
 

 

Shared human-robot proportional control of a dexterous myoelectric 1 

prosthesis 2 

 3 

Katie Z. Zhuang, Nicolas Sommer*, Vincent Mendez*, Saurav Aryan*, Emanuele Formento, Edoardo 4 

D’Anna, Fiorenzo Artoni, Francesco Petrini, Giuseppe Granata, Giovanni Cannaviello, Wassim 5 

Raffoul, Aude Billard#, and Silvestro Micera# 
6 

 
7 

(* Equal contribution as junior authors, # Equal contribution as senior authors) 8 

 9 

Myoelectric prostheses allow users to recover lost functionality by controlling a robotic device with their 10 

remaining muscle activity. Such commercial devices can give users a high level of autonomy, but still do not 11 

approach the dexterity of the intact human hand. We present here a method to control a robotic hand, 12 

shared between user intention and robotic automation.  The algorithm allows user-controlled movements 13 

when high dexterity is desired, but also assisted grasping when robustness is paramount. This combination 14 

of features is currently lacking in commercial prostheses and can greatly improve prosthesis usability. First, 15 

we design and test a myoelectric proportional controller that can predict multiple joint angles 16 

simultaneously and with high accuracy. We then implement online control with both able-bodied and 17 

amputee subjects. Finally, we present a shared control scheme in which robotic automation aids in object 18 

grasping by maximizing contact area between hand and object, greatly increasing grasp success and object 19 

hold times in both a virtual and a physical environment. Our results present a viable method of prosthesis 20 

control implemented in real time, for reliable articulation of multiple simultaneous degrees of freedom.  21 

 22 

In the United States alone, about 1.6 million people live with an amputation, 541,000 of which 23 

affect the upper limbs1. This condition diminishes quality of life, mobility and independence, while also 24 

imparting a social stigma2. Upper limb prostheses controlled using surface electromyographic (sEMG) 25 

signals attempt to restore hand and arm functionality by using the amputee’s remaining muscle activity 26 

to control movements of a prosthetic device. However, the capabilities of current commercial 27 

prostheses are still grossly inferior compared to the dexterity of the human hand. Commercial devices 28 

usually use a two-recording-channel system to control a single degree of freedom (DoF), i.e. one 29 

sEMG channel for flexion and one for extension3. While intuitive, the system provides little dexterity. 30 

Patients abandon myoelectric prostheses at high rates, in part because they feel that the level of 31 

control is insufficient to merit the price and complexity of these devices4–6In recent years, various 32 

research groups have made significant advances in myoelectric prosthesis control in laboratory and 33 

prototype environments. Many groups have demonstrated great success in grasp classification, which 34 

is a common approach for prosthesis control, but limits the user to a library of trained hand postures7–
35 

10. However a few groups have now attempted to decode single finger movements11–13. Despite high 36 

decoding accuracy, these studies showed results mainly from able-bodied subjects performing offline 37 

tests. With cited decoding performances of upwards of 90-95% for each method, we see a clear 38 

dichotomy between laboratory experiments and clinical viability, a point that is addressed by Jiang et 39 

al14.  40 

The idea of “shared control”, that is, automation of some portion of the motor command, is already a 41 

topic of interest within the field of robotics and neuroengineering15–18. Indeed, shared control 42 

approach can play a key role in robotic applications involving human-robot interfacing such as 43 

prosthetic body parts. The limited sensory-motor control abilities in this case make the subjects  44 



 

 

unable to conform their fingers to the shape of the object. This in turn inhibits their ability to secure 45 

and adapt their grasp according to the requirement of the task. Shared control can fill this void by 46 

stabilizing the grasp, making fine adjustments to the fingers by processing information from the tactile 47 

sensors placed on prosthetic hand’s fingers. More generally speaking, shared control strategies aim 48 

to bridge the gap between human’s intentions and efficient execution of the intended task by using 49 

information from the sensors.   50 

Even if potentially useful, shared control has not yet become prevalent in the area of peripheral nerve 51 

interfaces. Došen et al. propose a camera-based approach19while Light et al. proposes 1-DoF control 52 

with automated grip force adjustment20. Other methods of automation include automated hand-closing 53 

in response to slippage21 and  underactuated systems in which spring-like mechanisms mediate grasp 54 

force22. The only commercial application of shared-control methods to date is the Ottobock 55 

Sensorhand Speed which automatically increases thumb flexion during grasping in response to 56 

slippage18. However, it is only capable of binary action choices or 1-DoF proportional velocity control.  57 

The control method presented here attempts to implement a shared-control strategy with a 58 

highly-dexterous hand prosthesis by taking advantage of state-of-the art myoelectric decoding as well 59 

as an algorithmic controller for grasp optimization. We first propose a kinematic proportional decoder 60 

using a multilayer perceptron (MLP), which allows users to simultaneously and continuously control 61 

each finger individually. In addition, we propose to integrate and use a shared-control scheme in 62 

which a robotic controller aids in stable grasping by maximizing the area of contact between a 63 

prosthetic hand and an object23. The idea behind this scheme is to make object grasping more robust 64 

(avoiding accidental drops) while allowing the user to maintain full autonomy over grasping or 65 

releasing, grasp preshaping, and non-grasp-related motions. In this way, we achieve both highly 66 

dexterous user control when precise positioning is valuable, and partially automated grasp attainment 67 

when object droppage avoidance desirable.   68 

 69 

Results 70 

We performed three sets of experiments in which we decoded hand movements of subjects using 71 

sEMG signals recorded from their forearms.  We recruited three subjects with hand/transradial 72 

amputations (subjects A1, A2 and A3) and eight able-bodied subjects (subjects B1, B2, B3, B4, S1, 73 

S2, S3, S4) for the study. In the first set of experiments, able and amputee subjects performed online 74 

control of a virtual prosthetic hand. In the second set of experiments, the same subjects used a virtual 75 

hand to grasp and release virtual objects according to visual cues in two conditions: with or without 76 

robotic assistance. In the third set of experiments, four able-bodied subjects controlled a physical 77 

robotic arm and hand to perform functional object manipulation tasks. 78 



 

 

 79 

Figure 1. Experimental Setup and Subjects. a, In online experiments, four able-bodied subjects and three amputee subjects controlled a 80 

virtual robotic hand using their surface EMG signals. The signals were decoded with a multilayer perceptron to obtain predictions of single-81 

digit joint angles. b, The three amputee subjects had varying levels of amputation, shown here. c, Movements we tested consisted of both 82 

single-digit and multi-digit movements. All subjects performed all movements except Subject A2 who did not perform index and middle 83 

finger flexion/extensions independently. 84 

 85 

Experiment 1 (Online Kinematic Decoding). Three amputee subjects (A1, A2 and A3 in Figure 1b) 86 

and four able subjects (B1, B2, B3, and B4) performed online control of a virtual prosthetic hand with 87 

sEMG decoding. To train the MLP, subjects were asked to mimic the movements of the virtual hand 88 

while sEMGs were recorded. We decoded flexion and extension of each digit as well as thumb 89 

opposition and reposition. This gave DoFs per subject for all subjects except subject A2 who moved 90 

the index and middle fingers concurrently (Figure 1c). The average per-session correlation for all 91 

subjects and all sessions was 0.52 and the peak-to-peak normalized mean square error24 (nMSE) 92 

was 15.7%. For all subjects, the MLP successfully predicts the flexion and extension of each finger, 93 

both individually and simultaneously with flexion of other digits. We summarize performance in 94 

Supplementary Table 1 for all subjects and sessions.  95 

In order to further analyze the ability of the decoder to predict the desired joint angles and to 96 

compare these predictions against chance, we computed the percentage of time of correctly predicted 97 

joint angles for each subject (Figure 2a). As a control for this assessment, we selected random angles 98 



 

 

from the training set range and computed prediction accuracy using the random angle as the 99 

instructed one (white sections). This way, we were able to simulate chance accuracy of the MLP 100 

predictions. We find that in every degree of freedom for Subject A3, the MLP is able to decode 101 

significantly higher than chance (Wilcoxon two-sided signed rank test, p<0.01). The same analysis 102 

was performed for all subjects individually with similar results (Supplementary Figure 2) using a non-103 

parametric test due to non-normal data (Komolgorov-Smirnoff test). We then performed this analysis 104 

for all subjects while pooling all of the degrees of freedom to obtain an overall measure of decoding 105 

performance (Figure 2b). 106 

To analyze any patterns in prediction error, we calculated a “confusion matrix” for each degree 107 

of freedom (Figure 2c). Here, we enforced a threshold (mean prediction angle) to separate joint 108 

predictions into either flexion or extension. We also mapped the instructed joint angles into flexion or 109 

extension using mean instructed angle for thresholding. Plotting instructed activation on the x-axis 110 

and performed action on the y-axis, we color map excessive action (false positive) to orange intensity 111 

and lack of action (false negative) to blue intensity. We observed that Subject A3 has trouble 112 

controlling thumb flexion; it is excessively flexed during the actions of other fingers. Similarly, Subject 113 

A2, who has extensive median nerve damage, has difficulty controlling the thumb, index and middle 114 

fingers movements.  115 

These thresholded decoding accuracies are within a similar range as the ones obtained in 116 

online classification of finger flexion and extension cited by Cipriani et al. (79% average accuracy for 117 

amputees cited vs. our average of 89.5% for a similar number of classes: 7 classes cited vs. our 6 118 

effective classes which are simultaneously considered).12 119 



 

 

 120 

Figure 2. Analysis of online prediction performance of the MLP. a, Prediction accuracy of the MLP compared to chance accuracy. Gray 121 

boxplots indicate the fraction of time per trial that each predicted DoF is within 15 degrees of the instructed angle. White boxplots indicate 122 

the fraction of time per trial that a random angle (within the set of trained angles) is within 15 degrees of the instructed angle. Each degree 123 

of freedom was predicted higher than chance level (p<0.01 Wilcoxon two-sided signed rank test). All box plots in this manuscript include a 124 

median center line (red), box edges at 25th and 75th percentiles, notches calculated based on interquartile range ± 1.57∗𝐼𝑄𝑅√𝑛  b, Overall 125 

decoding accuracy versus chance for all subjects. Statistical significance is calculated with the Wilcoxon two-sided signed rank test. c, 126 

Confusion matrix of each digit’s degrees of freedom for one subject. Blue pixels indicate lack of specified movement when instructed (false 127 

negatives) while more orange pixels indicate undesired movements (false positives). Overall error is calculated as well as error along the 128 

diagonal of the matrix (whether the instructed motion was performed accurately). d, Confusion matrices for three other subjects.  129 

 130 

This experiment demonstrates our ability to decode individual finger movements proportionally 131 

for multiple simultaneous DoFs and in real time using noninvasive sEMG signals. Performance results 132 

are not only above chance level, but robust for all tested movements for both able-bodied subjects as 133 

well as amputee subjects.  134 

 135 

Experiment 2 (Shared Control using the virtual environment). In this set of experiments, the user 136 

attempted to grasp, hold and then release virtual objects by controlling a sensorized virtual robotic 137 

hand implemented in Gazebo and rviz, a ROS package (Figure 3a). The same subjects from 138 

Experiment 1 performed this experiment with the exception of subject B1. In addition to the MLP 139 

decoding, we tested two conditions: one with shared control for partial grasp automation (shared 140 

control) and one without (MLP only). During the shared control condition, the virtual hand would 141 



 

 

automatically attempt to maximize contact between the hand and a grasped object by increasing 142 

flexion of a finger as soon as a single phalanx touches an object. If, however, the total joint angle 143 

difference between MLP predictions and shared control targets of a single digit would differ by more 144 

than 50 degrees, the controller would use torque control to achieve MLP-decoded joint angles for that 145 

digit (Figure 3b). This threshold was chosen empirically from preliminary testing. In the future, we will 146 

strive to make the transition gradual instead using a threshold. The action of the algorithm is shown 147 

in Figure 3c under the conditions of pre-contact (MLP joint targets), initial contact (shared control 148 

targets in red) and achievement of full contact (in green). Figure 4d shows an example of single-digit 149 

flexion and extension with or without shared control for Subject B4 grasping the thin rectangular bar. 150 

We see that when shared control is implemented, digits that make initial contact with an object are 151 

better able to achieve more contacts and maintain them. The higher number of contacts achieved 152 

with shared control reflects this advantage (top row). However, the user is still able to release the 153 

object when it is desired (movement instructions at bottom).  154 

In Figures 3e, 4a we show the percentage of trials in which a full grasp is achieved per subject across 155 

all sessions with either shared control or only MLP predictions. Full grasp is defined as attaining all 156 

possible contacts between the hand and a particular object (see Methods). In the shared control 157 

condition, subjects are able to achieve considerably more successful grasp trials for all objects. For 158 



 

 

each object and for each subject, we also show percentage change in fraction of successful grasp 159 

trials between the MLP-only and shared control conditions (Figure 4b).  160 

 161 

Figure 3. Shared control in virtual environment, setup and results. a, Simulator of Allegro Hand b, Shared control scheme. Both the MLP 162 

decoder and shared controller run simultaneously and the MLP-decoded joint targets prevail before contact. During object contact, the 163 

shared control joint targets prevail unless the difference between MLP-only and shared control is above a 50-degree threshold. c, Action of 164 

the active compliant contact controller. When one contact on a digit touches the object, the direction of motion is computed to bring other 165 

contacts of the digit towards the object. Figure adapted from Sommer and Billard et al.23 d, Example traces of shared control (Subject B4). 166 

Top row shows total of pressure detected without (left) and with (right) shared control. Traces show the joint angle for each DoF. Dotted 167 

lines indicate the MLP prediction while solid traces indicate the actual position of the virtual robotic hand. Bottom row indicates the cues to 168 

grasp or release. e, Percentage of trials during which desired contacts are achieved for the three objects by Subject B5 over 3 sessions. 169 

(p-values from Fisher’s two-tailed exact test). Number of successful trials versus total trials are indicated on each bar. f, Duration of hold 170 

time for each object out of seven seconds (p-values from Wilcoxon two-sided signed-rank test). g, Percentage of grasping trial time during 171 

which contacts were touching the objects (p-values from Fisher’s two-tailed exact test). Contacts on different phalanges are indicated with 172 

different color shades, raw numbers for calculation included in Supplementary Table 1. 173 



 

 

 We also see a difference in grasping performance between objects grasped which is subject-174 

dependent. For example, Subject A2 benefitted the most from shared control for the rectangular bar. 175 

This result is consistent with the finding that the same subject has particular difficulty in sustaining 176 

muscle activation associated with the thumb, index and middle fingers due to median nerve damage.  177 

In addition to the attainment of grasp, we also assessed how long the subjects were able to 178 

maintain holds. Figure 3f, 4c shows the distribution of hold times per object and per subject with or 179 

without shared control. We define hold time as the length of continuous time during which the subject 180 

could maintain required contacts between the virtual hand and object without any contacts being 181 

broken25.Due to the visual cue, a small percentage of non-hold time is likely due to subject reaction 182 

time. For all objects and subjects, hold times are greater with the shared control condition than only 183 

MLP, with the exception of the cylinder for subject B2.This may be due to the low number of trials 184 

subject B2 performed in comparison to Subjects A1-3. .  185 

Finally, we assess the percentage of time that each single sensor contacted the objects to 186 

analyze which contacts subjects found more difficult to maintain. For all objects, all subjects were able 187 

to maintain longer contacts with all parts of the digits with shared control than with only MLP 188 

predictions. Importantly, all subjects were capable of releasing the objects once grasped by relaxing 189 

their grasp (Fig. 4d, 6b). 190 

Taken together, these results show that the shared controller aids grasping in multiple ways, 191 

namely facilitating longer, more successful grasps and avoiding accidental drops.  192 



 

 

 193 

Figure 4. Shared Control results in virtual environment cont’d. a, Comparison of fraction of successful grasping trials with (orange) or 194 

without (black) shared controller aid for three amputee subjects and all three object types. Data are shown for all sessions of each subject 195 

(# of sessions indicated in title). Statistical p-values are computed using Fisher’s two-tailed exact test. Number of successful trials versus 196 

total trials are indicated on each bar. b, Percentage improvement in fraction of correct trials for the three subjects split by object type. Each 197 

color indicates a different subject. c, Duration of hold time for each object with or without shared control for the three subjects (p-values by 198 

Wilcoxon two-sided signed-rank test). Maximum instructed hold time was seven seconds. d, Percentage of grasping trial time during which 199 

each single contact on each digit made contact with the objects with or without shared control for the three subjects (p-values by Fisher’s 200 

two-tailed Exact Test). Each plot is for a different subject with the shaded bars indicating contact placement. Lighter color shades indicate 201 

more proximal phalanges on the same digit. Data are aggregated over all trials and sessions for a single subject, raw numbers for calculation 202 

included in Supplementary Table 2. 203 

Experiment 3 (Shared Control in a physical environment). 204 

This experiment was divided into two sub-experiments. In the first sub-experiment, the subjects 205 

performed a variant of the box and block test26 through teleoperation of a physical robotic hand and 206 

arm. The goal was to grasp and move an object (a bottle, half-filled of water) placed on a hard case 207 

to another one placed approximately 30cm away. Object droppage was considered a failed trial. The 208 

subjects controlled the robotic arm via an optical motion capture system. A robotic hand (the physical 209 

analog of the virtual one described in Experiment 2) was mounted onto the robotic arm and controlled 210 

with either MLP only or shared control. Four able-bodied subjects participated in this experiment (S1, 211 

S2, S3 and S4). After a training phase to train the MLP decoders, the subjects were required to 212 



 

 

perform 20 trials of the functional task under in each condition (randomized MLP only and shared 213 

control) for a total of 40 trials.  214 

 215 

Figure 5. Shared control in physical environment, setup and results. a, Comparison of fraction of successful trials for the box and 216 

blocks task and the manipulation task with shared control (orange) and without (black). Data are shown for all sessions of each subject. 217 

Number of successful trials versus total trials are indicated on each bar when not zero. For the manipulation task (right panel), the total 218 

number of successful trials in each condition was summed over all the subjects. Fisher’s two-tailed exact test was used to compute statistical 219 

p-values for individual subjects, Wilcoxon rank-sum test was used for total values. b, Effective normalized pressure on each finger 220 

comparing the trials with and without shared control. The p-values indicated were computed using Wilcoxon’s rank-sum test. c, Number of 221 

contacts detected by pressure sensors on each finger, averaged over time of each trial. The bars indicate the mean of each trial’s average 222 

number of contacts. The p-value is computed using Wilcoxon’s rank-sum test to compare trials of all subjects with and without shared 223 



 

 

control. d, Time series plots of total pressure, MLP decoded joint positions (dotted) and corresponding actual joint positions of the allegro 224 

hand (solid) over few sample grasping trials. The joints on each finger were summed over phalanges. Total pressure was computed by 225 

summing over all phalanges after normalization. e, Picture of the setup comprising the robotic arm and hand with a subject wearing the 226 

EMG acquisition system. f, Snapshots of completion of box and blocks task (top) and manipulation task (bottom). For full video see 227 

supplementary video 3. One trial of each condition (with and without shared-control) can be seen in supplementary video 4.  228 

Results are shown in Figure 5a (left panel). S3 and S4 performed significantly better with 229 

shared control than without whereas S1 and S2 were highly successful at the task in both conditions.  230 

To evaluate whether the shared control improves grasp quality, we defined two metrics based 231 

on the pressure sensor data: average number of contacts and the “effective normalized pressure” 232 

(see Methods). The results shown in figures 5b and 5c indicate better performance with shared control 233 

in terms of both of the two metrics. The p-values, computed using Wilcoxon’s rank-sum test over all 234 

trials by all subjects, show statistical significance in case of effective normal pressure (p< 0.0001). 235 

The same test performed on average number of contacts was not significant for the index finger 236 

(p=0.07) but showed statistical significance for the other two fingers (p< 0.05). 237 

As shared control was notably advantageous for the subject S3, we compared the timeseries 238 

plots of a few trials from the subject’s box and block tasks (Figure 5d). In open position (close to zero), 239 

the actual position (solid line) closely follows the MLP prediction (dotted line) for each finger. However, 240 

the subject cannot close the fingers enough to grasp, leading to insufficient total pressure. With the 241 

shared control, the grasps are tightened to achieve the desired pressure. In case of the subjects who 242 

performed equally well with and without shared control (S1, S2) the MLP prediction by itself was high 243 

enough during grasping to achieve a tight grip and high pressure.  244 

The second sub-experiment used the same training protocol as first, with a slight variation in 245 

the behavioral task. The task here consisted of grasping the bottle from the table, bringing it to mouth, 246 

tilting it to mimic drinking and then returning the bottle back to a steady position (a few centimeters 247 

above the table). Subjects were given less than 10 seconds to complete the movement and then hold 248 

the bottle in steady position for at least 10 seconds. The rotation of partially filled bottle leads to the 249 

shifting of its moment of inertia due to flow of the water, resulting in a perturbation. Additionally, bottle’s 250 

conical shape and smooth surface further adds to sliding of the bottle. Thus, this sub-task can 251 

evaluate the potential of shared control in stabilizing the grasp under object’s perturbations, slippery 252 

surface and non-uniform shape of object. S1, S2 and S3 performed better with shared control but not 253 

significantly (S1 and S3: p=0.3, S2: p=0.65) while S4 showed statistically significant improvement 254 

(Figure 5a right). This is likely due to the limited number of trials. Moreover, S4 was completely 255 

unsuccessful at completing the task without shared control but performed relatively well with shared 256 

control (p < 0.01). The overall advantage of using the shared control becomes evident when we pool 257 

together all the subjects (see last histograms in Figure 5b).  258 

 259 

Discussion 260 

Here we show that we are able to decode single finger kinematics from surface EMGs of both able 261 

and amputee subjects. The decoding approach was accurate for both single-finger movements and 262 

coordinated, simultaneously activated grasping motions. We also show that decoding is fast enough 263 

for real-time applications, with an update rate of 33 Hz. To the best of our knowledge, the work 264 

presented here is the first demonstration of a real-time proportional decoder for individual fingers 265 

tested with amputee subjects.  266 

One reason commercial prostheses prefer to implement classifier-based decoders instead of 267 

proportional ones is the robustness of classifiers in remaining in a particular posture. For grasping, 268 

this type of control is ideal to prevent accidental dropping but sacrifices user agency by restricting the 269 

number of possible hand postures. Our implementation of shared control allows for both user agency 270 



 

 

and grasping robustness. In free space, the user has full control over hand movements, which also 271 

allows for volitional pre-shaping for grasping.  272 

The tests performed in a physical environment allowed us to show the efficacy of shared 273 

control to the improvement of grasp especially when complex tasks are implemented (see Figure 5b). 274 

For the first simpler sub-experiment, some subjects (S1 and S2) performed the tasks equally well 275 

regardless of the use of shared control while others (S3 and S4) benefitted from shared control 276 

significantly. This was because the MLP prediction performance varies across the subjects. These 277 

results show that the use of the shared control can be particularly useful for subjects with limited EMG 278 

control ability.  279 

Another advantage of shared control is that it requires less energy for the user to maintain a 280 

grasp14. Muscle fatigue is well-documented in sEMG studies27–31 and is one hurdle for proportionally 281 

controlled prostheses. Without the presence of sensory feedback, the simplest solution for a user to 282 

be sure of sufficient force is to flex the fingers maximally throughout the duration of the grasp, which 283 

can be very fatiguing. In Figure 6b and 6c we show EMG activity of Subject B2 during grasping with 284 

shared control or with only MLP predictions. Figure 6b shows averaged EMG activity across all 285 

channels and all grasp trials of each object type in a session. As can be seen, for all objects, EMG 286 

amplitude is lower with shared control (p<0.01 Wilcoxon two-sided signed rank test). As a control, we 287 

also plot averaged EMG during release trials (Fig. 6b right) which reveals low EMG activity for all 288 

objects, after a short peak at the beginning of the trial during which the subject reacts to the visual 289 

cue to release. Figure 6c shows the averaged EMG for each individual channel and for each individual 290 

object averaged across trials with only MLP predictions (left) or shared control (right). We observe a 291 

clear difference in overall muscle activation. This effect on EMG activity was also confirmed during 292 

Experiment 3. Figure 6d shows averaged EMG activity across all grasps and all EMG channels for 293 

each subject. EMG activity is significantly different for subject S1 and S4 (p<0.01, Wilcoxon two-sided 294 

signed rank test), but not for S2 (p=0.64) and S3 (p=0.61). It is interesting to note that even two 295 

subjects performed well for the box and blocks test in both conditions (see Fig. 5a), the overall muscle 296 

activation is clearly lower during shared control than the MLP-only condition. We find the same result 297 

when we analyze each EMG channel separately (Figure 6e). 298 

In our study, inter-subject decoding performance was highly inconsistent. For amputee 299 

subjects, many factors can contribute to this heterogeneity, including the level of amputation (Figure 300 

1b), type of injury and time since injury. In Figure 6a we plot the correlation coefficient between the 301 

EMG channels we recorded from for each subject. We see that subjects A1 and A3 have relatively 302 

uncorrelated EMG channels whereas subject A2 has highly correlated channels. This indicates 303 

inability to activate different muscle groups independently.  Functionally, this results in subject A2’s 304 

inability to perform all of the single-digit movements that the other subjects were able to In addition to 305 

a lower number of DoFs independently required for subject A2 (index and middle fingers moved 306 

together), we show that shared control can be particularly effective for subjects with few independent 307 

muscle groups We emphasize this point because regardless of the type of decoding algorithm one 308 

would implement, the subjects with lower neuromuscular ability will suffer lower decoding accuracy 309 

unless they can use some kind of compensation. Such compensation can be surgical, such as in 310 



 

 

targeted muscle innervation, behavioral, such as learning to contract in an unintuitive way, or it could 311 

be algorithmic, as we implemented.  312 

 313 

  314 

Figure 6. EMG analysis with and without shared control. a, Cross-correlation of EMG activity between each of the recorded channels for 315 

four subjects during a single session of MLP decoding. Darker pixels indicate lower correlation between pairs of EMG channels while 316 

brighter pixels indicate high correlation. High correlation is a proxy for muscle coactivation. b, Averaged sEMG amplitude during grasping 317 

trials for Subject B2 for the three objects in  the virtual environment. Solid lines indicate EMG amplitude during grasp trials of shared control 318 

and dashed lines indicate average EMG amplitudes during trials with only MLP control (left). The same plot is shown for release trials: when 319 

the subject was instructed to release the object (right). c, Per-channel EMG activity during grasp trials of each object for Subject B2. Each 320 

row is normalized amplitude of a single EMG channel averaged over all grasping trials for a particular object. d, Averaged EMG activity 321 

during grasps of the physical box and block task for each subject. Activity is averaged across all grasps and all channels per subject. e, 322 

Per-channel EMG activity of grasps during one session of the physical box and blocks task for each Subject. Each row is normalized 323 

amplitude of a single EMG channel averaged over all trials for a particular subject.  324 

 325 

As of now, the compliance controller implemented in our shared control has only one set target 326 

force for applying pressure on grasped objects. Future studies should include user-modulated forces, 327 

which would be greatly aided with the addition of sensory feedback.  328 

In conclusion, we have explored sEMG-control of individual finger movements in real time with 329 

both able-bodied and amputee subjects and show the advantages of a shared-control scheme. In 330 

particular, our shared controller leverages the dexterity afforded by user control with the grasp 331 

robustness of automation, which can greatly benefit the translation of myoelectric control algorithms 332 

into commercial devices. Furthermore, we recognize that amputees and even able users are 333 

extremely varied in their ability to modulate their remaining muscle activity. Consequently, some 334 



 

 

subjects will be less able to control as many DoFs, or as consistently, as others. Shared control can 335 

particularly help these users who are less proficient in sEMG modulation and additionally may prevent 336 

premature fatigue. Thus, control algorithms should account for user variance and partial automation 337 

is one such method that can greatly improve myoelectric prosthesis usability. In the next future, we 338 

believe that this approach could be valuable to cope also for the limitation of other human-robot 339 

interfaces such as the ones based on brain signals or body movements. 340 

 341 

Methods 342 

Subjects and EMG recording. Three amputee subjects were recruited for this study, two female 343 

(Subjects A2 and A3) aged 53 and 49, respectively, and one male (Subject A1) 69 years of age. 344 

Subjects A1 and A2 had proximal transradial amputations while subject A3 had a right hand 345 

amputation just distal to the wrist (Figure 1).  In addition, seven able bodied subjects were recruited, 346 

all of whom were male, between 26 and 30 years of age for experiment 1 and 2. Subject B6 was left-347 

handed and performed all experiments with the left hand. Four additional male subjects aged between 348 

20 and 26 (S1, S2, S3, and S4) were recruited for the third experiment with the physical robot. Ethical 349 

approval was obtained by the Institutional Ethics Committees of Policlinic A. Gemelli at the Catholic 350 

University, the Italian Ministry of Health, and the cantonical ethical committee of Vaud. Informed 351 

consent was obtained from all participants in the study.  352 

In Experiments 1 and 2, we collected data from three able-bodied subjects (subjects B2, B3, 353 

and B4) and all three amputee subjects. Subject B1 performed only Experiment 1. For the three 354 

experiments, we used the Noraxon Delsys system connected to a LabJack data acquisition card to 355 

wirelessly record from five to seven bipolar surface EMG channels at 2kHz from each subject. In 356 

general, we tried to use the fewest possible channels that could result in full DoF control in order to 357 

show translational potential. Thus, we opted for five channels for subjects A2, B1, B2, B3, B4 and 358 

seven channels from A1 and A3 and finally six for S1, S2 and S3. We started with using five EMG 359 

channels per subject. For the amputee subjects, we attempted to add more electrodes to improve 360 

decoding performance. Subject A2, however, had very limited surface area on the remaining forearm 361 

and so we were unable to use any additional electrodes. For the able subjects, the muscles targeted 362 

were the extensor digitorium, flexor carpi radialis, palmaris longus, flexor digitorum superficialis and 363 

flexor carpi ulnaris, located with palpation. Due to the differences in the cause of amputation (ex. 364 

Torsion vs. lacerating), remaining muscles in the forearm differed in placement from non-amputees 365 

so palpation of the stump for controllable muscle tone determined electrode placement.  366 

 367 

EMG processing and Feature Extraction. We chose eight well-explored time-domain features to 368 

extract for both experiments 1 and 232,33:  369 

 Mean absolute value 370 

 Zero crossing: number of time that the amplitude value of the EMG crosses zero 371 

 Slope sign changes: number of times that the slope of the EMG amplitude changes sign 372 

 Waveform length: cumulative length of the EMG waveform 373 

 Log detector: 𝑒 1𝑁 ∑ log(|𝑥𝑖|)𝑁𝑖=1   where xi is the EMG amplitude at time bin i. 374 

 Root mean square of EMG amplitude 375 

 Willison amplitude: number of times the difference between two EMG neighboring samples is 376 

greater than a certain threshold. In the implemented code, the threshold has been set to 0.2 377 

times the value of the standard deviation of the global signal.  378 

 Maximum absolute value was used only in Experiment 3. 379 



 

 

In Experiment 1, all seven features of all channels became the inputs of the multilayer perceptron 380 

model. In experiments 1 and 2, we used a 100ms-sliding window with 50ms of overlap to calculate 381 

features, downsampled to 30Hz for the online experiments.  382 

For a preliminary offline experiment (Supplementary Figure 1), we also calculated four autoregressive 383 

features. Before fitting the MLP, we performed both channel and feature selection so not all features 384 

were included in the network training. In channel selection, one MLP was first trained and tested for 385 

each EMG channel. The channel providing the highest estimation performance was chosen as the 386 

first optimal channel. In the second fit iteration, the previously selected channel was paired with each 387 

of the remaining channels. These pairs were then used to train and test other MLPs. Again, the pair 388 

providing the highest estimation performance was chosen as the optimal subset of two channels. This 389 

procedure was repeated until either the increase in coefficient of determination (R2) after adding one 390 

channel was less than 0.01 or a limit of 5 channels was reached. For feature selection, the same 391 

forward selection algorithm as for channel selection was used, repeating as long as the increase in 392 

R2 after adding one feature was greater than 0.01. For the third experiments, we used a 300ms sliding 393 

window with 30ms overlap to extract features offline. Online frequency was kept the same, no feature 394 

selection was applied nor channel selection. 395 

 396 

Experiments in a virtual environment (Experiments 1 and 2) 397 

Experiment 1 began with a training period lasting approximately 3 minutes. The subject 398 

watched a series of movements on a screen performed by a pair of virtual robotic hands (Modular 399 

Prosthetic Limb by Johns Hopkins University Advanced Physics laboratory). The subject was 400 

instructed to try to copy the movements on the screen with mirrored movement (imagined movement 401 

of the phantom hand in the case of amputees). Each movement was repeated three times, each with 402 

a hold period of approximately five seconds. sEMG activity from the stump of the amputation 403 

(decomposed into features) and the directed movements of the virtual hand served as training signals 404 

for the MLP. Thus, we assumed perfect tracking between the subject and the movements presented 405 

on the screen. We asked subjects to perform single finger flexions and extensions, thumb opposition, 406 

closed hand, three-finger pinch, ulnar grasp, and open hand (Figure 1c). Due to subject A2’s lack of 407 

residual active muscle, we asked only this subject to perform thumb opposition, index and middle 408 

finger combined flexions and extensions, closed hand, three-finger pinch, ulnar grasp and open hand. 409 

After the training period, subjects attempted to repeat these movements in random order, using the 410 

MLP prediction output. Again, they were cued with the virtual hand movements. Each movement was 411 

repeated five times. Either the right or left hand of the virtual hand performed the desired movement, 412 

which the subjects attempted to follow, while the other virtual hand showed the MLP-decoded output. 413 

The controllable virtual hand was ipsilateral to the amputation for amputee subjects and the dominant 414 

hand for able subjects.  415 

During shared control, Experiment 2, the MLP output controlled one virtual hand for grasping 416 

objects. Subjects used a color cue (red/green) to signal when to grasp and release each object. Each 417 

grasp or release phase lasted seven seconds. The virtual objects presented were a cylinder, a cross-418 

shaped joint, and a thin rectangular bar in one of three different orientations per object (rotations 419 

around either the x, y or z axes) presented at random. Subjects controlled the hand with MLP 420 

predictions of four digits: thumb, index, middle and either the ring or the pinky finger for the last finger 421 

of the Allegro Hand simulation. From the virtual environment, we are able to record data from the 422 

hand’s contact sensors and hence are able to assess hand-to-object contact as well as hold time. For 423 

each object, we defined required contacts for a successful trial based on the contacts that were 424 

physically attainable. For the cylinder, required contacts were proximal interphalangeal and 425 

metacarpophalangeal contacts on every digit, for the cross-joint, required contacts were distal and 426 

proximal interphalangeal contacts on every digit, and for the rectangular bar, required contacts were 427 



 

 

the distal phalanges of the index and ring fingers and the thumb.   A trial was a success if the subject 428 

was able to achieve all required contacts simultaneously. 429 

 430 

Experimental Hardware description 431 

The hardware for the final “physical” experiments consists of an Allegro hand mounted on the KUKA 432 

IIWA 7 robot, OptiTrack camera system and TEKSCAN pressure sensors. The right allegro hand 433 

consists of three fingers and a thumb, each with four degrees of freedom. The fingers have four 434 

motors, one each at the MCP, PIP and DIP joints while the fourth motor is located just under the finger 435 

base, where it is attached to the palm and controls its lateral rotation. The thumb has three motors 436 

located at the joint connecting to the palm, controlling rotations along the three axes and one motor 437 

located at the joint connecting the two phalanges.  Each of the 16 motors can be operated in position 438 

control or torque control mode, the later being used in shared control approach. A set of two 439 

TEKSCAN tactile sensor GRIP system is mounted on the allegro hand to obtain contact and pressure 440 

information at the phalanges. Due to an issue with the third finger, we had to restrain its motion 441 

completely and work with the thumb and other two fingers in all our experiments. 442 

The allegro hand is mounted on KUKA arm so that it can be moved around in space by the subject. 443 

The subject wears a set of three OptiTrack markers on the wrist, using which the position and 444 

orientation of the subject’s hand can be detected by a set of 7 infrared camera. The EE of KUKA is 445 

then sent the same to move it in tandem with subject’s hand. KUKA IIWA 7 robot has 7 degrees of 446 

freedom, which allows its end-effector (EE) to be moved in desired position and orientation in smooth 447 

and continuous manner. An inverse-kinematics solver decodes the EE position and orientation into 448 

the individual desired joint positions, and sends them to the KUKA arm’s controller. 449 

 450 

 451 

Protocols of the “physical” experiments (Experiment 3). 452 

These experiments began with a training period lasting 4 and a half minutes. The subject watched a 453 

series of movements on a screen performed by the same virtual environment as experiments 1 and 454 

2. Each movement was repeated five times, each with a hold period of approximately five seconds. 455 

sEMG activity from the forearm of the subjects (decomposed into features) and the directed 456 

movements of the virtual hand served as training signals for the MLP. Thus, we assumed perfect 457 

tracking between the subject and the movements presented on the screen. At the end of this task, 458 

the MLP was trained.  459 

For the “box and block” task, two hard cases were placed on a table in front of the robot with 460 

a bottle of water placed on one of them. Subjects were instructed to grab a bottle of water (Badoit 1L) 461 

and move it from one box to the other. They could grasp it freely and change grip position until they 462 

felt confident enough to lift it up. A trial was considered as success if the bottle was moved from one 463 

box to the other without droppage before reaching the second box. If the subject knocked over the 464 

bottle while trying to grasp it, the experimenter put it back at initial condition and the trial was not 465 

considered as fail.  466 

During these experiments, several metrics were used to assess the performance of the 467 

subjects: 468 

1. Number of successful trials performed by the subject. A trial was considered as failure if the bottle 469 

fell in the gap between the two boxes. 470 

2. Time to perform the overall task 471 

3. Average number of contacts and the “effective normalized pressure”. These two parameters were 472 

used to characterize the quality of grasping. Owing to the varying sensitivity of the sensors, 473 

pressure of each sensor data was first normalized by dividing by the maximum detected value of 474 

the respective sensors. The normalized data were used in rest of the evaluations. The average 475 



 

 

number of contacts on each finger was computed by summing the number of contacts detected 476 

on each finger and averaged over the grasping time of each trial. Whereas, the effective normal 477 

pressure is defined as the sum of maximum normalized pressure detected on all phalanges of a 478 

finger weighed by the average contact time of the respective phalange during the grasping period 479 

of a given trial. Usually, a greater number of contacts on each finger tends to make the grasp 480 

more stable against perturbation. Further, higher pressure and duration of contact are expected 481 

to improve the grasp in a task such as block test. Therefore, it is reasonable to assume that the 482 

two metrics defined here can be used to test shared control’s performance in improving the grasp. 483 

 484 

For the manipulation task, the same bottle was placed on a table in front of the robot. Subjects 485 

were instructed to grasp and lift the bottle, then tilt their arm as if they were drinking from it. The trial 486 

was considered successful if the water flowed to the other side of the bottle (touching the bottle cap). 487 

The subject was then required to return the arm to initial position, and then hold the bottle in the air 488 

above the table for 10 seconds without any slippage. The experimenter verified that the bottle-tilt 489 

movement phase was completed within ten seconds and that the post-movement hold period also 490 

lasted 10 seconds. The MLP was retrained between the two behavioral sessions to avoid any loss of 491 

performance and the order between the two conditions (MLP only and shared control) was reversed 492 

for each subject compared to the first session. 493 

 494 

Multilayer perceptron model. We chose to use the multilayer perceptron as the decoding method 495 

for decoding finger kinematics due to its extensive use in sEMG applications34. For experiment 1 and 496 

2, we chose a three-layer network with one input layer, one hidden layer with three neurons and an 497 

output layer. The input layer is composed of the different features extracted from sEMG data and the 498 

number of nodes is dependent on the number of channels we recorded. Each of the three neurons of 499 

the hidden layer exhibit a hyperbolic tangent activation function. The output layer is the decoded 500 

output and consists of only one parameter (DoF). Hence, the full decoder incorporates as many MLP 501 

networks as desired degrees of freedom. The decoded joints in Experiment 1 were wrist 502 

pronation/supination, index and middle finger flexion/extension and ring and little fingers 503 

flexion/extension (three DoFs total). The decoded joints in Experiments 2 and 3 were metacarpal-504 

phalangeal joint angle and interphalangeal joint angle of each digit, and thumb opposition/reposition 505 

(11 DoFs total). For more robustness, we averaged value of the interphalangeal and metacarpal-506 

phalangeal joints per digit and considered them one DoF for all analyses.  507 

Model training defines the weights of each node’s contribution to the next layer and in an MLP, 508 

all nodes of one layer are connected to each of the nodes of the next layer by these weights. Training 509 

was accomplished by minimizing a sum-of-squares error function. A training set with input features xn 510 

where n is the number of time lags (n = 1, …, N) and desired kinematics tn has the error function:  511 𝐸(𝑤) = 12 ∑ ∥ 𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛 ∥2𝑁
𝑛=1  512 

Here, w is the array of weights of the neurons and y are the predicted kinematics using the feature 513 

input. We chose to use the Levenberg-Marquardt method for fitting the network weights due to its 514 

faster convergence time than the more typical gradient descent methods.  515 

In order to fit the MLP weights in Experiment 1, seven movement repetitions were used for the 516 

training set, five for the testing set and three for the validation set. We used 10-fold cross-validation 517 

in Experiment 1 and 4-fold cross-validation in Experiments 2 and 3, with the training and test sets in 518 

order to determine the optimal weights for testing. In Experiment 2, each session began with a 3-519 

minute training phase in order to record a data set of desired movements consisting of three 520 

repetitions of each movement, of which 70% of the time was used for training and 30% for validation. 521 



 

 

We then performed cross-validation in order to choose the optimal weights for online control. The full 522 

model-training process lasted a total of less than ten minutes for all of the subjects, with exact duration 523 

depending on the number of EMG channels used. Hence, we emphasize the practical implications of 524 

such an algorithm for clinical use. 525 

We also performed a preliminary offline experiment in which three able-bodied subjects index 526 

and middle finger combined flexion/extension, ulnar grasp/release, and wrist pronation/supination in 527 

three different arm positions: arm extended, arm flexed, and arm at rest (supported) shown in 528 

Supplementary Figure 1.  Subjects performed bilateral volitional alternating movements of each DoF 529 

while we optically tracked kinematics of the hand and arm contralateral to the one from which we 530 

recorded sEMGs. The MLP decoder was then trained and we performed offline testing of decoder 531 

performance. Decoding accuracy of the testing set for one subject is plotted in Figure 2a. With 532 

impressive R2 values of 0.82, 0.79 and 0.80 for the index and middle finger flexion/extension, ring 533 

and pinky finger flexion/extension, and wrist pronation/supination respectively, the MLP is able to 534 

predict movements with high accuracy for each of the DoFs simultaneously. In particular, the decoder 535 

adeptly tracks both the sinusoidal flexions and extensions as well as sustained flexion or extension 536 

to the full range of motion of the DoFs. 537 

For the final “physical” experiment, the architecture of the MLP was changed slightly from the 538 

first two experiments. The MLP was designed using TensorFlow’s35 premade DNN regressor class 539 

and  consisted of three fully connected layers as the other experiments but in this case the hidden 540 

layer consisted of thirty neurons that exhibited a ReLU activation function (max[0,x]). The output layer 541 

is also the decoded output and consists of only one parameter (DoF). Therefore, there was again one 542 

MLP per decoded joint. In this case, joint angle values were kept independent. The loss function was 543 

the mean squared error as before. The network was trained using adaptive moment estimation 544 

(Adam). During training of experiment 3, subjects were required to perform five repetitions of each 545 

movement; four were used as the training set and one for validation. No cross-validation was needed 546 

since we could directly see the performance in real time with the robot (~test set). The full model-547 

training process lasted approximately ten minutes for each of the three subjects. 548 

 549 

Online Control.  550 

Real time software for the MLP was programmed in C++ (Visual Studio 2015)) for experiment 1 and 551 

2, which integrated input from the EMG recording systems and sent decoded joint angles to the 552 

Modular Prosthetic Limb and to the Allegro Hand simulator in Gazebo. For experiment 3 the real-time 553 

software was programmed in Python 3.6, which received the EMG signals and sent decoded joints to 554 

the real Allegro Hand. In the C++ software, matrix functions were implemented using the Armadillo 555 

class38 and Scilab (Scilab Enterprises 2012). After fitting of the MLP, we extracted features from EMG 556 

signals in real time. Here, we use only the most recent 100ms (or 300ms in the third experiment) of 557 

EMG data for feature computation. We first normalize EMG amplitudes with means and standard 558 

deviations derived from the training data of the same channels and then made prediction updates at 559 

33Hz (every 30ms). To obtain a smoother signal, we low-pass filtered the MLP output with a 10-frame 560 

moving average and in the third experiment, a Kalman filter was added after the moving average filter. 561 

 562 

Shared Controller. The autonomous controller for the shared-control condition adapted from the 563 

compliant contact approach published by Sommer and Billard for the maximization of “desired contact 564 

points” with objects23. As soon as the hand is in contact with the object, the controller moves the 565 

fingers in directions that increase the area in contact. It stops once it has established a contact at all 566 

desired contact points. The digits are controlled in torque-mode at all times. The controller’s principle 567 

is based on operational space control. That is, it projects the forces/torques in the nullspace of the 568 

contact forces. The controller can also modulate the torques in the fingers’ joints to generate the 569 



 

 

desired forces at the contact point so as to stabilize the object. For a complete mathematical 570 

description of the approach, the reader can refer to Sommer and Billard23. 571 

Depending on the task, different types of contact points and numbers of contacts can be 572 

defined. In our implementation, we used a Gazebo simulator of the Allegro Hand, which is a 4-digted 573 

robotic hand with simulated contact sensors on the inner, side and top surface of each digit. The hand 574 

has three phalanges per digit and joints between the phalanges can all be independently controlled 575 

in torque, for a total of 16 actuated degrees of freedom. We defined one desired contact per phalanx 576 

of each finger and two for the thumb for a total of 11 desired contacts on the simulator. When the 577 

hand is not touching any objects, a proportional-derivative (PD) controller modulates joint torques to 578 

achieve the desired joint angle targets. These targets are the angles decoded by the MLP, and 579 

streamed to the simulation over UDP. Instead of predefined preshaping as in the previous work, 580 

preshaping is left to the user. Indeed, we observed thumb opposition before finger flexion for many 581 

subjects (see Supplementary Video 2), which allowed them high grasp stability. In lieu of the drill 582 

object tested previously, we presented a thin rectangular bar along with the cylinder and cross joint 583 

part (Suppl. Fig. 3a). Each object was tested in one of three random orientations, 30 degrees tilted in 584 

either roll, pitch or yaw. This allowed exploration of the full range of object locations with respect to 585 

the hand.  586 

In the shared control condition, the algorithm attempts to maximize contact area by applying 587 

motor torques in the direction of desired contact points. Once a digit comes in contact with an object 588 

at any location, the controller will exert joint torques on the hand in order to achieve more desired 589 

contact points with the object. The direction of these joint torques is computed as a summation of the 590 

normal vector of the contact point with the object and the direction of the desired contact towards that 591 

point (Figure 4c). If there is no contact between a digit and an object, that digit is still PD-controlled to 592 

achieve the MLP output’s target angles. As for the contacts already made between the hand and the 593 

object, the shared controller exerts a predefined force, but also permits joint torques in magnitude and 594 

direction such that contact force between the desired contact and the object does not change, the 595 

contact nullspace. Thus, each digit is allowed to slide along the surface of the object to continue 596 

seeking contact with the object at “desired contacts” that have not yet been achieved. Meanwhile, the 597 

PD controller continues to compute the joint torques required to achieve MLP-dictated joint angles. 598 

The shared controller applies the vector components of these joint torques at already-achieved 599 

contacts such that the those contact forces do not change. The result is that the user is still able to 600 

move the hand over the object as desired without breaking contact. This feature made object 601 

manipulation possible.  602 

The shared controller is designed to optimize for maximum contact between hand and object. 603 

However, if the difference in desired joint angle of the active shared controller becomes too different 604 

(defined in our case as 50 degrees total difference amongst all joints of a digit) from the decoded MLP 605 

output, the PD controller takes over again using MLP-decoded joint angles as target angles. Thus, 606 

any contact that may already exist could freely be broken.   607 

 608 

Code availability 609 

The MATLAB code used for data analysis and synthesis of results presented in this study are 610 

available at https://github.com/KZzizzle/0713.git. Data collection code is available from the 611 

corresponding author on reasonable request. 612 
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