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Background-—Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a

familial predisposition. Given that aneurysm types are known to co-occur, we hypothesized that there may be shared genetic risk

factors for IAs, AAAs, and TAAs.

Methods and Results-—We performed a mega-analysis of 1000 Genomes Project-imputed genome-wide association study (GWAS)

data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004

controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21,

18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA-, AAA-, and

TAA-associated SNPs and tested these scores for association to case-control status in the other aneurysm cohorts; this revealed

no shared polygenic effects. Similarly, linkage disequilibrium–score regression analyses did not show significant correlations

between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single-

nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls

(IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to

AAA (odds ratio [OR]=1.11; P=4.1910�5
) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1910�3

).

Conclusions-—Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant

effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication. ( J Am Heart Assoc.

2016;5:e002603 doi: 10.1161/JAHA.115.002603)
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I
ntracranial aneurysms (IAs), abdominal aortic aneurysms

(AAAs), and thoracic aortic aneurysms (TAAs) are 3

different forms of arterial vessel wall dilatations, which can

all lead to rupture with a high case fatality rate.
1–3

A

co-occurrence of AAA and TAA is known,
4,5

and a weak

co-occurrence of IA and AAA has also been suggested.
6,7
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Furthermore, IA, TAA, and AAA cluster within affected

families,
8,9

suggesting a shared genetic background of these

3 diseases.

Genome-wide association studies (GWASs) have revealed a

handful of genetic risk factors for IA,
10–12

AAA,
13–16

and

TAA,
17

and of these identified loci, locus 9p21 near CDKN2A,

CDKN2B, and CDKN2BAS appears to be shared by IA and

AAA.
11,18

However, the heritability explained by the risk loci

identified to date is low for all 3 diseases, suggesting that

many aneurysm risk loci remain to be discovered. Among

these unknown and known risk loci, there could be shared

risk loci for multiple types of aneurysms.

In this study, we searched for shared genetic risk factors

for aneurysms. We combined individual participant GWAS

data from a Dutch and a Finnish IA cohort,
12

a Dutch AAA

cohort,
14

and a TAA cohort from the United States
17

for a

GWAS mega-analysis across these traits. In a complementary

approach, we performed a polygenic analysis to test groups

of single-nucleotide polymorphisms (SNPs) for a joint effect

on risk across diseases. Finally, we tested the effect of bona-

fide risk SNPs from previously published IA, AAA, and TAA

GWASs on the other aneurysm types by meta-analyzing

summary statistics in the GWAS cohorts of IA, AAA, and TAA,

extended by association results of additional IA and AAA

GWAS cohorts.

Methods

Study Populations

For the GWAS mega-analysis and polygenic analysis, we used

data of subjects genotyped in previously published GWAS

cohorts of aneurysm cases and controls: 2 IA cohorts, 1 from

the Netherlands
12,19,20

and 1 from Finland,
11,12,21,22

1 AAA

cohort from the Netherlands
14,18

and 1 TAA cohort from the

United States.
17

All studies were approved by the relevant

medical ethical committees, and all participants provided

written informed consent. All study populations were previ-

ously described in detail.
12,17,19,20

Below is a brief description

of each study population.

IA cases in the Dutch cohort (n=786) were admitted to the

University Medical Center Utrecht, (Utrecht, The Netherlands)

between 1997 and 2011. All cases were genotyped on

Illumina CNV370 Duo BeadChips (Illumina, San Diego, CA).

Controls (n=2089) were ascertained by the Rotterdam Study,

a population-based cohort of subjects age 45 years and older

recruited from a district in Rotterdam (The Netherlands).

These controls were genotyped on Illumina HumanHap550

BeadChips.
23

The Finnish IA cohort consisted of 790 cases treated at the

Helsinki and Kuopio University hospitals and 2396 controls

that were genetically matched to cases.
24

Of these, 1666

controls were extracted from the Helsinki Birth Cohort Study

(HBCS).
21

Additionally, 651 controls were extracted from

anonymous donors from Kuopio University Hospital and

Helsinki and from the Health 2000 study (H2000).
22

All

cases were genotyped on Illumina CNV370 Duo BeadChips,

and controls were genotyped on Illumina HumanHap550

BeadChips (HBCS) and on Illumina CNV370 Duo BeadChips

(anonymous donors and H2000).

The Dutch and the Finnish IA cohort both included cases

with ruptured and unruptured IA. Ruptured IA cases were

defined by symptoms suggestive of subarachnoid hemorrhage

(SAH) combined with subarachnoid blood on a computed

tomography (CT) scan and a proven IA at angiography

(conventional angiogram, CT- or magnetic resonance [MR]

angiogram). Unruptured IA cases were identified by CT or MR

angiography or conventional angiography in the absence of

clinical or radiological signs of SAH. Patients with fusiform IA,

possible traumatic SAH, and polycystic kidney disease were

excluded.

The AAA cohort consisted of 859 cases, predominantly

with unruptured AAA. These cases were recruited from 8

medical centers in The Netherlands, mainly when individuals

visited their vascular surgeon in the outpatient clinic or, in

some cases, during hospital admission for elective or

emergency AAA surgery. An AAA was defined as an infrarenal

aorta diameter of ≥30 mm. Mean AAA diameter was

58.4 mm. Of these patients, 530 had undergone surgery,

including 43 with rupture. Genotyping was performed on

Illumina HumanHap610 chips.
14

As controls, we included

3110 Dutch subjects who were recruited as part of the

Nijmegen Biomedical Study (n=1832) and the Nijmegen

Bladder Cancer Study (n=1278).19,20 These controls were

genotyped on Illumina CNV370 Duo BeadChips.

The TAA cohort consisted of 765 cases with either an

ascending TAA without dissection (n=401) or with a type A

and/or type B aortic dissection (n=364). All cases were more

than 30 years old, did not have a first-degree relative with

TAA or dissection, and had no evidence of a syndromic form

of TAA or dissection. Samples were genotyped with Illumina

CNV370-Quad BeadChips. Controls (n=2229) were included

from the Wellcome Trust Case-Control Consortium (WTCCC)

1958 Birth Cohort (n=1355), and from the US National

Institute of Neurological Disorders and Stroke (NINDS)

Repository’s Neurologically Normal Control Collection

(n=874).

Quality Control

We performed quality control (QC) in each of the 4 cohorts

separately, using PLINK software (version 1.07).
25

After

removal of SNPs with A/T or C/G alleles and SNPs that
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were not called in any individual, we performed sample QC

and SNP QC.

Sample QC was performed after merging cases and controls,

using a subset of common, high-quality SNPs (as defined by

SNPs without deviation from Hardy-Weinberg equilibrium [HWE;

P>0.001], with high minor allele frequency [MAF; >20%], and

with low rate of missing genotypes [<1%]). Linkage disequilib-

rium (LD) pruning (r
2>0.5) was performed. Subjects were

removed based on the following 3 criteria: missing genotypes

(subjects with a call rate below 95% were removed); heterozy-

gosity (subjects were excluded if the inbreeding coefficient

deviated more than 3 SDs from the mean); and cryptic

relatedness (by calculating identity-by-descent [IBD] for each

pair of individuals). In each pair with an IBD proportion of >20%,

a subject was excluded, if it exhibited distant relatedness with

more than 1 individual. For case-control pairs, we removed the

control subject. In the case-case or control-control pairs, the

subject with the lowest call rate was excluded.

Using these common, high-quality SNPs, we performed

principal components (PCs) analysis using EIGENSTRAT on

the remaining study subjects and HapMap-CEU subjects. We

excluded SNPs from 3 regions with known long-distance LD:

the major histocompatibility region (chr6: 25.8–36 Mbp); the

chromosome 8 inversion (chr8: 6–16 Mbp); and a chromo-

some 17 region (chr17: 40–45 Mbp). We created PC plots

with the first 4 PCs, using R software (version 2.11; R

Foundation for Statistical Computing, Vienna, Austria).
26

Based on visual inspection of these plots, we excluded

subjects that appeared to be outliers with respect to the

CEU (Utah residents with ancestry from northern and

western Europe) or the study population. After outlier

removal, we recomputed PCs for them to be included as

covariates in the logistic regression models. PC plots after

outlier removal are shown in Figure 1.

After sample QC, we excluded SNPs with more than 2%

missing genotypes, MAF <1%, missing genotype rate higher

A B

C D

Figure 1. Principal component analysis (PCA) plots of IA, AAA, and TAA GWAS cohorts. (A) Dutch IA GWAS cohort; (B) Finnish IA GWAS cohort;

(C) AAA GWAS cohort; (D) TAA GWAS cohort. These figures show PCA2 values plotted against PCA1 values for each individual in the 4 GWAS

cohorts (Dutch IA and Finnish IA, AAA, and TAA) of the aneurysm mega-analysis, after removal of outliers from quality control. AAA indicates

abdominal aortic aneurysm; GWAS, genome-wide association study; IA, intracranial aneurysm; TAA, thoracic aortic aneurysm.
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than MAF, and HWE deviation (P<0.001). Because cases and

controls had been genotyped separately, we performed these

QC steps in each study cohort separately and again after

merging cases and controls. We also removed SNPs with a

differential degree of missing genotypes between cases and

controls (P<1910�5
; chi-squared test).

Imputation

For each case-control data set, we performed genotype

imputation using the prephasing/imputation step-wise

approach implemented in IMPUTE2 and SHAPEIT (chunk size

of 3 Mb and default parameters).
27,28

The imputation refer-

ence set consisted of 2184 phased haplotypes from the full

1000 Genomes Project data set (February 2012; 40 318 253

variants). All genomic locations are given in NCBI Build

37/UCSC hg19 coordinates. After imputation, SNPs with an

imputation accuracy score <0.6 or MAF <0.5% were

excluded.

GWAS Mega-Analysis Across IA, AAA, and TAA

We performed a mega-analysis on all 4 GWAS cohorts.

Association testing was carried out in PLINK
25

using

imputed SNP dosages. We included as covariates the first

4 PCs and an indicator variable to adjust for each case-

control data set. SNPs with P<5910�8
were considered as

genome-wide significant. We also performed a GWAS on

each cohort separately and a combined analysis of only the

Dutch and Finnish IA cohort, which was needed for the

polygenic analysis as described below. We calculated

genomic inflation factors (kGC) for each GWAS and the

mega-analysis, defined as the ratio of the median of

the empirically observed distribution of the test statistic to

the expected median.
29

We calculated the statistical power for detecting a

significant association (P<5910�8
) in the mega-analysis

using the genetic power calculator.
30

In case of a risk

allele frequency of 10%, the resulting power is 0.03% at a

relative risk of 1.1 per allele, and 68.7% at a relative risk

of 1.3 per allele, assuming additive effects. In case of a

higher risk allele frequency of 20%, the power is 0.3% at a

relative risk of 1.1 and 98.9% at a relative risk of 1.3 per

allele.

Polygenic Analysis

We performed polygenic analysis as previously described.
31

We used the IA cohorts (Dutch and Finnish cohorts combined)

as a discovery sample and the AAA and TAA cohorts as 2

separate target samples, and vice versa, in all possible

combinations (6 in total).

We pruned the SNPs genotyped or imputed in the

discovery sample, using an LD threshold of r
2>0.1. For each

genomic region, we chose SNPs with the lowest P values in

the GWAS of the discovery sample, in order to retain a set of

independent, maximally associated SNPs. Next, we created

sets of SNPs with disease association in the discovery sample

at 12 different significance thresholds, increasing from

P<5910�8
to P<0.5. For each SNP set, we calculated a

polygenic risk score in each individual of target sample as

follows:

Genetic score ¼ b1x1 þ b2x2 þ � � � þ bnxn;

where xi is the estimated allele dosage (between 0 and 2) in a

given individual, and bi is the effect size from the GWAS in the

discovery sample for the i
th
SNP. We tested the association

between these polygenic risk scores and case-control status

in the target sample using logistic regression, adjusting for

the first 4 PCs in the target sample. For analyses involving the

combined IA cohort as target sample, we also adjusted for

population (Finnish or Dutch). For analyses involving the IA

and AAA cohorts as target and discovery sample, we also

adjusted for the genotype of the known shared IA/AAA risk

SNPs on locus 9p21.
11,18

Table 1. Overview of Study Populations Used for the Specific

Lookup of Known IA, AAA, and TAA Risk SNPs

Cohort Cases (n) Controls (n)

IA

Netherlands 717 1987

Finland 799 2317

Japan 1 288 194

Japan 2 1383 5484

USA+ 2617 2548

@neurIST 717 3296

Total 6548 16 843

AAA

Netherlands 812 2998

Iceland 430 27 712

USA 724 1604

Aneurysm Consortium 1846 5605

New Zealand 1 608 612

New Zealand 2 400 384

Total 4391 37 904

TAA

USA 760 2212

AAA indicates abdominal aortic aneurysm; IA, intracranial aneurysm; SNPs, single-

nucleotide polymorphisms; TAA, thoracic aortic aneurysm.
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LD Score Regression: Heritability Estimation and

Genetic Correlation Analyses

We used LD score regression (LDSC) for heritability estima-

tion and genetic correlation analysis.
32

These analyses were

applied to the same 4 GWAS datasets as used in the GWAS

mega-analysis and polygenic analysis described above (Dutch

IA and Finnish IA, AAA, and TAA), but for this analysis we

only included genotyped SNPs (after QC), and not imputed

SNPs.

GWAS cohorts

Genotyping

2. Polygenic analysis

Logistic regression for each combination:

Disease status (IA / AAA / TAA vs control) <-> polygenic score + PCs + sex

Illumina CNV370

Duo /

HumanHap550

BeadChip

Illumina CNV370

Duo /

HumanHap550

BeadChip

Illumina

HumanHap610 /

CNV370 Duo

BeadChip

Illumina CNV370-

Quad BeadChip

Sample QC, SNP QC and imputation per GWAS cohort

1. GWAS mega-analysis

3094 cases, 9507 controls

Logistic regression:

Disease status (aneurysm vs control) <-> SNP dosage + PCs + GWAS cohort indicator variable

IA (Netherlands)

786 cases

2089 controls

IA (Finland)

790 cases

2396 controls

AAA

859 cases

3110 controls

TAA

765 cases

2229 controls

IA (Netherlands + Finland) AAA TAA

3. Specific look-up of known aneurysm risk SNPs in IA, AAA and TAA

Extraction of 14 aneurysm risk SNPs from GWAS results

(for IA and AAA: inverse-variance fixed-effects meta-analysis)

6 IA GWAS cohorts

6548 cases, 16843 controls

6 AAA GWAS cohorts

4391 cases, 37904 controls

1 TAA GWAS cohort

760 cases, 2212 controls

Figure 2. Work-flow figure. This figure gives an overview of the study methods. AAA indicates abdominal

aortic aneurysm; CNV, copy number variation; GWAS, genome-wide association study; IA, intracranial

aneurysm; PCs, principal components; QC, quality control; SNP, single-nucleotide polymorphism; TAA,

thoracic aortic aneurysm.
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LDSC is a new approach that implements LD-score

weighted linear regression methods to estimate the variance

(and covariance) explained by all SNPs on the whole genome

for a complex trait. This method can distinguish true

polygenicity from confounding effects attributed to population

structure and cryptic relatedness. Under a polygenic model,

the more-genetic variants an index variant tags, the more the

probability that the index variant will be significant.
32

Under

this reasoning, the expected v2 statistic of variant j can be

constructed as follows:

E½v2j‘j� ¼ Nh2‘j=Mþ Naþ 1;

where N is the sample size; M is the number of SNPs, so that

h
2
/M is the average heritability per SNP; a measures the

contribution of confounding biases, like cryptic relatedness

and population stratification; and ‘j ¼
P

k r
2
jk is the sum of

the r
2
values to all variants that a variant j tags, which is

called the LD score of variant j. The LD score can be

calculated using reference panel containing whole genome

information of the population. For the analysis of the

European population, we used the LD estimates that are

from the European-ancestry samples in the 1000 Genomes

Project.
33

Details were elaborated from the LDSC’s GitHub

repository.
32

In addition to estimating heritability using LDSC, we also

used LDSC to estimate genetic correlation (q) between each

pair of 3 diseases (AAA, IA, and TAA).
34

We investigated the

Dutch and Finnish IA cohort separately in this analysis, and

also tested the correlation between these two IA data sets, to

evaluate the genetic correlation within 1 disease.

Effects of Previously Established Risk SNPs

We investigated the effect of established IA,
10–12

AAA,
13–16

and TAA
17

risk SNPs from previous GWASs in each of the

other aneurysm types. We looked up the effect sizes and

significance of these SNPs in separate case-control data sets

for IA, AAA and TAA beyond the individual-participant data

sets already described above. We did not have access to all

genotype data of these data sets, but we obtained association

results for these candidate SNPs only. For IA, we used GWAS

results of 2 Japanese cohorts,
11

a combined cohort of several

previously IA studies that recruited subjects from mainly

North America, but also Poland and Australia (further referred

to as “USA+”),35 and the @neurIST study.
11

For AAA, we used

GWAS results of a cohort from Iceland, the United Kingdom,

the United States, and 2 cohorts from New Zealand.
15,16,36,37

For TAA, no additional GWAS cohorts are currently available,

to our knowledge. The sample sizes and other details per

cohort are listed in Table 1. In total, the target samples

available for this lookup analysis contained 6548 cases and

16 843 controls for IA, 4391 cases and 37 904 controls for

AAA, and 760 cases and 2212 controls for TAA.

We combined the GWAS results for the selected SNPs in the

extended IA and AAA cohorts using an inverse-variance fixed-

effects meta-analysis. For each SNP, we first calculated z

scores from the provided P values of each GWAS, and summed

the z scores across all studies using the effective sample size of

each study as weights.
38
The resulting z scores were converted

into chi-square values and 2-sided P values. We applied

Bonferroni correction for performing 28 association tests (14

selected SNPs tested in 2 aneurysm types) and considered

associations with P<1.8910�3
(0.05/28) as significant.

Figure 2 gives an overview of the methods described above.

Results

Study Populations

Table 2 shows the numbers of cases, controls, and SNPs of all

4 cohorts after QC and imputation. Quantile-quantile (QQ)

plots for each GWAS per cohort are shown in Figure 3.

Table 2. Baseline Characteristics After Quality Control and Imputation of the Study Populations Used for the Mega-Analysis and

Polygenic Analysis of IA, AAA, and TAA GWAS Data

Characteristics

Study Cohort

IA (Netherlands) IA (Finland) AAA TAA

Cases, n 717 799 818 760

Women, % 64.3 57.8 10.5 34.3

Controls, n 1988 2317 3004 2212

Women, % 56.2 57.2 37.7 53.0

SNPs, n 10 683 725 10 524 028 10 684 772 10 750 239

Genomic inflation factor 1.10 1.06 1.04 1.05

AAA indicates abdominal aortic aneurysm; GWAS, genome-wide association study; IA, intracranial aneurysm; SNP, single-nucleotide polymorphism; TAA, thoracic aortic aneurysm.
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A B

C

E

D

Figure 3. Quantile-quantile (QQ) plots of IA, AAA, and TAA GWAS and the aneurysm mega-analysis. A, Dutch IA

GWAS; (B) Finnish IA GWAS; (C) AAA GWAS; (D) TAA GWAS; (E) aneurysm mega-analysis. These QQ plots show the

observed distribution of P values (black dots) plotted against the expected distribution of P values (blue line) on a

negative log10 scale, for each of the 4 GWAS (Dutch IA and Finnish IA, AAA, and TAA) and for all cohorts combined in

the aneurysm mega-analysis. Genomic inflation factors (kGC) per study, defined as the ratio of the median of the

empirically observed distribution of the test statistic to the expected median, are also shown. AAA indicates abdominal

aortic aneurysm; GWAS, genome-wide association study; IA, intracranial aneurysm; TAA, thoracic aortic aneurysm.
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GWAS Mega-Analysis Across IA, AAA, and TAA

In total, 3094 cases, 9507 controls, and 9 245 988 SNPs

were available for the mega-analysis across all 4 aneurysm

cohorts (kGC=1.06). The results of this mega-analysis are

shown in a Manhattan plot (Figure 4). We found 4 genome-

wide significant loci, though all these loci were previously

described as risk loci for IA, AAA, and/or TAA. The direction of

effect for these loci was consistent across all four aneurysm

cohorts (see forest plots in Figure 5). First, SNPs at the

known IA and AAA risk locus 9p21 near CDKN2A, CDKN2B,

and CDKN2BAS were associated.
11,18

The strongest associ-

ation at this locus was found for rs7866503, with

P=2.1910�13
. The second association was found for SNPs

at the known IA risk locus 18q11 near RBBP8,
11

with the

strongest association for rs8087799 (P=1.6910�9
). The third

association was found for SNPs at the known TAA risk locus

15q21 near FBN1,
17

with the strongest association for

rs595222 (P=1.0910�8
). The fourth association was found

for rs919433 (P=4.6910�8
), which is located at 2q33 near

ANKRD44. The same SNP was previously found to be

associated with IA in a Finnish and Dutch population.
24

This

SNP is also in strong LD (r
2=0.7) with a nearby SNP

(rs700651), which was previously found to be associated

with IA in a Dutch, Finnish, and Japanese population,
12

but did

not reach genome-wide significance after adding other

populations of IA patients.
11

Polygenic Analysis

Next, we investigated whether groups of SNPs associated

with 1 type of aneurysm (eg, IA) were also associated with

the other types (eg, AAA or TAA). The results of these

polygenic analyses with the IA, AAA, and TAA GWAS cohorts

are shown in Tables 3 through 8 and in Figure 6. No SNP

sets with a significant joint effect on another aneurysm type

were observed, except for a small group of 7 SNPs

associated with IA with P<10�6
. This SNP set was associated

with AAA with P=5910�3
(Table 7). When taking a closer

look at this SNP set, it appears that the polygenic associ-

ation is driven by 2 SNPs (rs36071109 at 2q33;

PAAA=2.3910
�3
; and rs4330012 at 18q11; P (cursive)AAA=

1.3910
�2
), both in very strong LD to genome-wide signif-

icant SNPs in our mega-analysis described above. (The

pleiotropic 9p21 locus shared by IA and AAA had already

been adjusted for.)

Figure 4. Manhattan plot of the aneurysm GWAS mega-analysis. This Manhattan plot shows the P values

of all SNPs with an association with P<10�4
to disease (IA, AAA, or TAA). P values on the y-axis are

presented on an inverse log scale. The x-axis represents the genomic position of each SNP. The red

horizontal line represents P=5910�8
, the cut-off value for genome-wide association. Index SNPs with

P<1910�6
are depicted as diamonds, whereas SNPs in the same LD block as these SNPs are depicted as

yellow and red dots. AAA indicates abdominal aortic aneurysm; GWAS, genome-wide association study; IA,

intracranial aneurysm; LD, linkage disequilibrium; SNP, single-nucleotide polymorphism; TAA, thoracic aortic

aneurysm.
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A

B

C

D

Figure 5. Forest plots of significant SNPs from the aneurysm mega-analysis. A, rs7866503 (risk

allele T) at locus 9p21; (B) rs8087799 (risk allele A) at locus 18q11; (C) rs595244 (risk allele T) at locus

15q21; (D) rs919433 (risk allele A) at locus 2q33. These figures show forest plots for each of the 4

genome-wide significant SNPs from the mega-analysis of IA, AAA, and TAA GWAS cohorts. AAA

indicates abdominal aortic aneurysm; f_ca(n), risk allele frequency in cases (number of cases); f_co(n),

risk allele frequency in controls (number of controls); het_P, P value for heterogeneity; IA, intracranial

aneurysm; info, imputation accuracy score; ln(OR), natural log of odds ratio; OR, odds ratio; P_value, P

value for association of risk allele in aneurysm cohort; SNP, single-nucleotide polymorphism; STDerr,

standard error; TAA, thoracic aortic aneurysm.
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LD Score Regression: Heritability Estimation and

Genetic Correlation Analyses

We attempted to analyze heritability of the 3 aneurysm

subtypes using LDSC. The estimated heritability was 0.15

for AAA, 0.31 for the Finnish IA cohort, 0.34 for the Dutch

IA cohort, and 0.40 for TAA (Table 9). These estimates are

smaller than the twin-based estimates as reported in the

literature (0.41 for IA,
39

0.70 for AAA,
16

and unknown for

TAA), but the SEs are large, so the differences are not

statistically significant. Note that methods estimating

heritability using SNP data can often underestimate the

heritability if the SNP set does not tag all underlying causal

variants.

We then performed genetic correlation analyses

(Table 10). We found that all pairs did not show statistically

significant genetic correlations (P>0.05). The direction of

correlation was either close to zero or positive, but the SE

values were large. As expected, we observed the largest

genetic correlation between the 2 cohorts of the same IA

disease (q=1.59). However, this correlation was also not

significant (P=0.09; SE=0.93).

Effects of Previously Established Risk SNPs

Table 11 shows the results of the lookup of previously

published aneurysm risk SNPs in IA, AAA, and TAA GWAS

results. Besides the 2 IA and AAA risk SNPs at 9p21,

which are associated with IA and AAA but not TAA, we

observed 2 SNPs with significant associations to another

aneurysm type after multiple testing correction. First, the

IA risk SNP rs11661542 at 18q11 near RBBP8 was

associated with AAA (odds ratio [OR]=1.11; P=4.1910�5
).

Second, the TAA risk SNP rs2118181 at 15q21 near FBN1

Table 3. Polygenic Analysis: AAA-Associated SNPs Tested for

Association With TAA Case-Control Status

Threshold (P)* SNPs (n)
†

P Value
‡

Direction of Effect

5910�8 0 NA NA

1910�7 1 0.269 +

1910�6 4 0.262 +

1910�5 21 0.481 +

1910�4 181 0.979 +

1910�3 1417 0.815 +

0.01 10 075 0.294 +

0.05 38 528 0.549 +

0.1 67 187 0.614 �

0.2 113 644 0.823 �

0.3 151 807 0.773 �

0.4 183 891 0.765 �

0.5 211 723 0.611 �

10�4 to 10�3 1236 0.787 +

10�3 to 0.01 8658 0.273 +

0.01 to 0.05 28 453 0.972 �

0.05 to 0.1 28 659 0.964 �

0.1 to 0.2 46 457 0.115 �

0.2 to 0.3 38 163 0.745 �

0.3 to 0.4 32 084 0.904 �

0.4 to 0.5 27 832 0.0915 �

AAA indicates abdominal aortic aneurysm; IA, intracranial aneurysm; NA, not applicable;

SNPs, single-nucleotide polymorphisms; TAA, thoracic aortic aneurysm.

*P value threshold for inclusion of IA-, AAA-, or TAA-associated SNPs in each polygenic

model.
†

Number of SNPs included in each polygenic model.
‡

P value for association of the polygenic model with IA, AAA or TAA case-control status.

Table 4. Polygenic Analysis: TAA-Associated SNPs Tested for

Association With AAA Case-Control Status

Threshold (P)* SNPs (n)
†

P Value
‡

Direction of Effect

5910�8 1 0.581 +

1910�7 1 0.581 +

1910�6 1 0.581 +

1910�5 25 0.853 +

1910�4 148 0.971 �

1910�3 1350 0.292 +

0.01 10 021 0.579 +

0.05 39 120 0.902 �

0.1 67 736 0.944 �

0.2 114 125 0.815 �

0.3 151 712 0.956 �

0.4 183 843 0.958 �

0.5 211 170 0.965 �

10�4 to 10�3 1202 0.252 +

10�3 to 0.01 8671 0.877 �

0.01 to 0.05 29 099 0.801 �

0.05 to 0.1 28 616 0.953 �

0.1 to 0.2 46 389 0.643 +

0.2 to 0.3 37 587 0.255 �

0.3 to 0.4 32 131 0.997 �

0.4 to 0.5 27 327 0.422 +

AAA indicates abdominal aortic aneurysm; IA, intracranial aneurysm; SNPs,

single-nucleotide polymorphisms; TAA, thoracic aortic aneurysm.

*P value threshold for inclusion of IA-, AAA-, or TAA-associated SNPs in each polygenic

model.
†

Number of SNPs included in each polygenic model.
‡

P value for association of the polygenic model with IA, AAA or TAA case-control status.
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was associated with AAA (OR=1.07; P=1.1910�3
). The

other TAA risk SNP rs10519177, which lies at the same

locus but is independent from rs2118181, showed a

suggestive, but not statistically significant, association to

AAA (OR=1.01; P=0.016). For both significant associa-

tions, the direction of effect was concordant in all but 1 of

the 6 AAA cohorts in the analysis, with no significant

heterogeneity in the meta-analysis of the 6 cohorts

(PCochran’s Q=0.11 for rs11661542 at 18q11 and 0.45 for

rs2118181 at 15q21).

Discussion

In this study, we have applied multiple analytic approaches

to detect a possible genetic overlap between IA, TAA, and

AAA. By performing a GWAS mega-analysis and polygenic

analysis, we considered both sharing of significant risk loci

with individually large effects on disease risk, as well as a

cumulative effect of many loci with individually weak

effects. Although we did not find novel shared aneurysm

risk loci that were previously not described as risk loci for

IA, AAA, and/or TAA, we did find some evidence for a

shared genetic background of IA, AAA, and TAA. In the

GWAS mega-analysis across IA, AAA, and TAA, we detected

genome-wide significant associations for SNPs at 4 loci:

9p21, 18q11, 15q21, and 2q33. These were all previously

described to be associated with IA, AAA, or TAA, but in this

study, they showed globally consistent effects across all 3

aneurysm types. Polygenic analysis did not reveal any

groups of weakly IA-, AAA-, or TAA-associated loci with a

joint effect on other aneurysm types. Similarly, LD-score

regression analyses did not show significant correlations

between any pair of aneurysm subtypes. The correlation

between 2 cohorts of the same subtype (IA) was relatively

Table 5. Polygenic Analysis: IA-Associated SNPs Tested for

Association With TAA Case-Control Status

Threshold (P)* SNPs (n)
†

P Value
‡

Direction of Effect

5910�8 2 0.464 +

1910�7 3 0.459 +

1910�6 7 0.964 +

1910�5 36 0.361 �

1910�4 263 0.24 �

1910�3 1738 0.32 �

0.01 11 365 0.681 +

0.05 40 885 0.088 +

0.1 69 990 0.608 +

0.2 116 737 0.931 �

0.3 154 387 0.612 �

0.4 184 519 0.633 �

0.5 209 893 0.625 �

10�4 to 10�3 1475 0.572 �

10�3 to 0.01 9627 0.318 +

0.01 to 0.05 29 520 0.04 +

0.05 to 0.1 29 105 0.0699 �

0.1 to 0.2 46 747 0.193 �

0.2 to 0.3 37 650 0.105 �

0.3 to 0.4 30 132 0.951 �

0.4 to 0.5 25 374 0.864 �

AAA indicates abdominal aortic aneurysm; IA, intracranial aneurysm; SNPs, single-

nucleotide polymorphisms; TAA, thoracic aortic aneurysm.

*P value threshold for inclusion of IA-, AAA-, or TAA-associated SNPs in each polygenic

model.
†

Number of SNPs included in each polygenic model.
‡

P value for association of the polygenic model with IA, AAA or TAA case-control status.

Table 6. Polygenic Analysis: TAA-Associated SNPs Tested for

Association With IA Case-Control Status

Threshold (P)* SNPs (n)
†

P Value
‡

Direction of Effect

5910�8 1 0.245 +

1910�7 1 0.245 +

1910�6 1 0.245 +

1910�5 25 0.0957 �

1910�4 148 0.658 �

1910�3 1347 0.741 �

0.01 10 030 0.547 +

0.05 39 150 0.72 +

0.1 67 783 0.693 +

0.2 114 079 0.554 +

0.3 151 575 0.538 +

0.4 183 611 0.651 +

0.5 210 876 0.675 +

10�4 to 10�3 1199 0.588 �

10�3 to 0.01 8683 0.592 +

0.01 to 0.05 29 120 0.965 +

0.05 to 0.1 28 633 0.813 +

0.1 to 0.2 46 296 0.487 +

0.2 to 0.3 37 496 0.761 +

0.3 to 0.4 32 036 0.409 +

0.4 to 0.5 27 265 0.84 +

AAA indicates abdominal aortic aneurysm; IA, intracranial aneurysm; SNPs, single-

nucleotide polymorphisms; TAA, thoracic aortic aneurysm.

*P value threshold for inclusion of IA-, AAA-, or TAA-associated SNPs in each polygenic

model.
†

Number of SNPs included in each polygenic model.
‡

P value for association of the polygenic model with IA, AAA or TAA case-control status.
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high, but also not significant. The absence of novel shared

loci, a polygenic association or a genetic correlation can be

attributed to the modest sample size and power, certainly

in comparison to community-wide efforts for coronary

artery disease.
40

It may therefore be premature to claim

that there are genuinely no novel shared loci or shared

polygenic effects for IA, AAA, and TAA.

After testing the association of bona-fide aneurysm risk

loci in other aneurysm types in much larger aneurysm GWAS

cohorts (consisting of the mega-analysis data plus additional

IA and AAA GWAS cohorts), we found nominally significant

associations of the IA risk locus 18q11 and the TAA risk locus

15q21 to AAA, both of which were previously unknown to be

associated with AAA. The 15q21 locus has reported biological

functions that could plausibly be related to aneurysm

development, because it encompasses the FBN1 gene, which

encodes fibrillin-1, an extracellular matrix protein in the

elastic fibers of the aortic wall. Mutations in FBN1 cause

Marfan syndrome, which is often associated with (mainly

thoracic) aortic aneurysms.
17

There are extensive differences in pathophysiology and

epidemiological risk factors between the 3 diseases. IAs are

mostly saccular-shaped dilatations, whereas AAAs and TAAs

are more often fusiform; the vessel wall structure differs

between the locations where IA, AAA, and TAA occur; and

atherosclerosis has a clear role in AAA, in contrast to IA

and TAA.
41–44

However, there have been previous reports of

a co-occurrence of AAA and TAA
4,5

and, to a lesser extent,

of IA and aortic aneurysms.
6,7

Also, IA mainly co-occurs

with AAA and TAA within families,
8,9

so genetic sharing

between IA, AAA, and TAA could theoretically be present in

the familial form, but not in sporadic cases (which were

primarily studied here). For example, mutations in TGFBR1

and TGFBR2 were found in families in which all 3 aneurysm

Table 7. Polygenic Analysis: IA-Associated SNPs (From

Dutch and Finnish IA Cohorts Combined) Tested for

Association With AAA Case-Control Status

Threshold (P)* SNPs (n)† P Value‡ Direction of Effect

5910�8 2 0.531 +

1910�7 3 0.016 +

1910�6 7 5.07910�3 +

1910�5 36 1.36910�2 +

1910�4 256 0.694 +

1910�3 1725 0.365 �

0.01 11 355 0.986 +

0.05 40 855 0.505 +

0.1 69 919 0.329 �

0.2 116 610 0.298 �

0.3 154 280 0.349 �

0.4 184 378 0.326 �

0.5 209 684 0.251 �

10�4 to 10�3 1469 0.401 �

10�3 to 0.01 9630 0.673 +

0.01 to 0.05 29 500 0.343 �

0.05 to 0.1 29 064 0.291 �

0.1 to 0.2 46 691 0.503 �

0.2 to 0.3 37 670 0.929 +

0.3 to 0.4 30 098 0.568 �

0.4 to 0.5 25 306 0.085 �

AAA indicates abdominal aortic aneurysm; IA, intracranial aneurysm; SNPs, single-

nucleotide polymorphisms; TAA, thoracic aortic aneurysm.

*P value threshold for inclusion of IA-, AAA-, or TAA-associated SNPs in each polygenic

model.
†

Number of SNPs included in each polygenic model.
‡

P value for association of the polygenic model with IA, AAA, or TAA case-control status.

Table 8. Polygenic Analysis: AAA-Associated SNPs Tested for

Association With IA Case-Control Status

Threshold (P)* SNPs (n)
†

P Value
‡

Direction of Effect

5910�8 0 NA NA

1910�7 1 0.789 �

1910�6 4 0.589 +

1910�5 21 0.481 +

1910�4 181 0.826 +

1910�3 1420 0.914 �

0.01 10 094 0.362 +

0.05 38 571 0.72 +

0.1 67 304 0.596 +

0.2 113 818 0.827 +

0.3 152 058 0.874 +

0.4 184 216 0.700 +

0.5 212 087 0.585 +

10�4 to 10�3 1239 0.834 �

10�3 to 0.01 8674 0.318 +

0.01 to 0.05 28 477 0.239 +

0.05 to 0.1 28 733 0.592 +

0.1 to 0.2 46 514 0.549 +

0.2 to 0.3 38 240 0.153 +

0.3 to 0.4 32 158 0.163 +

0.4 to 0.5 27 871 0.162 +

AAA indicates abdominal aortic aneurysm; IA, intracranial aneurysm; NA, not applicable;

SNPs, single nucleotide polymorphisms; TAA, thoracic aortic aneurysm.

*P value threshold for inclusion of IA-, AAA-, or TAA-associated SNPs in each polygenic

model.
†

Number of SNPs included in each polygenic model.
‡

P value for association of the polygenic model with IA, AAA, or TAA case-control status.
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Figure 6. Polygenic analysis results. (A) AAA-associated SNPs tested for association with TAA case-control status; (B) TAA-associated SNPs

tested for association with AAA case-control status; (C) IA-associated SNPs tested for association with TAA case-control status; (D) TAA-

associated SNPs tested for association with IA case-control status; (E) IA-associated SNPs tested for association with AAA case-control status;

(F) AAA-associated SNPs tested for association with IA case-control status. We created polygenic scores based on IA-, AAA-, and TAA-associated

SNPs at different P value thresholds and tested these scores for association to case-control status in GWAS cohorts of IA, AAA, and TAA in each

possible combination between these phenotypes. The figures show the resulting P values of the association tests (left y-axis) for each polygenic

model (x-axis), with the corresponding number of SNPs in each model (right y-axis). AAA indicates abdominal aortic aneurysm; GWAS, genome-

wide association study; IA, intracranial aneurysm; SNP, single-nucleotide polymorphism; TAA, thoracic aortic aneurysm.
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types occur.
8
Furthermore, a genetic linkage study in 26

families with both IA and AAA or TAA found linkage peaks at

locus 6p23 and 11q24.
45

Independent linkage studies on IA,

AAA, and TAA also found linkage peaks at 11q24.
46

We did

not find associations of these loci in our study, which can

be explained by our focus on the sporadic aneurysm cases,

in contrast to the familial cases in the linkage studies.

In conclusion, our study results do not reveal new risk loci

shared between IA, AAA, and TAA, but the effects of

established IA, AAA, and TAA risk loci in other aneurysm

types do suggest a shared genetic background. Future studies

with larger sample sizes should increase the statistical power

to detect common genetic variants with a smaller effect on

disease risk, and to draw definitive conclusions on genetic

correlation between aneurysm subtypes.
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