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PSYCHIATRIC GENOMICS

Shared molecular neuropathology
across major psychiatric disorders
parallels polygenic overlap
Michael J. Gandal,1,2,3,4 Jillian R. Haney,1,2,3 Neelroop N. Parikshak,1,2,3

Virpi Leppa,1,2,3 Gokul Ramaswami,1,2,3 Chris Hartl,1,2,3 Andrew J. Schork,5

Vivek Appadurai,5 Alfonso Buil,5 Thomas M. Werge,5,6,7 Chunyu Liu,8,9

Kevin P. White,10,11 CommonMind Consortium,* PsychENCODE Consortium,*

iPSYCH-BROAD Working Group,* Steve Horvath,3 Daniel H. Geschwind1,2,3†

The predisposition to neuropsychiatric disease involves a complex, polygenic, and

pleiotropic genetic architecture. However, little is known about how genetic variants impart

brain dysfunction or pathology. We used transcriptomic profiling as a quantitative readout

of molecular brain-based phenotypes across five major psychiatric disorders—autism,

schizophrenia, bipolar disorder, depression, and alcoholism—compared with matched

controls. We identified patterns of shared and distinct gene-expression perturbations

across these conditions.The degree of sharing of transcriptional dysregulation is related to

polygenic (single-nucleotide polymorphism–based) overlap across disorders, suggesting

a substantial causal genetic component. This comprehensive systems-level view of the

neurobiological architecture of major neuropsychiatric illness demonstrates pathways of

molecular convergence and specificity.

D
espite remarkable success identifying ge-

netic risk factors for major psychiatric dis-

orders, it remains unknown how genetic

variants interact with environmental and

epigenetic risk factors in the brain to impart

risk for clinically distinct disorders (1, 2). We

reasoned that brain transcriptomes—a quantita-

tive, genome-widemolecularphenotype (3)—would

allow us to determine whether disease-related sig-

natures are shared acrossmajor neuropsychiatric

disorders with distinct symptoms and whether

these patterns reflect genetic risk.

We first analyzed published gene-expression

microarray studies of the cerebral cortex across

five major neuropsychiatric disorders (3–11) using

700 cerebral cortical samples from subjects with

autism (ASD) (n = 50 samples), schizophrenia

(SCZ) (n = 159), bipolar disorder (BD) (n = 94),

depression (MDD) (n = 87), alcoholism (AAD)

(n = 17), and matched controls (n = 293) (12).

These disorders are prevalent and disabling,

contributing substantially to global disease bur-

den. Inflammatory bowel disease (IBD) (n = 197)

was included as a non-neural comparison.

Individual data sets underwent stringent qual-

ity control and normalization (Fig. 1) (12), includ-

ing rebalancing so as to alleviate confounding

betweendiagnosis and biological (such as age and

sex) or technical (such as post mortem interval,

pH, RNA integrity number, batch, and 3′ bias)

covariates (figs. S1 and S2). Transcriptome sum-

mary statistics for each disorder were computed

with a linearmixed-effectsmodel so as to account

for any sample overlap across studies (12). Com-

parison of differential gene expression (DGE) log2
fold change (log2FC) signatures revealed a signif-

icant overlap among ASD, SCZ, and BD and SCZ,

BD, and MDD (all Spearman’s r ≥ 0.23, P < 0.05,

40,000 permutations) (Fig. 2A). The regression

slopes between ASD, BD, andMDD log2-FC effect

sizes compared with SCZ (5.08, 0.99, and 0.37,

respectively) indicate a gradient of transcriptomic

severity with ASD > SCZ ≈ BD > MDD (Fig. 2B).

To ensure robustness, we compared multiple

methods for batch correction, probe summariza-

tion, and feature selection, including use of inte-

grative correlations, none of which changed the

qualitative observations (fig. S3) (12). Resultswere

also unaltered after first regressing gene-level RNA

degradation metrics, suggesting that systematic

sample quality issueswere unlikely to drive these

correlations (fig. S3). Further, the lack of (or nega-

tive) overlap between AAD and other disorders

suggests that similarities are less likely due to

comorbid substance abuse, poor overall general

health, or general brain-related post-mortem

artefacts.

Disease-specific DGE summary statistics (data

table S1) provide human in vivo benchmarks for

determining the relevance of model organisms,

in vitro systems, or drug effects (13, 14). We iden-

tified a set of concordantly down- andup-regulated

genes across disorders (fig. S4) as well as those

with more specific effects. Complement compo-

nent 4A (C4A), the top genome-wide association

study (GWAS)–implicated SCZ disease gene (15),

was significantly up-regulated in SCZ (log2FC =

0.23, P = 6.9 × 10
−6
) and in ASD [RNA sequenc-

ing (RNA-seq); log2FC = 0.91, P = 0.014] (data

table S1) but not in BD, MDD, or AAD. To in-

vestigate potential confounding by psychiatric

medications, we compareddisease signatureswith

those from nonhuman primates treated with

acute or chronic dosing of antipsychotic medi-

cations. Significant negative overlap (fig. S5) (12)

was observed, indicating that antipsychotics are

unlikely to drive, but rather may partially nor-

malize, these transcriptomic alterations, whereas

the psychotomimetic phencyclidine partially reca-

pitulates disease signatures.

To validate that these transcriptomic relation-

ships are generalizable, we generated indepen-

dent RNA-seq data sets for replication for three

out of the five disorders (fig. S6) (12). We iden-

tified 1099 genes whoseDGE is replicated in ASD

[odds ratio (OR) 6.4,P= 3.3 × 10
−236

, Fisher’s exact

test] (table S2), 890 genes for SCZ (BrainGVEX;

OR 4.5, P = 7.6 × 10
−155

), and 112 genes for BD

(BrainGVEX; OR 3.9, P = 4.6 × 10
−26

), which is

likely due to the relatively smaller RNA-seq sam-

ple size for BD (12). We observed similarly high

levels of transcriptomic overlap amongASD, SCZ,

and BD and a similar gradient of transcriptomic

severity (Fig. 2C and fig. S7). The SCZ and BD pat-

terns were further replicated in the CommonMind

data set, although gene-level overlap was lower

(fig. S7) (12, 16). The ASD signature was qualita-

tively consistent across the four major cortical

lobules, indicating that this pattern is not caused

by regional differences (Fig. 2D).

Tomore specifically characterize the biological

pathways involved,we performed robustweighted

gene coexpression network analysis (rWGCNA)

(12, 17), identifying several shared and disorder-

specific coexpression modules (Fig. 3). Modules

were stable (fig. S8), showed greater association

with disease than other biological or technical

covariates (fig. S9), and were not dependent on

corrections for covariates or batch effects (fig.

S10). Moreover, each module was enriched for

protein-protein interactions (fig. S8) and brain

enhancer-RNA co-regulation (fig. S11) derived

from independent data, which provides anchors

for dissecting protein complexes and regulatory

relationships.

An astrocyte-related module (CD4 and hubs

GJA1 and SOX9) was broadly up-regulated in

ASD, BD, and SCZ [false discovery rate (FDR)–

corrected P < 0.05] (Fig. 3C and data table S2)

(12) and enriched for glial cell differentiation
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Fig. 1. Experimental

rationale and design.

(A) Model of

psychiatric disease

pathogenesis.

(B) Flowchart of

the cross-disorder

transcriptome

analysis pipeline

(12). Cortical gene

expression data

sets were compiled

from cases of ASD

(n = 50 samples),

SCZ (n = 159),

BD (n = 94), MDD

(n = 87), AAD (n = 17),

and matched non-

psychiatric controls

(n = 293) (table S1) (12).

Gene Expression Datasets
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(GEO / ArrayExpress)
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Fig. 2. Cortical gene

expression patterns

overlap. (A) Rank

order of microarray

transcriptome similarity

for all disease pairs,

as measured with

Spearman’s correlation

of differential expression

log2FC values.

(B) Comparison of

the slopes among

significantly associated

disease pairs indicates a

gradient of transcrip-

tomic severity, with

ASD > SCZ ~ BD > MDD.

(C) Overlapping gene

expression patterns

across diseases are

correlated with shared

common genetic

variation, as measured

with SNP coheritability

(22). The y axis

shows transcriptome

correlations using

microarray-based

(discovery, red) and

RNA-seq (replication,

blue) data sets.

(D) RNA-seq across all

cortical lobes in ASD replicates microarray results and demonstrates a consistent transcriptomic pattern. Spearman’s r is shown for comparison

between microarray and region-specific RNA-seq replication data sets (all P < 10−14). Plots show mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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and fatty-acidmetabolismpathways. By contrast,

amodule strongly enriched formicroglial markers

(CD11) was up-regulated specifically in ASD (two-

sided t test, FDR-corrected P = 4 × 10
−9
). Hubs

include canonicalmicroglial markers (HLA-DRA

andAIF1), major components of the complement

system (C1QA and C1QB), and TYROBP, a microg-

lial signaling adapter protein (18). Results fit with

convergent evidence for microglial up-regulation

in ASD and an emerging understanding that mi-

croglia play a critical role regulating synaptic

function during neurodevelopment (19).

One module, CD2, was up-regulated specif-

ically in MDD (FDR-corrected P = 0.009) (data

table S2) and was enriched for G protein–coupled

receptors, cytokine-cytokine interactions, and hor-

mone activity pathways, suggesting a link be-

tween inflammation and dysregulation of the

Gandal et al., Science 359, 693–697 (2018) 9 February 2018 3 of 5

Fig. 3. Network

analysis identifies

modules of coex-

pressed genes across

disease. (A) Network

dendrogram from

coexpression

topological overlap

of genes across

disorders. Color bars

show correlation of

gene expression

with disease status,

biological, and

technical covariates.

(B) Multidimensional

scaling plot demon-

strates relationship

between modules

and clustering by

cell-type relationship.

(C) Module-level

differential expression

is perturbed across

disease states.

Plots show b values

from linear mixed-

effect model of

module eigengene

association with

disease status (FDR-

corrected #P < 0.1,

*P < 0.05, **P < 0.01,

***P < 0.001).

(D) The top 20 hub

genes are plotted

for modules most

disrupted in disease.

A complete list of

genes’ module

membership (kME) is

provided in data

table S2. Edges are

weighted by the

strength of correla-

tion between genes.

(E and F) Modules

are characterized by

(E) Gene Ontology

enrichment (top two

pathways shown for

each module) and

(F) cell-type specific-

ity, on the basis of

RNA-seq of purified

cell populations

from healthy human

brain samples (25).
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hypothalamic-pituitary (HPA) axis, which is con-

sistent with current models of MDD patho-

physiology (20). Several modules annotated as

neuronal/mitochondrial were down-regulated

across ASD, SCZ, and BD (CD1, CD10, and CD13)

(Fig. 3C and data table S2) (12). The overlap of

CD10 with a mitochondrial gene-enriched module

previously associated with neuronal firing rate

(21) links energetic balance, synaptic transmis-

sion, and psychiatric disease (data table S2).

The transcriptomemay reflect the cause or the

consequence of a disorder. To refine potential

causal links, we compared single-nucleotide poly-

morphism (SNP)–based genetic correlations be-

tween disease pairs (22) with their corresponding

transcriptome overlap. SNP coheritability was

significantly correlated with transcriptome overlap

across the same disease pairs (Spearman’s r = 0.79,

95% confidence interval 0.43 to 0.93, P = 0.0013)

(Fig. 2C), suggesting that a major component of

these gene-expression patterns reflects biological

processes coupled to underlying genetic variation.

To determine how disease-associated variants

may influence specific biological processes, we

investigated whether any modules harbor ge-

netic susceptibility for specific disorders or for

relevant cognitive or behavioral traits (12). We

identified significant enrichment among several

of the down-regulated, neuronal coexpression

modules (CD1, CD10, and CD13) for GWAS signal

from SCZ and BD, as well as for educational

attainment and neuroticism (FDR-corrected

P < 0.05, Spearman) (Fig. 4A) (12). We also ob-

served enrichment for the three down-regulated

neuronal coexpression modules in the iPSYCH

Consortium (23) ASD GWAS cohort (Fig. 4A and

table S3) (12). By contrast, thesemodules showed

no enrichment for MDD, AAD, or IBD. Further,

none of themicroglial- or astrocyte-specific mod-

ules showed psychiatric GWAS enrichment. Ex-

tending this analysis to disease-associated rare

variants (data table S3) (2, 12), we found that the

CD1 neuronal module was enriched for genes

harbouring rare, nonsynonymous de novo muta-

tions identified in ASD (OR 1.36, FDR-corrected

P = 0.03, logistic regression) and SCZ cases (OR

1.82, FDR-corrected P = 0.014) but not unaffected

controls (Fig. 4B). A similar CD1-enrichment was

observed for genes affected by rare, recurrent

copy-number variation (CNV) in ASD (OR 2.52,

FDR-corrected P = 0.008) and SCZ (OR 2.46, FDR-

corrected P = 0.014). These results suggest conver-

gence of common and rare genetic variation acting

todown-regulate synaptic function inASDandSCZ.

We next used LD score regression (24) to

partition GWAS heritability (Fig. 4C and data

table S4) into the contribution from SNPs lo-

cated within genes from each module (Fig. 4D)

(12). CD1 again showed significant enrichment

for SCZ (2.5-fold, FDR-corrected P = 8.9 × 10
−11
),

BD (3.9 fold, FDR-corrected P < 0.014), and

educational attainment (1.9-fold, FDR-corrected

P < 0.0008; c2 test) GWAS, accounting for ~10%

of SNP-based heritability within each data set,

despite containing only 3% of the SNPs. This

illustrates how gene network analysis can begin
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Fig. 4. Down-regulated neuronal modules are enriched for

common and rare genetic risk factors. (A) Significant enrichment is

observed for SCZ-, ASD-, and BD-associated common variants from

GWAS among neuron/synapse and mitochondrial modules (12).

GWAS data sets are listed in table S3. (B) The CD1 neuronal

module shows significant enrichment for ASD- and SCZ-associated

nonsynonymous de novo variants from whole-exome sequencing.

The number of genes affected by different classes of rare variants is

shown in parentheses. Significance was calculated by using logistic

regression, correcting for gene length. P values are FDR-corrected.

(C) Total SNP-based heritability (liability scale for psychiatric

diagnoses) calculated from GWAS by using LD-score regression.

(D) Proportion of heritability for each disorder or trait that can be attributed

to individual coexpression modules. Significance (FDR-corrected *P < 0.05,

**P < 0.01, ***P < 0.001) is from enrichment statistics comparing the

proportion of SNP heritability within the module divided by the proportion of

total SNPs represented. The CD1 module shows significant enrichment in

SCZ, BD, and educational attainment.
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to parse complex patterns of common variants,

each of small effect size, to implicate specific

biological roles for common variant risk across

neuropsychiatric disorders.

These data provide a quantitative, genome-

wide characterization of the cortical pathology

across five major neuropsychiatric disorders, pro-

viding a framework for identifying the responsible

molecular signaling pathways and interpreting

genetic variants implicated in neuropsychiatric

disease risk. We observed a gradient of synaptic

gene down-regulation, with ASD > SZ ≈ BD. BD

and SCZ appearmost similar in terms of synaptic

dysfunction and astroglial gene up-regulation,

which may represent astrocytosis, activation, or

both. ASD, an early-onset disorder, shows a dis-

tinct up-regulated microglial signature, which

may reflect the role for microglia in regulation

of synaptic connectivity during neurodevelop-

ment (19). MDD shows neither the synaptic nor

astroglial pathology but does exhibit dysregu-

lation of HPA-axis and hormonal signaling not

observed in the other disorders.

Our data suggest that shared genetic factors

underlie a substantial proportion of cross-disorder

expression overlap. Given that a minority of these

relationships represent expression quantitative

trait loci (fig. S12), most of the genetic effects are

likely acting indirectly, through a cascade of de-

velopmental and cell-cell signaling events rooted

in genetic risk. Genetic variation is also not the

only driver of expression variation; there is un-

doubtedly a contribution from environmental

effects. Hidden confounders could introduce a

correlation structure that matches SNP-level ge-

netic correlations, but parsimony and hidden

covariate correction suggests that this is unlikely.

Diagnostic misclassification could artificially ele-

vate shared signals, but the results are robust to

disorder removal (fig. S13), and misclassification

would not account for the substantial overlap we

observed with ASD, which has a highly distinct

phenotypic trajectory from later onset disorders.

Last, we have replicated broad transcriptomic

and cell type–specific patterns independently for

ASD, SCZ, and BD, providing an organizing path-

ological framework for future investigation of

the mechanisms underlying specific gene- and

isoform-level transcriptomic alterations in psy-

chiatric disease.
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