1q22 154.7-154.8 113 kB rs1171561 Y 3.99 MEF2D, IQGAP3

4q24 103.9-104.2 322 kB rs11722779 Y 3.78 MANBA, UBE2D3, CISD2, SLC9B1, SLC9B2

12q24.12 110.5-110.9 411 kB rs11066090 N 2.81 ATXN2, BRAP, ACAD10, ALDH2, MAPKAPK5,
TMEM116

MO All IS 5p14.1 29.0-29.1 125 kB rs606408 Y 4.47 —

6q16.1 96.9-97.2 226 kB rs12210146 N 4.07 KIAA0776, FHL5

12q24.11 109.8-110.0 192 kB rs4378452 N 4.02 MYL2, CUX2

12q24.12 110.2-111.5 1.26 MB rs6490294 N 3.78 CUX2, SH2B3, ATXN2, BRAP, ACAD10, ALDH2,
MAPKAPK5, TMEM116, ERP29, nap1, TRAFD1, RPL6,
PTPN11

LAS 9p21.3b 21.9-22.1b 179 kBb rs9632884b Yb 7.67b CDKN2A/Bb

9q33.2 122.4-122.6 169 kB rs1886337 N 2.99 MEGF9

10q22.1 72.6-72.6 78 kB rs10999709 Y 3.00 UNC5B

CE 2q13 112.5-112.6 104 kB rs7583755 Y 2.67 TMEM87B, FBLN7

2q32.2 190.2-190.5 297 kB rs920427 Y 3.87 ANKAR, OSGEPL1, ORMDL1, PMS1

6q16.1 97.0-97.1 48 kB rs12207471 Y 2.55 KIAA0776

9q33.2 122.4-122.6 162 kB rs10491784 N 2.95 MEGF9

10q22.1 73.8-74.0 190 kB rs10823921 Y 2.60 CBARA1

20p11.21 24.7-24.9 227 kB rs6083652 Y 3.19 —

SVD 1q22 154.7-154.8 97 kB rs3790455 Y 2.64 MEF2D, IQGAP3

4q24b 103.8-104.2b 455 kBb rs223308b Yb 6.65b MANBA, UBE2D3, CISD2, SLC9B1, SLC9B2b

5q31.1 132.4-132.5 85 kB rs4321746 Y 2.85 HSPA4

17q21.31b 40.9-42.3b 1.4 MBb rs2463519b Yb 6.33b ARHGAP27, PLEKHM1, CRHR1, MAPT, KIAA1267,
LRRC37A, ARL17P1, ARL17, NSFb

MA All IS 3q11.2 96.6-96.8 228 kB rs4498047 Y 2.50 —

9q22.32 98.2-98.4 182 kB rs7857261 Y 3.15 SLC35D2, ZNF367, HABP4, CDC14B

Continued
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Analysis of loci previously shown to reach

genome-wide significance for association with

migraine showed several variants nominally associated

with IS or its subtypes and vice versa. In fact, single

variants reached a high threshold of statistical signifi-

cance, e.g., variants on 9p21, a major risk locus for

LAS14,15 reaching very low p values in MO (table e-3).

However, in all instances index SNPs for the tested

phenotype were in poor LD (r2 , 0.4) with published

risk SNPs making it unlikely that the same variants

confer risk to both stroke and migraine.

CPSM analysis revealed several chromosomal re-

gions with strong evidence for genetic overlap between

migraine and IS pointing to shared biological mecha-

nisms, including loci already shown to be associated

with either migraine or stroke such as a chromosome

12 locus previously implicated in IS, coronary artery

disease, hypertension, diabetes, and blood cell traits

including platelet count.19,28–30 Interestingly, MRVI1

on chr11, another locus previously associated with

platelet aggregation,31 showed genetic overlap between

migraine and IS, adding to previous data suggesting a

shared role of platelet dysfunction in migraine and IS.9

Mendelian randomization studies and interventional

studies are needed to determine the exact role of pla-

telets in mediating such genetic risk. We also demon-

strated genetic overlap between migraine and IS at

chromosome 9p21 especially for LAS.

There was genetic overlap at loci not reaching

genome-wide significance in migraine or stroke

GWAS. A shared locus for all migraine and LAS on

7q31.32 includes the LMOD2-WASL gene region.

LMOD2 encodes leiomodin2 that antagonizes tropo-

modulin, an actin-capping protein.32 WASL is impli-

cated in stabilizing endothelial adherens junctions,33

and is important for synapse development.34 We also

found overlapping regions for SVD with MO includ-

ing a locus on 4q24 that encompassesMANBA, which

encodes b-mannosidase. Mutations in MANBA are

associated with epileptic encephalopathy35 and leuko-

encephalopathy.36 This region also contains SLC9B2,

previously associated with essential hypertension,37 a

major risk factor for SVD. A second shared risk locus

between MO and SVD points to MAPT, the gene

encoding tau protein on chromosome 17.

We used the largest collections of GWAS data cur-

rently available for migraine11 and IS,15with 4 different

but complementary approaches for analysis of genetic

overlap including novel methodology (CPSM).38 Pol-

ygenic scores reflect multiple variants with very small

effect sizes distributed across the whole genome

whereas our analysis of known loci and CPSM analysis

focus on specific broader regions with highly correlated

p values. Overall, results were remarkably consistent.

Estimates of genetic correlation between phenotypes

were similar in forward and reverse direction as were

results of polygenic scores.

Our study also has limitations. First, some patients

with MA might have been misdiagnosed with IS and

vice versa. However, this should have shifted the re-

sults towards a stronger overlap between IS and

MA, whereas we found stronger overlap for MO.

Thus, diagnostic misclassification is unlikely to con-

tribute substantially to our results. Second, some pa-

tients may have had both conditions. We can largely

exclude ascertainment bias favoring the selection of

patients with comorbidity substantiated by differen-

ces in age structure between migraineurs and stroke

patients. Third, lacking individual level data, we can-

not exclude some overlap in controls. We carefully

checked for any potential overlap in controls and

excluded samples where appropriate. Bias resulting

from overlapping controls would not explain the dif-

ferences observed between clinical subphenotypes.

Finally, we are missing information on clinical sub-

types for a substantial proportion of patients, reduc-

ing power in subgroup analyses, but this should not

result in systematic bias to explain observed differen-

ces. Future studies on larger samples should further

explore genetic overlap with rare causes of IS such

as dissections, which were not considered separately

in this study.

Table 3 Continued

Migraine
phenotype

Stroke
phenotype Chr band Position, Mb Locus size Peak SNP

Same
directional
effecta

Peak
height Genes within locus

LAS 7q31.32 123.0-123.2 174 kB rs3815458 N 3.53 ASB15, LMOD2, WASL

8p21.2 24.0-24.1 138 kB rs6996722 Y 3.07 —

SVD 4q24 103.9-104.2 323 kB rs3974608 Y 2.83 MANBA, UBE2D3, CISD2, SLC9B1, SLC9B2

Abbreviations: CE 5 cardioembolic; LAS 5 large artery stroke; IS 5 ischemic stroke; MA 5 migraine with aura; MO 5 migraine without aura; SNP 5 single

nucleotide polymorphism; SVD 5 small vessel disease.

All loci with a height .2.5 are shown. For full results, refer to table e-6. Note that coordinates are mapped to NCBI36/hg18. The IS and migraine subtype

where the calculation was performed as well as chromosomal band, chromosomal location, peak SNP, and peak height are displayed. Genes in the region

denote all genes found within the specified region.
aDirection of effect is given for the peak SNP.
bAll loci with height .5.
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Our data provide genetic insights from GWAS

meta-analyses into shared mechanisms of migraine

and IS and may in part explain the relationship

between these 2 common neurovascular disorders.
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Comment:
Tackling shared genetic underpinnings of migraine and ischemic
stroke

In this large collaborative effort, Malik et al.1 explore shared genetic varia-
tion underlying 2 common conditions: migraine and ischemic stroke (IS). Numer-
ous studies have shown an increased risk of stroke in patients with migraine, but
the contribution of genetic factors to this relationship is unclear.2 The authors used
the 2 largest existing meta-analyses of genome-wide association studies (GWAS)
for both phenotypes.

First, they tested whether genetic variants showing genome-wide significant
association with migraine also influence the risk of IS and vice versa. Second, they
constructed a polygenic risk score, combining genetic variants associated with one
disease at lower significance levels, and tested whether it predicts an increased
risk of the other disease. Third, they used cross-phenotype spatial mapping
(CPSM) to identify genomic regions exhibiting similar association patterns across
phenotypes.

Although only one genome-wide significant locus for IS (in the chromosome
9p21 region) was associated with migraine, the CPSM approach showed various
genomic regions affecting both the risk of IS and migraine. An important result
emerging from the polygenic and CPSM approaches is that more shared genetic
variation was observed between IS and migraine without aura (MO) than between
IS and migraine with aura (MA). This is surprising, as phenotypic associations
between migraine and IS were shown to be stronger for, or even restricted to,
MA.2 One potential explanation is that rare variants that are not captured by
genome-wide chips may be influencing the risk of MA and its genetic correlation
with IS. This is consistent with the fact that GWAS failed to reveal a large number
of risk loci for MA, while numerous loci were discovered for MO.3 Nongenetic
factors may also contribute to the association between IS and MA.

While more data are needed to unravel the specific biological pathways
underlying the association between IS and migraine, this study sheds new light
on the pattern by which common variants jointly contribute to both diseases
and their subtypes.

1. Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and
ischemic stroke: a genome-wide analysis of common variants. Neurology 2015;84:
2132–2145.

2. Schürks M, Rist PM, Bigal ME, et al. Migraine and cardiovascular disease: systematic
review and meta-analysis. BMJ 2009;339:b3914.

3. Anttila V, Winsvold BS, Gormley P, et al. Genome-wide meta-analysis identifies new
578 susceptibility loci for migraine. Nat Genet 2013;45:912–917.
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