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Abstract: The mechanisms of chronic pain are complex, and genetic factors play an essential role in
the development of chronic pain. Neuropathic pain (NP) and inflammatory pain (IP) are two primary
components of chronic pain. Previous studies have uncovered some common biological processes
in NP and IP. However, the shared genetic mechanisms remained poorly studied. We utilized
multi-omics systematic analyses to investigate the shared genetic mechanisms of NP and IP. First, by
integrating several genome-wide association studies (GWASs) with multi-omics data, we revealed the
significant overlap of the gene co-expression modules in NP and IP. Further, we uncovered the shared
biological pathways, including the previously reported mitochondrial electron transport and ATP
metabolism, and stressed the role of genetic factors in chronic pain with neurodegenerative diseases.
Second, we identified 24 conservative key drivers (KDs) contributing to NP and IP, containing
two well-established pain genes, IL1B and OPRM1, and some novel potential pain genes, such
as C5AR1 and SERPINE1. The subnetwork of those KDs highlighted the processes involving the
immune system. Finally, gene expression analysis of the KDs in mouse models underlined two of
the KDs, SLC6A15 and KCNQ5, with unidirectional regulatory functions in NP and IP. Our study
provides strong evidence to support the current understanding of the shared genetic regulatory
networks underlying NP and IP and potentially benefit the future common therapeutic avenues for
chronic pain.

Keywords: genetic regulatory networks; inflammatory pain; key drivers; biological pathways;
multi-omics integration; neuropathic pain

1. Introduction

Neuropathic pain (NP) and inflammatory pain (IP) are two primary components of
chronic pain, which is a common debilitating condition with a prevalence ranging from 30
to 50% in adults worldwide [1]. Poor chronic pain management has led to socioeconomic
burdens and the opioid epidemic crisis [2,3]. NP is characterized by burning, tingling,
electric shock-like pain with numbness or itching [4] and is mainly caused by damage
to neurons involved in peripheral and central nervous system sensitization, including
facial pain, trigeminal neuralgia, and multiple sclerosis pain [5]. In comparison, IP, a
major clinical concern in diseases such as rheumatoid arthritis and osteoarthritis, is often
accompanied by typical inflammatory symptoms, including redness, heat, swelling, and
loss of function [6].
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Previous studies have suggested pathways including ion channels, neurotransmit-
ters, regulatory protein changes in neurons and glial cells involved in NP, and persis-
tent neuroinflammatory or neuroimmune responses involved in IP [7,8]. Studies using
multiple animal experiments have demonstrated common pathways, such as changes in
cytokines/receptors, enhanced glutamate release and receptor function, disinhibition of
the spinal dorsal horn, and glial cell activation in NP and IP [9]. Genetic studies have
shown that genetic factors contribute to 16–50% of chronic pain [10–12], resulting in the
identification of several pain genes, including OPRM1, TRPV1, SCN9A, COMT, MTHFR,
TNFA, GCH1, ESR1, ABCB1, P2RX7, CHRNA6, and CACNG2 [13–15]. However, the shared
genetic mechanism underlying NP and IP has never been studied.

To date, various pharmacological strategies have been developed to treat these two
types of chronic pain. Typically, antidepressants and antiepileptic drugs are effective for
NP [16], while non-steroidal anti-inflammatory drugs are more commonly used for IP [17].
Although some current drugs have cross-analgesic effects, the underlying mechanism is
still unclear. Moreover, effective drug treatments against both NP and IP with few side
effects are still lacking [18].

Here we integrated genetic signals from recent genome-wide association studies
(GWASs) of NP and IP and multi-omics data to investigate the shared genetic mechanisms
in NP and IP. Thus, our findings may provide system-level insights into NP and IP from a
genetic perspective and potential therapeutic and preventive targets for chronic pain.

2. Materials and Methods
2.1. Data Collection and Filtration of GWASs on NP and IP

We obtained the summary-level data from 21 public GWASs [19,20]. Chronic pain-
related phenotypes were selected using the keyword “chronic pain”. Each pain phenotype
was classified by the definition of NP and IP by ICD11 and previous literature [4–8].
In detail, the traits with trigeminal neuralgia, sciatica, neuroglia and neuritis, multiple
sclerosis, and neuropathic facial pain were classified as NP; traits with rheumatoid arthritis,
osteoarthritis, and ankylosing spondylitis were classified as IP. Only traits with a sample
size > 10,000 and case count > 500 were selected. We only included the samples with
European ancestry due to the data availability. The details are listed in Table S1. All
the GWAS results in VCF format were processed with in-house scripts (https://github.
com/swang05/chronicpain.git, accessed on 25 February 2022) to (1) include minor allele
frequency > 0.05 and imputation quality > 0.3 and (2) rank all the SNPs by the −log10
p-values in each study to select the top 50% most significant loci [21]. We further applied a
linkage disequilibrium (LD) filter to only keep one SNP in a strong LD block. Specifically,
we calculated the LD r-square (r2) for each pair of adjacent SNPs by plink 1.9 [22] with data
of 503 European samples from the 1000 Genomes Phase 3 European data as reference [23].
For each SNP pair, we pruned one if the estimated r2 > 0.5 to only keep the most significant
signal based on the associated p values. The LD filtration step was repeated until no more
SNPs were excluded in an iteration.

2.2. Curation of Association between SNPs and Genes

To understand the functions of the GWAS SNPs, we annotated the filtered SNPs with
varied supportive datasets. We obtained the curated cis-eQTL data from Genotype-Tissue
Expression (GTEx) project release v8 [24,25] for 49 different tissues. This dataset contains
well-annotated SNP–gene association based on permutations. Only associations with
qval ≤ 0.05 were retained in the analysis. Additionally, we attempted to link the SNPs to
the nearby genes. We first defined the association between the SNP and the genes within
50 kb and kept the SNP–gene associations with sufficient evidence (score must be greater
than 4, which indicates the supportive evidence from both transcriptional factor binding
and DNase peak) in the Regulome database [26].

https://github.com/swang05/chronicpain.git
https://github.com/swang05/chronicpain.git
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2.3. Construction of Gene Co-Expression Modules

We obtained the gene expression data from GTEx [24,25] for 15 tissues that are po-
tentially associated with NP and/or IP, namely brain amygdala, brain hippocampus,
brain hypothalamus, brain cortex, brain frontal cortex, brain anterior cingulate cortex,
brain caudate, brain cerebellar hemisphere, brain cerebellum, brain nucleus accumbens,
brain putamen, brain substantia nigra, brain spinal cord, tibial nerve, and whole blood.
After checking the potential batch effects introduced by age and sex, we constructed co-
expression modules by weighted gene co-expression network analysis (WGCNA) [27]
using samples from 15 tissues, each of which includes more than 80 donors that are sup-
posed to be healthy population control [28,29], in R (version 4.1.0) with WGCNA package
(version 1.70-3) (Figures S1–S15). We excluded the modules with less than 10 genes in
the downstream analysis. As a result, we generated a total of 799 co-expression modules.
The biological processes of each module were annotated with 1615 canonical Reactome
pathways and 186 canonical Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
from MSigDB [30,31]. Statistical significance was determined by Fisher’s exact test with
Bonferroni-corrected p < 0.05.

2.4. Identification of Associated Modules in NP and IP

We conducted marker set enrichment analysis (MSEA, Mergeomics R package, version
1.22.0, Open source, Los Angeles, CA, USA) to identify overrepresented modules in NP and
IP for each GWAS [21]. Three inputs are required for MSEA: (1) filtered SNPs, (2) SNP–gene
mapping information, and (3) co-expression modules. Briefly, MSEA evaluated the enrich-
ment of the disease SNPs in each co-expression module compared with random status
with chi-square statistics. The Benjamini–Hochberg FDRs were calculated across all tested
modules for each GWAS.

We further employed meta-MSEA analysis to meta-analyze the signals across different
studies to obtain robust signals. Meta-MSEA will calculate the meta-Z-score by Stouffer’s
Z score method utilizing the estimated p values from MSEA and then convert it back to
the meta-p-value. The Benjamini–Hochberg method was applied to generate the final
meta-FDR. We only considered the co-expressed modules with meta-FDR < 0.05 for the
downstream analysis [32].

2.5. Evaluation of Shared Genetic Mechanism between NP and IP

We assessed the genetic overlap between NP and IP utilizing significant co-expression
modules identified with meta-MSEA. First, we compared the significant modules associated
with NP and IP and identified the shared ones in both conditions. Next, for the modules
specific in NP and IP, we took advantage of the annotations of the modules to investigate
whether these condition-specific modules indeed overlapped in biological pathways. The
enrichments of the overlapping modules were estimated through permutation tests by
randomly assigning the significant modules. We defined a “success” as the overlap for
the permuted lists being no less than the observation. The p values were estimated by the
number of “successes” in 100,000 permutations. The enrichment fold was obtained with
the observation divided by the median of the permutations.

To identify the core genes contributing to both conditions, we constructed supernets
based on the pathway analysis. We aggregated the modules for each pathway in NP and
IP separately. We then merged the modules from NP and IP for an overlapping pathway
where more than 15% of genes are overlapped in both NP and IP and created 47 functionally
categorized supernets [33].

2.6. Identification and Consolidation of Key Drivers in NP and IP

The co-expression modules identified by meta-MSEA associated with NP and/or IP
and mapped to graph gene–gene interactions in 12 NP- and/or IP-related tissues were
obtained from the GIANT project [34]. We performed the weighted key driver analysis
with the wKDA function implemented in the Mergeomics package. Briefly, wKDA will



Biomolecules 2022, 12, 1454 4 of 14

first identify potential hub genes with sufficient numbers of genes connected, followed
by building subnetworks with those hub genes with one-edge neighbors. All the genes
of each supernet defined above will be mapped to the subnetworks to evaluate whether
these genes are overrepresented in a certain subnetwork. The enrichment of each supernet
was estimated through permutation tests, and p values were generated based on the null
distribution. We identified the key drivers (KDs) based on the FDR < 0.05 and ranked
the KDs by the number of tissues with each KD. We primarily focused on the KDs with
supportive evidence in at least two tissues, namely conservative KDs.

2.7. Systematic Analyses of Conservative KDs

We generated a subnetwork with the conservative KDs with the one-edge neigh-
bors using the protein interaction information from PCNet [35]. PCNet has integrated
21 different network databases and is carefully curated to increase the confidence of the
interactions. We constructed the network for the KDs with the interactions in PCNet and
visualized the network using Cytoscape v 3.3.0 (Open source, San Diego, CA, USA) [36].
For the nodes, we only kept the ones with functional SNPs achieving genome-wide signifi-
cance (p < 5 × 10−8) [37]. The subnetwork was annotated with Reactome and KEGG with
a Fisher’s exact test with Bonferroni-corrected p < 0.05. Gene ontology (GO) analysis on the
KDs was performed using the GO Database [38,39].

2.8. Changes in KD Expression in NP and IP Mouse Models

We also determined the gene expression changes in two mouse models: spared nerve
injury (SNI) for NP and complete Freund’s adjuvant (CFA) model for IP. We obtained the
gene expression data from public data [40] for the KDs and calculated the enrichment factor
by comparing the gene expression level in the mouse model versus the controls (CTR) after
normalization by expression in blood:

EnrichFactor =
Expression([SNI|CFA]_tissue)/Expression([SNI|CFA]_blood)

Expression(CTR_tissue)/Expression(CTR_blood)

where tissue could be the whole brain, dorsal root ganglia, or spinal cord.

3. Results
3.1. NP- and IP-Related Co-Expression Modules Are Significantly Overlapped

We obtained RNA-seq data from GTEx v8 for 15 NP- and IP-associated tissues [24,25].
Utilizing weighted gene co-expression network analysis (WGCNA), we defined
799 co-expression modules with more than 10 genes from 15 NP- and/or IP-associated
tissues (Figure 1, see Section 2). To identify the modules that are highly correlated with the
two conditions, we integrated the SNPs from recent GWASs for NP and IP specifically [41]
to perform the marker set enrichment analysis (MSEA) [21]. Briefly, we extracted the top
SNPs from each GWAS and mapped them to the corresponding genes with known eQTL or
genomic coordinate information together with evidence from Regulome. To reduce the bias
introduced by multiple SNPs in a linkage block targeting the same gene, we further pruned
adjacent SNPs based on the LD with public data [42]. MSEA was subsequently carried
out in each tissue to evaluate the enrichment of the potential disease SNPs in each module
with a chi-square-like statistic. After meta-analyzing the outputs across all the tissues,
we identified 105 and 106 modules significantly associated with NP and IP, respectively
(false discovery rate (FDR) < 0.05). Expectedly, we observed 34 modules in both conditions,
which is statistically significant through the permutation test (p < 1× 10−5, enrichment fold
2.62, Figure 2A), though there are still several modules that seem to be condition-specific.
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Figure 1. Study schema. We integrated the genetics and functional genomics datasets to identify
NP- and IP-associated co-expression modules. Briefly, GWASs of NP and IP were obtained from
public databases. A comprehensive list of tissue-specific functional genomic datasets was compiled,
including 799 co-expressed modules and SNP-to-gene association. MSEA and meta-MSEA were
performed to identify significantly overrepresented modules. The significant modules were annotated
to reveal the common pathways of NP and IP. Using the modules, we constructed 47 supernets based
on the shared biological processes. We then carried out wKDA to identify the conservative key
drivers by integrating protein interaction networks from multiple pain-related tissues. The final
KDs were mapped to PCNet to build a one-edge subnetwork and checked with the gene expression
regulations in mouse models of neuropathic and inflammatory pain.
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Figure 2. NP- and IP-associated co-expression modules and biological pathways are highly over-
lapped. (A) Count of significant modules in NP and IP; (B) count of functional categories from
NP-only and IP-only modules; (C) overlap of top functional categories by NP and IP modules. Only
pathways that appeared in at least three tissues are shown. Ntissue: number of tissues with the
category; * pathway shared: pathways were also indicated in condition-specific modules in both NP
and IP, i.e., the overlapped categories in (B).
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3.2. Shared Biological Pathways Contribute to NP and IP

We annotated the co-expression modules with the canonical pathways derived from
Reactome and KEGG databases [30,31]. The shared modules that are associated in at least
three different tissues underlined several pathways involving ATP metabolism, such as
respiratory electron transport, ATP synthesis, the citric acid TCA cycle, oxidative phos-
phorylation, and complex I biogenesis (Figure 2C, Table S2). Surprisingly, we noticed
several neurodegenerative diseases were also showing up, including Parkinson’s disease,
Alzheimer’s disease, and Huntington’s disease.

We further explored the pathways implicated by the condition-specific modules. Of
the 190 significant biological processes of those modules, 23 were shared in both conditions
(14% in NP and 43% in IP, Figure 2B), most of which overlapped with the annotations using
the shared modules, including mitochondrial electron transport, ATP metabolism, and
neurodegenerative diseases (Figure 2C).

3.3. wKDA Identified 24 Conservative KDs Shared in NP and IP

We next identified the key drivers (KDs) contributing to NP and IP. Since the co-
expression modules define the functional correlations exclusively, we involved the topologi-
cal information from the GIANT protein networks of 12 NP- and/or IP-relevant tissues [34].
The condition-specific modules still shared a certain level of biological process, and there-
fore, instead of using shared modules only, we constructed 47 supernets with the modules
that are with the same biological processes in NP and IP. With weighted key driver analysis
(wKDA) implemented in Mergeomics [21], we firstly identified tissue-specific KDs that
are consistently captured in both NP and IP with Bonferroni-corrected p-value < 0.05.
The conservative KDs were subsequently defined as KDs detected in at least two tissues,
yielding 24 conservative KDs (Figure 1 and Table 1). Notably, two KDs, SERPINE1 and
ILB1, were captured in more than five pain-related tissues, suggesting these two KDs to be
closely involved in pathogenesis [43].

Table 1. Conservative KDs identified in NP and IP.

Gene Tissue Ntissue If Known

SERPINE1 amygdala, blood, caudate nucleus, caudate putamen, cerebellum, frontal lobe,
hippocampus, spinal cord, substantia nigra 9 no

IL1B blood, caudate nucleus, caudate putamen, cerebellum, frontal lobe,
hippocampus, spinal cord, substantia nigra 8 yes

C5AR1 amygdala, caudate nucleus, hippocampus, substantia nigra 4 no

CCR7 amygdala, cerebellar cortex, frontal lobe, hippocampus 4 no

ACSBG1 amygdala, caudate nucleus, substantia nigra 3 no

BCL3 blood, frontal lobe, nucleus accumbens 3 no

DCX caudate nucleus, frontal lobe, substantia nigra 3 no

ELANE caudate putamen, hippocampus, nucleus accumbens 3 no

FCER1G caudate nucleus, hypothalamus, spinal cord 3 no

IL12B caudate putamen, frontal lobe, hypothalamus 3 no

OPRM1 caudate putamen, hypothalamus, nucleus accumbens 3 yes

SLC6A15 caudate putamen, hypothalamus, nucleus accumbens 3 no

CCBE1 amygdala, caudate nucleus 2 no

CRHR2 hypothalamus, nucleus accumbens 2 no

DENND5A amygdala, spinal cord 2 no

DSCAML1 cerebellar cortex, substantia nigra 2 no
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Table 1. Cont.

Gene Tissue Ntissue If Known

F2RL1 blood, caudate nucleus 2 no

FCGR2B amygdala, cerebellum 2 no

KCNQ5 amygdala, caudate putamen 2 no

LBP cerebellum, hippocampus 2 no

NPAS3 frontal lobe, substantia nigra 2 no

PTGDR2 caudate putamen, hypothalamus 2 no

TMPRSS3 caudate putamen, substantia nigra 2 no

TRPC7 nucleus accumbens, substantia nigra 2 no

Ntissue: number of tissues; If Known: whether gene is a known pain gene.

Additionally, we further compared the top KDs with known pain genes obtained from
the Pain Gene Resource of the International Association for the Study of Pain (IASP) Pain
Research Forum [13], which included 94 pain-associated genes and phenotypes. There
are two conservative KDs (IL1B and OPRM1) that were reported as pain genes previously
(permutation test p = 0.0047, enrichment fold = 19.67). The significant overlap with known
pain genes further strengthens our confidence that the identified conservative KDs are
involved in pain pathogenesis.

Further, we generated an integrated network by involving the conservative KDs and
their one-edge neighbors according to the more conservative interaction information from
PCNet, which was carefully curated after integrating 21 network databases [35]. We found
the KDs showed a direct connection to 141 genome-widely significant GWAS hits in NP
(21% of total GWAS hits) and 47 in IP (13% of total GWAS hits) (Figure 3A). Pathway analysis
of the genes involved in this network highlighted the processes related to the immune
system (Figure 3B). GO analysis presented significant enrichments on the neuron projection
membrane (GO: 0032589, enrichment fold = 28.02, Bonferroni’s corrected p = 0.0026) and
neuronal cell body (GO:0043025, enrichment fold = 4.18, Bonferroni’s corrected p = 0.015).
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3.4. Shared KDs Significantly Overlapped with Known Pain Genes

We identified the changes in KD expression in the pain-related tissue of NP and IP
mice models, and various gene expression patterns of KDs were observed between NP
and IP. In detail, a classic pain gene, IL1B, was generally upregulated in the IP model
while downregulated in the NP model. Moreover, in IP mice, SERPINE1 was upregulated
in the brain and spinal cord while downregulated in NP mice. In contrast, C5AR1 was
upregulated in the spinal cord of IP animals but did not change in the spinal cord of NP
animals. Remarkably, SLC6A15 and KCNQ5 exhibited unidirectional expression patterns,
with upregulation and downregulation, respectively (Figure 4).

Biomolecules 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 
Figure 4. Differential gene expression in mouse models. Top: pain models, Bottom: tissue, CFA: 
complete Freund’s adjuvant, SNI: spared nerve injury. EnrichFactor: enrichment factor, shown as 
log-scaled values. 

4. Discussion 
Accumulating multiple-dimensional evidence to identify the shared genetic risks un-

derlying relevant diseases has proven to be a promising way forward to elucidate disease 
networks and predict therapeutics [21,44]. For this reason, we integrated genetic signals 
and multi-omics data to investigate the shared genetic mechanisms in NP and IP. Our 
results highlighted the role of several common pathways in NP and IP. Moreover, we 
identified the top KDs strongly associated with NP and IP in multiple pain-related tissues. 
We further analyzed the KDs’ expression in mouse models of NP and IP and determined 
two of the KDs with unidirectional regulatory functions in NP and IP.  

Firstly, we identified several biological pathways significantly overrepresented in 
both NP and IP, including the previously reported mitochondrial electron transport [45] 
and ATP metabolism [46]. Moreover, we revealed three neurodegenerative diseases, Par-
kinson’s disease, Alzheimer’s disease, and Huntington’s disease, as the shared co-expres-
sion modules in NP and IP, positing the connection between neurodegenerative diseases 
and chronic pain. It is generally known that chronic pain is common in the population 
with neurodegenerative diseases, with a prevalence of 40–60% [47–49]. The mechanisms 
of chronic pain in neurodegenerative diseases have been extensively investigated [50–53]. 
Genetic factors such as SCN1B-SCN4B and COMT have been reported to contribute to 
chronic pain in neurodegenerative disease [54–56]. Conversely, previous integrated anal-
ysis of GWAS data found no genetic association between chronic pain and neurodegen-
erative disease [57]. Our study supports the role of the genetic factor for chronic pain in 
neurodegenerative disease. The specific mechanism remains to be further studied. 

Secondly, combining the protein interaction data, we identified 24 conservative KDs 
shared by NP and IP in multiple tissues. Recent studies have found that genetic factors in 
pain susceptibility [58] and shared across chronic pain conditions [59] act through mech-
anisms within the brain. Remarkably, we revealed that the KDs shared by NP and IP are 
mainly expressed in the amygdala, caudate nucleus, caudate putamen, cerebellum, frontal 
lobe, hippocampus, substantia nigra, and other brain tissues (Table 1), which echoes the 
previous study. Notably, the identified KDs contain two well-established pain genes, IL1B 

Figure 4. Differential gene expression in mouse models. Top: pain models, Bottom: tissue, CFA:
complete Freund’s adjuvant, SNI: spared nerve injury. EnrichFactor: enrichment factor, shown as
log-scaled values.

4. Discussion

Accumulating multiple-dimensional evidence to identify the shared genetic risks
underlying relevant diseases has proven to be a promising way forward to elucidate
disease networks and predict therapeutics [21,44]. For this reason, we integrated genetic
signals and multi-omics data to investigate the shared genetic mechanisms in NP and IP.
Our results highlighted the role of several common pathways in NP and IP. Moreover, we
identified the top KDs strongly associated with NP and IP in multiple pain-related tissues.
We further analyzed the KDs’ expression in mouse models of NP and IP and determined
two of the KDs with unidirectional regulatory functions in NP and IP.

Firstly, we identified several biological pathways significantly overrepresented in both
NP and IP, including the previously reported mitochondrial electron transport [45] and
ATP metabolism [46]. Moreover, we revealed three neurodegenerative diseases, Parkin-
son’s disease, Alzheimer’s disease, and Huntington’s disease, as the shared co-expression
modules in NP and IP, positing the connection between neurodegenerative diseases and
chronic pain. It is generally known that chronic pain is common in the population with neu-
rodegenerative diseases, with a prevalence of 40–60% [47–49]. The mechanisms of chronic
pain in neurodegenerative diseases have been extensively investigated [50–53]. Genetic
factors such as SCN1B-SCN4B and COMT have been reported to contribute to chronic pain
in neurodegenerative disease [54–56]. Conversely, previous integrated analysis of GWAS
data found no genetic association between chronic pain and neurodegenerative disease [57].
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Our study supports the role of the genetic factor for chronic pain in neurodegenerative
disease. The specific mechanism remains to be further studied.

Secondly, combining the protein interaction data, we identified 24 conservative KDs
shared by NP and IP in multiple tissues. Recent studies have found that genetic factors in
pain susceptibility [58] and shared across chronic pain conditions [59] act through mech-
anisms within the brain. Remarkably, we revealed that the KDs shared by NP and IP
are mainly expressed in the amygdala, caudate nucleus, caudate putamen, cerebellum,
frontal lobe, hippocampus, substantia nigra, and other brain tissues (Table 1), which echoes
the previous study. Notably, the identified KDs contain two well-established pain genes,
IL1B [60,61] and OPRM1 [62–64], adding confidence to our analyzed results. Moreover, we
identified another interleukin family member, IL12B, as a KD, emphasizing the involvement
of interleukins in NP and IP pathology. Moreover, the directly connected subnetwork of
these KDs enriching substantial GWAS signals highlighted the role of regulation in the im-
mune system in NP and IP. A recent study has revealed dual neuronal and immunological
etiology for pain susceptibility using GWAS meta-analysis [58]. Interestingly, although an-
other study reported no association between chronic pain and inflammatory cytokines [59],
substantial evidence has linked inflammation and the immune system to multiple chronic
pain conditions [65,66]. Consistent with Evelina Mocci et al.’s analysis [58], we further
highlight the role of regulation in the immune system and neuronal function shared by
NP and IP. For instance, it has been reported that the complement system significantly
contributes to the development of NP and IP, but the underlying mechanisms are poorly
investigated [67–69]. We found that C5AR1 is a shared KD of NP and IP. This finding is
supported by previous research showing that complement component 5a (C5a) induces
mechanical hypersensitivity by activating a macrophage–neuron signaling cascade involv-
ing TRPV1 and CGRP receptors [70]. Accordingly, the C5a receptor 1 antagonists PMX53
and PMX205 can be further investigated as new targets for regulating NP and IP [71,72].
Somewhat unexpectedly, asthma and diabetes were revealed in our pathway analysis of the
KDs’ subnetwork, which was confirmed by Evelina Mocci et al.’s analysis [58]. Moreover,
these two un-pain traits were further demonstrated to increase pain susceptibility.

Additionally, our study reveals that SERPINE1 is a shared key gene of NP and IP. In
recent years, an increasing number of studies have focused on the function of plasminogen
activator inhibitor-1 (PAI-1), encoded by SERPINE1, in neurological diseases, independent
of its role as a tissue-type plasminogen activator [73–75]. However, few studies reported
the role of SERPINE1 in chronic pain. Our study highlights the functional role of SER-
PINE1 in chronic pain from a genetic perspective, which we speculate may be caused by
SERPINE1 mutation leading to aberrant neurotransmitter metabolism and altered synaptic
plasticity [73,75,76].

Thirdly, gene expression analysis of the KDs in mouse models shows varied changes
in the pain-related tissues under NP and IP development. SERPINE1 was upregulated
in the brain and spinal cord in IP mice while downregulated in NP mice. In contrast,
C5AR1 was upregulated in the spinal cord of IP animals but did not change in the spinal
cord of NP animals. However, we found that two genes, SLC6A15 and KCNQ5, exhibit
unidirectional regulation in the mouse models of NP and IP, respectively. SLC6A15 encodes
neuronal amino acid transport and was previously reported as a depression gene [77].
In vitro experiments demonstrated that deficiency of SLC6A15 reduced the levels of proline
and other neutral amino acids in hippocampus neurons, whereas SLC6A15 overexpression
increased intraneuronal glutamate concentrations [78], suggesting that SLC6A15 positively
regulates neuronal excitability. In addition, the neurites in SLC6A15 knockout neurons grow
faster with improved mitochondrial function, suggesting that SLC6A15 negatively regulates
nerve growth [79], thereby promoting the initiation and development of neuropathic pain.
Our analysis of animal data showed that the expression of SLC6A15 was upregulated in
the brain, spinal cord, and DRG in IP and NP mice, which corroborated the above results.

In comparison, KCNQ5, which encodes the KCNQ channel subtype Kv7.5, is widely
distributed in the nervous system and regulates resting potential and nociceptor excitabil-
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ity [80]. The opening of Kv7.5 on the presynaptic membrane helps maintain the negative
membrane potential and reduces neurotransmitter release [81]. The potent Kv7.5 stimulator
gabapentin is a classic drug for neuropathic pain treatment [82]. Another Kv7.5 activator,
retigabine, can relieve CFA-induced IP in the mice model [83]. Our results from animal
models show that the expression of KCNQ5 is downregulated in the nervous tissue of both
IP and NP animals, which is consistent with previous findings. In humans, missense muta-
tions in KCNQ3, another member of the KCNQ family, have been reported to help with
pain relief in patients with hereditary erythematosus [84]. However, the function of KCNQ5
in chronic pain has not yet been elucidated. Our integrated analysis validates KCNQ5 as
a key driver in regulating NP and IP. Taken together, the unidirectional changes of the
gene expression implicated in SLC6A15 and KCNQ5 may be tractable common therapeutic
targets for chronic pain.

Although our work greatly extends the understanding of the shared mechanism
between NP and IP, several limitations should be mentioned. First, since most of the
GWASs on chronic pain were carried out with populations of European ancestry, whether
our observation is sensitive to population stratification is still undetermined. Following
studies with non-European samples are critical to verify our results. Second, though we
include various types of NP, such as facial pain and sciatica, the lack of multiple types of
IP still enervates our conclusions; i.e., we are uncertain whether the common pathways
and KDs revealed can be extrapolated to all types of IP. In addition, as specific information
on the clinical severity score was lacking, we did not incorporate clinical severity scores
into our analyses. Therefore, our data only demonstrated that these genes are involved in
the NP and IP but cannot explain their contribution to the severity of pain. Last but not
least, due to a lack of suitable samples, we did not identify the effect of specific cell types
on changes in KDs’ expression, which should be taken into account in future prospective
work in the field. Nonetheless, our work provides a systems-level understanding of the
two main components of chronic pain. It potentially provides therapeutic and predictive
targets to help achieve system-wide relief of chronic pain.

5. Conclusions

In summary, by integrating several genome-wide association studies (GWASs) with
multi-omics data, we revealed the significant overlap of the gene co-expression modules
in NP and IP. Further, we uncovered several shared biological pathways, including the
previously reported mitochondrial electron transport and ATP metabolism, and stressed
the genetic role in chronic pain in neurodegenerative disease. Second, we identified 24
vital conservative drivers (KDs) contributing to NP and IP, including two well-established
pain genes, IL1B and OPRM1, and some novel potential pain genes, such as C5AR1 and
SERPINE1. The subnetwork of those KDs highlighted the processes involving the immune
system. Finally, gene expression analysis of the KDs in mouse models underlined two
of the KDs, SLC6A15, and KCNQ5, with unidirectional expression in NP and IP, which
serve as potential targets for future medicine design for chronic pain. Altogether, our
study provides strong evidence to support the current understanding of the shared genetic
regulatory networks underlying NP and IP and potentially benefit the future design of the
common therapeutic avenues for chronic pain.

Supplementary Materials: The following supporting information can be downloaded at: https://
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Figure S4: Brain cortex; Figure S5: Brain Frontal cortex; Figure S6: Brain Anterior cingulate cortex;
Figure S7: Brain caudate; Figure S8: Brain cerebellar hemisphere; Figure S9: Brain cerebellum; Figure
S10: Brain nucleus accumbens; Figure S11: Brain putamen; Figure S12: Brain substantia nigra; Figure
S13: Brain spinal cord; Figure S14: Nerve tibial; Figure S15: Whole blood. Figure S16: C5ar1 and
Serpine1 mRNA were downregulated in the ipsilateral spinal cord after SNI. Table S1: Descriptive
characteristics of the study cohorts; Table S2: Overlap of independent functional categories by NP
and IP modules.
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