
Shared Memory Parallelization of Data Mining
Algorithms: Techniques, Programming

Interface, and Performance
Ruoming Jin, Ge Yang, and Gagan Agrawal, Member, IEEE Computer Society

Abstract—With recent technological advances, shared memory parallel machines have become more scalable, and offer large main

memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we

focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data

mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike

previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of

popular data mining algorithms. In addition, we propose a reduction-object-based interface for specifying a data mining algorithm. We

show how our runtime system can apply any of the techniques we have developed starting from a common specification of the

algorithm. We have carried out a detailed evaluation of the parallelization techniques and the programming interface. We have

experimented with apriori and fp-tree-based association mining, k-means clustering, k-nearest neighbor classifier, and decision tree

construction. The main results from our experiments are as follows. 1) Among full replication, optimized full locking, and cache-

sensitive locking, there is no clear winner. Each of these three techniques can outperform others depending upon machine and dataset

parameters. These three techniques perform significantly better than the other two techniques. 2) Good parallel efficiency is achieved

for each of the four algorithms we experimented with, using our techniques and runtime system. 3) The overhead of the interface is

within 10 percent in almost all cases. 4) In the case of decision tree construction, combining different techniques turned out to be

crucial for achieving high performance.

Index Terms—Shared memory parallelization, programming interfaces, association mining, clustering, decision tree construction.

�

1 INTRODUCTION

WITH the availability of large data sets in application
areas like bioinformatics, medical informatics, scien-

tific data analysis, financial analysis, telecommunications,
retailing, and marketing, it is becoming increasingly
important to execute data mining tasks in parallel. At the
same time, technological advances have made shared
memory parallel machines commonly available to organi-
zations and individuals. SMP machines with two to four
processors are frequently used as desktops. Clusters of
SMPs are very popular for high-end computing, and offer
shared memory parallelism within each node. Shared
memory machines are also becoming more scalable. Large
shared memory machines with high bus bandwidth and
very large main memory are being sold by several vendors.
Vendors of these machines are targeting data warehousing
and data mining as major markets.

Using thesemachines for speeding up and scaling up data
mining implementations, however, involves a number of
challenges. First, the appropriate parallelization strategy
could depend upon the data mining task and algorithm that
is being parallelized. Second, with an increasingly compli-
cated memory hierarchy, achieving high performance on

SMP machines often requires subtle optimizations. Finally,

maintaining, debugging, and performance tuning a parallel

application is an extremely time consuming task. As parallel

architectures evolve, or architectural parameters change, it is

not easy tomodifyexistingcodes toachievehighperformance

on new systems. As new performance optimizations are

developed, it is useful to be able to apply them to different

parallel applications. Currently, this cannot be done for

parallel data mining implementations without a high

programming effort.
We believe that the above problems can be alleviated by

developing parallelization techniques and runtime support

that applies across a variety of datamining algorithms. In our

research, we are developing a middleware for rapid devel-

opment of data mining implementations on large SMPs and

clusters of SMPs. Our system is called FREERIDE (FRame-

work for Rapid Implementation of Datamining Engines). It is

based on the observation that parallel versions of several

well-known data mining techniques, including a priori

association mining [2], k-means clustering [25], k-nearest

neighbor classifier [22], and artificial neural networks [22]

sharea relatively similar structure. Themiddlewareperforms

distributed memory parallelization across the cluster and

shared memory parallelization within each node. It enables

high I/O performance by minimizing disk seek time and

using asynchronous I/O operations. Thus, it can be used for

developing efficient parallel data mining applications that

operate on disk-resident data sets.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004 1

. The authors are with the Department of Computer and Information
Sciences, Ohio State University Columbus, OH 43210.
E-mail: {jinr, yangg, agrawal}@cis.ohio-state.edu.

Manuscript received 15 July 2002; revised 17 Apr. 2003; accepted 27 Aug.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 116955.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

This paper focuses on shared memory parallelization.
We have developed a series of techniques for runtime
parallelization of data mining algorithms, including full
replication, full locking, fixed locking, optimized full
locking, and cache-sensitive locking. Unlike previous work
on shared memory parallelization of specific data mining
algorithms, all of our techniques apply across a large
number of common data mining algorithms. The techniques
we have developed involve a number of trade offs between
memory requirements, opportunity for parallelization, and
locking overheads. Thus, the relative performance of these
techniques depends upon machine parameters, as well as
the characteristics of the algorithm and the data set.

In addition, we present and evaluate the middleware
interface and the underlying runtime support for shared
memory parallelization.We describe how a programmer can
performminormodifications to a sequential code and specify
a data mining algorithm using the reduction object interface
we have developed.We allow complex reduction objects and
user-defined reduction functions, which are not available in
OpenMP.We showhow the runtime system can apply any of
the techniques we have developed starting from a common
specification that uses the reduction object interface.

We initially evaluated our techniques and programming
interface using our implementations of a priori and fp-tree-
based association mining, k-means clustering, and k-nearest
neighbor classifier. The main results from these experi-
ments are as follows:

1. Among full replication, optimized full locking, and
cache-sensitive locking, there is no clear winner.
Each of these three techniques can outperform others
depending upon machine and data set parameters.
These three techniques perform significantly better
than the other two techniques.

2. Our techniques scale well on a large SMP machine.
3. The overhead of the interface is within 10 percent in

almost all cases.

We have also carried out a detailed case study of
applying our techniques and runtime system for decision
tree construction. We have particularly focused on paralle-
lization of the RainForest approach originally proposed by
Gehrke et al. [14]. Typically, the techniques used for
parallelizing decision tree construction have been quite
different than the techniques used for association mining
and clustering. Here, we have demonstrated that the full
replication and either optimized full locking or cache-
sensitive locking can be combined to achieve an efficient
parallel implementation for decision tree construction.

Overall, our work has shown that a common collection of
techniques can be used to efficiently parallelize algorithms
for a variety of mining tasks. Moreover, a high-level
interface can be supported to allow the programmers to
rapidly create parallel implementations.

The rest of this paper is organized as follows: Section 2
reviews parallel versions of several common data mining
techniques. Parallelization techniques are presented in
Section 3. The middleware interface and implementation
of different techniques starting from the common specifica-
tion is described in Section 4. Experimental results from
association mining, clustering, and k-nearest neighbor

search are presented in Section 5. A detailed case study,
decision tree construction, is presented in Section 6. We
compare our work with related research efforts in Section 7.
Our broader vision, which shows the application of the
techniques described in this paper, is presented in Section 8.
We conclude in Section 9.

2 PARALLEL DATA MINING ALGORITHMS

In this section, we describe how several commonly used data
mining techniques can be parallelized on a shared memory
machine in a very similarway.Our discussion focuses on five
important data mining techniques: associating mining [2],
k-means clustering [25], k-nearest neighbors [22], artificial
neural networks [22], and Bayesian networks [9].

2.1 Association Mining

Association rule mining is the process of analyzing a set of
transactions to extract association rules and is a very
commonly used and well-studied data mining problem
[3], [57]. Given a set of transactions1 (each of them being a
set of items), an association rule is an expression X ! Y ,
whereX and Y are the sets of items. Such a rule implies that
transactions in databases that contain the items in X also
tend to contain the items in Y .

Formally, the goal is to compute the sets Lk. For a given
value of k, the set Lk comprises the frequent itemsets of
length k. A well accepted algorithm for association mining
is the a priori mining algorithm [3]. The main observation in
the a priori technique is that if an itemset occurs with
frequency f , all the subsets of this itemset also occur with at
least frequency f . In the first iteration of this algorithm,
transactions are analyzed to determine the frequent
1-itemsets. During any subsequent iteration k, the frequent
itemsets Lk�1 found in the ðk� 1Þth iteration are used to
generate the candidate itemsets Ck. Then, each transaction
in the data set is processed to compute the frequency of
each member of the set Ck. K-itemsets from Ck that have a
certain prespecified minimal frequency (called the support
level) are added to the set Lk.

A simple shared memory parallelization scheme for this
algorithm is as follows: One processor generates the
complete Ck using the frequent itemset Lk�1 created at the
end of the iteration k� 1. The transactions are scanned, and
each transaction (or a set of transactions) is assigned to one
processor. This processor evaluates the transaction(s) and
updates the counts of candidates itemsets that are found in
this transaction. Thus, by assigning different sets of
transactions to processors, parallelism can be achieved.
The only challenge in maintaining correctness is avoiding
the possible race conditions when multiple processors may
want to update the count of the same candidate.

The same basic parallelization strategy can be used for
parallelization of a number of other association mining
algorithms and variations of a priori, including SEAR [38],
DHP [42], Partition [49], and DIC [8]. These algorithms
differ from the a priori algorithm in the data structure used
for representing candidate itemsets, candidate space prun-

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

1. We use the terms transactions, data items, and data instances
interchangeably.

ing, or in reducing passes over the set of transactions, none
of which require a significant change in the parallelization
strategy. More importantly, the same strategy can be used
for the tree-growth phase of the relatively new FP-tree-based
frequent itemset mining algorithm [21].

2.2 K-Means Clustering

The second data mining algorithm we describe is the
k-means clustering technique [25], which is also very
commonly used. This method considers transactions or
data instances as representing points in a high-dimensional
space. Proximity within this space is used as the criterion
for classifying the points into clusters.

Four steps in the sequential version of this algorithm are
as follows:

1. Start with k given centers for clusters.
2. Scan the data instances, for each data instance

(point), find the center closest to it, and assign this
point to the corresponding cluster.

3. Determine the k centroids from the points assigned
to the corresponding center.

4. Repeat this process until the assignment of points to
cluster does not change.

It is important to note that the convergence of the
algorithm is dependent upon the initial choice of k centers.

This method can also be parallelized in a fashion very
similar to the method we described for a priori association
mining. The data instances are read, and each data instance
(or a set of instances) are assigned to one processor. This
processor performs the computations associated with the
data instance, and then updates the center of the cluster this
data instance is closest to. Again, the only challenge in
maintaining correctness is avoiding the race conditions
when multiple processors may want to update center of the
same cluster. A number of other clustering algorithms, like
k-harmonic means and expectation-maximization (EM), can
also be parallelized using the same basic scheme [12].

2.3 K-Nearest Neighbors

K-nearest neighbor classifier is based on learning by analogy
[22]. The training samples are described by an n-dimensional
numeric space. Given an unknown sample, the k-nearest
neighbor classifier searches the pattern space for k training
samples that are closest, using the Euclidean distance, to the
unknown sample.

Again, this technique can be parallelized as follows: Each
training sample is processed by one processor. After proces-
singthesample, theprocessordetermines if thelistofkcurrent
nearest neighbors should be updated to include this sample.
Again, the correctness issue is the race conditions if multiple
processors try to update the list of nearest neighbors at the
same time.

2.4 Artificial Neural Networks

An artificial neural network is a set of connected input/
output units where each connection has a weight associated
with it. During the learning phase, the network learns by
adjusting the weights so as to be able to predict the correct
class labels of the input samples. A very commonly used
algorithm for training a neural network is backpropagation

[22]. For each training sample, the weights are modified so
as to minimize the difference between the network’s
prediction and the actual class label. These modifications
are made in the backward direction.

The straight forward method for parallelizing this techni-
que on a shared memory machine is as follows: Each
transaction is assigned to one processor. This processor
performs the computations associated with this transaction
and updates the weights for each connection in the network.
Again, the only correctness consideration is the possibility of
race conditions when the weights are updated.

2.5 Bayesian Network

Bayesian network is an approach to unsupervised classifica-
tion [9]. Each transaction or data instance Xi is represented
as an ordered vector of attribute values fXi1; . . . ; Xikg. Given
a set of data instances, the goal is to search for the best class
descriptions that predict the data. Class membership is
expressed probabilistically, i.e., a data instance probabilis-
tically belongs to a number of possible classes. The classes
provide probabilities for all attribute values of each instance.
Class membership probabilities are then determined by
combining all these probabilities.

The two most time consuming steps in computing the
classification are update_wts and update_parameters.
update_wts computes the weight of each class, which is
the sum of the probabilities of each data instance being in
that class. update_parameters uses the weights com-
puted to update the parameters for classification used
during the next phase.

Aparallelization strategy that can be used for both of these
steps is as follows: The data instances are partitioned across
processors. In the update_wts phase, each processor
updates the weight of each class after processing each data
instance. The sequential version of update_parameters is
composed of three nested loops. The outermost loop iterates
over all the classes, the next loop iterates over all attributes,
and the innermost loop iterates over the data instances. The
innermost loop uses the values of all data instances to
compute the class parameters. Since the data instances have
been partitioned across processors, parallelization is done at
the innermost loop. Processors update class parameters after
processing each data instance. For both the phases, the
correctness challenge is the race condition when weights of
the class or class parameters are updated.

3 PARALLELIZATION TECHNIQUES

This section focuses on parallelization techniques we have
developed for data mining algorithms.

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 3

Fig. 1. Structure of common data mining algorithms.

3.1 Overview of the Problem

In the previous section, we argued how several data mining
algorithms can be parallelized in a very similar fashion. The
common structure behind these algorithms is summarized
in Fig. 1. The function op is an associative and commutative
function. Thus, the iterations of the foreach loop can be
performed in any order. The data-structure Reduc is referred
to as the reduction object.

The main correctness challenge in parallelizing a loop
like this on a shared memory machine arises because of
possible race conditions when multiple processors update
the same element of the reduction object. The element of the
reduction object that is updated in a loop iteration (i) is
determined only as a result of the processing. For example,
in the a priori association mining algorithm, the data item
read needs to matched against all candidates to determine
the set of candidates whose counts will be incremented. In
the k-means clustering algorithm, first the cluster to which a
data item belongs is determined. Then, the center of this
cluster is updated using a reduction operation.

The major factors that make these loops challenging to
execute efficiently and correctly are as follows:

. It is not possible to statically partition the reduction
object so that different processors update disjoint
portions of the collection. Thus, race conditions must
be avoided at runtime.

. The execution time of the function process can be a
significant part of the execution time of an iteration
of the loop. Thus, runtime preprocessing or schedul-
ing techniques cannot be applied.

. In many algorithms, the size of the reduction object
can be quite large. This means that the reduction
object cannot be replicated or privatized without
significant memory overheads.

. The updates to the reduction object are fine-grained.
The reduction object comprises a large number of
elements that take only a few bytes, and the foreach
loop comprises a large number of iterations, each of
which may take only a small number of cycles. Thus,
if a locking scheme is used, the overhead of locking
and synchronization can be significant.

3.2 Techniques

We have implemented five approaches for avoiding race
conditions as multiple threads may want to update the
same elements in the reduction object. These techniques are,
full replication, full locks, optimized full locks, fixed locks, and
cache-sensitive locks.

3.2.1 Full Replication

One simple way of avoiding race conditions is to replicate
the reduction object and create one copy for every thread.
The copy for each thread needs to be initialized in the
beginning. Each thread simply updates its own copy, thus
avoiding any race conditions. After the local reduction has
been performed using all the data items on a particular
node, the updates made in all the copies are merged.

The other four techniques are based upon locking. The
memory layout for these four techniques is shown in Fig. 2.

3.2.2 Full Locking

One obvious solution to avoiding race conditions is to
associate one lock with every element in the reduction
object. After processing a data item, a thread needs to
acquire the lock associated with the element in the
reduction object it needs to update. For example, in the
a priori association mining algorithm, there will be a lock
associated with the count for each candidate, which will
need to be acquired before updating that count. If two

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 2. Memory layout for various locking schemes.

threads need to update the count of the same candidate, one
of them will need to wait for the other one to release the
lock. In a priori association mining, the number of
candidates considered during any iteration is typically
quite large, so the probability of one thread needing to wait
for another one is very small.

In our experiment with a priori, with 2,000 distinct items
and a support level of 0.1 percent, up to 3 million
candidates were generated. In full locking, this means
supporting 3 million locks. Supporting such a large number
of locks results in overheads of three types. The first
overhead is the high memory requirement associated with a
large number of locks. The second overhead comes from
cache misses. Consider an update operation. If the total
number of elements is large and there is no locality in
accessing these elements, then the update operation is likely
to result in two cache misses, one for the element and
second for the lock. This cost can slow down the update
operation significantly.

The third overhead is of false sharing [23]. In a cache-
coherent shared memory multiprocessor, false sharing
happens when two processors want to access different
elements from the same cache block. In full locking scheme,
false sharing can result in cache misses for both reduction
elements and locks.

We have designed three schemes to overcome one or
more of these three overheads associated with full locking.
These three techniques are, optimized full locks, fixed locks,
and cache-sensitive locks.

3.2.3 Optimized Full Locks

The next scheme we describe is optimized full locks.
Optimized full locks scheme overcomes the the large
number of cache misses associated with full locking scheme
by allocating a reduction element and the corresponding
lock in consecutive memory locations, as shown in Fig. 2. By
appropriate alignment and padding, it can be ensured that
the element and the lock are in the same cache block. Each
update operation now results in at most one cold or
capacity cache miss. The possibility of false sharing is also
reduced. This is because there are fewer elements (or locks)
in each cache block. This scheme does not reduce the total
memory requirements.

3.2.4 Fixed Locking

To alleviate the memory overheads associated with the
large number of locks required in the full locking and
optimized full locking schemes, we designed the fixed

locking scheme. As the name suggests, a fixed number of
locks are used. The number of locks chosen is a parameter
to this scheme. If the number of locks is l, then the element i
in the reduction object is assigned to the lock i mod l. So, in
the a priori association mining algorithm, if a thread needs
to update, the support count for the candidate i, it needs to
acquire the lock i mod l. In Fig. 2, two locks are used.
Alternate reduction elements use each of these two locks.

Clearly, this scheme avoids the memory overheads
associated with supporting a large number of locks in the
system. The obvious tradeoff is that as the number of locks
is reduced, the probability of one thread having to wait for
another one increases. Also, each update operation can still
result in two cache misses. Fixed locking can also result in
even more false sharing than the full locking scheme. This is
because now there is a higher possibility of two processors
wanting to acquire locks in the same cache block.

3.2.5 Cache-Sensitive Locking

The final technique we describe is cache-sensitive locking. This
technique combines the ideas from optimized full locking
and fixed locking. Consider a 64 byte cache block and a 4 byte
reduction element. We use a single lock for all reduction
elements in the same cache block. Moreover, this lock is
allocated in the same cache block as the elements. So, each
cache block will have 1 lock and 15 reduction elements. This
scheme results in lower memory requirements than the full
locking and optimized full locking schemes. Similar to the
fixed locking scheme, this scheme could have the potential of
limiting parallelism. However, in cache-coherent multipro-
cessors, if different CPUs want to concurrently update
distinct elements of the same cache block, they incur several
cachemisses. This is because of the effect of false sharing. This
observation is exploited by the cache-sensitive locking
scheme tohavea single lockwithall elements in a cacheblock.

Cache-sensitive locking reduces each of three types of
overhead associatedwith full locking. Each update operation
results in at most one cache miss, as long as there is no
contention between the threads. The problem of false sharing
is also reduced because there is only one lock per cache block.

One complication in implementation of cache-sensitive
locking scheme is that modern processors have two or more
levels of cache and the cache block size is different at
different levels. Our implementation and experiments have
been done on machines with two levels of cache, denoted
by L1 and L2. Our observation is that if the reduction object
exceeds the size of L2 cache, L2 cache misses are a more
dominant overhead. Therefore, we have used the size of L2

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 5

TABLE 1
Trade Off among the Techniques

cache in implementing the cache-sensitive locking scheme.

3.3 Comparing the Techniques

We now compare the five techniques we have presented
along six criteria. The comparison is summarized in Table 1.
The six criteria we use are:

. Memory requirements, denoting the extra memory
required by a scheme because of replication or locks.

. Parallelism, denoting if parallelism is limited be-
cause of contention for locks.

. Locking overhead, which includes the cost of
acquiring and releasing a lock and any extra
computational costs in computing the address of
the lock associated with the element.

. Cache misses, which only includes cold and capacity
cache misses, and excludes coherence cache misses
and false sharing.

. False sharing, which occurs when two processors
want to access reduction elements or locks on the
same cache block.

. Merge costs denotes the cost of merging updates
made on replicated copies.

Full replication has the highest memory requirement. If
the size of reduction object is S and there are T threads,
then the total memory requirement is S � T . Full locking
and optimized full locking are next in the level of memory
requirement. If each lock takes the same number of bytes as
each reduction element, the total memory requirement for
both these schemes is 2� S. Fixed locking and cache-
sensitive locking have the lowest memory requirements. If
one lock is used for every r reduction element, total
memory requirement in both the schemes is ð1 þ 1=rÞ � S.

The full replication scheme does not limit parallelism in
any way because each thread updates its own copy of
reduction object. Full locks and optimized full locks are next
in the level of parallelism. The probability of two threads
trying to acquire the same lock is very small in both these
schemes. Cache-sensitive and fixed locks can both limit
parallelism because of sharing of locks.

The next criteria we address is the computation overhead
because of locking. Full replication does not have such
overhead. All locking schemes involve the cost of acquiring
and releasing a lock. In addition, fixed locking and cache-
sensitive locking require extra computation to determine
the locks that needs to be used for an element.

Cache misses can be a significant cost when the total
memory required by reduction object and locks is large. In
full replication, there is no increase in working set size or
the size of memory accessed by each processor because of
locks. Only the reduction element needs to be accessed
during the update operation. Replicating the reduction
object does not increase the number of cold or capacity
misses, because each processor has its own cache and
accesses its own copy of the reduction object. As we
discussed earlier, full locking scheme is the worst with
respect to cold and capacity misses. The locks double the
working set size at each processor. Further, each update
operation results in accesses to two cache blocks.

We have denoted the cache misses for both fixed locking
and optimized full locking as medium. In fixed locking, the

total working set size increases only marginally because of
locks. However, each update operation can still result in
two cache misses. In optimized full locking, the working set
size is the same as in full locking. However, each update
operation needs to access only a single cache block.

Cache-sensitive locking is the best one among all locking
schemes with respect to cache misses. Like fixed locking,
the working set size is increased only marginally because of
locks. Also, each update operation needs to access only a
single cache block.

In our implementation, read-only data is segregated
from the reduction object. Therefore, there is no false
sharing in full replication. In full locking, optimized full
locking, and fixed locking, two threads can access the same
cache block comprising either reduction elements or locks,
and incur the cost of false sharing. Cache-sensitive locking
does not have any false sharing. This is because there is only
one lock in a cache block and two threads cannot
simultaneously acquire the same lock. Any cache misses
incurred by a thread waiting to acquire a lock are
considered a part of the waiting cost.

Our final criteria is the cost of merging. This cost is only
incurred by the full replication scheme.

4 PROGRAMMING INTERFACE

In this section, we explain the interface we offer to the
programmers for specifying a parallel data mining algo-
rithm. We also describe how each of the five techniques
described in the previous section can be implemented
starting from a common specification.

4.1 Middleware Interface

As we stated earlier, this work is part of our work on
developing a middleware for rapid development of data
mining implementations on large SMPs and clusters of
SMPs [27], [26]. Our middleware exploits the similarity in
both shared memory and distributed memory paralleliza-

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 3. Initialization and local reduction functions for k-means.

tion strategy to offer a high-level interface to the program-
mers. For shared memory parallelization, the programmer
is responsible for creating and initializing a reduction
object. Further, the programmer needs to write a local
reduction function that specifies the processing associated
with each transaction. The initialization and local reduction
functions for k-means are shown in Fig. 3.

As we discussed in Section 3.1, a common aspect of data
mining algorithms is the reduction object. Declaration and
allocation of a reduction object is a significant aspect of our
middleware interface. There are two important reasons why
reduction elements need to be separated from other data-
structures. First, by separating them from read-only data-
structures, false sharing can be reduced. Second, the middle-
ware needs to know about the reduction object and its
elements to optimize memory layout, allocate locks, and
potentially replicate the object.

Consider, as an example, a priori association mining
algorithm. Candidate itemsets are stored in a prefix or hash
tree. During the reduction operation, the interior nodes of the
tree are only read. Associated with each leaf node is the
support count of the candidate itemset. All such counts need
to be allocated as part of the reduction object. To facilitate
updates to the counts while traversing the tree, pointers from
leaf node to appropriate elementswithin the reduction object
need to be inserted. Separate allocation of candidate counts
allows the middleware to allocate appropriate number of
locks depending upon the parallelization scheme used and
optimize the memory layout of counts and locks. If full
replication is used, the counts are replicated, without
replicating the candidate tree. Another important benefit is
avoiding or reducing the problem of false sharing. Separate
allocation of counts ensures that the nodes of the tree and the
counts of candidates are in separate cache blocks. Thus, a
thread cannot incur false sharingmisses while traversing the
nodes of the tree, which is now a read-only data-structure. A
disadvantageof separate allocation is that extrapointers need
to be stored as part of the tree. Further, there is extra pointer
chasing as part of the computation.

Two granularity levels are supported for reduction

objects, the group level and the element level. One group is

allocated at a time and comprises a number of elements.

The goal is to provide programming convenience, as well as

high performance. In a priori, all k itemsets that share the

same parent k� 1 itemsets are typically declared to be in

the same group. In k-means, a group represents a center,

which has ndimþ 2 elements, where ndim is the number of

dimensions in the coordinate space.
After the reduction object is created and initialized, the

runtime system may clone it and create several copies of it.

However, this is transparent to the programmer, who views

a single copy of it.
The reduction function shown in Fig. 3 illustrates how

updates to elements within a reduction object are performed.

The programmer writes sequential code for processing,

except the updates to elements within a reduction object are

performed throughmember functions of the reductionobject.

Aparticular element in the reduction object is referenced by a

group identifier and an offset within the group. In this

example, add function is invoked for all elements. Besides

supporting the commonly used reduction functions, like

addition, multiplication, maximum, and minimum, we also

allow user defined functions. A function pointer can be

passed a parameter to a generic reduction function. The

reduction functions are implemented as part of our runtime

support. Several parallelization strategies are supported, but

their implementation is kept transparent from application

programmers.
After the reduction operation has been applied on all

transactions, a merge phase may required, depending upon

the parallelization strategy used. If several copies of the

reduction object have been created, the merge phase is

responsible for creating a single correct copy. We allow the

application programmer to choose between one of the

standard merge functions (like add corresponding elements

from all copies), or to supply their own function.

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 7

Fig. 4. Implementation of different parallelization techniques starting from a common specification.

4.2 Implementation from the Common Interface

Outline of the implementation of these five techniques is
shown in Fig. 4. Implementation of a general reduction
function reduc, which takes a function pointer func and a
pointer to a parameter param, is shown in this figure.

The reduction element is identified by an ObjectID and
an Offset. The operation reducgroup½ObjectID� returns the
starting address of the group to which the element belongs.
This value is stored in variable group address. The function
abs offset returns the offset of an element from the start of
allocation of first reduction group.

Implementation of full replication is straightforward.
The function func with the parameter param is applied to
the reduction element.

Implementation of full locks is also simple. If offset is the
offset of an element from start of the allocation of reduction
objects, locks½offset� denotes the lock that can be used for this
element. We use simple spin locks to reduce the locking
overhead. Since we do not consider the possibility of
executing more than one thread per processor, we do not
need toblocka thread that iswaiting to acquire a lock. Inother
words, a thread can simply keep spinning until it acquires the
lock. This allows us to use much simpler locks than the ones
used inposix threads. Thenumber of bytes takenby each spin
lock is either eight or the number of bytes required for storing
each reduction element, whichever is smaller. These locks
reduce the memory requirements and the cost of acquiring
and releasing a lock.

The only difference in the implementation of fixed locking
from full locking is that a mod operation is performed to
determine which lock is used.

However, the implementations of optimized full locking and
cache-sensitive locking are more involved. In both cases, each
reduction group is allocated combining the memory require-
ments of the reduction elements and locks. In optimized full
locking scheme, given an elementwith a particularOffset, the
corresponding lock is at group address þ Offset � 2 and the
element is at group address þ Offset � 2þ 1. In cache-
sensitive locking, each reduction object is allocated at the
start of a cache block. For simplification of our presentation,
we assume that a cache block is 64 bytes and each element or
lock takes 4 bytes. Given an element with a particularOffset,
Offset=15 determines the cache block number within the
group occupied by this element. The lock corresponding to
this element is at group address þ Offset=15� 16. The
element itself is at

group address þ Offset þ Offset=15þ 1:

Implementation of cache-sensitive locking involves a
division operation that cannot be implemented using shifts.
This can add significant overhead to the cache-sensitive
locking scheme. To reduce this overhead, we use special
properties of 15 (or 7) to implement a divide15 (or divide7)
function.

5 EXPERIMENTAL RESULTS

We have so far implemented five data mining algorithms
using our interface for shared memory parallelization.
These algorithms are a priori association mining, fp-tree

based association mining, k-means clustering, k-nearest

neighbor classifier, and RainForest-based decision tree

construction. This section reports experimental results from

the first four applications. We have conducted a series of

experiments to evaluate the following:

. Parallel performance achieved using the techniques
we have developed for parallelization of data
mining algorithms.

. The overhead introduced by the interface we have
developed, i.e., the relative difference in the perfor-
mance between the versions that use our interface
and the versions that apply the same parallelization
technique manually.

Throughout this section, the program versions in which a

parallelization technique was implemented by hand are

referred to as manual versions, and versions where paralle-

lizationwasdoneusing themiddleware interface are referred

to as interface versions.

5.1 Experimental Platform

We used three different SMP machines for our experiments.
The first machine is a Sun Microsystem Ultra Enterprise

450, with 4 250MHz Ultra-II processors and 1 GB of 4-way

interleaved main memory. This configuration represents a

common SMP machine available as a desktop or as part of a

cluster of SMP workstations.
The second machine used for our experiments is a

24 processor SunFire 6800. Each processor in this machine is

a64bit,900MHzSunUltraSparcIII.Eachprocessorhasa96KB

L1 cache and a 64 MB L2 cache. The total main memory

available is 24 GB. The Sun Fireplane interconnect provides a

bandwidth of 9.6 GB per second. This configuration repre-

sents a state-of-the-art server machine that may not be

affordable to all individuals or organizations interested in

data mining.
Finally, to demonstrate that our techniques can be ported

on a diverse set of architectures, we ported our software on

Pentium-based 4 processor SMP machines. Our new results

onk-meansclusteringonhigh-dimensionaldata setsuse such

a machine.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 5. Comparing all five techniques for a priori.

5.2 Results from A Priori

Our first experiment focused on evaluating all five
techniques. Since we were interested in seeing the best
performance that can be obtained from these techniques, we
used only manual versions of each of these techniques. We
used a 1 GB data set, generated using a tool available from
IBM [3]. The total number of distinct items was 1,000 and
the average number of items in a transaction was 15. A
confidence of 90 percent and support of 0.5 percent is used.
The results are presented in Fig. 5.

The versions corresponding to the full replication,
optimized full locking, cache-sensitive locking, full locking,
and fixed locking are denoted by fr, ofl, csl, fl, and fi,
respectively. Execution times using one, two, three, and
four threads are presented on the four processor SMP
machine. With 1 thread, fr does not have any significant
overheads as compared to the sequential version. Therefore,
this version is used for reporting all speedups. With one
thread, ofl and csl are slower by nearly 7 percent, fl is
slower by 22 percent, and fi is slower by 30 percent. For
this data set, even after replicating four times, the reduction
object did not exceed the main memory. Therefore, fr has
the best speedups. The speedup with four threads is 3.12 for
fr, 2.58 with ofl, 2.60 with csl, 2.16 with fl, and 2.07
with fi.

From this experiment and our discussion in Section 3.3,fl
and fi do not appear to be competitive schemes. Though the
performance of ofl and csl is considerably lower than fr,
they are promising for the cases when sufficient memory for
supporting full replicationmaynot be available. Therefore, in
the rest of this section, we only focus on full replication,
optimized full locking, and cache-sensitive locking.

Our second experiment demonstrates that each of these
three techniques can be the winner, depending upon the
problem and the data set.Weuse a data setwith 2,000 distinct
items, where the average number of items per transaction is
20. The total size of the data set is 500 MB and a confidence
level of 90 percent is used. We consider four support levels,
0.1, 0.05, 0.03, and 0.02 percent. Again, since we were only
interested in relative performance of the three techniques, we
experimented with manual version only.

The results are shown in Fig. 6. We present results on the
4 processor SMP using four threads. In a priori association
mining, the total number of candidate itemsets increases as
the support level is decreased. Therefore, the total memory
requirement for the reduction objects also increases. When
support level is 0.1 or 0.05 percent, sufficient memory is
available for reduction object, even after replicating four
times. Therefore, fr gives the best performance. At the
support level of 0.1 percent, ofl is slower by 7 percent and
csl is slower by 14 percent. At the support level of
0.05 percent, they are slower by 4 and 6 percent, respectively.
When the support level is 0.03 percent, the performance of
fr degrades dramatically. This is because replicated reduc-
tion object does not fit in main memory and memory
thrashing occurs. Since the memory requirements of locking
schemes are lower, they do not see the same effect. ofl is the
best scheme in this case, though csl is slower by less than
1 percent. When the support level is 0.02 percent, the
available main memory is not even sufficient for ofl.
Therefore, csl has the best performance. The execution time
for csl was 6,117 seconds, whereas the execution time for
ofl and fr was more than 80,000 seconds.

The next two experiments evaluated scalability and
middleware overhead on 4 processor and large SMP,
respectively. We use the same data set as used in the first
experiment. We created manual and interface versions of
each of the three techniques, full replication, optimized full
locking, and cache sensitive locking. Thus, we had six
versions, denoted by fr-man, fr-int, ofl-man, ofl-

int, csl-man, and csl-int.
Results on 4 processor SMP are shown in Fig. 7. The

results of manual versions are the same as ones presented in
Fig. 5. The overhead of middleware’s general interface is
within 5 percent in all but two cases, and within 10 percent
in all cases. The overhead of middleware comes primarily
because of extra function calls and pointer chasing.

Results on the large SMPmachine are shown in Fig. 8. We
were able to use only up to 16 processors of this machine at
any time. We have presented experimental data on 1, 2, 4, 8,
12, and 16 threads. Because the totalmemory available is very
large, sufficientmemory is alwaysavailable forfr. Therefore,

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 9

Fig. 6. Relative performance of full replication, optimized full locking, and
cache-sensitive locking: four threads, different support levels.

Fig. 7. Scalability and middleware overhead for a priori: 4 processor
SMP machine.

fr always gives the best performance. However, the locking

versions are slower by at most 15 percent.
One interesting observation is that all versions have a

uniformly high relative speedup from 1 to 16 threads. The

relative speedups for six versions are 14.30, 14.69, 14.68, 13.85,

14.29, and 14.10, respectively. This shows that different

versions incur different overheads with 1 thread, but they all

scale well. The overhead of middleware is within 10 percent

in all cases. In some cases, it is as low as 2 percent.

5.3 Results from K-Means

For evaluating our implementation of k-means, we used a

200 MB data set comprising nearly 16 million three-

dimensional points. The value of k we used was 1,000.

This value was chosen because we wanted to see the impact

from a larger reduction object. Our previous work has

shown good speedups even with smaller values of k [27]. In

parallelizing k-means, the ratio of communication and

computation or the load-balance is not impacted by the

specific values of points. Since our focus was on measuring

parallel speedups, and not the rate of convergence, the data-
points were chosen randomly.

We focused on three techniques that produced compe-
titive performance for a priori, i.e. full replication, opti-
mized full locking, and cache-sensitive locking. We
conducted experiments to evaluate scalability, relative
performance, and middleware overheads on the 4 processor
and large SMP machines.

The results on 4 processor machine are presented in Fig. 9.
As the memory requirements of reduction object are
relatively small, full replication gives the best performance.
However, the locking versions are within 5 percent. The
relative speedups of six versions are 3.94, 3.92, 3.92, 3.93, 3.94,
and 3.92, respectively. Thus, after the initial overhead on one
thread versions, all versions scale almost linearly. The
middleware overhead is up to 20 percent with k-means,
which is higher than that from a priori. This is because the
main computation phase of k-means involves accessing
coordinates of centers, which are part of the reduction object.
Therefore, extra point chasing is involved whenmiddleware
is used. The manual versions can simply declare an array
comprising all centers, and avoid the extra cost.

The results on large SMP machine are presented in
Fig. 10. Six versions are run with 1, 2, 4, 8, 12, and 16 threads.
Though full replication gives the best performance, locking
versions are within 2 percent. The relative speedups in
going from 1 thread to 16 threads for the six versions are
15.78, 15.98, 15.99, 16.03, 15.98, and 16.01, respectively. In
other words, all versions scale linearly up to 16 threads. The
overhead of the interface is significantly lower as compared
to the 4 processor machine. We believe this is because the
newer UltraSparc III processor performs aggressive out-of-
order issues and can hide some latencies.

Asmentioned earlier, to demonstrate the portability of our
system, we have ported it to Pentium-based SMPs. Also, we
wanted to demonstrate that the performance of parallel k-
means does scale to relatively higher dimensional data sets.
Therefore, we experimented with two 10-dimensional data
sets on a 4 processor SMP with 700 MHz Pentium IV
processors and 256 MB of main memory. The two data sets
are 250MBand500MB, respectively. The results are shown in

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 8. Scalability and middleware overhead for a priori: large SMP
machine.

Fig. 9. Scalability and middleware overhead for k-means: 4 processor
SMP machine.

Fig. 10. Scalability and middleware overhead for k-means: large SMP
machine.

Fig. 11 and correspond to the ofl-int version. The results
are very similar to those observed on the small SUN SMP
machine. For the 250MBdata set, the speedups on two, three,
and four threads are 1.99, 2.95, and 3.15, respectively. For the
500MBdata set, the speedups on two, three, and four threads
are 1.98, 2.95, and 3.16, respectively.

5.4 Results from FP-Tree-Based Association Mining

To demonstrate that our techniques and the system can be
used for newer algorithms for association mining, we have
parallelized the FP-tree-based algorithm for association rule
mining [21]. This algorithm requires only two passes over the
entire data set. In the first step, an ordered set of frequent
items is determined from the set of transactions. In the second
step, a tree is grown dynamically. The candidate frequent
itemsets and their counts are implicitly stored in the tree.

Because of the nature of this algorithm, we tried only two
versions. Both the versions used full replication for the first
step, i.e., each thread independently updated counts of the
items,whichwere latermerged. In the first version, called full
replication, the tree is completely replicated in the second
step, i.e., each thread independently grows and updates its
own copy of the tree. Merging these trees requires some

nontrivial steps, which we do not elaborate on here. The

second version combines replication and locking. Only one

copy of the tree is maintained, but the counts at each of the

nodes are replicated. When the tree needs to be expanded, a

threadmust acquire a lock. If the tree is expanded frequently,

this can potentially serialize some of the computation.
Our experiments evaluated the scalability of these two

versions on two data sets, which are 200 MB and 800 MB,

respectively. Again, these data sets were generated using

the tool available from IBM [3]. We used up to eight threads

on the large SUN SMP. The results are presented in Figs. 13

and 14. For both the data sets, use of full replication gives

good scalability, whereas the performance of the second

version is quite poor. With the 200 MB data set and full

replication, the speedups on two, four, and eight threads

are 1.77, 3.29, and 4.72, respectively. The second version

gives speedups of 1.43, and 1.90 on two and four threads,

but the parallel code on eight threads is slower than the

sequential code. This is because of the lock contention,

which becomes quite severe with a larger number of

threads. The trends are very similar for the larger data set.

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 11

Fig. 11.K-Meansona10-dimensional data sets andPentium-basedSMP.

Fig. 12. Parallelization of k-nearest neighbors.

Fig. 13. Parallelization of FP-tree, 200 MB data set.

Fig. 14. Parallelization of FP-tree, 800 MB data set.

5.5 Results from K-Nearest Neighbors

The last data mining algorithm we consider is k-nearest
neighbors. We have experimented with a 800 MB data set.
Again, the set of points were chosen randomly, as it does
not impact the parallel speedups. The reduction object in
this algorithm’s parallel implementation is the list of
k-nearest neighbors. This is considered a single element.
Because of this granularity, only a full replication scheme
was implemented for this algorithm. With small values of k,
this algorithm becomes memory or I/O bound. Since our
goal was to show that our library can allow us to get
speedups when the parallelism is inherent in the algorithm,
the value of k used in our experiments was 2,000. Our
previous work has shown that good distributed memory
parallelism can be achieved for small values of k [27].

Fig. 12 presents experimental results from fr-man and
fr-int versions. The speedups of manual version are 1.75,
2.22, and 2.24 with two, three, and four threads, respec-
tively. The speedups are limited because only a small
amount of computation is associated with each transaction.
The overhead of the use of the interface is within 10 percent
in all cases. Because of the limited computation in this code,
we did not experiment further with the large SMP machine.

6 A DETAILED CASE STUDY: DECISION TREE
CONSTRUCTION

We now describe our experience in parallelizing decision
tree construction using the parallelization techniques and
middleware described earlier in the paper.

Decision tree construction is a very well-studied problem
in data mining, machine learning, and statistics commu-
nities [14], [13], [39], [41], [45], [46], [47]. The input to a
decision tree construction algorithm is a database of training
records. Each record has several attributes. An attribute
whose underlying domain is totally ordered is called an
ordered, numerical, or continuous attribute. Other attributes
are called categorical attributes. One particular attribute is
called class label, and typically can hold only two values,
true and false. All other attributes are referred to as the
predictor attributes. A decision tree construction algorithm
processes the set of training records, and builds a model
which is used for predicting the class label of new records.
A number of algorithms for decision tree construction have
been proposed. In recent years, particular attention has
been given to developing algorithms that can process data
sets that do not fit in main memory [14], [29], [50].

A lot of effort has been put into developing parallel
algorithms for decision tree construction [4], [15], [29], [37],
[50], [53], [55]. Most of these efforts have targeted dis-
tributed memory parallel machines. To the best of our
knowledge, there is only one effort on shared memory
parallelization of decision tree construction on disk-resident
data sets, which is by Zaki et al. [55].

Usually, the parallelization approach taken for decision
tree construction is quite different than the approach taken
for other common data mining algorithms, like association
mining and clustering. Parallelization of decision tree
construction typically involves sorting of numerical attri-
butes and/or frequently writing back of input data. There-

fore, an important question is, “Can the parallelization
techniques and runtime support that are suitable for association
mining and clustering also be effective for decision tree
construction?” Here, we demonstrate that this is indeed
the case. We particularly focus on parallelizing the Rain-
Forest framework for scalable decision tree construction
[14]. We believe that our effort is the first on parallelizing
RainForest-based decision tree construction.

6.1 Decision Tree Construction Using RainForest
Framework

RainForest is a general framework for scaling decision tree
construction [14]. The key observation that motivates this
approach is as follows. Though a large number of decision
tree construction approaches have been used in the past,
they are common in an important way. The decision tree is
constructed in a top-down, recursive fashion. Initially, all
training records are associated with the root of the tree. A
criteria for splitting the root is chosen, and two or more
children of this node are created. The training records are
partitioned (physically or logically) between these children.
This procedure is recursively applied until either all
training records associated with a node have the same class
label, or the number of training records associated with a
node is below a certain threshold. The different approaches
for decision tree construction differ in the way criteria for
splitting a node is selected, and the data-structures required
for supporting the partitioning of the training sets.

The RainForest approach scales the decision tree con-
struction process to larger (disk-resident) data sets, while
also effectively exploiting the available main memory. This
is done by isolating an AVC (Attribute-Value, Classlabel)
set for a given attribute and a node being processed. The
size of the AVC-set for a given node and attribute is
proportional to the number of distinct values of the
attribute and the number of distinct class labels. For
example, in a SPRINT-like approach, AVC-set for a
categorical attribute will simply be the count of occurrence
of each distinct value the attribute can take. Therefore, the
AVC-set can be constructed by taking one pass through the
training records associated with the node.

Given a node of the decision tree, AVC-group is the
combination of AVC-set for all attributes. The key observa-
tion is that, though AVC-group does not contain sufficient
information to reconstruct the training data set, it contains
all information that is required for selecting the criteria for
splitting the node. Since the number of attributes and the
distinct values they can take is usually not very large, one
can expect the AVC-group for a node to easily fit in main
memory. With this observation, processing for selecting the
splitting criteria for the root node can be easily performed
even if the data set is disk-resident. By reading the training
data set once, AVC-group of the root is constructed. Then,
the criteria for splitting the node is selected.

A number of algorithms have been proposed within the
RainForest framework to split decision tree nodes at lower
levels. In the algorithm RF-read, the data set is never
partitioned. The algorithm progresses level by level. In the
first step, AVC-group for the root node is built and a
splitting criteria is selected. At any of the lower levels, all
nodes at that level are processed in a single pass if the AVC-

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

group for all the nodes fit in main memory. If not, multiple
passes over the input data set are made to split nodes at the
same level of the tree. Because the training data set is not
partitioned, this can mean reading each record multiple
times for one level of the tree.

Another algorithm, RF-write, partitions and rewrites
the data set after each pass. The algorithm RF-hybrid
combines the previous two algorithms. Overall, RF-read
and RF-hybrid algorithms are able to exploit the available
main memory to speedup computations, but without
requiring the data set to be main memory resident.

In our work, we will mainly focus on parallelizing the RF-
read algorithm. There are several reasons for this. First, the
only difference between RF-read, RF-write, and RF-hybrid is
the frequency ofwriting back. RF-read could be looked as the
main computing subroutine to be called for every physical
partition, and includes thedominantprocessing for them, i.e.,
building AVC-groups and finding the criteria for splitting.
Second, the main memory size of SMP machines has been
growing at a rapid speed in recent years. Thismakes RF-read
more practical even when the decision tree constructed is
quite deep. Finally, becauseRF-readdoes not require thedata
to be written back, it fits into the structure of algorithms for
associationmining and clustering, and suits ourmiddleware.

The next two sections describe our existing middleware
and the parallelization techniques supported and our
approach for parallelizing RF-read.

6.2 Parallel RainForest Algorithm and
Implementation

In this section, we will present the algorithm and
implementation details for parallelizing RF-read using our
middleware. The algorithm is presented in Fig. 15.

The algorithm takes several passes over the input data
set D. The data set is organized as a set of chunks. During
every pass, there are a number of nodes that are active or
belong to the set AQ. These are the nodes for which AVC-
group is built and splitting criteria is selected.

This processing is performedover three consecutive loops.
In the first loop, the chunks in the data set are read. For each
training record or tuple in each chunk that is read, we
determine the node at the current level to which it belongs.
Then, we check if the node belongs to the set AQ. If so, we
increment the elements in the AVC-group of the node.

The second loop finds the best splitting criteria for each
of the active nodes and creates the children. Before that,
however, it must check if a stop condition holds for this node
and, therefore, it need not be partitioned. For the nodes that
are partitioned, no physical rewriting of data needs to be
done. Instead, just the tree should be updated, so that future
invocations to classify point to the appropriate children. The
nodes that have been split are removed from the set AQ and
the newly created children are added to the set Q.

At the end of the second loop, the set AQ is empty and
the set Q contains the nodes that still need to be processed.

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 13

Fig. 15. Algorithm for parallelizing RF-read using our middleware.

The third loop determines the set of the nodes that will be
processed in the next phase. We iterate over the nodes in the
set Q, remove a node from Q and move it to AQ. This is
done until either no more memory is available for AVC-
groups, or Q is empty.

The last loop contains only a very small part of the
overall computing. Therefore, we focus on parallelizing the
first and the second loop. Parallelization of the second loop
is straightforward and discussed first.

A simple multithreaded implementation is used for the
second loop. There is one thread per processor. This thread
gets a node from the set AQ and processes the correspond-
ing AVC-group to find the best splitting criteria. The
computing done for each node is completely independent.
The only synchronization required is for getting a node
from AQ to process. This is implemented by simple locking.

Parallelization of the first loop is facilitated by the
producer consumer framework we support. The producer
thread reads the chunks andputs them in a queue. Consumer
threads grab chunks from the queue and perform the
computing associated with these. The main problem is
ensuring correctness as consumer threads process training
records from different chunks. Note that the first loop fits
nicely with the structure of the canonical loop we had shown
in Fig. 1. The set of AVC-groups for all nodes that are
currently active is the reductionobject.Asdifferent consumer
threads try to update the same element in an AVC-set, race
conditions can arise. The elements of the reduction object that
are updated after processing a tuple cannot be determined
without processing the tuple.

Therefore, the parallelization techniques we have devel-
opedareapplicabletoparallelizingthefirstloop.Bothmemory
overheads and locking costs are important considerations in
selectingtheparallelizationstrategy.Atlowerlevelsofthetree,
the total size of the reduction object can be very large.
Therefore,memory overhead of the parallelization technique
used is an important consideration. Also, the updates to the
elementsof thereductionobjectare fine-grained.Aftergetting
a lock associatedwith an element or a set of elements, the only
computing performed is incrementing one value. Therefore,
locking overheads can also be significant.

Next,wediscuss the application of the techniqueswehave
developed to parallelization of the first loop. Recall that the
memory requirements of the three techniques are very
different. If R is the size of reduction object, N is the size of
consumer threads, andL is the number of elements per cache
line, the memory requirement of full replication, optimized
full locking and cache sensitive locking areN �R, 2�R, and
N

N�1
�R, respectively. This has an important implication for

our parallel algorithm. Choosing a technique with larger
memory requirements means that the setAQwill be smaller.
Inotherwords, a largernumberofpassesover thedata setwill
be required.

An importantpropertyof the reductionobject inRF-read is
that updates to eachAVC-set are independent. Therefore, we
can apply different parallelization techniques to nodes at
different levels, and for different attributes. Based upon this
observation, we developed a number of approaches for
applying one or more of the parallelization techniques we
have.Theseapproachesarepure,horizontal,vertical, andmixed.

In the pure approach, the same parallelization approach
is used for all AVC-sets, i.e., for nodes at different levels and
for both categorical and numerical attributes.

The vertical approach ismotivated by the fact that the sum
of sizes of AVC-groups for all nodes at a level is quite small at
upper levels of the tree. Therefore, full replication canbeused
for these levels without incurring the overhead of additional
passes.Moreover, because the total number of elements in the
reductionobject is quite small at these levels, locking schemes
can result inhighoverheadofwaiting for locks and coherence
cache misses. Therefore, in the vertical approach, replication
is used for the first few levels (typically, between 3 to 5) in the
tree, and either optimized full locking or cache-sensitive
locking is used at lower levels.

In determining the memory overheads, the cost of
waiting for locks and coherence cache misses, one im-
portant consideration is the number of distinct values of an
attribute. If the number of the distinct values of an attribute
is small, the corresponding AVC-set is small. Therefore, the
memory overhead in replicating such AVC-sets may not be
a significant consideration. At the same time, because the
number of elements is small, the cost of waiting for locks
and coherence cache misses can be significant. Note that,
typically, categorical attributes have a small number of
distinct values and numerical attributes can have a large
number of distinct values in a training set.

Therefore, in the horizontal approach, full replication is
used for attributes with a small number of distinct values,
and one of the locking schemes is used for attributed with a
large number of distinct values. For any attribute, the same
technique is used at all levels of the tree.

Finally, the mixed strategy combines the two ap-
proaches. Here, full replication is used for all attributes at
the first few levels, and for attributes with small number of
distinct values at the lower levels. One of the locking
schemes is used for the attributes with a large number of
distinct values at lower levels of the tree.

6.3 Experimental Results

In this section, we evaluate our implementation of decision
tree construction. Since our primary consideration was
evaluating scalability, we only evaluated the performance
on SunFire 6800.

We used two data sets for our experiments, generated
using a tool described by Agrawal et al. [1]. Both the data
sets were nearly 1.3 GB, with 32 million records in the
training set. Each record has nine attributes, of which three
are categorical and the other 6 are numerical. Every record
belongs to one of two classes. Agrawal et al. use a series of
classification functions of increasing complexity to classify
records into different groups. Tuples in the training set are
assigned the group label (classes) by first generating the
tuple and then applying the classification function to the
tuple to determine the group to which the tuple belongs.
The two data sets we used correspond to the use of
functions 1 and 7, respectively. The use of function 1
generates a relatively small decision tree, whereas the tree
generated by function 7 is large. In our experiments, the stop
point for the node size is 10,000, i.e., if the subtree includes
fewer than 10,000 tuples, we do not expand it any further.
The use of function 1 results in a tree with 10 levels,

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

whereas the use of function 7 generates a tree with 16 levels.
The data sets corresponding to the use of functions 1 and 7
are referred to as data set 1 and data set 2, respectively.

In Section 6.2, we had described pure, vertical, horizontal,
and mixed approaches for using one or more of the
parallelization techniques we support in the middleware.
Based upon these, a total of nine different versions of our
parallel implementation were created. Obviously, there are
three pure versions, corresponding to the use of full
replication (fr), optimized full locking (ofl), and cache
sensitive locking (csl). Optimized full locking can be
combined with full replication using vertical, horizontal,
and mixed approach, resulting in three versions. Similarly,
cache sensitive locking can be combined with full replication
using vertical, horizontal, and mixed approach, resulting in
three additional versions, for a total of nine versions.

Figs. 16 and 17 show the performance of pure versions on
twodata sets.With one thread,fr gives the best performance
for both the data sets. This is because there is no locking
overhead. The relative speedups on eight threads for fr are
only 2.73 and 1.86 for the first and the second data set,
respectively. In fact, with the second data set, there is a slow-
down observed in going from four to eight threads. This is
because the theuse of full replication forAVC-sets at all levels

results in very high memory requirements. The second data
set produces a deeper tree, so the sum of the sizes of AVC-set
for all nodes at a level can be even higher.

Locking schemes result in a 20 to 30 percent overhead on
one thread, but the relative speedups are better. Using eight
threads, the relative speedups for ofl and csl are 5.37 and
4.95, respectively, for the second data set. However, for data
set 1, the relative speedups for both the versions are less than
four. There are two types of overhead in the use of locking
schemes. The first is the additional cost of locking while
incrementingeveryvalue in theAVC-set. Second,at theupper
levels of the tree, the total number of elements associatedwith
AVC-sets of all nodes at the level is quite small. This results in
waiting for locks and coherence cache misses when different
threadswant toupdate theseelements.Withdataset1, the tree
generated is not very deep, and therefore, a larger fraction of
the time is spent doing the processing for the upper levels.

Figs. 18 and 19 present experimental results from
combining fr and ofl, from data sets 1 and 2, respectively.
As stated earlier, the two schemes can be combined in three
different ways, horizontal, vertical, and mixed. The perfor-
mance of these three versions is quite similar. With data set
1, horizontal is consistently the slowest, and mixed gives
the best performance on two, four, and eight threads. With

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 15

Fig. 16. Performance of pure versions, data set 1.

Fig. 17. Performance of pure versions, data set 2.

Fig. 18. Combining full replication and full locking, data set 1.

Fig. 19. Combining full replication and full locking, data set 2.

data set 2, vertical is the slowest on two, four, and eight
nodes, whereas mixed is the best on two, four, and eight
nodes.

In the horizontal approach, the use of locking for
continuousattributesatupper levelsof thetreecanslowdown
the computation because of waiting for locks and coherence
cachemisses. In contrast, in the vertical approach, the use
of locking for categorical attributes at the lower levels results
in waiting time for locks and coherence cache misses. As a
result, themixed approach results in the best performance on
two, four, or eight threads, for either data set.

Figs. 20 and 21 present experimental results from
combining fr and csl, from data sets 1 and 2, respectively.
Again, the mixed version is the best among the three
versions, for two, four, and eight threads, for either data set.

It is interesting to compare the relative performance
between combining optimized full locking with full replica-
tion and combining cache sensitive locking with full
replication. As compared to optimized full locking, cache
sensitive locking has lower memory requirements. How-
ever, the overhead of waiting for locks could also be higher
in cache sensitive locking.

For the first data set, cache sensitive locking results in
worse performance with horizontal approach and almost
identical performance with vertical and mixed ap-
proaches. This is because the first data set results in a tree
with only 10 levels, andmemory overhead is not a significant
issue.With the seconddata set, cache sensitive locking results
in significantly better performancewith all three approaches.

Combining cache sensitive locking and full replication
using the mixed strategy results in the best performance.
With the data set 2, the relative speedup of this version on
eight threads is 5.9. Comparing this version against the best
1 thread version (which is fr), the speedup is 5.2.

6.4 Discussion

This case study has lead to a number of interesting
observations. First, we have shown that a RainForest-based
decision tree construction algorithm can be parallelized in a
way which is very similar to the way association mining and
clustering algorithms have been parallelized. Therefore, a
general middleware framework for decision tree construc-
tion can simplify theparallelizationof algorithms for avariety
of mining tasks. Second, unlike the algorithms for other
mining tasks, a combination of locking and replication-based

techniques results in the best speedups for decision tree
construction. Thus, it is important that the framework used
supports a variety of parallelization techniques.

The best relative speedup we obtained was 5.9 using
eight threads. This compares well with the speedups that
have been obtained by the researchers developing stand-
alone shared memory or distributed memory decision tree
implementations. Thus, our work also shows that a general
framework for parallel data mining implementations can
achieve high performance while significantly simplifying
the programmer’s task.

7 RELATED WORK

We now compare our work with related research efforts.
A significant amount of work has been done on paralle-

lization of individual data mining techniques. Most of the
work has been on distributed memory machines, including
associationmining [2], [19], [20], [57], k-means clustering [10],
and decision tree classifiers [4], [15], [29], [50], [53]. Recent
efforts have also focusedon sharedmemoryparallelizationof
data mining algorithms, including association mining [56],
[43], [44] and decision tree construction [55]. Our work is
significantly different, because we offer an interface and
runtime support to parallelize a number of data mining
algorithms. Our shared memory parallelization techniques
are also different, becausewe focus on a common framework
for parallelization of a number of algorithms.

Since we have used a priori as an example in our
implementation, we do a detailed comparison of our
approach with the most recent work on parallelizing a priori
on a shared memory machine [44]. One limitation of our
approach is that we do not parallelize the candidate
generation part of the algorithm in our framework. We have
at least two advantages, however. First, we dynamically
assign transactions to threads, whereas their parallel algo-
rithm works on a static partition of the data set. Second, our
work onmemory layout of locks and reduction elements also
goesbeyondtheir techniques.Therearealsomanysimilarities
in the two approaches. Both approaches segregate read-only
data to reduce false sharing and consider replicating the
reduction elements.

Decision tree construction for disk-resident data sets and
on parallel machines has also been studied by many

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 20. Combining full replication and cache-sensitive data set 1. Fig. 21. Combining full replication and cache-sensitive locking data

set 2.

researchers.Wedescribe theseefforts andcompare themwith
our approach.

One of the first decision tree construction methods for
disk-resident data sets was SLIQ [37]. SLIQ requires sorting
of ordered attributes and separation of the input data set
into attribute lists. In addition, it requires a data-structure
called class list, whose size is proportional to the number of
records in the data set. Class list is accessed frequently and
randomly, therefore, it must be kept in main memory. In
parallelizing SLIQ, either the class list must be replicated, or
a very high communication overhead is imposed.

A somewhat related approach is SPRINT [50]. SPRINT
does not require class lists, but instead requires a hash table
which is proportional to the number of records associated
with a node in the decision tree. Like SLIQ, SPRINT requires
attributes lists and sorting of ordered attributes. Moreover,
SPRINT requires partitioning of attribute lists whenever a
node in thedecision tree is split. Thus, it can have a significant
overhead of rewriting a disk-resident data set.

The algorithm by Srivastava et al. [53] has many simila-
rities with the RF-write algorithm. An important difference,
however, is that it reduces the number of potential splitting
points of ordered attributes by clustering their values. A
somewhat similar idea is used in the CLOUDS method [4].

The only previous work on shared memory paralleliza-
tion of decision tree construction on disk-resident data sets
is by Zaki et al. [55]. They have carried out a shared
memory parallelization of SPRINT algorithm. Our work is
distinct in parallelizing a very different method for decision
tree construction. In parallelizing SPRINT, each attribute list
is assigned to a separate processor. In comparison, we
parallelize updates to reduction objects with fine sharing
between the processors. Narlikar has used a fine-grained
threaded library for parallelizing a decision tree algorithm
[40], but the work is limited to memory-resident data sets.

Becuzzi et al. [5] have used a structured parallel
programming environment PQE2000/SkIE for developing
parallel implementation of data mining algorithms. How-
ever, they only focus on distributed memory parallelization,
and I/O is handled explicitly by the programmers. The
similarity among parallel versions of several data mining
techniques has also been observed by Skillicorn [52]. Our
work is different in offering a middleware to exploit the
similarity and ease parallel application development. Goil
and Choudhary have developed PARSIMONY, which is an
infrastructure for analysis of multi-dimensional data sets,
including OLAP and data mining [16]. PARSIMONY does
not focus on shared memory parallelization.

Note that locking has been extensively used in databases.
There are some similarities between the mining algorithms
and aggregation queries used in relational databases. Shatdal
has studied SMP parallelization of aggregation queries [51].
However, they have not focused on memory hierarchy
impact of the use of locks (or latches), which, in our
experience, has become a significant issue for modern SMP
machines. Some of the ideas in our parallelization techniques
have been independently developed in the computer
architecture field. Kagi et al. have used the idea of collocation,
inwhicha lockand the reductionobject areplaced in the same
cache block [31], [30]. Our focus has been on cases where a
large number of small reduction elements exist and false
sharing can be a significant problem. In addition, we have
presented an interface for data mining algorithms, and
evaluated different techniques specifically in the context of
data mining algorithms.

OpenMP is the general accepted standard for shared
memory programming. OpenMP currently only supports
scalar reduction variables and a small number of simple
reduction operations, which makes it unsuitable for data
mining algorithms we focus on. Inspector/executor ap-
proach for shared memory parallelization is based upon
using an inspector that can examine certain values at runtime
to determine an assignment of iterations to processors [6],
[18], [34], [35], [17], [48], [54]. For data mining algorithms, the
inspector will have to perform almost all the computation
associated with local reductions, and will not be practical.
Cilk, a language for sharedmemoryprogrammingdeveloped
at MIT [7], also does not target applications with reductions.

8 AN OVERALL VISION

In this section, we describe our overall vision toward offering
high-level support for creating scalable data mining imple-
mentations, and how the techniques and the system
described in this paper can be used in longer term.

As we stated earlier, the work reported in this paper is
part of a middleware system called FREERIDE (FRamework
for Rapid Implementation of Datamining Engines). The
target environment of this system includes both clusters of
SMPs and large scale SMP machines. The middleware
performs both distributed memory and shared memory
parallelization. Moreover, it enables high I/O performance
by minimizing disk seek time and using asynchronous I/O
operations. Thus, it can be used for developing efficient
parallel data mining applications that operate on disk-
resident data sets. The middleware support for distributed
memory parallelization and scaling to disk-resident data
sets was reported in an earlier publication [27].

Moreover, we envision the current FREERIDE system as
only an intermediate step in providing high-level support
for specifying or developing scalable mining implementa-
tions. Our longer term vision is shown in Fig. 22. Here, we
briefly describe our current work or ideas towards the other
components shown in this figure.

Data Parallel Language Interface: Our recent work [32],
[33]has shownthatdataparallel languagesarewell-suited for
specifying mining algorithms. Specifically, we have used a
dialect of Java for expressing data mining algorithms at a
higher level than our middleware interface. Our compiler
work has leveraged our earlier work on compiling scientific
data-intensive applications [11]. Our initial work has shown

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 17

Fig. 22. Long term vision in providing high-level interfaces for scalable
data mining.

that existing compilation techniques can be used for translat-
ing from a data-parallel language to the FREERIDE interface,
with at most 10 percent performance penalty.

Cost Models and Strategy Selection: A number of
different parallelization strategies are usually possible for
any data mining algorithm. Our middleware and compila-
tion system can be used for making a selection between
different parallelization strategies. We have initiated work
on modeling performance factors like locking overhead,
waiting time for locks, cold and capacity cache misses,
coherence cache misses, and false sharing. Our initial work
in this area was presented in the ACM SIGMETRICS
Conference in June 2002 [28].

Declarative Interface: Declarative interfaces have always
been popular with the users of database systems. Ideally,
the end users will like to specify data mining tasks they
want to perform at a very high-level (e.g., in a declarative or
nonprocedural fashion), and yet achieve scalable execution.
Commercial products like IBM DB2 [24] and Oracle [36] are
very successful in parallelizing relational queries. Like the
relational database operations, commonly used data mining
algorithms are well-suited for parallel execution, but no
tools and techniques are currently available for supporting
their parallel execution. A significant effort, however, has
been put on developing a set of mining operators [22]. We
believe that by having a library of Java implementations of
common data mining algorithms, we can easily create data
parallel Java versions from a suitable declarative interface.

To summarize, our initial work on providing high-level
language support and performance modeling has been very
encouraging. Our work in both these areas builds on the
fact that a common set of techniques and a common
interface can be used for parallelizing a number of data
mining algorithms, which were presented in this paper.

9 CONCLUSION

In this paper, we have focused on shared memory paralle-
lization of data mining algorithms. By exploiting the
similarity in the parallel algorithms for several data mining
tasks, we have been able to develop a programming interface
and a set of techniques. Our techniques offer a number of
trade offs between memory requirements, parallelism, and
locking overhead. In using our programming interface, the
programmers only need to make simple modifications to a
sequential code and use our reduction object interface for
updates to elements of a reduction object.

We have reported experimental results from implemen-
tations of a priori and FP-tree-based association mining,
k-means clustering, k-nearest neighbors, and decision tree
construction. These experiments establish the following:

1. Among full replication, optimized full locking, and
cache-sensitive locking, there is no clear winner. Each
of these three techniques can outperform others
depending upon machine and data set parameters.
These three techniques perform significantly better
than the other two techniques.

2. Good parallel efficiency is achieved for each of the
four algorithms we experimented with, using our
techniques and runtime system.

3. The overhead of the interface is within 10 percent in
almost all cases.

4. In the case of decision tree construction, combining
different techniques turned out to be crucial for
achieving high performance.

ACKNOWLEDGMENTS

This research was supported by the US National Science

Foundation CAREER award ACI-9733520, US National

Science Foundation grant CCR-9808522, and US National

Science Foundation grant ACR-9982087. The equipment for

this research was purchased under US National Science

Foundation grant EIA-9703088.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Database Mining: A
Performance Perspective,” IEEE Trans. Knowledge and Data Eng.,
vol. 5, no. 6, pp. 914-925, Dec. 1993.

[2] R. Agrawal and J. Shafer, “Parallel Mining of Association Rules,”
IEEE Trans. Knowledge and Data Eng., vol. 8, no. 6, pp. 962-969, June
1996.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 1994 Int’l Conf. Very Large Databases
(VLDB ’94), pp. 487-499, Sept. 1994.

[4] K. Alsabti, S. Ranka, andV. Singh, “Clouds: Classification for Large
or Out-of-Core Datasets,” http://www.cise.ufl.edu/ranka/
dm.html, 1998.

[5] P. Becuzzi, M. Coppola, and M. Vanneschi, “Mining of Associa-
tion Rules in Very Large Databases: A Structured Parallel
Approach,” Proc. Europar-99, vol. 1685, pp. 1441-1450, Aug. 1999.

[6] W. Blume, R. Doallo, R. Eigenman, J. Grout, J. Hoelflinger, T.
Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger,
and P. Tu, “Parallel Programming with Polaris,” Computer, vol. 29,
no. 12, pp. 78-82, Dec. 1996.

[7] R.D. Blumofe, C.F. Joerg, et al., “Cilk: An Efficient Multithreaded
Runtime System,” Proc. Fifth ACM Conf. Principles and Practices of
Parallel Programming (PPoPP), 1995.

[8] S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic Itemset
Counting and Implication Rules for Market Basket Data,” Proc.
ACM SIGMOD Conf. Management of Data, May 1997.

[9] P. Cheeseman and J. Stutz, “Bayesian Classification (Autoclass):
Theory and Practice,” Advanced in Knowledge Discovery and Data
Mining, pp. 61-83, 1996.

[10] I.S. Dhillon and D.S. Modha, “A Data-Clustering Algorithm on
Distributed Memory Multiprocessors,” Proc. Workshop Large-Scale
Parallel KDD Systems, in conjunction with the Fifth ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining (KDD ’99), pp. 47-
56, Aug. 1999.

[11] R. Ferreira, G. Agrawal, and J. Saltz, “Compiling Object-Oriented
Data Intensive Computations,” Proc. 2000 Int’l Conf. Supercomput-
ing, May 2000.

[12] G. Forman and B. Zhang, “Distributed Data Clustering Can be
Efficient and Exact,” Proc. SIGKDD Explorations, vol. 2, no. 2, Dec.
2000.

[13] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh, “Boat—-
Optimistic Decision Tree Construction,” Proc. ACM SIGMOD
Conf. Management of Data, June 1999.

[14] J. Gehrke, R. Ramakrishnan, and V. Ganti, “Rainforest—A
Framework for Fast Decision Tree Construction of Large
Datasets,” Proc. Conf. Very Large Databases (VLDB), 1998.

[15] S. Goil and A. Choudhary, “Efficient Parallel Classification Using
Dimensional Aggregates,” Proc. Workshop Large-Scala Parallel KDD
Systems, with ACM SIGKDD-99, Aug. 1999.

[16] S. Goil and A. Choudhary, “PARSIMONY: An Infrastructure for
Parallel Multidimensional Analysis and Data Mining,” J. Parallel
and Distributed Computing, vol. 61, no. 3, pp. 285-321, Mar. 2001.

[17] E. Gutierrez, O. Plata, and E.L. Zapata, “A Compiler Method for
the Parallel Execution of Irregular Reductions in Scalable Shared
Memory Multiprocessors,” Int’l Conf. Supercomputing (ICS ’00),
pp. 78-87, May 2000.

[18] M. Hall, S. Amarsinghe, B. Murphy, S. Liao, and M. Lam,
“Maximizing Multiprocessor Performance with the SUIF Compi-
ler,” Computer, vol. 12, Dec. 1996.

[19] E.-H. Han, G. Karypis, and V. Kumar, “Scalable Parallel
Datamining for Association Rules,” Proc. ACM SIGMOD 1997,
May 1997.

[20] E-H. Han, G. Karypis, and V. Kumar, “Scalable Parallel Datamin-
ing for Association Rules,” IEEE Trans. Data and Knowledge Eng.,
vol. 12, no. 3, May/June 2000.

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

[21] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. ACM SIGMOD Conf. Management of
Data, 2000.

[22] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, 2000.

[23] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, 2nd ed. Morgan Kaufmann, Inc., 1996.

[24] IBM. Db2, “Universal Database Goes Parallel with Enterprise
and Enterprise-Extended Editions,” http://www-4.ibm.com/
software/data/db2/udb/98eeebrochure, 1999.

[25] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988.

[26] R. Jin and G. Agrawal, “An Efficient Implementation of Apriori
Association Mining on Cluster of SMPs,” Proc. Workshop High
Performance Data Mining, (IPDPS 2001), Apr. 2001.

[27] R. Jin and G. Agrawal, “A Middleware for Developing Parallel
Data Mining Implementations,” Proc. First SIAM Conf. Data
Mining, Apr. 2001.

[28] R. Jin and G. Agrawal, “Performance Prediction for RandomWrite
Reductions: A Case Study in Modeling Shared Memory Pro-
grams,” Proc. ACM SIGMETRICS, June 2002.

[29] M.V. Joshi, G. Karypis, and V. Kumar, “Scalparc: A New Scalable
and Efficient Parallel Classification Algorithm for Mining Large
Datasets,” Proc. Int’l Parallel Processing Symp., 1998.

[30] A. Kagi, “Mechanisms for Efficient Shared-Memory, Lock-Based
Sychronization,” PhD thesis, Univ. of Wisconsin, Madison, 1999.

[31] A. Kagi, D. Burger, and J.R. Goodman, “Efficient Synchronization:
Let Them Eat QOLB,” Proc. 24th Ann. Int’l Symp. Computer
Architecture, pp. 170-180, June 1997.

[32] X. Li, R. Jin, and G. Agrawal, “A Compilation Framework for
Distributed Memory Parallelizattion of Data Mining Algorithms,”
submitted for publication, 2002.

[33] X. Li, R. Jin, and G. Agrawal, “Compiler and Runtime Support for
Shared Memory Parallelization of Data Mining Algorithms,” Proc.
Conf. Language and Compilers for Parallel Computing, Aug. 2002.

[34] Y. Lin and D. Padua, “On the Automatic Parallelization of Sparse
and Irregular Fortran Programs,” Proc. Workshop Languages,
Compilers, and Runtime Systems for Scalable Computers (LCR-98),
May 1998.

[35] H. Lu, A.L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel,
“Compiler and Software Distributed Shared Memory Support for
Irregular Applications,” Proc. Sixth ACMSIGPLAN Symp. Principles
and Practice of Parallel Programming (PPOPP), pp. 48-56, June 1997.

[36] T. Mahapatra and S. Mishra, Oracle Parallel Processing. O’Reilly
Publishers, 2000.

[37] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A Fast Scalable
Classifier for Data Mining,” Proc. Fifth Int’l Conf. Extending
Database Technology, 1996.

[38] A. Mueller, “Fast Sequential and Parallel Algorithms for Associa-
tion Rule Mining: A Comparison,” Technical Report CS-TR-3515,
Univ. of Maryland, College Park, Aug. 1995.

[39] S.K. Murthy, “Automatic Construction of Decision Trees from
Data: A Multi-Disciplinary Survey,” Data Mining and Knowledge
Discovery, vol. 2, no. 4, pp. 345-389, 1998.

[40] G.J. Narlikar, “A Parallel, Multithreaded Decision Tree Builder,”
Technical Report CMU-CS-98-184, School of Computer Science,
Carnegie Mellon Univ., 1998.

[41] C.R. Palmer and C. Faloutsos, “Density Biases Sampling: An
Improved Method for Data Mining and Clustering,” Proc. 2000
ACM SIGMOD Int’l Conf. Management of Data, June 2000.

[42] J.S. Park, M. Chen, and P.S. Yu, “An Effecitive Hash Based
Algorithm for Mining Association Rules,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, May 1995.

[43] S. Parthasarathy, M. Zaki, and W. Li, “Memory Placement
Techniques for Parallel Association Mining,” Proc. Fourth Int’l
Conf. Knowledge Discovery and Data Mining (KDD), Aug. 1998.

[44] S. Parthasarathy, M. Zaki, M. Ogihara, and W. Li, “Parallel Data
Mining for Association Rules on Shared-Memory Systems,”
Knowledge and Information Systems, to appear, 2000.

[45] F. Provost and V. Kolluri, “A Survey of Methods for Scaling up
Inductive Algorithms,” Knowledge Discovery and Data Mining,
vol. 3, 1999.

[46] J.R. Quinlan, C4.5: Programs for Machine Learning, San Mateo,
Calif.: Morgan Kaufmann, 1993.

[47] S. Ruggieri, “Efficient C4.5,” Technical Report TR-00-01, Dept. of
Information, Univ. of Pisa, Feb. 1999.

[48] J.H. Saltz, R. Mirchandaney, and K. Crowley, “Run-Time
Parallelization and Scheduling of Loops,” IEEE Trans. Computers,
vol. 40, no. 5, pp. 603-612, May 1991.

[49] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient
Algorithm for Mining Association Rules in Large Databases,”
Proc. 21st Conf. Very Large Databases (VLDB), 1995.

[50] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Parallel
Classifier for Data Mining,” Proc. 22nd Int’l Conf. Very Large
Databases (VLDB), pp. 544-555, Sept. 1996.

[51] A. Shatdal, “Architectural Considerations for Parallel Query
Evaluation Algorithms,” Technical Report CS-TR-1996-1321, Univ.
of Wisconsin, 1999.

[52] D.B. Skillicorn, “Strategies for Parallel Data Mining,” IEEE
Concurrency, Oct./Dec. 1999.

[53] A. Srivastava, E. Han, V. Kumar, and V. Singh, “Parallel
Formulations of Decision-Tree Classification Algorithms,” Proc.
1998 Int’l Conf. Parallel Processing, 1998.

[54] H. Yu and L. Rauchwerger, “Adaptive Reduction Parallelization
Techniques,” Proc. 2000 Int’l Conf. Supercomputing, pp. 66-75, May
2000.

[55] M.J. Zaki, C.-T. Ho, and R. Agrawal, “Parallel Classification for
Data Mining on Shared-Memory Multiprocessors,” Proc. IEEE Int’l
Conf. Data Eng., pp. 198-205, May 1999.

[56] M.J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li, “Parallel Data
Mining for Association Rules on Shared Memory Multiproces-
sors,” Proc. Conf. Supercomputing ’96, Nov. 1996.

[57] M.J. Zaki, “Parallel and Distributed Association Mining: A
Survey,” IEEE Concurrency, vol. 7, no. 4, pp. 14-25, 1999.

Ruoming Jin received the MS degree in
computer science from the University of Dela-
ware in 2001, and the ME and BE degrees in
computer engineering from Beijing University of
Aeronautics and Astronautics, China in 1999
and 1996, respectively. He is a PhD candidate in
the Computer Information Science Department
at the Ohio State University. His research
focuses on data mining, streaming data proces-
sing, and high performance computing.

Ge Yang received the masters degree in
computer sciences from Ohio State University
in 2003, where his research focused on parallel
OLAP algorithms and scalable data mining. He
also received the masters degree in applied
mathematics at Zhongshan University in 2000.
He is currently a masters student in the
financial engineering program at the Kent State
University.

Gagan Agrawal received the BTech degree
from the Indian Institute of Technology, Kanpur,
in 1991, and the MS and PhD degrees from the
University of Maryland, College Park, in 1994
and 1996, respectively. He is an associate
professor of computer and information science
at the Ohio State University. His research
interests include parallel and distributed comput-
ing, compilers, data mining, OLAP, grid comput-
ing, and processing of streaming data. He has

published more than 75 refereed papers in these areas. He is a member
of ACM and IEEE Computer Society. He received a US National
Science Foundation CAREER award in 1998.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

JIN ET AL.: SHARED MEMORY PARALLELIZATION OF DATA MINING ALGORITHMS: TECHNIQUES, PROGRAMMING INTERFACE, AND... 19

