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Sequencing pathogen samples during a communicable disease outbreak is becoming an increasingly common

procedure in epidemiologic investigations. Identifying who infected whom sheds considerable light on transmission

patterns, high-risk settings and subpopulations, and the effectiveness of infection control. Genomic data shed new

light on transmission dynamics and can be used to identify clusters of individuals likely to be linked by direct trans-

mission. However, identification of individual routes of infection via single genome samples typically remains

uncertain. We investigated the potential of deep sequence data to provide greater resolution on transmission

routes, via the identification of shared genomic variants. We assessed several easily implemented methods to

identify transmission routes using both shared variants and genetic distance, demonstrating that shared variants

can provide considerable additional information in most scenarios. While shared-variant approaches identify rela-

tively few links in the presence of a small transmission bottleneck, these links are highly accurate. Furthermore, we

propose a hybrid approach that also incorporates phylogenetic distance to provide greater resolution. We applied

our methods to data collected during the 2014 Ebola outbreak, identifying several likely routes of transmission. Our

study highlights the power of data from deep sequencing of pathogens as a component of outbreak investigation

and epidemiologic analyses.

Ebola virus; epidemics; genomics; infection control; infectious disease outbreaks; molecular epidemiology

Abbreviation: SV, shared variant.

Genomic data offer new insights into epidemiologic and
evolutionary dynamics, and sequencing pathogen samples is
becoming increasingly routine, providing new insights for a
range of issues of public health importance (1). Pathogen geno-
mic data allow us to determine the phylogeny of isolates, which
in turn sheds light on the potential transmission networks between
the hosts from whom they were collected. Identifying routes of
infection enables the estimation of risk factors for disease trans-
mission, which in turn can inform the implementation of infec-
tion control strategies. As such, inference of transmission trees
using genomic data is an increasingly well-studied field (2–8).
Although low-resolution pathogen typing has been used for
some time to discriminate between independent outbreaks
(9–11), whole-genome sequencing provides additional resolu-
tion with which genetic distance between identical phenotypes
may be ascertained (12–14). However, this too has limits. Studies
have shown that while transmission clusters may be identified

with genomic data, individual-level transmission routes can
rarely be identified with a great degree of certainty (3, 4). Char-
acterizing an infected host by a single pathogen genome (isola-
tion and purification of a single colony for bacteria, or using the
consensus sequence for viral pathogens) is common practice yet
neglects within-host diversity. The variation in sampled genetic
distances can be large relative to the expected number of muta-
tions between hosts, rendering the number of single nucleotide
polymorphisms a rather crudemeasure of relatedness on an indi-
vidual level (15). As such, particularly for rapidly evolving
pathogens, or those whose mode of transmission is associated
with a large and potentially diverse inoculum (“transmission
bottleneck”—the number of pathogens transmitted in an infec-
tion event), single-genome sampling can cause hosts to appear
misleadingly similar or dissimilar.

Deep sequencing can potentially provide new insights into
within-host diversity. Currently, sequencing a mixed population
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sample to sufficient depth to identify minor nucleotide var-
iants has mostly been limited to viral samples. While consen-
sus sequences may appear identical for 2 samples, comparing
minor variants can offer additional resolution. For instance, if
the same nucleotide variation is observed at the same locus in
pathogen samples from 2 individuals (henceforth referred to
as a “shared variant” (SV)), this could be considered strong
evidence for direct transmission, particularly if the variant is
not observed in any other host. This naturally relies on the
possibility that a pathogen population of size greater than 1
survives the transmission bottleneck; otherwise, each infec-
tion must initially be monoclonal, implying that any variation
found within distinct hosts must have arisen independently.
There is evidence for larger bottlenecks occurring in viral patho-
gens such as influenza (16, 17) and Ebola (18), and it is plausible
that this is also the case for bacterial pathogens (19).

The connection between SV presence and direct transmis-
sion has previously been suggested. Gire et al. (20) noted the
presence of SVs in Ebola virus samples from individuals who
were potentially linked by transmission. Data collected from 2
influenza A animal transmission studies were used to explore
the presence of SVs between hosts, and it was shown that
such data were consistent with known contact patterns (21).
This study used known contact patterns to identify characteris-
tics of SVs that were more likely to be associated with trans-
mission, allowing variants to be split into those consistent and
inconsistent with transmission, minimizing false connections.
Poon et al. (22) identified routes of influenza transmission oc-
curring during a household contact study using both consen-
sus whole-genome sequence data and the presence of SVs. In
the case of bacterial pathogens, the diversity in Staphylococcus
aureus infections, which can be considerable, has been linked
to transmission in a veterinary hospital (23).

Pathogens vary considerably in their bottleneck size, muta-
tion rates, and transmission dynamics. It remains unclear how
methods based on SVs are expected to perform in different re-
gions of this parameter space. Establishing this is a crucial
component of the interpretation of SVs and the value of the
approach.

In the present study, we investigated the predictive power of
SVs for identifying transmission routes. In addition to patho-
gen genomes, many other sources of data may contribute infor-
mation towards inference of transmission routes, including
temporal and spatial data, contact patterns, and expression of
symptoms. However, here we aimed to examine the informa-
tion contributed by genomic data alone and, in particular, the
additional benefit offered by considering SVs.

METHODS

We generated infectious disease outbreaks with within-host
pathogen evolution under various mutation rates and bottleneck
sizes by simulation, using the R (R Foundation for Statistical
Computing, Vienna, Austria) package Seedy (24). In con-
trast to other simulation approaches, this method explicitly
simulates within-host evolution and allows sampling of mixed
pathogen populations across time. We expanded upon methods
previously used to infer transmission routes using deep sequence
data (20–22), comparing their performance with analogous

genetic distance–based approaches. We additionally propo-
sed hybrid approaches that combine SV information with
phylogenetic distance data. We considered the following
approaches:

• Weighted variant tree: For each host, we weighted poten-
tial sources by the number of observed SVs, such that the
host sharing the largest number of variants is attributed the
largest weight. Hosts sharing no variants with any other were
not assigned a source. Weighting edges provided an exten-
sion to previous approaches (20–22).

• Maximum variant tree: For each host, we defined the source
to be the individual with whom the largest number of SVs
was observed. Hosts sharing no variants with any other host
were not assigned a source.

• Weighted distance tree: Using consensus sequences, the
genetic distance (number of single nucleotide polymor-
phisms) between isolates was calculated, and potential sources
were weighted inversely by this metric. This approach has
been described previously (3).

• Minimum distance tree: Using consensus sequences, the
source of a given host was defined to be the carrier of the
genetically closest isolate to that of the host. This approach,
with the incorporation of sampling times to provide direc-
tionality, has been described previously (7).

• Hybrid weighted tree: First, the weighted variant tree was
constructed. Hosts with no source were then assigned poten-
tial sources based upon weighted genetic distance.

• Hybrid maximum tree: First, the maximum variant tree was
constructed. Hosts with no source were then assigned poten-
tial sources based upon minimum genetic distance.

These 6 simple heuristics by nomeans comprise an exhaustive
list of approaches to identify routes of transmission but are instead
a range of readily implemented, distance-based approaches
that require neither knowledge of evolutionary dynamics nor
infection or sampling times. As has previously been demon-
strated, simple methods based on genomic data alone can pro-
vide powerful insights into transmission dynamics (25). Further
details of the approaches used here, as well as the metrics used
to assess the accuracy of tree reconstruction and reliability of
estimated transmission routes, are provided inWeb Appendix 1
(available at https://academic.oup.com/aje). We additionally
applied SVmethods to previously published data collected dur-
ing the Ebola virus outbreak inWest Africa in 2014 (20, 26).

RESULTS

Simulation studies

As expected, the proportion of cases in which a SV was
observed in at least 1 other host increased rapidly with mutation
rate and bottleneck size (Figure 1A). The majority of SVs were
observed in exactly 2 individuals, with the proportion shared
among larger groups declining rapidly as the size of the group
increased (Figure 1B). For each simulation, we constructed a
weighted transmission tree according to the 6 methods out-
lined previously. An example simulated outbreak of a pathogen
with characteristics similar to S. aureus (see Web Appendix 1)
is shown in Figure 2, along with reconstructions based upon
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two of these methods. While many edges are bidirectional and
symmetric, asymmetry can occur under most methods due to
the lack of commutativity (i.e., even if B is the closest host
to A, A may not be the closest host to B).

We used two metrics to assess the reliability of individual
estimated transmission routes and compared the different
methods described above. First, we considered the true path
distance between inferred transmission pairs. We found that
under the maximum variant tree, the mean path distance was
typically less than 2, outperforming the minimum distance
approach (Figure 3A). Second, we examined the mean weight
assigned to the true source of each host. In the case of small
(<5) bottleneck sizes, methods based on SVs perform poorly
because the likelihood of a monoclonal infection is high, re-
sulting in most true links being assigned a weight of zero. Fur-
thermore, those links that are inferred by SVs in small-bottleneck

settings identify direct transmission with high confidence. The
hybrid approaches perform best for small bottlenecks, incor-
porating SV information when available but not relying upon
it. For larger bottlenecks, the distance-based approaches were
markedly outperformed by the variant-based approaches
(Figure 3B). As the rate of mutation increases, SV approaches
outperform those based on distance alone to an increasing degree
asmutation generates increasing diversity in the infecting pop-
ulation (Web Figure 1A–1C).

In addition to the reliability of individual links, we also con-
sidered the overall accuracy of a transmission tree reconstruc-
tion. This was measured by the area under the receiver operating
characteristic curve (AUC) statistic. For small bottlenecks,
variant-based methods provide a poor tree reconstruction by
this metric (Figure 4). We note that here we regard assigning
no source (e.g., where no SVs exist) as an incorrect classification,
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Figure 1. Summary of genetic variant frequency across simulated outbreaks. We simulated 10 outbreaks for each combination of 6 bottleneck
sizes and 3 mutation rates (180 in total). A) Mean proportion of cases in the outbreak who shared at least 1 variant with another host. B) Distribution
of shared-variant group size for different bottleneck sizes, with a mutation rate of 5 × 10−4 per genome per generation.
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Figure 2. Simulated and reconstructed transmission trees. A simulated tree (A) was generated with bottleneck size 10 and mutation rate 0.001
per genome per generation. Cases are represented as numbered circles linked by arrows representing transmission routes. Based on the simu-
lated genetic data from this outbreak, trees were reconstructed according to the maximum variant approach (B) and the minimum genetic distance
approach (C) described in “Methods.” Arrows denoting unambiguous routes (weight = 1) are solid, while dashed arrows denote edges with weight
<1. Networks were plotted with the igraph package in R (Foundation for Statistical Computing) (38).
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leading to values below 0.5, the value expected under ran-
dom source assignment. A tight bottleneck leads to little di-
versity persisting across transmission events, and as such,
SVs are rarely observed, leading to a sparsity of informed
links across the network. However, larger bottlenecks led to
a considerably better performance under this measure for the
variant-based approaches, which exceeded even the weighted
distance approach with a sufficiently large bottleneck size and
mutation rate (Figure 4, Web Figure 1D–1F). In contrast,

distance-based approaches typically declined in accuracy as
the bottleneck size increases, for reasons that are well under-
stood (3, 27)

We additionally investigated the effect of “mutational hot-
spots,”which can generate potentially confounding homoplasy.
We found that while variant approaches performed less well,
they generally continued to outperform distance-based ap-
proaches for larger (>10) bottleneck sizes (seeWeb Appendix 1,
Web Figures 2 and 3 for further details).

Ebola virus data

We next examined previously published data sets for Ebola
in Sierra Leone, for which sequence data are available, and we
can determine the presence and properties of intrahost var-
iants. In order to reduce the risk of counting variant calling
errors as true intrahost variants, we identified only variants
in which the minor within-host allele frequency was at least
5% (routes estimated under a 1% threshold are shown in Web
Figure 4). Figure 5 shows the transmission trees reconstructed
for each data set under the weighted variant approach, using
no epidemiologic information. In the first data set (Figure 5A,
(26)) 19 of 78 hosts were found to share a variant with at least
1 other individual. Four pairs of patients shared more than 1
variant (3 pairs with 2 SVs and 1 pair with 4), while 1 additional
pair shared 1 unique variant. Consistent with transmission, each
of these pairs originated from the same geographic location,
and permutation testing revealed that this geographic similarity
was significantly higher than would be expected via random
selection (P = 0.0075). Pairs were also temporally clustered;
3 of these links were sampled 2 or fewer days apart, while the
remaining 2 were sampled 12 and 22 days apart, which is plau-
sible given serial interval estimates for Ebola virus infection of
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15.3 ± 9.3 days (28). Under the minimum distance tree, 2 of
these pairs were reproduced, 2 pairs belonged to a much larger
group of samples with identical consensus sequences, and 1
pair, differing by a single nucleotide according to consensus se-
quences, remained unconnected due to the presence of other
identical sequences (Web Figure 5).

While a consistent result of our simulations was the shar-
ing of variants among small numbers of hosts, rarely more than
2, in the Ebola data collected by Gire et al. (20), 1 variant was
shared by 11 hosts. Samples with this variant are highly clus-
tered geographically (10 of 11 in the same chiefdom,P = 0.022)
and temporally (observed within an 18-day period), as well as
phylogenetically, lending support to this group representing
a transmission cluster.

In the second data set (Park et al. (26)) 26 of 150 (for which
replicate sequencing and variant calling was performed) shared
a variant with at least 1 other host (Figure 5B). There were 5
pairs of individuals sharing a unique variant. As before, 1 vari-
ant was shared by multiple hosts, but unlike the previous data
set these were not geographically or temporally clustered,
coming from different regions and spanning several weeks.
Furthermore, while some of these samples clustered on the
phylogenetic tree, many fell in different clades (26), suggesting
the group is unlikely to represent a single transmission cluster
but rather multiple transmission events in combination with
homoplasy.

DISCUSSION

We have described some simple methods for reconstructing
transmission trees using SVs, testing how well this approach
performs for a range of parameters governing the rates of

diversification within and between hosts. We have then applied
the methods to data from the 2014 Ebola outbreak to identify
links, using the genomic data alone, that are likely to be con-
sistent with transmission given time and location.

For the great majority of parameter space, excluding only
very low mutation rates and tight bottlenecks, these methods
outperform genetic-distance comparison methods, which have
increasingly been used to identify potential transmission events
(7, 29, 30). The limitations of distance-based methods that
characterize a single genome are well appreciated. We note
that although, for the purpose of comparison, additional data
sources were not included in our inference of transmission
routes, incorporating these independently would be a rela-
tively straightforward step with these methods. Most simply,
sampling dates could be used to provide directionality to inferred
connections.

The additional information we derive from SVs can inform
the transmission tree in two distinct ways, depending on the
region of parameter space. First, small but nonsingular bottle-
necks (e.g., for airborne influenza transmission (31) or sexu-
ally transmitted HIV (32)) produce few inferred transmission
pairs, but these are highly accurate. The small bottleneck
means that the probability of observing a SV between indivi-
duals who are in the same transmission cluster, but not directly
linked, is negligible. Second, SV data for pathogens with larger
transmission bottlenecks (e.g., Ebola (18), influenza transmitted
via contact (31), or intravenous drug–associated HIV transmis-
sion (33)) provide good information on the overall tree structure
and transmission clusters, but individual links may be more
uncertain. In all cases, higher mutation rates make the obser-
vation of SVs more probable, which typically results in better
inference of transmission routes.

Edge Weight

A) B)

0.05

1
Edge Weight

0.05

1

Figure 5. Estimated Ebola transmission routes, Sierra Leone, 2014. Transmission links between sampled hosts during an Ebola outbreak under
the maximum variant approach. Node colors denote distinct geographic regions to which hosts belong, while arrow color and thickness correspond
to the relative weight attributed to each potential transmission event. Variant detection threshold was 5%. Cases are shown from the first (20) (A)
and the second (26) (B) data sets. Further details are provided inWeb Appendix 1.
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A hybrid approach that combines SVs and the sequence of
either an individual, sequenced genome, or the consensus offers
substantial benefit in the case of small bottleneck sizes (<5),
where we predict a method based on SV alone would struggle.
Because transmission routes are assessed independently of one
another, estimated transmission trees frequently comprise sev-
eral unconnected nodes or clusters. Such unconnected clusters
could be linked to one another if further structure is required,
using the weighted distance approach on pooled within-cluster
samples. Here we have simply used genetic distance, which is
predicted to be efficient and reliable under the relatively short
time scale of an outbreak, but more sophisticated models of
sequence evolution could be applied.

We applied these methods to Ebola data collected from
Sierra Leone in 2014. While the first data set is thought to re-
present relatively dense coverage of the initial stages of the
epidemic in the country, with around 70% of cases sampled
(20, 34), the later data set comprised a sparser sample. While
this reduces the expected number of linked cases in the data
set, the reliability of transmission routes identified via SVs re-
mains largely unaffected (Web Figures 6 and 7). As such, while
only relatively few transmission routes were identified in the data
sets, this is likely a function of both the proportion of missing
data and the relatively low mutation rate of Ebola virus (20, 35).
Confidence in the transmission pairs identified was reinforced by
investigating temporal and geographic clustering, which proved
to be significant, and while the aim of our study was to assess the
accuracy of transmission-route identification via genomic data
alone, methodology combining spatial and temporal data sources
will naturally provide further insight. Identifying even a small
proportion of direct-transmission pairs can be of great interest
in studying pathogen-level transmission dynamics as well as
conducting outbreak investigations.

Studying the Ebola data showed that both data sets con-
tained a large group of hosts sharing the same variant, which
was rare in all our simulations. The observation can be explained
in at least two ways: recurrent mutation (as might arise through
selection) or an anomalously large number of contacts with
large bottleneck size (such as might be associated with a funeral-
based exposure). Park et al. (26) suggest that the large group in
the second data set likely arose through a combination of patient-
to-patient transmission and recurrent mutation. Subsets of this
group do cluster on the phylogenetic tree, and having identified
clusters of hosts with SVs, we might partition these groups by
genetic background (e.g., ruling out transmission between hosts
with>1-nucleotide difference present across nonvariant sites).

Sample contamination may be an additional source of
error. Cross-contamination may potentially lead to SVs ob-
served between unlinked hosts. However, in many settings
we do not believe this would present a major concern. If no
minor variants are contained in the contaminating sample,
SVs would not link this to the contaminated sample. Still, it
remains important to verify that observed SVs are consistent
with transmission and to minimize the risk of contamination
as much as possible. The second Ebola data set highlights the
potential for false-positive connections to be identified between
spatiotemporally inconsistent pairs. SVs observed across
several samples with differing genetic backgrounds may
be indicative of contamination. While such rules can elim-
inate obvious sources of error, further work is required to

formally evaluate the risk of contamination based on deep
sequence data.

Another deliberate simplification in the present work is the
assumption of neutral evolution. While this is plainly faulty
over longer time scales, over the relatively short timescale of an
outbreak it is a first approximation, and this is supported by real
data from outbreaks (20, 26) and even longer periods (36)
showing evidence of incomplete purifying selection. Selection
may not, however, have as severe an effect on these methods
as we might assume. If a specific variant is maintained through
balancing selection, it is likely to be found in multiple hosts
and, as a result, will be less informative as to specific transmis-
sion links; if several hosts are connected by the same SV, this
will be misleading only if no additional variants are observed.
In contrast, diversifying selection by the host immune system is
expected to produce the mutational hotspots we have studied
here, which again have little impact. A similar argument can be
made that sequencing errors will be less important than expected,
because they are likely to be found in just one sample and
hence be uninformative as to links to other samples. Amore for-
mal approach to this problem would be to test for selection and
down-weight the identified loci from the analysis.

As yet, there are still few studies in which adequate data have
been collected in order to use SVs as a feature to identify trans-
mission routes. Deep and high-quality sequencing is required to
reliably call minor variants, as well as dense sampling of the out-
break population such that the majority of infection sources are
included in the study population. It is likely that such data will
become more commonly collected in the near future, for both
viral and bacterial pathogens, as the associated sequencing costs
fall and the benefits become more evident. This work demon-
strates that deep sequence data can be informative in outbreak in-
vestigations and epidemiologic studies, and it should motivate
both the wider collection of such data and the further develop-
ment of methodologies that might accommodate scenarios that
stray further from neutral evolutionary dynamics. It is noticeable
that bottleneck size in nature, as opposed to minimal infectious
dose, has not received the attention it deserves. The importance
of this parameter for these methods, as well as other factors such
as the evolution of virulence (37), shouldmotivate further study.

We have demonstrated the power of deep sequencing data
to identify transmission routes with greater resolution than
analogous methods using the genome of a single isolate. While
homoplasy and contaminationmight generate false-positive re-
sults and, in some settings, might be relatively common, con-
sideration of additional data sources (temporal, spatial, and
similarity of genetic background) can sometimes identify and
rule out such cases. Rigorous collection of epidemiologic data
remains a crucial component of outbreak investigation, and
combining this with deep sequencing and SV analysis can pro-
vide unprecedented insight into individual-level transmission
dynamics. The development of models that suitably incorpo-
rate all data sources remains an important goal.
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