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ABSTRACT 
Many physical user interfaces are best viewed as an inter-
acting collection of remotely-located distributed hardware 
and software components. The problem is that current 
physical user interface toolkits do not normally offer dis-
tributed systems capabilities, leaving developers with extra 
burdens such as device discovery and management, low-
level hardware access, and networking. Our solution is 
Shared Phidgets, a toolkit for rapidly prototyping distrib-
uted physical interfaces. This toolkit offers programmers 
several ways to easily access remotely located hardware 
components, including a powerful distributed model-view-
controller object model. Network communication and low-
level access to the device hardware are transparently han-
dled, regardless of device location. The programmer can 
also create new abstract devices by transforming and ag-
gregating low level hardware device capabilities. 
ACM Classification: H.5.2 [Information Interfaces]: User 
interfaces – input devices and strategies, interaction styles, 
prototyping, user-centered design 
General terms: Design, Human Factors 

Keywords: Distributed physical user interfaces, toolkits, 
prototyping, hardware-software integration, Phidgets. 

INTRODUCTION 
Physical user interfaces are an increasingly important part 
of many emerging visions of human computer interaction: 
ubiquitous computing and calm technologies [24], perva-
sive computing [2], tangible user interfaces [18], informa-
tion appliances [21], ubiquitous media and reactive envi-
ronments [5], interactive art, ambient displays [7], and con-
text-aware computing [8]. In most of these visions, physi-
cal user interfaces comprise some type of appliance con-
structed from simple hardware devices – sensors, switches, 
actuators, displays, motors, RFID tags and readers – that 
developers package in some manner, connect to, monitor, 
and control via software. These appliances are either car-

ried by people or deployed at meaningful locations within 
the end user’s everyday environment, with the idea that 
they work within (rather than apart from) the everyday 
practices of people [9].  
While some physical user interfaces can act as a stand-
alone ‘disconnected’ appliance, they are usually envisaged 
as components interacting within a network of other appli-
ances and computers. As Dey et. al. state in their discussion 
of context-aware applications: “…the devices used to sense 
context most likely are not attached to the same computer 
running an application that will react to that context” [8]. 
That is, they become a distributed physical user interface 
comprising a variety of hardware devices connected to dif-
ferent computers over multiple locations, all networked 
together, e.g., [13,21,8]. 
From this perspective, a distributed physical user interface 
is best viewed as hardware nodes on a distributed system. 
This viewpoint reveals that developers of such systems 
face two considerable challenges. 
1. They must program, communicate with and control low-

level hardware devices.  
2. They must assume the additional programming burden 

inherent in most distributed systems: resource discovery, 
network communication and protocol development, con-
tention control, managing failures due to connectivity 
problems and latency, debugging intricacies of distrib-
uted systems, and so on. 

Toolkits are now available that simplify device program-
ming, or that simplify distributed systems development. 
Yet none do both (see §Related Work). Consequently, we 
set ourselves the goal of designing a toolkit that would al-
low a programmer easy access to the many distributed de-
vices that comprised a network of physical user interfaces. 
In particular, we wanted a toolkit that: 
• automatically discovers devices connected to a myriad 

of different computers; 
• manages all network aspects so that no network pro-

gramming is required; 
• uses the same API to control a device, regardless of 

whether it is attached to a local or  a remote computer; 
• uses a distributed Model-View-Controller (dMVC) de-

sign pattern to represent every device so that data asso-
ciated with the model is easily queried and manipulated; 
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• generates notifications across the network whenever 
device state is changed; 

• offers graphical ‘skins’ that let a person view local and 
distant device state and control them via a conventional 
GUI;  

• offers the means to create ‘abstract devices’ that trans-
form and aggregate low level hardware device capabili-
ties into higher level abstractions; and 

• provides a set of high-level tools to: manage all the nec-
essary hardware and network connections, control and 
observe devices, examine the state of the MVC model, 
and emulate devices for testing purposes.  

Our solution is the Shared Phidgets toolkit, a significant 
software extension of the commercial Phidgets platform 
[22]. To forewarn the reader, this paper concentrates on the 
technical infrastructure underlying Shared Phidgets. This 
reflects our belief that the toolkit offerings and its architec-
tural makeup are substantial contributions that tremen-
dously simplify the development of distributed physical 
user interfaces. After briefly summarizing related work, we 
provide a step by step scenario showing exactly how a pro-
grammer would use Shared Phidgets to create a simple 
distributed awareness appliance. We then detail the Shared 
Phidgets architecture, and describe how this architecture is 
used by developers.  

RELATED WORK 
Until recently, physical user interface development was 
restricted to the few programmers who knew about hard-
ware and circuit design, and who were willing to do a huge 
amount of back-end programming: firmware, networking 
and protocol development to link hardware and computers, 
and the application software that monitors and uses the 
device. Fortunately, the advent of various toolkits has made 
rapid physical user interface development reachable by 
average programmers. This includes research products 
(e.g., iStuff [3], Input Configurator [10], d.tools [17], Cal-
der [19]) and well-developed commercial offerings (e.g., 
Phidgets, Inc. [22,14], and MakingThings [20]). Although 
offerings vary, they typically provide hardware devices 
with well-defined functionality, easy connectivity (includ-
ing wireless) between the device and a single traditional 
computer, and a software API that lets a programmer ac-
cess the hardware functionality. Consequently, developers 
can focus on high level design of physical user interfaces 
rather than on low level implementation details (see also 
[1,12]).  
Perhaps the most widely used of these toolkits is Phidgets, 
first created as a research system [14], and then commer-
cialized by Phidgets Inc [22]. Phidgets include USB-based 
hardware boards controlling various input sensors (e.g., 
temperature, movement, proximity, light intensity, RFID 
tags) and output actuators (e.g., servo motors, LED indica-
tors, LC text displays). Phidgets also provide a comprehen-
sive architecture and API to discover, control and observe 
all phidgets connected to a single computer. 

While all the above toolkits simplify hardware program-
ming, they do nothing to help one manage hardware as a 
distributed system. Dey et. al.’s Context Toolkit [8] is the 
exception. Their toolkit has several important components. 
Context widgets encapsulate and abstract the actual (possi-
bly distributed) devices and software used to collect con-
textual information. Interpreters transform this low level 
information into high level abstractions. Aggregators col-
lect, group and logically relate multiple pieces of informa-
tion. Services use any of the above input components to 
control something, i.e., to perform an output. Discoverers 
maintain a registry of all the above components and their 
capabilities. Under the covers, all components can commu-
nicate as a distributed system by using a subscription-based 
event system built atop of TCP [8]. 
Yet the Context Toolkit does not actually ease how pro-
grammers compose low level hardware devices. Our un-
derstanding is that a context widget’s connection to actual 
hardware (including hardware control) has to be custom 
coded; the toolkit itself supplies no support for this difficult 
step. That is, the toolkit begins with the abstracted ‘context 
widget’ but does not explicitly support how these are cre-
ated from hardware. Thus there is a significant gap be-
tween how one actually accesses the hardware (as provided 
by the previously mentioned toolkits) vs. how one lever-
ages this hardware in a distributed setting (as in the Con-
text Toolkit).  
This gap is the ‘sweet spot’ that our Shared Phidgets toolkit 
addresses. As we will see, we extend the existing Phidgets 
architecture so that programmers can access low-level 
hardware devices located anywhere on the network, and 
yet compose them in ways that provides capabilites some-
what comparable to the Context Toolkit’s offerings.  

PROGRAMMING SCENARIO 
To set the scene, we illustrate how ‘Jim’ uses Shared 
Phidgets to create an awareness appliance that lets a person 
at home know if his working spouse is present, around, or 
absent from her office. The appliance comprises three 
linked devices distributed across two locations: the home 
and the office. While simple, this appliance implements 
previously published ideas, including the Door Mouse [5], 
Physical but Digital Surrogates [15], and Aggregates [8]. 

Description 
The office part (not illustrated) comprises two off-the-shelf 
sensors attached to a Phidget InterfaceKit circuit board [22] 
plugged into the ‘office computer. A proximity sensor de-
tects if someone is seated at the desk, while a force sensor 
detects if the office door is closed. Software aggregates 
these two sensor values into a new ‘availability’ value: 
• present: door open, someone seated; 
• around: door open, no one is seated; 
• absent: door closed, seated state ignored.  
The home part, illustrated unadorned in Figure 1, contains 
a Phidget TextLCD display, and a figurine glued to a 
Phidget Servo. Both are plugged into the ‘office computer. 
It also contains a graphical user interface (Figure 1, mid-



 

 

dle) mirroring the state of these devices. The LCD display 
contents and the figurine’s position depend on availability 
state: 
• present: faces forward (0o), says ‘Present’ 
• around: faces sideways (90o), says ‘Somewhere 

Around’ 
• absent: faces the wall (180o), says ‘Unavailable’. 

Implementation 
The steps below assume that a server is up and running, 
located at (say) tcp://demo.ca:test, and that the special Con-
nector tool (described later) is running on each computer. 
Both come with the toolkit, and Jim starts them in seconds.  
Jim first works on the office sensors. He positions the 
proximity sensor in front of the desk chair, tapes the force 
sensor to the inside of the door jamb, and plugs it into the 
Interface Kit. This takes a few minutes (the most difficult 
job is hiding the wires). The Connector detects the Inter-
faceKit as soon as it is plugged into the office computer, 
and immediately publishes its sensor data to the server. 
This data is now available to other software that connects 
to this server.  
Jim then builds the home part of this device illustrated in 
Figure 1, which just requires a bit of gluing. He then writes 
the small program (Figure 1 bottom) that monitors the two 
distant sensors and uses its values to determine the servo 
position and the LCD display contents. The steps below 
outline this process; Jim does the first three with an inter-
face builder, and writes code only in the last step. 
Connect to the server. Drag and drop the Shared Phidgets 

ConnectionManager object onto the window form, and set 
its SharedDictionary property to “tcp://demo.ca:test. This 
object automatically connects to the central server. 

Create an object connected to the distant InterfaceKit. 
Drag and drop an InterfaceKit object onto the form. Set its 
FilterLocations property to “Office”. This act automati-
cally queries the ‘Locations’ metadata field associated 
with all attached InterfaceKits, finds the one in the of-
fice, and links the software with the distant hardware.  

Create objects that control and graphical display the local 
appliance. Drag, drop and link a Servo and ServoSkin ob-
ject, and a TextLCD and TextLCDSkin object into the win-
dow form. Set their serial numbers to match the local 
hardware. These ‘Skins’ are graphical interfaces that re-
veals the state of the servo and the display hardware; 
while not strictly necessary, this graphical view is in-
cluded for illustrative purposes.   

Monitor the sensor values to control the local appliance. 
Create an event handler for the interfaceKit’s Sensor-
Change event to monitor the current values of these sen-
sors. Jim also creates a utility method Aggregate to ag-
gregate the sensor values, and uses this aggregate to 
control the home appliance.  Figure 1 shows this code.  

He compiles and runs this program on the home computer. 
It automatically connects to the server over the internet, 
and raises events as sensor data collected from the office 

computer changes. The event handler code in Figure 1 is 
invoked and the home appliance is adjusted accordingly.   

Discussion 
The above example is notable in that its programming com-
plexity (or simplicity) is almost identical to that of the 
original non-distributed Phidgets [14]. Aside from starting 
the server and the Connector programs, the only coding 
difference is that the programmer had to include a Connec-
tionManager and an address to the server. All distributed 
systems aspects were otherwise hidden. We stress that this 
example only shows the most basic use of SharedPhidgets; 
much more sophisticated and nuanced appliance designs 

  Figure 1. The home appliance and its graphical interface 

// Enumerate three availability states; labels for LCD 
enum Availability {Present = 0, Around = 1, Absent = 2 }; 
string [] labels = new string [3] { 
      "Present", "Around", "Absent"}; 

//New sensor values received; update the appliance 
private void iK_SensorChange(…){ 
  int status = Aggregate(iK.Sensors[0].Value, 
                         iK.Sensors[1].Value); 
  textLCD.Display = labels [status]; 
  servo.Motors[0].Position = 90 *  status; 
} 

// Aggregate the sensor values into an availability state 
private int Aggregate (int sensor0, int sensor1) { 
  bool door = (sensor0 < 50);   // closed, if force < 50 
  bool seated = (sensor1 < 300);// seated, proximity < 300 
  if (door && seated) return (Availability.Present); 
  else if (door && !seated) return (Availability.Around);  
  else return (Availability.Absent);} 



 

 

are possible, as illustrated in later sections. What is espe-
cially important is that this example reveals that program-
mers can not only access devices as in other hardware tool-
kits, but can trivially treat them as higher level ‘context 
widgets’ as is done in the Context Toolkit [8]. 

SHARED PHIDGETS ARCHITECTURE 
The Shared Phidget architecture and its other offerings are 
illustrated in Figure 2. This section concentrates on what 
happens ‘under the covers’: its primary hardware and soft-
ware components and the interactions between them, Sub-
sequent sections describe what application developers ac-
tually see and the tools they use to facilitate their program-
ming process. 

Phidget Hardware and Devices 
Phidget devices [14,22] are the combined hardware/circuit 
board building blocks exploited by our infrastructure (Fig-
ure 2b). These devices are used by developers to create the 
physical portion of their interface, which in turn defines the 
end user’s interaction with the physical device (Figure 2a). 
Various hardware components are now available from 
Phidgets Inc. These include input sensing (motion, touch, 
temperature, proximity, magnetic force, light), input con-
trols manually activated by people (switches, dials, sliders, 
joy sticks, key fobs, accelerometers, RFID readers),  output 
actuators (motors, servos, solenoids, valves) and output 
displays (lights, text and graphics displays). 

Computer  Communication to Phidget Devices  
Phidget devices interact with a controlling host computer, 
and thus need to be connected to them. Currently, all 
Phidget devices are connected to a host computer via USB. 
Phidget Inc. supplies two rudimentary interfaces to let pro-
grammers communicate with these devices. First, a dy-
namic link library offers an API to access all locally at-
tached Phidget devices. Second, an (inappropriately 

named) ‘web service’, currently in beta, provides a socket-
based interface to the local machine’s phidgets (Figure 2c). 
While this second form can be exploited as a crude net-
work service, it was actually developed as a platform-
independent interface that simplifies access to Phidget de-
vice capabilities across different programming languages 
and operating systems.  
Because multiple devices can be plugged into a single com-
puter, the controlling computer needs a way to differentiate 
between them. To do this, each Phidget device returns its 
type (e.g., phidgetServo, phidgetRfid), and each device of a 
particular type returns a unique serial number. This means 
that the type / name combination uniquely identifies each 
connected device.  
So far, we have described the offerings of Phidget Inc., 
which closely matches the original Phidget architecture 
[14]. Remaining sections depart radically from Phidget Inc. 
offerings. As we will see, our new distributed architecture 
provides a shared distributed data space that contains in-
formation about all Phidget devices regardless of their lo-
cation, and a connector mechanism that hooks devices on 
the local computer to this shared data structure. 

Shared Distributed Data Space 
A fundamental component of the Shared Phidgets architec-
ture is a shared data space implemented as a distributed 
data structure. We use the shared dictionary provided by 
the Grouplab .NETWORKING toolkit [4].  
.NETWORKING allows client processes read and write ac-
cess to a collection of data objects maintained within the 
shared dictionary server (shown at Figure 2f). This also 
works as a notification server, where clients are immedi-
ately notified of any changes to data they are subscribed to, 
regardless of who made these changes. .NETWORKING also 
automatically manages all runtime networking housekeep-

 
Figure 2. An overview of the Shared Phidgets Architecture 



 

 

ing tasks, i.e., socket creation/teardown, wire protocol, data 
marshalling, parsing, etc.  
Data in the shared dictionary is structured as hierarchical 
key/value pairs. Values can be primitive data such as inte-
gers and strings, binary and multimedia data, or complex 
data such as lists and structures. A key is expressed as a 
path hierarchy. A rich set of operators allow programmers 
to subscribe and iterate over data held in particular sub-
paths of this hierarchy. Further details about how this 
shared dictionary works can be found in [4]. 
In Shared Phidgets, all participating machines access this 
data via a distributed Model-View-Controller (dMVC) pat-
tern [16]. The model is the abstract data stored on the 
shared dictionary. There are multiple controllers – the cli-
ent machines – that can change values in the shared data 
model. Similarly, when multiple clients receive notifica-
tions of changes of that data they can each generate their 
own view of it.   
Every phidget device has an entry in the shared dictionary 
that completely defines its state. Using our office/home 
appliance example, Figure 3 shows the partial dictionary 
entry for its three devices: the Phidget Servo, InterfaceKit 
and TextLCD. To illustrate the dictionary’s hierarchical 
nature, the key defining the position of servo motor 0 is 
\sharedphidgets\phidgetservo\418\servoposition\0. This key path 
specifies the root (shared phidgets), the device type (phidg-
etservo), its serial number (418), and the position and mo-

tor number attribute. Thus given a serial number of a 
Phidget Servo, it is easy to search for it, and to modify or 
iterate through all its properties and values. For the Inter-
faceKit, we see the values of sensor 0 (the door pressure 
sensor) and sensor 1 (the proximity sensor). We also see 
that the textLCD is currently displaying the text “Present”. 
As a person triggers the proximity sensor by sitting down 
at their office chair, the controller generates a new value 
for that sensor in the underlying model (…\sensor\1 in Fig-
ure 3). A notification is generated, and as a consequence 
the home client updates the view of the appliance. This 
actually transforms that notification into two other control-
ler actions. First, it resets …\setservoposition\0 to the new 
value, which in turn changes the servo view in the graphi-
cal user interface and performs the actual rotation. Second, 
it resets the …\setdisplay to the new text, which then appears 
on both the physical textLCD display and its GUI counter-
part. 
While we could go on at length about the details of this 
part of the architecture, the critical point is that the Shared 
Phidgets architecture is realized primarily as a dMVC pat-
tern over a distributed client / server shared data model 
with updates indicated via a notification server. This 
greatly simplifies the internals of distributed data manage-
ment and, as we will see later, the way we can create ap-
propriate APIs for the programmer. 

Connectors and Phidget Proxies 
The shared data space maintains a runtime model of all the 
shared phidgets, but does not define how the local machine 
(and consequently its local phidgets) connects to it. This is 
the job of the Connector, illustrated at Figures 2d and 2e. 
The Connector runs quietly in the background on each lo-
cal client machine. It notices any locally-connected Phidg-
ets that are plugged in over time. As it finds a new device, 
the Connector dynamically adds an appropriate phidget 
proxy object to handle it.  
This proxy object has two responsibilities. First, it observes 
and controls its specific Phidget device features, e.g. an 
interface kit object observes all sensor values generated by 
it; a servo object controls a servo’s position; a text display 
object controls changes to the displayed message. Second, 
it serves as an intermediary between the Phidget device and 
the shared dictionary model. For each connected Phidget 
device, the object creates key/value pairs matching the 
Phidget’s attributes in the shared dictionary. It then medi-
ates between the two to make sure that both data and de-
vice reflect the same state. Acting as a controller, it moni-
tors the Phidget device for any changes, and updates the 
shared dictionary model to reflect those. For example, a 
reported sensor value will update its corresponding data 
model entry. At the same time it acts as a view, where it 
monitors the shared dictionary model (via notifications) for 
any data updates, and adjusts the Phidget device to reflect 
that new value.  For example, a change in a servo position 
data will translate to the servo motor actually rotating to 
that position. 

Figure 3. Path structure in the Shared Dictionary  



 

 

Revisiting Figure 3, we now see that it illustrates how three 
connected Phidget devices have matching entries in the 
shared dictionary; excluding timing delays, these represent 
the properties and current state of the hardware. All paths 
begin with the \sharedphidgets\ root element, followed by the 
device name (e.g. phidgetservo\ and phidgetinterfacekit\) and 
its serial number (e.g., 418 for the servo, 2501 for the inter-
faceKit). The next part of the path corresponds to the par-
ticular attributes of the unique Phidget device. These at-
tributes can be divided into the following three categories. 
General device properties provide information common to 
all phidgets: the version number, whether this device is 
currently attached to the local computer, and date stamp. 
Current device status represent the available input and 
output functions of the Phidget. Each sensor or control 
input involves a separate dictionary entry, and the Connec-
tor tool is responsible for controlling (updating) these val-
ues as the hardware triggers updates to them as events. An 
example is illustrated by the values shown for the sensor 
inputs of the InterfaceKit. Each actuator or display output 
is represented by two entries: one with the current value of 
the output, and one for submitting requests to change the 
value (e.g., the servo’s servoposition vs. setservoposition in 
Figure 3). These two entries are important: the set entry is 
what the output should be, and this is in turn used by the 
Connector to direct the hardware until that value is 
achieved in the corresponding entry (depending on the de-
vice, this could be near-instantaneous or take several sec-
onds). Multiple working threads ensure the rapid forward-
ing of all these controlling commands, and execute the 
time-sensitive changes without blocking the system. 
Metadata entries contain additional information describing 
each device. This includes the IP of the actual computer 
that is connected to the Phidget device, its physical loca-
tion, its owner, and keywords. The actual metadata is 
specified through the local machine’s Connector interface. 
This information is stored in an XML file and is automati-
cally added to the shared dictionary entries of each con-
nected Phidget. For example, we see that the servo in Fig-
ure 3 is located at ‘Home’, that it is owned by ‘Jim’, and 
that it is part of an information appliance called ‘HomeA-
warenessAppliance’. In our original example, we used the 
‘Location’ metadata to find the InterfaceKit in the distant 
office. While some metadata fields are always provided, 
the end user can fill in a table within the Connector to add 
one or more custom fields and values and associate these 
with a particular Phidget device. These custom metadata 
entries are then stored within that phidget’s data model in 
the shared dictionary. For example, the three phidgets 
comprising our example appliance may be viewed as a sin-
gle appliance by creating a metadata key ‘ApplianceType’ 
and setting its value to ‘Jims Awareness Appliance’.  An-
other metadata key ‘Where’ can indicate if it is the office 
or home side by setting its value to ‘Office‘ or ‘Home’. 
Because metadata information originates in the local ma-
chine’s Connector, the metadata information is updated if 
and when users move devices between computers (e.g., 

new location, owner…). That is, the metadata information 
can offer context-dependant information that can be ex-
ploited by the programmer.  
Internally, the Connector accesses either the Phidgets Inc. 
dll (as at Figure 2d), or it opens connections to one or more 
Phidgets Inc. web services (as at Figure 2e). Through this 
web service connection, our Connector can serve as an 
intermediary to other computers hosting standard Phidget 
devices but not running our SharedPhidgets software (Fig-
ure 2e). This is important for it gives platform-
independence: while SharedPhidgets currently runs only on 
Windows, we can still connect to Apple MacIntosh and 
Linux boxes hosting phidgets.  
In summary, the Connector mediates between the data 
model and Phidgets discovered on the local machine or 
through web services. As a view onto the model, the con-
nector commands physical hardware to reflect data state 
changes made from other client applications. As a control-
ler, it transforms state information of the physical widget 
into changes to the data. As a local data store, it adds meta-
data that identifies particular features of that device as it 
relates to its local installation. 
Finally, all this happens without any user or programmer 
intervention. In practice, the Connector is automatically 
started on login, and runs in the background. If desired, end 
users can raise a Connector GUI, through which they can 
monitor the status of all shared devices and their properties, 
and where they can add and/or alter the metadata. 

DEVELOPER TOOLKIT LIBRARY  
The dMVC model considerably simplifies the job of shar-
ing and manipulating Phidget devices across a network and 
across multiple machines. Yet we recognize that the dMVC 
pattern may be unfamiliar to average programmers. Conse-
quently, our architecture offers a three-tier programming 
model, illustrated at Figure 2g and separately described 
below, that lets developers choose (and intermix) three 
different development strategies that balances power and 
simplicity. Regardless of the strategy, standard develop-
ment environments and programming languages are used. 
We stress that each strategy trivializes hardware access and 
network communication, thus letting developers focus on 
their physical interface design ideas.  

Programming via the Shared Dictionary  
Programmers can develop Phidget applications by address-
ing the shared dictionary directly (Figure 2g, row 1). While 
this adds power, programmers need to know the API to the 
.NETWORKING shared dictionary (e.g., subscription man-
agement and data organization), regular expressions (for 
pattern matching) and be familiar with the dMVC pattern. 
With subscription objects, developers receive notification 
events of changes to entries in a sub-tree of the dictionary 
hierarchy. They would also write custom code as event 
handlers (callbacks) that take action on changes to these 
dictionary entries.  
In spite of the extra work, the shared dictionary program-
ming model is very powerful as developers profit from 



 

 

pattern matching via path wildcards. That is, they can eas-
ily iterate through and control many devices at the same 
time. For example, the single line below returns all motors 
on all Phidget devices on all computers, where the ‘?’ is a 
regular expression that generates matches for a single hier-
archical level.  

/sharedphidgets/phidgetservo/?/setservoposition/?/ 

By embedding this line in a foreach statement, a program-
mer can iterate over this expression to (say) reset all motors 
of all Phidget Servos to 0 degrees. 
The dictionary can also be used to create new ‘abstract 
devices’ that monitor, transform, and aggregating low level 
hardware device values into new data entries. As an exam-
ple, reconsider our office/home appliance of Figure 1. In 
that system, the home component created and used the 
Availability aggregate. In practice, this should be done by 
the office component; this would let us (say) add new sen-
sors to more accurately infer presence without changing the 
home side of the appliance. Similar to the code in Figure 1, 
the office side could calculate availability state. It then 
stores this aggregated sensor value into a new shared dic-
tionary SD entry that models an abstract device called ‘of-
ficepresence: 
  SD (“/sharedphidgets/officepresence/1/availability”) = “Present” 

The home appliance can then subscribe to this abstract de-
vice instead of the InterfaceKit, where it monitor this key’s 
value to control the figurine position and LCD display.  

Programming via Phidget Objects 
In cases where the power of the Shared Dictionary is not 
required, the programmer can develop Phidget applications 
by a simpler object-oriented API that completely encapsu-
lates individual Phidget device capabilities. This is what 
was done for coding the home part of the appliance shown 
in Figure 1. As illustrated in Figure 2g row 2, and as previ-
ously mentioned, the Connection Manager provides a 
phidget proxy object matching each Phidget device. This 
proxy reads and modifies that Phidget’s entries in the 
shared dictionary according to a particular device, and pro-
vides an object-oriented properties/methods API for the 
developer. A programmer controls a device by altering its 
properties and/or invoking its methods, and monitors 
changes to device status by adding event handlers. Net-
working and distributed data sharing aspects are com-
pletely hidden. Not only is this simpler than directly ac-
cessing shared dictionary, but this familiar programming 
model requires little extra learning as it matches conven-
tional GUI object-oriented programming and the original 
Phidgets programming paradigm [14]. Of course, the actual 
Phidget devices being controlled may now be located any-
where on the network. This is not a problem, as the pro-
grammer can quickly link the Phidget object to the actual 
Phidget device by filling in two properties: the hosting 
computer’s metadata location (as used in our original ex-
ample) and/or its serial number. Of course, some power is 
sacrificed. For example, the ‘abstract device’ that reflects 
an aggregate of different sensor values cannot be created 

through this object-oriented API.  However, using the 
shared dictionary the programmer can create a new Phidget 
proxy object that encapsulates the abstract device, and then 
make that new object available to other programmers. 

Programming using Metadata and Device Discovery 
As a brief but important aside, this section reveals how 
programmers can exploit metadata and discover devices.  
Metadata is accessed via the shared dictionary or the 
Phidget object in a manner similar to other phidgets proper-
ties. For example, one can access the servo’s location and 
keywords (Figure 3) through the Servo Object’s properties: 

String location    = servo.PhidgetDevice.Location; 
String keywords = servo.PhidgetDevice.Keywords; 

Programmers can also discover devices across the network 
by a variety of means. The easiest is filtering: filter terms 
are added to a Phidget object, and the device whose meta-
data matches those terms are attached to it. For example, 
the following code will discover the InterfaceKit used in 
our example and in Figure 3 by matching its Location and 
its Owner properties (other filter properties include serial 
numbers and IP addresses): 

interfaceKit.FilterLocations.Add("Home"); 
interfaceKit.FilterOwner.Add("Jim"); 

Custom metadata can be accessed, exploited and even reset 
via a hashtable associated with a Phidget Object. Pro-
grammers can iterate over all its metadata entries to look 
for matches, or see if a particular one exists through a Con-
tainsKey() method, or get a particular value through the 
GetMetadata(“key”) method. A programmer can even add 
metadata at runtime. For example, if a programmer had 
access to GPS location, that can be added as a metadata on 
the fly:  servo.PhidgetDevice.AddMetadata("GPSPosition",  

                                                        "N-51-02-11:W-114-01-10"); 

These user-defined metadata entries become immediately 
visible in Connector tool, and other connected applications 
can explore this information by iterating over the metadata 
collection. 

Programming via Interface Skins 
Some physical user interfaces also contain a GUI counter-
part that allows people to monitor and control Phidget de-
vices, perhaps from remote locations. While these can be 
programmed from scratch atop of Phidget Objects, pro-
grammers will typically use interface skins.  
We already illustrated interface skins in our home appli-
ance. For example, the skin for the Phidget Servo illus-
trated in Figure 1 shows that the servo phidget is attached, 
and the position of its single motor. The end user can also 
use its slider to reposition this motor. Figure 1 also shows 
the skin for the TextLCD, while Figure 5 shows the skin 
for the InterfaceKit. 
Interface skins are wrapper objects around the Phidget 
proxy object API. They normally provide GUI representa-
tions for every sensor or actuator functionality of the corre-
sponding Phidget device (Figure 2g, 3rd row). Using an 
interface builder, programmers simply drag and drop these 



 

 

skins into a window, as done with our home appliance. 
This ‘plug and play’ approach requires minimal program-
ming. In our experiences, skins provide an intuitive starting 
point for developers who have never dealt with hardware, 
where it entices them to experiment with the variety of 
physical interaction devices. It also serves as a very effec-
tive debugging mechanism.  
We call them ‘skins’ as a single Phidget device can be rep-
resented by multiple skins (this differs from the strategy 
first described in [14]). For example, the Interface Kit can 
have a skin that displays all sensor values in a textual table, 
as animated sliders, or as a graph that shows changes over 
time. If they wish, programmers can create their own cus-
tom skins that visualizes a phidget in different ways, or that 
acts as a GUI to an abstract phidget that aggregates proper-
ties collected from several phidget devices (e.g., as de-
scribed in the shared dictionary subsection). A programmer 
can even create multiple views onto phidget devices by 
connecting multiple skins to one or more phidgets. 

Extensibility 
Shared Phidgets is an extendable architecture. It is straight-
forward to include new Phidget Devices as they are made 
available by Phidgets, Inc. New interface skins can be cre-
ated for existing phidgets, for abstract phidgets, or for new 
phidgets devices. The toolkit offers abstract base classes as 
the building block for these Phidget proxy classes and the 
interface skins; all implemented device objects and skins 
are derived from these. The base classes provide the main 
API and implementation of the Phidget discovery methods, 
shared dictionary connection, and subscription objects. 
Devices from other vendors can also be included, albeit 
with some more effort. 

Discussion 
The power of the Shared Phidgets architecture can be con-
sidered at three levels. 
First, our distributed Model View Controller approach adds 
considerably to how programmers interact with distributed 
hardware devices. The hardware toolkits mentioned in the 
related work only access devices within a localized setting. 
Shared Phidgets remove this limitation, and allows pro-
grammers to easily and transparently access devices re-
gardless of where they are located across the Internet.  
Second, the ability to add metadata to devices means that 
programmers can now leverage semantic meaning associ-
ated with each device and location. Expected uses include 
using this metadata programmatically to decide upon loca-
tion and context-dependant actions, and to discover device 
groupings and functions so they can be collectively consid-
ered as an appliance.  
Third, and perhaps most importantly, we stress that the  
ability to create new abstract devices from a combination 
of hardware building blocks is extremely powerful. This is 
where Shared Phidgets reflect the offerings of the Context 
Toolkit. Letting people define abstract devices is the key to 
how we bridge between traditional physical user interfaces 
and Dey’s context widget. As a dictionary entry, this new 

abstract device can encapsulate and abstract values from 
one or more actual devices. It can also interpret, transform 
and aggregate them into higher level abstractions. Because 
the programmer can also create new API’s and Interface 
Skins that further wrap this abstract device, these devices 
can be presented as meaningful information appliances 
with APIs that reflect the semantics of that appliance. 

HIGH LEVEL TOOLS  
SharedPhidgets also comes with two important tools, each 
constructed atop the programming environment, that lets a 
developer or end-user monitor, control and even simulate 
all Phidgets distributed across the network (Figure 2h). 
Both tools are useful for administrating and/or debugging 
all connected devices regardless of what computer they are 
actually attached to. Due to space constraints, images of 
these tools are not shown, but are available on line (see 
§Software Availability). 
The Controller Tool provides a direct view into the data 
model held by the shared dictionary, and is invaluable for 
debugging. By default, all Phidget devices and their data 
attributes (including metadata) are listed by their key paths 
and value pairs. However, the user can apply filters to dis-
play only key entries of one Phidget type (e.g., all Phidget 
Interface Kits), or of a specified serial number, or of spe-
cific data groups (e.g., metadata). As well, the user can 
select a field from a single Phidget and use that as a filter, 
where only that Phidget’s attributes are shown. The user 
can also use this tool to create a simulated Phidget device, 
and populate its values. Under the covers, this creates the 
needed set of shared dictionary entries according to the 
device type. This simulation is extremely powerful, for it 
means that the end user can simulate a complete Shared-
Phidget network without actually attaching any hardware – 
this simulation can then be used to test other software. For 
example, a programmer could have simulated the Inter-
faceKit in the office part of our awareness appliance (Fig-
ure 1), and adjust its values to test the home part of it. 
The Device Explorer provides a person with a compact and 
more readable overview of all devices across the network, 
including their serial number, attached status, metadata 
such as location, owner, etc. The user also has the option of 
interacting with any device by simply selecting it from the 
list; the interface skin for that device is created dynami-
cally, through which the user can monitor and/or adjust its 
values. For example, a distant user can connect to the 
textLCD in our scenario example (revealing a skin similar 
to that shown in Figure 1), observe what it is displaying, 
and can change the text by typing into the skin.  
Both programs are simply applications built atop the 
SharedPhidgets programming model. 

EXAMPLES 
Space does not allow us to describe the many example dis-
tributed physical user interfaces that can be constructed 
through the Shared Phidgets toolkit. However, a few are 
listed below just to give a feel for its power. 



 

 

LumiTouch Replication. LumiTouch, built by MIT’s Tan-
gible Media Group, comprises a pair of interactive picture 
frames [6]. When a person touches one frame, the other 
frame lights up. Student Kathryn Elliot trivially rebuilt this 
(Figure 4) with two InterfaceKits, one per frame, each with 
attached LEDs and capacitive sensors.  The lights on one 
frame are controlled by simply monitoring the capacitive 
sensor detecting touch on its distant partner frame.   
Tablet Viewer. Want et al. [23] described a system where a 
person users a tablet computer to explore information at-
tached to everyday objects. An RFID tag attached to the 
physical object associates that object with digital informa-
tion; the tablet reads the tag and brings up that information. 
We replicated this by attaching an RFID tag to every 
Phidget device and/or sensor in a distributed space and 
taping an RFID tag reader to a Tablet PC. We then created 
an application where mobile users could scan and quickly 
associate an RFID tag with a corresponding phidget or sen-
sor type. When the user rescans that tag, it would either 
bring up that device’s skin (allowing immediate monitoring 
or control) or, for sensors, it would show the current sensor 
value and a graph of its previous values. This is an invalu-
able tool for debugging the state of devices within a physi-
cal environment.  
However, its real value appears after a programmer creates 
abstract devices and skins that represent a set of phidgets as 
a true information appliance. As in Want et al., [23]  the 
tablet becomes a ‘window’ into the appliance, revealing 
information and facilitating interaction with it in a way that 
was formerly possible only through extensive custom cod-
ing. For example, the LumiTouch replication in Figure 4 
could be repackaged as an abstract device that permits a 
remote person to not only activate it by touch, but that lets 
them attach text messages to it. If the local person notices 
the lights flashing in a certain pattern, she can pass the tab-
let PC over it to display the message within that appliance’s 
skin.  
Location-based messaging. Previous studies show that 
home inhabitants exploit knowledge of each other’s rou-
tines by leaving messages for them at particular locations 

[11]. Based on this, Elliot et. al. designed a system that 
allowed people to send notes to devices at particular loca-
tions within the home [11]. Her work used the standard 
Phidgets library, so much coding was needed to configure 
these distributed devices. In contrast, this could be easily 
rebuilt in Shared Phidgets. For example, each device (e.g., 
a Phidget LCDDisplay) is already tagged with a location 
metadata attribute, e.g., ‘Kitchen’, ‘TV stand’, ‘Hallway’, 
etc. If one wants to send a note to (say) the ‘Hallway’, one 
can quickly find the device with that metadata value and set 
its text display attribute.      
Sensor Maps, illustrated in Figure 5, creates a map over-
view of all available Phidget hardware devices and sensors 
(any existing map image can be loaded into the applica-
tion). Attached devices are displayed as small circles atop 
the map. When a device generates an event (e.g., sensor 
value change), the circle expands and fades (the radius de-
pends on the current sensor value being tracked). Figure 5 
illustrates one example used to show sensors distributed 
across a 3 room laboratory. As in previous examples, users 
can click on the device circle to display its interface skin, 
as seen in Figure 5, bottom. Regions on the map can be 
marked with additional location information, and this data 
can be added to all devices bounded by these regions. As 
before, its real use would be reflected by abstract devices. 
For example, the map could let a person see and control the 
state of all appliances located within a smart home.  

Figure 5. The Sensor Map Application. 

Figure 4. LumiTouch replication, by Kathryn Elliot 



 

 

CONCLUSIONS 
Shared Phidgets is a new generation physical user interface 
toolkit that bridges the gap between current hardware-
oriented toolkits and Dey’s Context Toolkit. It recognizes 
that many physical user interfaces will comprise interacting 
distributed components, and that these components will be 
remixed and abstracted in a variety of ways.  
In the past, programmers were responsible for all distrib-
uted systems aspects. Through its robust dMVC architec-
ture, Shared Phidgets takes over this chore. Perhaps sur-
prisingly, there is almost no extra programming penalty 
(unless one wants the extra power offered by accessing the 
shared dictionary directly); distributed phidgets can be 
coded in a manner very similar to the original non-
distributed Phidgets system [14].  
Another feature includes Interface Skins, which serves as 
both views and controllers into the distributed model; new 
skins can be created that are customized to the actual physi-
cal user interface. Through metadata, people can add appli-
ance-specific, location and context-dependant attributes to 
the physical user interfaces they create. 
Finally, the capabilities of phidgets can be interpreted, re-
combined, aggregated, and abstracted into abstract devices, 
which bridge into the powers offered by the Context Tool-
kit [8]. These abstract devices can be further abstracted as 
programmable objects and skins.  
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