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Shared mechanisms across the major psy-
chiatric and neurodegenerative diseases

Thomas S. Wingo 1,2,3 , Yue Liu2, Ekaterina S. Gerasimov2, Selina M. Vattathil2,
Meghan E. Wynne4, Jiaqi Liu 2, Adriana Lori5, Victor Faundez 4,
David A. Bennett6, Nicholas T. Seyfried 1,7, Allan I. Levey 1,2 &
Aliza P. Wingo 5,8

Several common psychiatric and neurodegenerative diseases share epide-
miologic risk; however, whether they share pathophysiology is unclear and is
the focus of our investigation. Using 25 GWAS results and LD score regression,
we find eight significant genetic correlations between psychiatric and neuro-
degenerative diseases. We integrate the GWAS results with human brain
transcriptomes (n = 888) and proteomes (n = 722) to identify cis- and trans-
transcripts and proteins that are consistent with a pleiotropic or causal role in
each disease, referred to as causal proteins for brevity. Within each disease
group, we find many distinct and shared causal proteins. Remarkably, 30% (13
of 42) of the neurodegenerative disease causal proteins are shared with psy-
chiatric disorders. Furthermore, we find 2.6-fold more protein-protein inter-
actions among the psychiatric and neurodegenerative causal proteins than
expected by chance. Together, our findings suggest these psychiatric and
neurodegenerative diseases have shared genetic and molecular pathophy-
siology, which has important ramifications for early treatment and therapeutic
development.

Several lines of evidence link psychiatric disorders that typically
manifest in early-adulthood or mid-adulthood with late-life neurode-
generative diseases. These psychiatric disorders include major
depressive disorder, bipolar disorder, schizophrenia, anxiety dis-
orders, post-traumatic stress disorder, problematic alcohol use, and
the neurodegenerative diseases include Alzheimer’s disease, Lewy
body dementia, Parkinson’s disease, amyotrophic lateral sclerosis, and
frontotemporal dementia. First, individuals experiencing one of these
psychiatric conditions have up to four times higher risk for developing
dementia or a neurodegenerative disease later in life1–6. Second, about
65% of people affected by a neurodegenerative disease experience
debilitating psychiatric symptoms during course of the illness7. Third,
recent evidence suggests a shared genetic risk between schizophrenia

and Parkinson’s disease8,9. Given these connections, we hypothesized
that there is a shared genetic and molecular basis among these psy-
chiatric and neurodegenerative diseases.

Insights into mechanisms shared among these psychiatric and
neurodegenerative diseases could fuel the development of novel,
effective therapeutics for both the psychiatric and neurodegenerative
diseases and for the psychiatric symptoms that arise during the course
of the neurodegenerative diseases. Moreover, because many neuro-
degenerative diseases have an incubation period of a decade or more
prior to symptoms10,11, treatments for early- or mid-adulthood psy-
chiatric disorders that target the sharedmechanismsmaymitigate risk
for dementia and neurodegeneration later in life. Given the current
pressing need for more effective treatments for both the psychiatric
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and neurodegenerative conditions, therapeutics that target their
shared mechanisms may have far-reaching utility12–16.

Brain proteins are promising targets for drug discovery for these
brain illnesses. Proteins are generally stable and often final executors
of cellular processes or biological functions and constitute the vast
majority of current medication targets17. Moreover, abnormal protein
accumulation, conformations, and interactions are common features
of neurodegenerative diseases18. Studying brain proteins directly
rather than transcripts avoids the complication that brain mRNAs
levels are generally not well correlated with brain protein abundance,
likely due to several layers of post-transcriptional, translational, and
post-translational regulation19–24. Lastly, proteins that function in the
same biological pathway often physically interact, which may be har-
nessed to infer shared pathophysiology.

Here, we test the hypothesis that certain psychiatric and neuro-
degenerative diseases have a shared genetic andmolecular basis using
two approaches. First, we performed a large-scale pairwise genetic
correlation among the aforementioned psychiatric and neurodegen-
erative diseases using LD score regression25 and the latest genome-
wide association study (GWAS) results. We also included brain struc-
tural variation to help gauge these correlations since brain structural
changes in certain regions may either predispose to illness or result
from the illness (e.g., hippocampus and Alzheimer’s disease). These
genetic correlations represent a genome-wide level of correlation.
Second, we sought to identify specific genes that confer disease risk
through their effects on brain protein abundance through integrating
each GWAS results with the largest set of deeply profiled human brain
proteomes (n = 722) using multiple complementary approaches –

proteome-wide association study (PWAS), Mendelian randomization,
and genetic colocalization analysis26–28. The three analytical approa-
ches applied in a stepwise fashion enabled the identification of pro-
teins that are consistentwith pleiotropy or a causal role in eachdisease
(and will be referred to as consistent with a causal role or causal pro-
teins for simplicity henceforth). For proteins implicated in the patho-
genesis of the investigated psychiatric and neurodegenerative
conditions, we determined shared and distinct causal proteins and
examined for evidence of enrichment of physical protein-protein
interactions, which would be expected for proteins involved in the
same molecular or biological pathways. We then applied the same
analytical pipeline to 888 human brain transcriptomes to present
another layer of evidence. Our findings implicated several distinct and
shared causal brain proteins and elucidated potential shared
mechanismsamong thesepsychiatric andneurodegenerativediseases,
paving the way for precision medicine and therapeutic development.

Results
Study design
We leveraged the latest GWAS findings for eight psychiatric traits
(major depressive disorder (MDD)29, bipolar disorder (BD)30,
schizophrenia31, anxiety31, post-traumatic stress disorder (PTSD)32,
alcoholism33, neuroticism34, and insomnia35), five neurodegenerative
diseases (Alzheimer’s disease (AD)36,37, Lewy body dementia (LBD)38,
frontotemporal dementia (FTD)38, amyotrophic lateral sclerosis
(ALS)39, and Parkinson’s disease (PD)40), and 11 brain structural endo-
phenotypes (white matter hyperintensity41 (WMH), cortical
thickness42, cortical surface area42, and volume of the hippocampus43,
amygdala, nucleus accumbens, caudate nucleus, putamen, globus
pallidus, thalamus, and brainstem44, Fig. 1, Table 1). We included two
GWAS of AD36,37 because they differed in study design. One focused
only on clinically diagnosed AD while the other also included a sub-
stantial proportion of individuals from the UK Biobank using family
history of dementia as proxy-cases or controls. From these GWAS
results, we first examined pairwise genetic correlations among these
brain traits through LD score regression to determine whether there is
a shared genetic basis among thesepsychiatric and neurodegenerative

diseases. Next, we identified cis- and trans-regulated brain proteins
that are consistent with a causal role in each trait by integrating 722
deep human brain proteomes (Table S1) with result of each GWAS
using a combination of PWAS26, summary data-based Mendelian ran-
domization (SMR)27, and colocalization analysis28. For brain proteins
with evidence consistent with a causal role within and among the
groups of traits, we examined brain expression by region and cell type
and tested for evidence for protein-protein interactions (PPI). Lastly,
we gleaned biological processes from these shared causal proteins and
PPI networks to identify shared mechanisms between the investigated
psychiatric and neurodegenerative diseases.

Genetic correlations within and between the psychiatric, neu-
rodegenerative, and brain structural groups
To estimate genetic correlations between traits within and between
the groups of psychiatric, neurodegenerative, and brain structural
phenotypes, we performed LD score regression25 using the GWAS
summary statistics from participants of European descent (Fig. 2A,
Table S2). The LD score regression approach, by design, is robust to
sample overlap in the GWAS and minimizes potential bias by differ-
ences in LD structure25. We found many significant positive genetic
correlations among the psychiatric disorders, consistent with prior
studies45–47, and among the brain structures, also consistent with a
prior study42. Notably, we found positive pairwise genetic correlations
between AD, PD, and LBD, respectively, suggesting a shared genetic
susceptibility among these three commonneurodegenerative diseases
(at FDR p <0.05, Fig. 2A, Table S2).

Between the neurodegenerative and brain volumetric phenotypes
(hippocampus, putamen, brainstem, cortical surface area), we found
evidence of significant genetic correlations (FDR p < 0.05, Fig. 2A,
Table S2). Between the psychiatric and brain structural phenotypes
(cortical surface area, cortical thickness, and WMH), we also found
significant genetic correlations (FDR p <0.05, Fig. 2A, Table S2).
Remarkably, we found positive genetic correlations among the neu-
rodegenerative and psychiatric traits—between AD and neuroticism,
MDD, BD, PTSD, alcoholism, and insomnia, respectively; between LBD
and anxiety symptoms; and between ALS and anxiety symptoms (FDR
p <0.05, Fig. 2B, Table S2). These novel findings are consistentwith the
hypothesis that the psychiatric disorders share a common genetic
basis with neurodegenerative diseases.

cis-regulated proteins consistent with a causal role in 24 brain
traits
To further expand on the evidenceof a shared genetic basis among the
psychiatric and neurodegenerative diseases, we sought to identify
specific genes that confer disease risk through their effects on brain
protein abundance. To this end, we performed a PWAS of each brain
trait to identify cis-regulated proteins associated with each trait using
722 reference human brain proteomes. The brain proteomes were
profiled mostly from the frontal cortex using tandem mass tag mass
spectrometry (Table S1). Prior to the integration, in each of the pro-
teomic datasets separately, we performed quality control, normal-
ization, removal of effects of clinical characteristics and technical
factors, and standardizing the protein abundance using Z-scale. Then
we merged these proteomic datasets into a combined proteomic
profile and performed surrogate variable analysis. We regressed out
effects of the identified hidden confounding factors before applying
the integration with GWAS results. After quality control and normal-
ization, 9363 proteins remained in the combined proteomic profile,
and of these, 2909 had significant SNP-based heritability to be inclu-
ded in the PWAS. The effect of genetic variants on protein abundance
for each of these 2909 proteins were estimated using variants within a
500Kb window around the gene. On average, 11.8% of the variance in
measured protein abundance (median: 6.9%, range [0.04–68.1%]) was
attributable to cisgenetic variation (Table S3). Subsequently, the PWAS
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for each trait was performed using FUSION26, which integrates genetic
effect on protein abundance with genetic effect on a given trait. Sig-
nificant proteins for each trait from thePWAS after FDRadjustment are
listed in Table S4. In total, we performed 25 independent PWAS that
collectively identified839 cis-regulatedproteins associatedwithoneof
the 24 brain traits.

Next, we tested whether the cis-regulated proteins identified in
each PWAS mediate the association between the genetic variants and
disease using Mendelian randomization following the SMR pipeline27.
Since association between genetic variants, protein, anddisease canbe
due to linkage disequilibrium, pleiotropy, or causality, we also tested
for the probability of linkage disequilibrium versus pleiotropy or
causality using the heterogeneity in dependent instrument test
(HEIDI)27 and retained only associations due to pleiotropy or causality.
Additionally, we used a complementary Bayesian method, COLOC28,

to examine colocalization of the disease-associated variants and the
protein abundance-associated variants.

After considering results from the PWAS, SMR/HEIDI, and COLOC,
we found 651 cis-regulated proteins consistent with causality or pleio-
tropy for one or more of the 24 traits and listed the number of these
proteins for each trait in Table 1 and the specific proteins for each trait
in Table S4. For simplicity, we will refer to the cis-regulated proteins
consistentwith causality or pleiotropy as cis causal proteins henceforth.

trans-regulated proteins consistentwith a causal role in 24 brain
traits
Beyond cis-regulated proteins, we sought to identify trans-regulated
proteins that are consistent with a causal role in each of these brain
traits. We first performed a trans-pQTL analysis among the genome-
wide significant SNPs identified by the 25 GWAS using the 722
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Fig. 1 | Study design. This is a summary of the analyses performed in this study.
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reference human brain proteomes and corresponding genome-wide
genotypes. Trans-pQTLs were declared for SNPs associated with pro-
tein abundance at p < 5 × 10−8 and are outside of the 500 kb window of
the protein-coding gene.We found trans-pQTLs for 13 proteins among
these GWAS-significant SNPs. Subsequently, we performed Mendelian
randomization using the trans-SMR/HEIDI pipeline27 to identify the
trans proteins that mediate the association between the GWAS-
significant SNPs and disease through pleiotropy or causality. We
identified 12 trans-regulated proteins consistent with causality or
pleiotropy for several of these brain traits (Table 1, Table S4). For
simplicity, we will refer to the trans-regulated proteins consistent with
causality or pleiotropy as trans causal proteins henceforth.

Shared causal proteins within the trait groups
After elucidating the cis and trans causal proteins for each of the brain
traits, we next identified proteins that are mutually causal between
traits within the psychiatric, neurodegenerative, and brain structural
categories, respectively. Since different traits have a different number
of identified causal proteins,weexamined the percentage of the causal
proteins of each trait that is shared within a group. Overall, we
observed a substantial percentage of shared causal proteins between
pairs of traits within each group—an average of 45% of sharing within
the psychiatric group (range [31–75%]), 21% of sharing within the

neurodegenerative group (range [0–50%]), and 30% of sharing within
the brain structure group (30% [0% to 50%], Figs. 3A and 4A; Table 1).
Individual proteins shared between pairs of traits are listed in Table S5.

Within the psychiatric group, many causal proteins were shared
among three or more traits (Fig. 3B). Specifically, 14 proteins were
shared among three psychiatric traits, three proteins (GNL3, RASGRP1,
RGS6) were shared among four psychiatric traits, and two proteins
(CTNND1, CNNM2) were shared among five psychiatric traits (Fig. 3B,
Table S5). Within the neurodegenerative group, two proteins (VKORC1
and STX1B) were shared between AD and PD, and two other proteins
(QPCT and CD2AP) were shared between the clinical diagnosis of AD
andADbased on both clinical diagnosis and family history of dementia
(Fig. 3C, Table S5). Within the brain morphology group, MAPT is
mutually causal in four traits and ABCG2mutually causal in three traits
(Fig. 4B, Table S5). Together, these findings highlight the shared
genetic predisposition within the group of psychiatric, neurodegen-
erative, and brain structure traits.

Shared causal proteins between the trait groups
Between the psychiatric and neurodegenerative groups, we found
13 shared causal proteins, which is 30% of the total 44 identified causal
proteins for the neurodegenerative diseases (Fig. 3D, Table S5). This
striking percentage of shared causal proteins is supportive of the

Table 1 | Summaryof the sourceGWASandnumber of causal proteins for eachbrain trait identified throughPWAS, SMR/HEIDI,
and COLOC

GWAS statistics Causal protein counts Causal proteins shared among traits

N significant SNPs cis trans total Psychiatric Neuro-degenerative Brain structure

Psychiatric

Major depressive disorder 807,553 9744 96 2 98 46% 2% 8%

Bipolar disorder 51,710 240 70 0 70 44% 3% 7%

Schizophrenia 77,096 14,724 156 2 158 31% 3% 7%

Anxiety 175,163 166 4 0 4 75% 50% 25%

Post-traumatic stress disorder 214,408 4607 16 0 16 44% 6% 13%

Alcoholism 300,789 1857 19 1 20 45% 10% 5%

Neuroticism 390,278 7759 122 2 124 34% 4% 6%

Insomnia 386,533 463 29 0 29 41% 0% 10%

Neurodegenerative

Alzheimer’s disease (AD1) 455,258 2357 16 2 18 39% 22% 6%

Alzheimer’s disease (AD2) 63,926 1506 3 1 4 50% 50% 0%

Frontotemporal dementia 12,908 29 0 0 0 – – –

Amyotrophic lateral sclerosis 80,610 182 6 0 6 17% 0% 0%

Lewy body dementia 6618 189 0 0 0 – – –

Parkinson’s disease 482,730 3464 19 1 20 25% 10% 15%

Brain structure

Hippocampal volume 26,814 461 2 0 2 0% 0% 50%

Nucleus accumbens volume 32,562 138 3 0 3 0% 0% 0%

Amygdala volume 34,431 0 0 0 0 – – –

Putamen volume 37,571 1465 6 0 6 50% 17% 50%

Brainstem volume 28,809 1063 10 0 10 50% 10% 30%

Caudate nucleus volume 37,741 141 7 0 7 14% 0% 29%

Globus pallidus volume 34,413 272 7 0 7 14% 14% 43%

Thalamus volume 34,464 50 2 0 2 50% 0% 50%

Cortical thickness 33,992 370 19 0 19 37% 5% 21%

White matter hyperintensity 48,454 1340 19 1 20 30% 0% 15%

Cortical surface area 33,992 1127 20 0 20 40% 15% 15%

The sample size (N) for each trait is the number of samples that contributed to theGWAS results used in our analysis, whichmaybe smaller than the sample reported in the original GWASpublication
due to data access limitations or restricting to samples of European ancestry. GWAS-significant SNPs were defined as SNPs with p value <5 × 10−8. A protein is considered shared with another trait
group if it is also causal for anyother trait in that group.Since different traits have different number of identifiedcausal proteins,weexamined the percentageof thecausal proteinsof each trait that is
shared within a trait group or between two trait groups. This information is also depicted in Figs. 3A and 4A.
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Fig. 2 | Genetic correlations across brain structures, psychiatric, and neuro-
degenerative diseases. A Pairwise genetic correlations among the 24 brain traits
using LD score regression. B Genetic correlations between the psychiatric and
neurodegenerative traits based on LD score regression. The color denotes the

magnitude and direction of correlation. The size of the colored square reflects the
magnitude of the p value. The asterisk indicates FDR p value: * FDR p <0.05; ** FDR
p <0.01, *** FDR p <0.001. The exact p values are provided in Table S2.
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hypothesis of a shared genetic and molecular basis between the psy-
chiatric and neurodegenerative groups.

Among these 13 shared causal proteins, eight were shared
between a pair of traits (a psychiatric and neurodegenerative disease),
three were shared among three traits (a psychiatric, neurodegenera-
tive, and either another psychiatric or neurodegenerative disease), and
two were shared among four traits (multiple psychiatric and neuro-
degenerative diseases; Fig. 3D). Additionally, we found a positive
relationship between the degrees of genetic correlation and

percentages of shared casual proteins among the psychiatric and
neurodegenerative diseases (Spearman rho =0.39; p =0.01; Fig. S1).

Between the neurodegenerative and brain structural groups,
there were four shared causal proteins, with MAPT being shared
among PD, putamen volume, brainstem volume, cortical thickness,
and cortical surface area (Fig. 4C, Table S5). Between the psychiatric
and brain structural categories, there were 29 shared causal proteins,
with MAPT shared among three psychiatric traits and four brain
structures (Fig. 4D). Notably, AKT3 and MAPT were shared among
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multiple traits that belong to all three groups of psychiatric, neuro-
degenerative, and brain structures (Fig. 4E). Together, these shared
causal proteins underscore a shared genetic susceptibility among the
psychiatric and neurodegenerative diseases.

Brain-region and cell-type expression of the causal proteins
We examined the expression of the 13 causal proteins shared between
the psychiatric and neurodegenerative diseases in different brain
regions that are relevant to these conditions, including the amygdala,

nucleus accumbens, anterior cingulate gyrus, frontal cortex, hippo-
campus, locus coeruleus, substantia nigra, and temporal lobe. To
compare their expression across the different brain regions, we
examined the Z-score normalized human brain expression data from
the Allen Brain Atlas48 (Fig. 5A, B; Table S6). We noted that the
expression level of each gene varies across these brain regions and the
pattern of relative gene expression differs across genes. For instance,
HSDL1 expression is much higher in the locus coeruleus than in the
other brain regions, while AKT3 expression is much lower in the locus
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Fig. 4 | Causal proteins sharedwithin the brain structure traits and shared
between the brain structure group, the psychiatric group, and neurodegen-
erative group, respectively. A Number of causal proteins and percent shared
within the brain structure group and between the brain structure group and the

psychiatric and neurodegenerative group, respectively. B Causal proteins shared
within brain structures. C Causal proteins shared between brain structures and
neurodegenerative diseases. D Causal proteins shared between brain structures
and psychiatric traits. E Causal proteins shared among the three groups.
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coeruleus than in the other brain regions. These observations may be
useful for informing the design of follow-up mechanistic studies.

We also examined expressionof these 13 shared causal proteins in
GABAergic, glutamatergic, and non-neuronal cells using mouse single-
cell RNA-sequencing data from the isocortex and hippocampal
formation49. We found that these 13 proteins had different anatomical
expression patterns in the brain (Fig. S2).

To understand gene activities across the brain cell-types, we
examined brain cell-type specific expression of these 651 causal pro-
teins using human single-cell RNA sequencing data profiled from
the dPFC of cognitively normal donors50. Among the 13 shared

causal proteins, 10 had higher expression in one brain cell type com-
pared to the rest of the other brain cell types (Fig. 5C, Table S7).
Notably, four of these proteins were highly expressed in excitatory
neurons (CCDC6, DOC2A, SPATA2, STX1B), twowere highly expressed
in inhibitory neurons (ADK, HSDL1), and two were highly expressed in
oligodendrocytes (ADAM10, STXBP3) (Fig. 5C, Table S7). Cell-type
expression of all distinct and shared causal proteins for these 24 psy-
chiatric, neurodegenerative, and brain structural traits are presented
in Table S7.

Protein-protein interactions between the psychiatric and neu-
rodegenerative causal proteins
Thus far, we have considered proteins that are mutually causal in the
psychiatric and neurodegenerative diseases as evidence for shared
susceptibility. Another way shared mechanism may arise is through
protein-protein interaction (PPI) between causal proteins. We hypo-
thesized that there is a higher level of PPI between the psychiatric and
neurodegenerative causal proteins than by chance alone. To test this,
we determined the number of PPIs between a psychiatric causal pro-
tein (407 total proteins) and a neurodegenerative causal protein (44
total proteins) using physical PPI data from BioGRID51. Physical PPIs in
BioGRID were curated from primary experimental evidence in peer-
reviewed biomedical literature. We found evidence for 120 PPIs
between 99 psychiatric and 30 neurodegenerative causal proteins (of
which eleven are shared between the two groups). Consistent with our
hypothesis, this reflects 2.6-folds more physical PPIs between the
causal psychiatric and causal neurodegenerative proteins than
expected by chance alone (bootstrap p = 0.003; Fig. 6; Table S8).
These PPIs were among 118 psychiatric and neurodegenerative causal
proteins. These 118 shared and interacting causal proteinsmayprovide
a window into the shared mechanisms between the psychiatric and
neurodegenerative disease groups.

Among these 118 shared and interacting causal proteins, there are
a few notable proteins with wide-spread interactions with other causal
proteins. For example, PDHA1 (a PD causal protein) physically interacts
with 15 psychiatric causal proteins; MAPT (another PD causal protein)
physically interacts with 11 psychiatric causal proteins; LACTB (an AD
causal protein) interacts with 10 psychiatric causal proteins; SCFD1 (an
ALS causal protein) interacts with 9 psychiatric causal proteins; and
CCDC6 and STX6 (AD causal proteins) each interacts with 7 psychiatric
causal proteins, respectively (Fig. 6A, B; Table S8). These interactions
provide important evidence supporting the hypothesis of shared
molecular mechanisms between the psychiatric and neurodegenera-
tive disease groups.

Shared biological processes between the psychiatric and neu-
rodegenerative diseases
To gain insights into shared molecular processes, we performed gene
set enrichment analysis on the 13 shared causal proteins and the

ACE
ADAM10

ADK
AKT3

CCDC6
DOC2A
HSDL1
MAPT

MTSS1L
SPATA2
STX1B

STXBP3
VKORC1

Neu
ro

tic
ism MDD BD

Sch
izo

phre
nia

Anxie
ty

PTSD

Alco
holis

m
ALS

Par
kin

so
n d

ise
as

e

AD (J
an

se
n)

AD (K
unkle

)

A

ACE
ADAM10

ADK
AKT3

CCDC6
DOC2A
HSDL1
MAPT

MTSS1L
SPATA2
STX1B

STXBP3
VKORC1

hip
poca

m
pus

am
yg

dala

nucle
us a

cc
um

ben
s

an
te

rio
r c

in
gulat

e g
yr

us

lo
cu

s c
er

uleu
s

su
bst

an
tia

 n
ig

ra

fro
nta

l lo
be

te
m

pora
l lo

be

–2

–1

0

1

2

Z–score

B

STXBP3
ADAM10

AKT3
HSDL1

ADK
STX1B

SPATA2
DOC2A
CCDC6

MTSS1L

0.00 0.25 0.50 0.75 1.00 1.25
Average Log Fold Change

Astrocyte Excitatory
neuron

Inhibitory
neuron

Oligodendrocyte Oligodendrocyte
precursor cell

C

Fig. 5 | Expression in different brain regions and cell types for the 13 causal
proteins shared between the psychiatric and neurodegenerative diseases.
A List of the 13 proteins mutually causal in both the psychiatric and neurodegen-
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Fig. 6 | Physical protein-protein interactions (PPIs) between the psychiatric
causal proteins and the neurodegenerative causal proteins. A PPIs between the
psychiatric causal proteins (colored yellow) and neurodegenerative causal proteins
(colored pink). We only considered physical PPI between a psychiatric and a neu-
rodegenerative causal protein (and not between a psychiatric and another psy-
chiatric causal protein or between a neurodegenerative and another

neurodegenerative causal protein). There is a total of 118 psychiatric and neuro-
degenerative causal proteins that have physical PPIs with one another. See com-
plete results in Table S8. B PPIs between the psychiatric causal proteins and
neurodegenerative causal proteins. The same information in A is presented but
each brain trait is depicted with a distinct color. See complete results in Table S8.
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118 shared and interacting causal proteins, respectively, using Gene
Ontology, KEGG, Wiki pathways, CORUM, and REACTOME databases.
The 13 causal proteins shared between the psychiatric and neurode-
generative groups were enriched for calcium ion-regulated exocytosis
and for localization of proteins to the synapse (FDR p < 0.05, Table S9,
a). The 118-interacting psychiatric and neurodegenerative causal pro-
teins were enriched for several processes—neurotransmitter secretion,
vesicle-mediated transport in synapse, synaptic vesicle recycling,
SNAP receptor activity, myeloid leukocyte activation, and mitochon-
drial processes among others (at FDR p <0.05, Fig. 7A; Table S9, b).

To follow-upon these findings, wenext examined PPI andgene set
enrichment among these 118 interacting causal proteins using spe-
cialized human brain synaptic and mitochondrial databases, respec-
tively. We used a curated human synaptic proteome database52 that
included 7907 pre-synaptic, synaptic, and post-synaptic proteins. We
found 102 synaptic proteins among these 118 interacting causal pro-
teins, which is a 2.2-fold enrichment for synaptic proteins
(p < 9.5 × 10−27). Moreover, these 102 synaptic proteins were enriched
for similar biological processes as those of the 118 proteins (FDR
p <0.05, Table S9,c).

To further investigate the enrichment ofmitochondrial processes,
we used MitoCarta3.053, a curated database of 1137 human
mitochondrion-related genes. Among the 118 interacting causal pro-
teins, we identified 24 mitochondrial proteins, which is 3.7-fold
enrichment of mitochondrial proteins (p < 2.3 × 10−8). Gene set
enrichment analysis found that these 24 mitochondrial proteins were
similarly distributed across themitochondrial sub-compartments such
as the matrix and the inner mitochondrial membrane (FDR p < 0.05;
Fig. 7B; Table S9, d). We then queried the high-density human mito-
chondrial proximity interaction network54 and found an interactome
of 66 proteins among these 24 mitochondrial proteins (Fig. S3).

Together, the results from using the general and specialized
databases of curated synaptic and mitochondrial proteins implicate
synaptic transmission and immune function as important processes in

the shared mechanisms between the psychiatric and neurodegenera-
tive diseases.

Shared mechanisms at the brain mRNA level
To follow up on the brain protein findings, we applied the same
analysis pipeline using 888 human brain transcriptomes profiled
mostly from the frontal cortex. For simplicity, we will refer to mRNAs
that are consistent with a causal role or pleiotropy as causal mRNAs.
We identified unique and shared cis- and trans-causal mRNAs for
each of the 24 brain traits (Table 2; S10–S12). There were 615 causal
mRNAs for the psychiatric traits and 64 causal mRNAs for the neuro-
degenerative diseases. Consistent with our findings at the protein-
level, we found shared causal mRNAs within each group and between
the groups of psychiatric, neurodegenerative, and brain structural
traits (Table 2; Table S12). Specifically, there were 24 shared causal
mRNAs between the psychiatric and neurodegenerative diseases,
which is 37.5% of the total identified neurodegenerative causal
mRNAs (Table S13). Similar to our findings at the protein-level, there
were 171 physical PPIs between the 145 psychiatric and neurodegen-
erative causal mRNAs (Table S14). This is 2.0 times more PPI than by
chance alone (p =0.008). Gene set enrichment analysis found that
these 145 shared and interacting causal mRNAs were enriched for
mitochondrial organization, transport, and fission; epigenetic regula-
tion of gene expression; gene silencing; chromatin modifying
enzymes; histone methyltransferase complex; RNA binding; metabo-
lism of RNA; regulation of protein targeting; and protein ubiquitina-
tion (Table S15).

The PWAS included 2909 heritable proteins and the TWAS
included 6735 heritable mRNAs, of which 1726 genes were common
between these proteins andmRNAs. We found that, on average, 39.6%
of the causalmRNAs were also causal proteins, and 32.3% of the causal
proteins were also causal mRNAs (Table S16). ADAM10 and CCDC6
were the shared causal genes for the psychiatric and neurodegenera-
tive diseases at both the mRNA and protein levels.
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Discussion
In this study, we present robust and novel evidence for a shared
genetic and molecular basis between the psychiatric illnesses that
typically manifest in early adulthood or mid-life and the neurodegen-
erative diseases that typically manifest in late life. The shared genetic
susceptibility is demonstrated by the significant genetic correlations
between the psychiatric and neurodegenerative diseases and the
13 shared causal proteins.More evidence of a sharedmolecular basis is
seen by a nearly three-folds more physical PPIs between a causal psy-
chiatric and a causal neurodegenerative protein, which implicates
specific networks of genes and molecular processes involved in both
groups of diseases. Furthermore, we found that the SNARE complex,
vesicular transport, synaptic transmission, immune function, and
mitochondrial processes are implicated in the sharedmechanisms and
pinpoint the brain proteins involved in these biological processes for
further mechanistic investigation.

This shared genetic and molecular processes have far-reaching
implications for the management and therapeutic development for
these common brain illnesses. For context, these psychiatric disorders
affect approximately 30% of the population annually in early ormidlife
(age < 65)55,56 while the neurodegenerative diseases affect about
44 million people worldwide, mostly in late-life, with no effective
treatments to slow or stop the underlying neurodegeneration18.

Furthermore, about 65% of the individuals with neurodegenerative
diseases experience psychiatric symptoms (also referred to as neu-
ropsychiatric symptoms) that are associated with faster cognitive
decline, greater functional impairment, higher caregiver burden, and
earlier institutionalization, but there are no safe and effective treat-
ments for these neuropsychiatric symptoms57–60. Both of these psy-
chiatric and neurodegenerative disease groups are the leading causes
of disability worldwide and effective treatments for these brain ill-
nesses are pressingly needed12–16. Given the shared molecular basis,
treatments that focus on the shared pathophysiology may be able to
treat not only the early / midlife psychiatric disorders but also the
common neuropsychiatric symptoms of late-life neurodegenerative
disorders, as well as mitigating the late-life neurodegeneration and
dementia risk.

Another notable finding of this study is the identification of 651
brain proteins consistent with a causal role in the 24 brain traits. Of the
651 brain proteins, 394 were unique to psychiatric illnesses, 31 unique
to neurodegenerative diseases, and 13 shared between the psychiatric
and neurodegenerative diseases. Together with the causal transcripts
identified for these brain illnesses in this and prior studies46,61–64, these
causal proteins providemechanistic insights and promising targets for
therapeutic development to treat these common and debilitating
brain illnesses.

Table 2 | Summary of the source GWAS and number of causal mRNAs identified through TWAS, SMR/HEIDI, and COLOC

GWAS statistics Causal mRNA counts Causal mRNAs shared among traits

N significant SNPs cis trans total Psychiatric Neuro-degenerative Brain structure

Psychiatric

Major depressive disorder 807,553 9744 160 11 171 37% 2% 4%

Bipolar disorder 51,710 240 88 0 88 47% 1% 2%

Schizophrenia 77,096 14,724 243 5 248 25% 3% 4%

Anxiety 175,163 166 11 0 11 82% 46% 27%

Post-traumatic stress disorder 214,408 4607 37 0 37 43% 8% 11%

Alcoholism 300,789 1857 23 0 23 48% 26% 13%

Neuroticism 390,278 7759 154 5 159 40% 8% 8%

Insomnia 386,533 463 30 0 30 30% 13% 7%

Neurodegenerative

Alzheimer’s disease (AD1) 455,258 2357 28 0 28 46% 25% 4%

Alzheimer’s disease (AD2) 63,926 1506 12 2 14 36% 29% 0%

Frontotemporal dementia 12,908 29 0 0 0 – – –

Amyotrophic lateral sclerosis 80,610 182 4 0 4 25% 0% 0%

Lewy body dementia 6,618 189 0 0 0 – – –

Parkinson’s disease 482,730 3464 25 0 25 32% 12% 28%

Brain structure

Hippocampal volume 26,814 461 0 0 0 – – –

Nucleus accumbens volume 32,562 138 0 0 0 – – –

Amygdala volume 34,431 0 0 0 0 – – –

Putamen volume 37,571 1465 9 0 9 33% 22% 44%

Brainstem volume 28,809 1063 20 0 20 30% 10% 10%

Caudate nucleus volume 37,741 141 15 0 15 20% 0% 27%

Globus pallidus volume 34,413 272 12 0 12 8% 0% 42%

Thalamus volume 34,464 50 3 0 3 0% 0% 0%

Cortical thickness 33,992 370 10 0 10 40% 40% 30%

White matter hyperintensity 48,454 1340 29 0 29 31% 10% 14%

Cortical surface area 33,992 1127 29 0 29 35% 17% 14%

The sample size (N) for each trait is the number of samples that contributed to theGWAS results used in our analysis, whichmaybe smaller than the sample reported in the original GWASpublication
due todata access limitations or restricting to samples of European ancestry.GWAS-significantSNPsweredefinedas SNPswithp value < 5 × 10−8. AmRNA is considered sharedwithin a trait group if it
is also causal for any other trait in that group. Since different traits have different number of identified causal mRNAs, we examined the percentage of the causal mRNAs of each trait that is shared
within a trait group or between two trait groups.
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While evidence of the role of synaptic transmission in the patho-
physiology of these psychiatric disorders is still emerging29,65,66, the
role of synaptic transmission and SNARE complex in the pathophy-
siology of neurodegenerative diseases is more established67,68. Here,
we extend the literature in demonstrating that synaptic transmission,
particularly involving the SNARE complex and SNAP receptor, is
important in the shared mechanisms among the psychiatric and neu-
rodegenerative diseases. Moreover, synaptic transmission is regulated
by mitochondria in the neurons, which generate ATP to power the
neurotransmission process and modulate the presynaptic calcium
level, which in turn determines the release of neurotransmitters69.
Therefore, mitochondria are vital for the maintenance of synaptic
transmission and function69,70. Notably, we found that mitochondrial
processes are implicated in the shared pathophysiology in psychiatric
and neurodegenerative disease. While this is novel, it is consistent
with the observation that mitochondrial dysfunction occurs early in
the progression to neurodegeneration and continues into the late
stage of the diseases71–74 because the shared mechanisms are more
likely to be early acting since psychiatric disorders have onset age in
early adulthood or midlife while neurodegenerative diseases manifest
in late-life.

mRNA and protein expression levels for the same genes in the
brain have been found to have modest correlations19,20,22–24; therefore,
we expected our findings would likely reflect this. Here we found that
32% of the causal proteins are also causal mRNAs, consistent with the
extant literature.

Microglia has emerged as important in the pathogenesis of AD37,75.
For instance, approximately 5% of the 400 genes inferred from the AD
GWAS showed high microglial expression36. We note that 10% of the
AD causal proteins we identified are highly expressed in microglia
compared to bulk brain tissue - CTSH (8 folds higher) and PLXDC2 (53
folds higher)75. Furthermore, TREM2 is one of the AD causalmRNAswe
identified and it is an innate immunity receptor expressed selectively
in microglia (56 folds higher than in bulk brain tissue)37,75.

Among the 13 shared causal proteins between the psychiatric and
neurodegenerative groups (Fig. 3D), five have been studied in human
participants or mouse models in one or more of these brain illnesses.
For instance, mutations of ADAM10 led to AD pathology in transgenic
mice76 and mRNA expression level of ADAM10 in the brain was differ-
entially expressed between schizophrenia patients versus controls77,
supportive of our findings. In another instance, mRNA expression of
DOC2A in the brain was differentially expressed in AD patients versus
controls73 and in schizophrenia patients versus controls78, also sup-
portive of our findings. Additionally, mRNA expression level of CCDC6
in the hippocampus was differentially expressed between AD patients
and controls73 but it has not been studied in bipolar disorder or schi-
zophrenia. Furthermore, mRNA level of MTSS1L in the brain was dif-
ferentially expressed between AD patients versus controls79 but it has
not been studied in bipolar disorder. Lastly, STX1B mRNA level in the
brain was differentially expressed between AD patients versus
controls73 but it has not been studied in neuroticism or Parkinson’s
disease. These published results lend credence to our findings but also
highlight that the identified shared causal proteins are novel targets
for mechanistic studies in model systems to advance our under-
standing of the shared mechanisms between the psychiatric and neu-
rodegenerative diseases.

Our findings should be considered in the context of the study’s
limitations. For instance, the power to detect causal brain proteins for
LBD and FTD was limited by the power of their underlying GWAS.
Along these lines, MAPT was found to be a causal protein for multiple
psychiatric disorders and Parkinson’s disease but not for AD, which is
classically associatedwith abnormalMAPT accumulation.We note that
MAPT is only nominally significant in the PWAS of clinical AD
(p = 0.027, FDR =0.52), perhaps due to power limitation, and future
largerGWASmayhelp resolve this. In addition,we couldnot accurately

account for cell-type heterogeneity in the PWAS due to lack of avail-
ability of human brain single-cell proteomic data. Furthermore, with
722 deep human brain proteomes, we could identify 2909 heritable
proteins for the PWAS and SMR. With larger number of human brain
proteomes, we are likely to identify more heritable brain proteins.
Despite this limitation, we presented here the largest and deepest set
of human brain proteomes available to our knowledge. Lastly, the
GWAS and human brain proteomes were from participants of Eur-
opean ancestry, potentially limiting the generalizability of our findings
to individuals of other ethnicities.

Our study has several strengths. First, we used the largest set of
deep human brain proteomes to maximize the number of heritable
proteins to be included in the PWAS, enabling examination of more
proteins. Second,we consider 24brain traits, including structuralbrain
traits that are often intermediary phenotypes in neurodegenerative
disease. Third, we identified both cis- and trans-regulated causal pro-
teins. Fourth, we examined both the brain proteins and mRNAs in our
analyses. Lastly, the causal proteins identified here are highly pro-
mising for therapeutic development since causal genes derived from
GWAS and Mendelian randomization have been shown to double the
odds that a therapeutic target receives drug approval as a treatment of
a human illness17,80.

In summary, wedemonstrated here that themajor psychiatric and
neurodegenerative diseases have shared genetic susceptibility and
pathophysiology and identified 13 shared causal proteins, 118 inter-
acting causal proteins, and the central role of synaptic transmission,
immune function, and mitochondrial processes in the shared patho-
genesis. The genetic and molecular connection between these two
groups of common brain illnesses have important implications for
disease management and therapeutic development with regard to
precision medicine, early treatment and prevention of neurodegen-
eration and dementia risk.

Methods
GWAS summary statistics
The GWAS summary association statistics were obtained from 25 stu-
dies that included eight psychiatric traits (MDD29, BD30,
schizophrenia31, anxiety31, PTSD81, alcoholism32, neuroticism34 and
insomnia35), five neurodegenerative diseases (AD36,37, LBD38, FTD38,
ALS39, and PD40), and 11 brain structural endophenotypes (WMH41,
cortical thickness41, cortical surface area42, and volume of the
hippocampus43, amygdala, nucleus accumbens, caudate nucleus,
putamen, globus pallidus, thalamus, and brainstem44). All studies were
of people of European descent. We included two GWAS of AD36,37

because they differed in study design. One focused only on clinical
diagnosis of AD37 while the other included clinical diagnosis of AD and
AD-by-proxy using family history of dementia in participants from the
UK Biobank36.

Brain proteomics
Brain regions and cohorts. We analyzed data from the following brain
regions per cohort: dorsolateral prefrontal cortex (dPFC) and frontal
cortex for ROS/MAP, dPFC for Banner, and parahippocampal gyrus for
MSBB (Table S1). Details for proteomic data generation procedures
can be found in Wingo et al.82 (ROS/MAP dPFC), Wingo et al.23 (Banner
dPFC), and Johnson et al.24 (ROS/MAP frontal cortex and MSBB sam-
ples) and are summarized below.

The Religious Orders Study (ROS) and Rush Memory and Aging
Project (MAP), collectively referred to as ROS/MAP, are community-
based cohort studies of cognitive decline, dementia, and aging83. ROS
recruits older priests, monks, and nuns from throughout the United
States, while MAP recruits people from greater Chicago-area assisted
living facilities. All participants undergo annual cognitive and clinical
assessments. All participants are organ donors, provide informed
consent, and sign an Anatomical Gift Act and repository consent to
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allow their data and biospecimens to be repurposed. An Institutional
Review Board of RushUniversityMedical Center approved the studies.

The Arizona Study of Aging and Neurodegenerative Disorders,
conductedbyBanner SunHealth Research Institute (Banner), primarily
recruits cognitively normal volunteers from Phoenix, AZ area retire-
ment communities, with some additional special recruitment of par-
ticipants with AD or PD84. All participants receive annual standardized
medical, cognitive, neurological, and movement assessments. Partici-
pants or their legal representatives sign an Institutional Review Board-
approved consent form allowing for brain donation, use of donated
biospecimens for approved future research, and genetic studies.

TheMSBB brains were selected from the Mount Sinai/JJ Peters VA
Medical Center Brain Bank85. The brains were selected such that they
showed no non-AD neuropathology but otherwise span the full range
of cognitive and neuropathologic disease severity.

Tissue homogenization and protein digestion. For ROS/MAP dPFC
and Banner samples, tissue homogenization was performed as
described previously23,86. Brain tissue samples (100mg wet tissue
weight each) were homogenized in 1.5ml Rino tubes containing
500ml lysis buffer (8M urea, 10mM Tris, 100mM NaHPO4, pH 8.5),
HALT protease and phosphatase inhibitor cocktail, and ~100μl stain-
less steel beads (0.9–2.0mm blend; NextAdvance) using a Bullet
Blender (NextAdvance). Tissues were added immediately after exci-
sion and samples were blended for two 5-minute intervals at 4C.
Lysates were transferred to 1.5ml Eppendorf Lobind tubes and soni-
cated at 30% amplitude for three 5 s cycles, with samples placed on ice
for 15 s between each sonication cycle. Samples were subsequently
centrifuged at 15,000× g for five minutes. The supernatant was
transferred to new tubes and protein concentration was measured
using bicinchoninic assay (BCA). A 100μg aliquot was taken from each
sample, and the volumes were normalized with lysis buffer. An equal
amount from each sample was aliquoted and digested in parallel to
make up the global internal standard (GIS) that was included in each
TMT batch. Samples were reduced with 1mM dithiothreitol at room
temperature for 30min, then with 5mM iodoacetamide alkylation in
the dark for 30min. Lysyl endopeptidase (Wako) at 1:100 (w/w) was
added and samples underwent digestion overnight, followed by a
sevenfold dilution with 50mM ammonium bicarbonate. Trypsin
(Promega) at 1:50 (w/w) was added and samples underwent another
16 h of digestion. Samples were acidified to a final concentration of 1%
(vol/vol) formic acid (FA) and 0.1% (vol/vol) trifluoroacetic acid (TFA)
and desalted with a 30-mg solid-phase extraction sorbent column
(Oasis Hydrophilic-Lipophilic Balance). Each column was first rinsed
with 1ml of methanol, washed with 1ml of 50% (vol/vol) acetonitrile
(ACN) and equilibratedwith 2 × 1ml of 0.1% (vol/vol) TFA. The samples
were then loaded and each column was washed with 2 × 1ml of 0.1%
(vol/vol) TFA. Samples were eluted with two rounds of 0.5ml of 50%
(vol/vol) ACN.

ROS/MAP frontal cortex sampleswere processed similarly, except
aliquots for the GIS were taken after protein digestion. For MSBB
samples, tissue homogenization and protein digestion was performed
as described previously86. Briefly, samples were homogenized in lysis
buffer (50mM HEPES, pH 8.5, 8M urea, and 0.5% sodium deox-
ycholate, 100ml buffer per 10mg tissue) with 1x PhosSTOP phospha-
tase inhibitor cocktail (Sigma-Aldrich). Protein concentration was
measured using BCA and confirmedwith Coomassie-stained short SDS
gels. Aliquots of 100μg protein were taken from each sample and
proteolyzed with Lys-C (Wako, 1:100 w/w) at 21 C for 2 h, then under-
went fourfolddilutionwith 50mMHEPES. Trypsin (Promega, 1:50w/w)
was then added and digestion continued overnight. The insoluble
debris was kept in the lysates for the recovery of insoluble proteins.
Samples were acidified to a final concentration of 1% TFA. Samples
were centrifuged and the supernatant was desalted with a Sep-Pak C18
cartridge (Waters).

Isobaric tandem mass tag (TMT) labeling. Prior to TMT labeling,
samples were randomized by age, sex, postmortem interval, cognitive
diagnosis, and pathologies into the appropriate number of batches.
Randomization was done within each cohort. For ROS/MAP dPFC and
Banner samples, peptides from samples andGISwere labeled using the
TMT 10-plex kit (ThermoFisher). Two TMT channels were reserved for
GIS and the remaining channels were used for individual samples. TMT
labeling was performed as described previously82,87,88. Briefly, TMT
labeling reagents were brought to room temperature. Aliquots of
100μg of peptidewere resuspended in 100μl of 100mMTEAB. A total
of 256μl of anhydrous ACN was added to each reagent channel and
vortexed gently for 5min, then, 41μl of the corresponding TMT
channels were transferred to peptide suspensions. Samples were
incubated at room temperature for 1 h, then 8μl of 5% (vol/vol)
hydroxylamine was added to quench the reaction. All ten channels
were combined and dried by SpeedVac to approximately 150μl, dilu-
ted with 1ml of 0.1% (vol/vol) TFA, then acidified to a final con-
centration of 1% (vol/vol) FA and 0.1% (vol/vol) TFA. Samples were
desalted with a 200-mg C18 Sep-Pak column (Waters). Each column
wasfirst activatedwith 3ml ofmethanol, washedwith 3ml of 50% (vol/
vol) acetonitrile, and equilibrated with 2 × 3ml of 0.1% TFA. The sam-
ples were then loaded and each column was washed with 2 × 3ml of
0.1% (vol/vol) TFA, followed by 2ml of 1% (vol/vol) FA. Samples were
elutedwith two rounds of 1.5ml of 50% (vol/vol) acetonitrile. The ROS/
MAP frontal cortex samples were processed similarly, except samples
were labeled using the TMT 10-plex kit plus channel 11 (131 C). For
MSBB samples, samples and the GIS were labeled with the TMT 11-plex
kit (ThermoFisher) according to the manufacturer’s protocol. The GIS
was included in channel 126. All 11 channels were mixed equally and
desalted with a 100mg Sep-Pak C18 column (Waters).

High pH off-line fractionation. For all samples, fractionation was
performed as described previously24,82,89. Dried samples were resus-
pended in high-pH loading buffer (0.07% [vol/vol] NH4OH, 0.045%
[vol/vol] FA, 2% [vol/vol] ACN). Samples were then loaded onto an
Agilent ZORBAX 300Extend-C18 column (2.1 × 150mm2 with 3.5 µm
beads), and an Agilent 1100 HPLC system was used for fractionation.
Solvent A consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/ vol)
FA, and 2% (vol/vol) ACN, and solvent B consisted of 0.0175% (vol/vol)
NH4OH, 0.01125% (vol/vol) FA, and 90% (vol/vol) ACN. The sample
elution was performed over a 58.6-min gradient with a flow rate of
0.4ml/min. The gradient was 100% solvent A for 2min, from0% to 12%
solvent B over 6min, from 12 to 40% over 28min, from 40 to 44% over
4min, from 44 to 60% over 5min, and then constant at 60% solvent B
for 13.6min. A total of 96 individual fractionswere collected across the
gradient, which were then pooled into 24 fractions and dried by
SpeedVac.

TMT mass spectrometry. Samples were analyzed using liquid chro-
matography coupled to tandem mass spectrometry (MS2) for ROS-
MAP frontal cortex, Banner, MSBB, and 90% of ROS/MAP dPFC
samples and synchronous precursor selection-based MS3 (SPS-MS3)
for 10% of ROS/MAP dPFC samples. For ROS/MAP dPFC, ROS/MAP
frontal cortex, andBanner samples,mass spectrometrywas performed
as described previously82,90. Briefly, peptide fractions were resus-
pended in equal volumes of loading buffer (0.1% FA, 0.03% TFA, 1%
ACN). Samples were separated on a self-packed C18 (1.9μm; Dr.
Maisch) fused silica column (25 cm× 75μm internal diameter; New
Objective) by a Dionex UltiMate 3000 RSLCnano liquid chromato-
graphy system (ThermoFisher Scientific) and monitored on an Orbi-
trap Fusion mass spectrometer (ThermoFisher Scientific). For ROS/
MAP dPFC and Banner samples, samples were eluted over a 180-min
gradient with flow rate at 225 nl/min, and the gradient for buffer B was
3–7% over 5min, from 7 to 30% over 140min, from 30 to 60% over
5min, 60 to 99% over 2min, constant at 99% for 8min, then back to
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1% for an additional 20min to equilibrate the column. For ROS/MAP
frontal cortex samples, samples were eluted over a 120min gradient
with flow rate of 300 nL/min, and the gradient for buffer B was 1–50%.
Buffer A was water with 0.1% (vol/vol) FA, and buffer B was 80% (vol/
vol) ACN in water with 0.1% (vol/vol) FA. Acquisition occurred in data-
dependentmode using the top speedworkflowwith a cycle timeof 3 s.
Each cycle consisted of one full scan (MS1) followed by as many
MS2 scans as could fit within the timewindow. For ROS/MAP dPFC and
Banner samples, the full scan was performed with an m/z range of
350–1,500 at 120,000 resolution (at 200m/z) with automatic gain
control set at 4 × 105 andmaximum injection time 50ms, and themost
intense ions were selected for higher-energy collision-induced dis-
sociation (HCD) at 38% collision energy with an isolation of 0.7m/z,
resolution of 30,000, automatic gain control of 5 × 104, and maximum
injection time of 100ms. For ROS/MAP frontal cortex samples,
MS1 scans were collected at a resolution of 120,000, 400–1400m/z
range, automatic gain control of 4 × 105, maximum injection time of
50ms. All HCD MS/MS spectra were acquired at a resolution of
60,000, automatic gain control of 5 × 104, isolation width of 1.6m/z,
35% collision energy, maximum injection time of 50ms, and dynamic
exclusion was set to exclude previously sequenced peaks for 20 s
within a 10-ppm isolation window. MS3 runs for ROS/MAP dPFC sam-
ples were performed on an Orbitrap Fusion mass spectrometer using
the synchronous precursor selection-based MS3 method as described
previously82,88. For MSBB samples, mass spectrometry was performed
as described previously86,90. Briefly, samples were run sequentially on a
column (75μm×20–40 cm, 1.9μm C18 resin [Dr. Maisch]) with a Q
Exactive HF Orbitrap or Fusion mass spectrometer (Thermo Fisher)
and eluted using a 2–3 h gradient. The settings for the MS1 scan
included m/z range of 410–1600, 60,000 or 120,000 resolution,
automatic gain control of 1 × 106, and maximum injection time of
50ms. Settings for the MS2 scans included fixed first mass of 120m/z,
60,000 resolution, automatic gain control of 1 × 105, maximum injec-
tion time of 100–150ms, higher-energy C-trap dissociation, normal-
ized collision energy of 35–38%, ~1.0m/z isolationwindowwith0.3m/z
offset, and ~15 s dynamic exclusion.

Database searches and protein quantification. For ROS/MAP dPFC
samples, database searches and protein quantification was performed
as described previously82. Raw files were analyzed using Proteome
Discoverer (v.2.3, ThermoFisher Scientific).MS2 spectrawere searched
against the canonical UniProtKB human proteome database (down-
loaded February 2019 with 20,338 total sequences) using the Sequest
HT search engine with the following parameters: fully tryptic specifi-
city,maximumof twomissed cleavages,minimumpeptide length of 6,
fixed modifications for TMT tags on lysine residues and peptide N
termini (+229.162932Da) and carbamidomethylation of cysteine resi-
dues (+57.02146Da), variable modifications for oxidation of methio-
nine residues (+15.99492Da) and deamidation of asparagine and
glutamine (+0.984Da), precursormass tolerance of 20ppm. Fragment
mass tolerance was set to 0.05Da for MS2 spectra collected in the
Orbitrap and 0.5 Da for the MS2 from the synchronous precursor
selection-based MS3 batches. Percolator was used to filter peptide
spectral matches and peptides to achieve a FDR of less than 1%. After
spectral assignment, peptides were assembled into proteins and fil-
tered once again to a final FDR of 1% based on the combined peptide
probabilities. Multi-consensus was employed to achieve parsimony
across batches. Shared peptides were assigned to proteins in accor-
dance with the parsimony principle. Reporter ions were quantified
fromMS2 or MS3 scans using an integration tolerance of 20 ppmwith
the most confident centroid setting. Banner sample data was also
processed as described for the ROS/MAP dPFC samples except that
MS2 spectra were searched against the UniProtKB human brain pro-
teome database downloaded in April 2015. Likewise, ROS/MAP frontal

cortex and MSBB data were processed similarly as described for Ban-
ner data except thatMS2 spectra were searched against the UniProtKB
human proteome database containing both Swiss-Prot and TrEMBL
human reference protein sequences (90,411 target sequences down-
loaded April 21, 2015) plus 245 contaminant proteins. The top match-
ing protein or “master protein” was defined as the protein with the
most unique peptides and the smallest percent peptide coverage.

Proteomic data quality control, normalization, and aggregation. We
applied the same quality control and normalization procedure to each
proteomics dataset separately before they were merged. For each
batch, the two GIS were used to check for proteins outside of the 95%
confidence interval and set tomissing. TheMSBB dataset had only one
GIS per batch and did not undergo this step. Proteins with missing
values in over 50% of samples were also removed. To account for
protein loading differences, protein abundance was scaled with
sample-specific total protein abundance and log2 transformed. Outlier
sampleswere removed using an iterative principal component analysis
that identified samples beyond4 standarddeviations from themeanof
either the first or second principal component. A linear model was fit
to estimate the effects of technical (i.e., MS mode, batch) and demo-
graphic factors (i.e., sex, age, post-mortem interval, and final clinical
diagnosis of cognitive status) and these effects were regressed from
the final estimate of protein abundance. Each dataset was filtered to
include only individuals with useable genotyping and standardized
using z-scaling before being combined together. For genes with mul-
tiple UniProt entries, only the entry with the highest abundance was
used. To account for possible hidden confounders, we performed
surrogate variable analysis using the SVA package91 on the combined
proteomic profile and then regressed out 53 hidden factors from the
combined proteomic dataset. The final combined proteomic profile
after quality control included 722 samples (366 samples from ROS/
MAP dPFC, 151 from Banner, 135 from MSBB, and 70 from ROS/MAP
frontal cortex) and 9363 proteins.

To examine effects of brain region and case/control definition on
the underlying proteomic data, we examined replication rates for
pQTL across the individual proteomic datasets. To that end, we per-
formed the pQTL analysis in each proteomic dataset separately. Then,
we defined the lead-pQTLs as those that passed Bonferroni-adjusted
p <0.05 per gene in the discovery dataset. We next evaluated repli-
cation by estimating the π1 statistics for the lead pQTLs in the repli-
cation dataset using the qvalue package92 (Table S17). Additionally, we
calculated the Spearman correlations for the pQTL effect sizes in the
discovery and replication datasets (Table S17). The high replication
rates for pQTLs and high correlations for pQTL effect sizes suggest
minimal effects of different brain region and case/control definition in
the combined proteomic profile.

Genotyping
Genotypes were generated from blood or brain-derived DNA using
microarrays (ROS/MAP and Banner) and/or WGS (ROS/MAP and
MSBB) as described previously85,93,94. Initial genotype quality control
was performed on each dataset independently. We excluded samples
with genotype missing rate >5% and excluded variants meeting any of
the following criteria: genotype missing rate >5%, minor allele fre-
quency <5%, Hardy-Weinberg equilibrium p value <5 × 10−7, and non-
biallelic variants. We removed related individuals (i.e. no second-
degree or closer relatives) using KING95 and removed population
outliers using EIGENSTRAT96. All participants included in the analysis
were of European ancestry. After initial genotype quality control,
genotype data were merged, and a second round of population sub-
structure and kinship analysis was applied to verify that the
final dataset included only unrelated samples without population
outliers.
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Human brain mRNA expression
Expression microarray data from six neurotypical adults was down-
loaded from the Allen Brain Atlas48. The data include multiple probes
per gene andmultiple samples per brain structure. Z-score normalized
expression for probes corresponding to the 13 genes associated with
both neurodegenerative and psychiatric traits were downloaded from
the Allen Brain Atlas microarray data explorer (https://human.brain-
map.org/microarray/search).We arrived at one expression Z-score per
gene-brain structure pair by first averaging across probes per gene,
then averaging across samples and brains per brain structure.

Human brain single-cell RNA-sequencing data previously gener-
ated from the dPFC of 24 cognitively normal donors50 were obtained.
Then quality control of the datawas performedusing Seurat (v. 3.1.2)97.
Genes were retained if they had at least three counts in a cell, and cells
were retained if they had unique feature counts between 200 and
2500. Counts were normalized and scaled using the NormalizeData
and ScaleData functions.

Mouse brain single-cell RNA-sequencing
Single-cell RNA sequencing data frommouse cortex and hippocampus
described in98 were downloaded from the Allen Institute Portal. The
dataset encompasses 76,307 single cells. Sequencing results were
aligned to exons and introns in the GRCm38.p3 reference genome
using STAR, and aggregated intron and exon counts at the gene level
were calculated. Matrix files were curated based on genes of interest
with Delimit Pro v10/8.1/7. We chose nuclear genes encoding compo-
nents of the mitochondrial respiratory chain complexes, the mito-
chondrial ribosome, all the SLC family of transporters plus the 118
genes of interest. Data were assembled with the metadata.csv data
using Excel. Data were exported as tab delimited text file and analyzed
with the Qlucore Omics Explorer v3.6 to generate 2D t-SNE expression
atlases. Data were log2 converted and normalized to amean of 0 and a
variance of 1. 2D t-SNE plots were generated using a perplexity of 40
and default settings99.

Protein-protein interaction
Pairwise protein-protein interactions (PPI) containing only human
gene symbols were downloaded from the BioGRID database51

(v4.4.179, May 27, 2021). PPIs in BioGRID were curated from primary
experimental evidence in the peer-reviewed biomedical literature. We
then filtered these PPIs to include only physical protein-protein inter-
actions, which consist of physical association, association, colocaliza-
tion, and direct interaction.

Mitochondrial proteins
We used MitoCarta3.0, which is a human curated dataset of 1137
genes53. The mitochondrial interactome was generated using high-
density human proximity mitochondrial interaction network data54,
which is composed of 4705 genes (nodes) plus 112,489 interactions
(edges). We used Cytoscape 3.7100 to generate the mitochondrial
interactome.

Human brain transcriptomes
We used 888 human brain transcriptomes profiled mainly from the
dPFC of post-mortem brain samples of 783 donors of European
ancestry. Alignment, quality control, and normalization of the data
have been described in detail before22,23,101. Briefly, RNA-sequencing
data was normalized for gene length and GC content. Effects of pro-
cessing batch, sex, post-mortem interval, RNA integrity, age, cognitive
diagnosis, and brain regions were regressed out. After quality control,
a total of 13,650 mRNAs remained to be considered for the TWAS.

Statistical analysis
To estimate pairwise genetic correlations, we performed LD score
regression25 using the GWAS summary association statistics from

participants of European descent. The LD score regression approach is
not biased by sample overlap in the GWAS andminimizes the effect of
LD structure by restricting the analysis to the well-imputed SNPs in the
1000 Genomes European data25. We removed SNPs with extremely
large effect sizes (X12 > 80) since they can unduly influence the
regression25. False discovery rate (FDR)102 was used to correct for
multiple testing.

We used the FUSION pipeline26 to perform 25 independent PWAS
using GWAS results and the reference proteomic and genetic dataset.
First, we restricted the genotype data to the SNPs in the LD reference
panel provided with the FUSION software, which includes 1,190,321
SNPs from 1000 Genome EUR samples, to minimize the influence of
linkage disequilibrium on the analysis. Next, SNP-based heritability for
each protein was estimated. Proteins with SNP-based heritability
p <0.01 were declared heritable. We found 2909 heritable proteins
after removing theproteins in theHLA region (TableS3). Next, for each
heritable protein, we estimated the effect of a set of SNPs within a
500Kb window of the gene on its protein abundance, also referred to
as the protein “weight”. We applied the BLUP, LASSO, elastic net, and
BSLMM prediction models and kept the weights from the best-
performing prediction model. Subsequently, we integrated the brain
protein weights with each of the 25 GWAS summary statistics to per-
form 25 independent PWAS. The PWAS Z-score for each gene repre-
sents the combined effect of the protein and SNPs on the trait.
The PWAS identified the cis-regulated proteins associated with
the trait. We defined significant proteins as those with FDR-adjusted
p value < 0.05.

Next, among the significant cis-regulated proteins identified in the
PWAS above, we performed summary data-based Mendelian Rando-
mization (SMR)27 to test whether the brain protein mediates the
association between the gene and trait. To do this, we first identified
protein quantitative trait loci (pQTL) by testing each SNP within a 500
Kb window of each gene for association with the protein abundance
using linear regression. Regression modeling was implemented using
PLINK103 adjusting for 10 genetic principal components (computed
using EIGENSTRAT). Then among the PWAS-significant proteins, we
applied SMR to the cis-pQTLs and GWAS summary statistics to test if
they mediate the association between the gene and trait. Since this
mediation can arise from causality, pleiotropy, or linkage dis-
equilibrium, we then used HEIDI27 to test for and remove the associa-
tion likely due to linkage disequilibrium (i.e., HEIDI p <0.05).

Using a Bayesian colocalization approach to complement the
SMR/HEIDI method, we performed COLOC28 using the marginal asso-
ciation statistics to estimate the posterior probability that a protein
and trait share or do not share a genetic variant.

We performed trans-pQTL analysis among the independent
genome-wide significant SNPs identified from the 25 GWAS. First,
genome-wide significant SNPs (p value < 5 × 10−8 from each GWAS)
were selected from autosomes and filtered to the independent SNPs
(r2 <0:5) within 250kb window using PLINK103. Then, we examined the
association between each of these SNPs and each brain protein
abundance using linear regression as implemented in PLINK, adjusting
for 10 genetic PCs. SNPs that were associated with proteins at p
value < 5 × 10−8 and were outside of the 500 kb window of the protein
were declared trans-pQTLs. Next, we tested whether the proteins
regulated by the trans-pQTLs mediate the association between the
GWASSNPs and trait using the trans-SMRpipeline27. Todo that,wefirst
performed pQTL analysis for all the SNPs within a 500 kb window of a
trans-pQTL. Subsequently, we applied trans-SMR27 on the trans-pQTLs
by specifying the “–trans” and “–trans-wind 500” options in SMR,
which restricted testing to target SNPs and genes located at least 5Mb
apart and defined awindow size of 500 kb around the target pQTL SNP
for selecting SNPs for the SMR and HEIDI tests. We used a Bonferroni-
corrected threshold (0.05 / number of significant pQTLs) to declare a
significant trans-SMR result.
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A cis-regulated protein was declared as having evidence con-
sistent with causality or pleiotropy for a trait if it met all of the fol-
lowing A to C criteria: (a) The protein was associated with the trait in
the PWAS at FDR p <0.05; (b) The protein showed statistical evidence
formediating the association between SNPs and trait in the SMR test at
p <0.05; (c) The association in SMR was not due to linkage dis-
equilibrium as reflected by HEIDI p > 0.05; or both of the following D
and E criteria: (d) The protein was associatedwith the trait in the PWAS
at FDR p < 0.05; (e) The protein and trait have evidence of sharing a
genetic variant as reflected by a posterior probability for hypothesis 4
(PP4) > 0.5 in COLOC.

A trans-regulated protein was identified as having evidence con-
sistent with causality or pleiotropy if it met all of the following three
criteria: (i) its expression was associated with a GWAS-significant SNP
in the trans-pQTL analysis at p value < 5 × 10−8; (ii) The protein showed
statistical evidence for mediating the association between the GWAS-
significant SNP and trait in the SMR test at FDR p <0.05; and (iii) The
association in SMR was not due to linkage disequilibrium as reflected
by HEIDI p >0.05.

For simplicity, wewill refer to proteins consistentwith causality or
pleiotropy as causal proteins. To examine expression of the causal
proteins in different brain regions, we used normalized microarray
expression data from the Allan Brain Atlas. The microarray data
included multiple probes per gene and multiple samples per brain
structure. We arrived at one expression value per gene-brain structure
pair by averaging across probes per gene and averaging across sam-
ples and brains per brain structure. The Z-score enables comparison of
expression for one gene across the different brain regions.

To examine expression of the causal proteins in different brain
cell types, we used available human brain single-cell RNA sequencing
data generated from the dPFC of 24 cognitively normal donors50. For
each gene of interest and for each of the five main cell types, we
examined whether the gene expression in one particular cell-type
differed from its expression in all the other four cell types using the
Wilcoxon rank sum test. Significant results were defined as those with
Bonferroni-adjusted p value < 0.05 (adjusted for all 17,775 genes).

To determine statistical significance for the number of PPIs
between the psychiatric causal proteins and the neurodegenerative
causal proteins, we used a bootstrap approach. As described above,
there were 407 psychiatric and 44 neurodegenerative causal proteins
(with 13 proteins shared between the two groups), and 120 physical
PPIs between psychiatric and neurodegenerative causal proteins
(s0 = 120 PPIs). From the BioGRID database (which contains 8942
proteins and 487179 interactions51), we randomly selected 404 pro-
teins (because 3 of 407 were not present in BioGRID) and 43 proteins
(because 1 of 44 was not present in BioGRID) for the psychiatric and
neurodegenerative group, respectively, ensuring that 13 were shared
between the twogroups. Thenwe counted the number of physical PPIs
between the psychiatric and neurodegenerative causal proteins. This
process was repeated 10,000 times and a one-sided empirical p-value
was calculated as followed: p value = 1 +∑N

i = 1Iðsi ≥ s0Þ=N + 1, where N is
the number of iterations, si is the count of PPIs between the psychiatric
and neurodegenerative causal proteins in iteration i, and∑N

i= 1Iðsi ≥ s0Þ
is the number of bootstrap observations where the count of PPIs, si, is
greater than or equal to s0.

Gene set enrichment analysis was performed using the python
command-line version of GO-Elite (v1.2.5) for human species down-
loaded in July 2021104, which included Biological Process105, Molecular
Function105, Cellular Component105, Wiki Pathways106, KEGG105,
CORUM107, and REACTOME108 databases. Fisher exact test and Z scores
were used to test for significant enrichment among the causal proteins
of interest using a background of 18215 proteins. Multiple testing was
addressed with Benjamini-Hochberg FDR.

To calculate the enrichment of synaptic proteins within the 118
interacting causal proteins, we used the latest and largest synapse

proteome database with 7907 unique human proteins52. To calculate
the enrichment of mitochondrial genes within the 118 proteins, we
used 1137 proteins from the MitoCarta3.0 human curated dataset53.

Similar analysis pipeline was applied to the 888 human brain
transcriptomic data.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed data used in this manuscript are available at
https://www.synapse.org/#!Synapse:syn31822992. These data are in
whole or in part based on data obtained from the AMP-AD Knowledge
Portal (https://adknowledgeportal.org). The AD Knowledge Portal is a
platform for accessing data, analyses, and tools generated by the
Accelerating Medicines Partnership (AMP-AD) Target Discovery Pro-
gram and other National Institute on Aging (NIA)-supported programs
to enable open-science practices and accelerate translational learning.
The data, analyses and tools are shared early in the research cycle
without a publication embargo on secondary use. Data is available for
general research use according to the following requirements for data
access and data attribution (https://adknowledgeportal.org/
DataAccess/Instructions). The results of the 25 GWAS were obtained
as described in the corresponding references.

Code availability
We used published pipelines and can provide the code upon request.
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