

 Shared Phidgets: A Toolkit for Rapidly Prototyping
Distributed Physical User Interfaces

Nicolai Marquardt
Faculty of Media

Bauhaus-University Weimar
Bauhausstr. 11, 99423 Weimar, Germany
<first>.<last>@medien.uni-weimar.de

Saul Greenberg
Department of Computer Science

University of Calgary
Calgary, Alberta CANADA T2N 1N4

<first>.<last>@ucalgary.ca

ABSTRACT
Many physical user interfaces are best viewed as an inter-
acting collection of remotely-located distributed hardware
and software components. The problem is that current
physical user interface toolkits do not normally offer dis-
tributed systems capabilities, leaving developers with extra
burdens such as device discovery and management, low-
level hardware access, and networking. Our solution is
Shared Phidgets, a toolkit for rapidly prototyping distrib-
uted physical interfaces. This toolkit offers programmers
several ways to easily access remotely located hardware
components, including a powerful distributed model-view-
controller object model. Network communication and low-
level access to the device hardware are transparently han-
dled, regardless of device location. The programmer can
also create new abstract devices by transforming and ag-
gregating low level hardware device capabilities.
ACM Classification: H.5.2 [Information Interfaces]: User
interfaces – input devices and strategies, interaction styles,
prototyping, user-centered design
General terms: Design, Human Factors

Keywords: Distributed physical user interfaces, toolkits,
prototyping, hardware-software integration, Phidgets.

INTRODUCTION
Physical user interfaces are an increasingly important part
of many emerging visions of human computer interaction:
ubiquitous computing and calm technologies [24], perva-
sive computing [2], tangible user interfaces [18], informa-
tion appliances [21], ubiquitous media and reactive envi-
ronments [5], interactive art, ambient displays [7], and con-
text-aware computing [8]. In most of these visions, physi-
cal user interfaces comprise some type of appliance con-
structed from simple hardware devices – sensors, switches,
actuators, displays, motors, RFID tags and readers – that
developers package in some manner, connect to, monitor,
and control via software. These appliances are either car-

ried by people or deployed at meaningful locations within
the end user’s everyday environment, with the idea that
they work within (rather than apart from) the everyday
practices of people [9].
While some physical user interfaces can act as a stand-
alone ‘disconnected’ appliance, they are usually envisaged
as components interacting within a network of other appli-
ances and computers. As Dey et. al. state in their discussion
of context-aware applications: “…the devices used to sense
context most likely are not attached to the same computer
running an application that will react to that context” [8].
That is, they become a distributed physical user interface
comprising a variety of hardware devices connected to dif-
ferent computers over multiple locations, all networked
together, e.g., [13,21,8].
From this perspective, a distributed physical user interface
is best viewed as hardware nodes on a distributed system.
This viewpoint reveals that developers of such systems
face two considerable challenges.
1. They must program, communicate with and control low-

level hardware devices.
2. They must assume the additional programming burden

inherent in most distributed systems: resource discovery,
network communication and protocol development, con-
tention control, managing failures due to connectivity
problems and latency, debugging intricacies of distrib-
uted systems, and so on.

Toolkits are now available that simplify device program-
ming, or that simplify distributed systems development.
Yet none do both (see §Related Work). Consequently, we
set ourselves the goal of designing a toolkit that would al-
low a programmer easy access to the many distributed de-
vices that comprised a network of physical user interfaces.
In particular, we wanted a toolkit that:
• automatically discovers devices connected to a myriad

of different computers;
• manages all network aspects so that no network pro-

gramming is required;
• uses the same API to control a device, regardless of

whether it is attached to a local or a remote computer;
• uses a distributed Model-View-Controller (dMVC) de-

sign pattern to represent every device so that data asso-
ciated with the model is easily queried and manipulated;

Cite as:

Marquardt, N. and Greenberg, S. (2006) Shared Phidgets: A Tool-
kit for Rapidly Prototyping Distributed Physical User Interfaces.
Report 2006-829-22, Department of Computer Science, University
of Calgary, Calgary, Alberta, Canada, T2N 1N4. April.

• generates notifications across the network whenever
device state is changed;

• offers graphical ‘skins’ that let a person view local and
distant device state and control them via a conventional
GUI;

• offers the means to create ‘abstract devices’ that trans-
form and aggregate low level hardware device capabili-
ties into higher level abstractions; and

• provides a set of high-level tools to: manage all the nec-
essary hardware and network connections, control and
observe devices, examine the state of the MVC model,
and emulate devices for testing purposes.

Our solution is the Shared Phidgets toolkit, a significant
software extension of the commercial Phidgets platform
[22]. To forewarn the reader, this paper concentrates on the
technical infrastructure underlying Shared Phidgets. This
reflects our belief that the toolkit offerings and its architec-
tural makeup are substantial contributions that tremen-
dously simplify the development of distributed physical
user interfaces. After briefly summarizing related work, we
provide a step by step scenario showing exactly how a pro-
grammer would use Shared Phidgets to create a simple
distributed awareness appliance. We then detail the Shared
Phidgets architecture, and describe how this architecture is
used by developers.

RELATED WORK
Until recently, physical user interface development was
restricted to the few programmers who knew about hard-
ware and circuit design, and who were willing to do a huge
amount of back-end programming: firmware, networking
and protocol development to link hardware and computers,
and the application software that monitors and uses the
device. Fortunately, the advent of various toolkits has made
rapid physical user interface development reachable by
average programmers. This includes research products
(e.g., iStuff [3], Input Configurator [10], d.tools [17], Cal-
der [19]) and well-developed commercial offerings (e.g.,
Phidgets, Inc. [22,14], and MakingThings [20]). Although
offerings vary, they typically provide hardware devices
with well-defined functionality, easy connectivity (includ-
ing wireless) between the device and a single traditional
computer, and a software API that lets a programmer ac-
cess the hardware functionality. Consequently, developers
can focus on high level design of physical user interfaces
rather than on low level implementation details (see also
[1,12]).
Perhaps the most widely used of these toolkits is Phidgets,
first created as a research system [14], and then commer-
cialized by Phidgets Inc [22]. Phidgets include USB-based
hardware boards controlling various input sensors (e.g.,
temperature, movement, proximity, light intensity, RFID
tags) and output actuators (e.g., servo motors, LED indica-
tors, LC text displays). Phidgets also provide a comprehen-
sive architecture and API to discover, control and observe
all phidgets connected to a single computer.

While all the above toolkits simplify hardware program-
ming, they do nothing to help one manage hardware as a
distributed system. Dey et. al.’s Context Toolkit [8] is the
exception. Their toolkit has several important components.
Context widgets encapsulate and abstract the actual (possi-
bly distributed) devices and software used to collect con-
textual information. Interpreters transform this low level
information into high level abstractions. Aggregators col-
lect, group and logically relate multiple pieces of informa-
tion. Services use any of the above input components to
control something, i.e., to perform an output. Discoverers
maintain a registry of all the above components and their
capabilities. Under the covers, all components can commu-
nicate as a distributed system by using a subscription-based
event system built atop of TCP [8].
Yet the Context Toolkit does not actually ease how pro-
grammers compose low level hardware devices. Our un-
derstanding is that a context widget’s connection to actual
hardware (including hardware control) has to be custom
coded; the toolkit itself supplies no support for this difficult
step. That is, the toolkit begins with the abstracted ‘context
widget’ but does not explicitly support how these are cre-
ated from hardware. Thus there is a significant gap be-
tween how one actually accesses the hardware (as provided
by the previously mentioned toolkits) vs. how one lever-
ages this hardware in a distributed setting (as in the Con-
text Toolkit).
This gap is the ‘sweet spot’ that our Shared Phidgets toolkit
addresses. As we will see, we extend the existing Phidgets
architecture so that programmers can access low-level
hardware devices located anywhere on the network, and
yet compose them in ways that provides capabilites some-
what comparable to the Context Toolkit’s offerings.

PROGRAMMING SCENARIO
To set the scene, we illustrate how ‘Jim’ uses Shared
Phidgets to create an awareness appliance that lets a person
at home know if his working spouse is present, around, or
absent from her office. The appliance comprises three
linked devices distributed across two locations: the home
and the office. While simple, this appliance implements
previously published ideas, including the Door Mouse [5],
Physical but Digital Surrogates [15], and Aggregates [8].

Description
The office part (not illustrated) comprises two off-the-shelf
sensors attached to a Phidget InterfaceKit circuit board [22]
plugged into the ‘office computer. A proximity sensor de-
tects if someone is seated at the desk, while a force sensor
detects if the office door is closed. Software aggregates
these two sensor values into a new ‘availability’ value:
• present: door open, someone seated;
• around: door open, no one is seated;
• absent: door closed, seated state ignored.
The home part, illustrated unadorned in Figure 1, contains
a Phidget TextLCD display, and a figurine glued to a
Phidget Servo. Both are plugged into the ‘office computer.
It also contains a graphical user interface (Figure 1, mid-

dle) mirroring the state of these devices. The LCD display
contents and the figurine’s position depend on availability
state:
• present: faces forward (0o), says ‘Present’
• around: faces sideways (90o), says ‘Somewhere

Around’
• absent: faces the wall (180o), says ‘Unavailable’.

Implementation
The steps below assume that a server is up and running,
located at (say) tcp://demo.ca:test, and that the special Con-
nector tool (described later) is running on each computer.
Both come with the toolkit, and Jim starts them in seconds.
Jim first works on the office sensors. He positions the
proximity sensor in front of the desk chair, tapes the force
sensor to the inside of the door jamb, and plugs it into the
Interface Kit. This takes a few minutes (the most difficult
job is hiding the wires). The Connector detects the Inter-
faceKit as soon as it is plugged into the office computer,
and immediately publishes its sensor data to the server.
This data is now available to other software that connects
to this server.
Jim then builds the home part of this device illustrated in
Figure 1, which just requires a bit of gluing. He then writes
the small program (Figure 1 bottom) that monitors the two
distant sensors and uses its values to determine the servo
position and the LCD display contents. The steps below
outline this process; Jim does the first three with an inter-
face builder, and writes code only in the last step.
Connect to the server. Drag and drop the Shared Phidgets

ConnectionManager object onto the window form, and set
its SharedDictionary property to “tcp://demo.ca:test. This
object automatically connects to the central server.

Create an object connected to the distant InterfaceKit.
Drag and drop an InterfaceKit object onto the form. Set its
FilterLocations property to “Office”. This act automati-
cally queries the ‘Locations’ metadata field associated
with all attached InterfaceKits, finds the one in the of-
fice, and links the software with the distant hardware.

Create objects that control and graphical display the local
appliance. Drag, drop and link a Servo and ServoSkin ob-
ject, and a TextLCD and TextLCDSkin object into the win-
dow form. Set their serial numbers to match the local
hardware. These ‘Skins’ are graphical interfaces that re-
veals the state of the servo and the display hardware;
while not strictly necessary, this graphical view is in-
cluded for illustrative purposes.

Monitor the sensor values to control the local appliance.
Create an event handler for the interfaceKit’s Sensor-
Change event to monitor the current values of these sen-
sors. Jim also creates a utility method Aggregate to ag-
gregate the sensor values, and uses this aggregate to
control the home appliance. Figure 1 shows this code.

He compiles and runs this program on the home computer.
It automatically connects to the server over the internet,
and raises events as sensor data collected from the office

computer changes. The event handler code in Figure 1 is
invoked and the home appliance is adjusted accordingly.

Discussion
The above example is notable in that its programming com-
plexity (or simplicity) is almost identical to that of the
original non-distributed Phidgets [14]. Aside from starting
the server and the Connector programs, the only coding
difference is that the programmer had to include a Connec-
tionManager and an address to the server. All distributed
systems aspects were otherwise hidden. We stress that this
example only shows the most basic use of SharedPhidgets;
much more sophisticated and nuanced appliance designs

 Figure 1. The home appliance and its graphical interface

// Enumerate three availability states; labels for LCD
enum Availability {Present = 0, Around = 1, Absent = 2 };
string [] labels = new string [3] {
 "Present", "Around", "Absent"};

//New sensor values received; update the appliance
private void iK_SensorChange(…){
 int status = Aggregate(iK.Sensors[0].Value,
 iK.Sensors[1].Value);
 textLCD.Display = labels [status];
 servo.Motors[0].Position = 90 * status;
}

// Aggregate the sensor values into an availability state
private int Aggregate (int sensor0, int sensor1) {
 bool door = (sensor0 < 50); // closed, if force < 50
 bool seated = (sensor1 < 300);// seated, proximity < 300
 if (door && seated) return (Availability.Present);
 else if (door && !seated) return (Availability.Around);
 else return (Availability.Absent);}

are possible, as illustrated in later sections. What is espe-
cially important is that this example reveals that program-
mers can not only access devices as in other hardware tool-
kits, but can trivially treat them as higher level ‘context
widgets’ as is done in the Context Toolkit [8].

SHARED PHIDGETS ARCHITECTURE
The Shared Phidget architecture and its other offerings are
illustrated in Figure 2. This section concentrates on what
happens ‘under the covers’: its primary hardware and soft-
ware components and the interactions between them, Sub-
sequent sections describe what application developers ac-
tually see and the tools they use to facilitate their program-
ming process.

Phidget Hardware and Devices
Phidget devices [14,22] are the combined hardware/circuit
board building blocks exploited by our infrastructure (Fig-
ure 2b). These devices are used by developers to create the
physical portion of their interface, which in turn defines the
end user’s interaction with the physical device (Figure 2a).
Various hardware components are now available from
Phidgets Inc. These include input sensing (motion, touch,
temperature, proximity, magnetic force, light), input con-
trols manually activated by people (switches, dials, sliders,
joy sticks, key fobs, accelerometers, RFID readers), output
actuators (motors, servos, solenoids, valves) and output
displays (lights, text and graphics displays).

Computer Communication to Phidget Devices
Phidget devices interact with a controlling host computer,
and thus need to be connected to them. Currently, all
Phidget devices are connected to a host computer via USB.
Phidget Inc. supplies two rudimentary interfaces to let pro-
grammers communicate with these devices. First, a dy-
namic link library offers an API to access all locally at-
tached Phidget devices. Second, an (inappropriately

named) ‘web service’, currently in beta, provides a socket-
based interface to the local machine’s phidgets (Figure 2c).
While this second form can be exploited as a crude net-
work service, it was actually developed as a platform-
independent interface that simplifies access to Phidget de-
vice capabilities across different programming languages
and operating systems.
Because multiple devices can be plugged into a single com-
puter, the controlling computer needs a way to differentiate
between them. To do this, each Phidget device returns its
type (e.g., phidgetServo, phidgetRfid), and each device of a
particular type returns a unique serial number. This means
that the type / name combination uniquely identifies each
connected device.
So far, we have described the offerings of Phidget Inc.,
which closely matches the original Phidget architecture
[14]. Remaining sections depart radically from Phidget Inc.
offerings. As we will see, our new distributed architecture
provides a shared distributed data space that contains in-
formation about all Phidget devices regardless of their lo-
cation, and a connector mechanism that hooks devices on
the local computer to this shared data structure.

Shared Distributed Data Space
A fundamental component of the Shared Phidgets architec-
ture is a shared data space implemented as a distributed
data structure. We use the shared dictionary provided by
the Grouplab .NETWORKING toolkit [4].
.NETWORKING allows client processes read and write ac-
cess to a collection of data objects maintained within the
shared dictionary server (shown at Figure 2f). This also
works as a notification server, where clients are immedi-
ately notified of any changes to data they are subscribed to,
regardless of who made these changes. .NETWORKING also
automatically manages all runtime networking housekeep-

Figure 2. An overview of the Shared Phidgets Architecture

ing tasks, i.e., socket creation/teardown, wire protocol, data
marshalling, parsing, etc.
Data in the shared dictionary is structured as hierarchical
key/value pairs. Values can be primitive data such as inte-
gers and strings, binary and multimedia data, or complex
data such as lists and structures. A key is expressed as a
path hierarchy. A rich set of operators allow programmers
to subscribe and iterate over data held in particular sub-
paths of this hierarchy. Further details about how this
shared dictionary works can be found in [4].
In Shared Phidgets, all participating machines access this
data via a distributed Model-View-Controller (dMVC) pat-
tern [16]. The model is the abstract data stored on the
shared dictionary. There are multiple controllers – the cli-
ent machines – that can change values in the shared data
model. Similarly, when multiple clients receive notifica-
tions of changes of that data they can each generate their
own view of it.
Every phidget device has an entry in the shared dictionary
that completely defines its state. Using our office/home
appliance example, Figure 3 shows the partial dictionary
entry for its three devices: the Phidget Servo, InterfaceKit
and TextLCD. To illustrate the dictionary’s hierarchical
nature, the key defining the position of servo motor 0 is
\sharedphidgets\phidgetservo\418\servoposition\0. This key path
specifies the root (shared phidgets), the device type (phidg-
etservo), its serial number (418), and the position and mo-

tor number attribute. Thus given a serial number of a
Phidget Servo, it is easy to search for it, and to modify or
iterate through all its properties and values. For the Inter-
faceKit, we see the values of sensor 0 (the door pressure
sensor) and sensor 1 (the proximity sensor). We also see
that the textLCD is currently displaying the text “Present”.
As a person triggers the proximity sensor by sitting down
at their office chair, the controller generates a new value
for that sensor in the underlying model (…\sensor\1 in Fig-
ure 3). A notification is generated, and as a consequence
the home client updates the view of the appliance. This
actually transforms that notification into two other control-
ler actions. First, it resets …\setservoposition\0 to the new
value, which in turn changes the servo view in the graphi-
cal user interface and performs the actual rotation. Second,
it resets the …\setdisplay to the new text, which then appears
on both the physical textLCD display and its GUI counter-
part.
While we could go on at length about the details of this
part of the architecture, the critical point is that the Shared
Phidgets architecture is realized primarily as a dMVC pat-
tern over a distributed client / server shared data model
with updates indicated via a notification server. This
greatly simplifies the internals of distributed data manage-
ment and, as we will see later, the way we can create ap-
propriate APIs for the programmer.

Connectors and Phidget Proxies
The shared data space maintains a runtime model of all the
shared phidgets, but does not define how the local machine
(and consequently its local phidgets) connects to it. This is
the job of the Connector, illustrated at Figures 2d and 2e.
The Connector runs quietly in the background on each lo-
cal client machine. It notices any locally-connected Phidg-
ets that are plugged in over time. As it finds a new device,
the Connector dynamically adds an appropriate phidget
proxy object to handle it.
This proxy object has two responsibilities. First, it observes
and controls its specific Phidget device features, e.g. an
interface kit object observes all sensor values generated by
it; a servo object controls a servo’s position; a text display
object controls changes to the displayed message. Second,
it serves as an intermediary between the Phidget device and
the shared dictionary model. For each connected Phidget
device, the object creates key/value pairs matching the
Phidget’s attributes in the shared dictionary. It then medi-
ates between the two to make sure that both data and de-
vice reflect the same state. Acting as a controller, it moni-
tors the Phidget device for any changes, and updates the
shared dictionary model to reflect those. For example, a
reported sensor value will update its corresponding data
model entry. At the same time it acts as a view, where it
monitors the shared dictionary model (via notifications) for
any data updates, and adjusts the Phidget device to reflect
that new value. For example, a change in a servo position
data will translate to the servo motor actually rotating to
that position.

Figure 3. Path structure in the Shared Dictionary

Revisiting Figure 3, we now see that it illustrates how three
connected Phidget devices have matching entries in the
shared dictionary; excluding timing delays, these represent
the properties and current state of the hardware. All paths
begin with the \sharedphidgets\ root element, followed by the
device name (e.g. phidgetservo\ and phidgetinterfacekit\) and
its serial number (e.g., 418 for the servo, 2501 for the inter-
faceKit). The next part of the path corresponds to the par-
ticular attributes of the unique Phidget device. These at-
tributes can be divided into the following three categories.
General device properties provide information common to
all phidgets: the version number, whether this device is
currently attached to the local computer, and date stamp.
Current device status represent the available input and
output functions of the Phidget. Each sensor or control
input involves a separate dictionary entry, and the Connec-
tor tool is responsible for controlling (updating) these val-
ues as the hardware triggers updates to them as events. An
example is illustrated by the values shown for the sensor
inputs of the InterfaceKit. Each actuator or display output
is represented by two entries: one with the current value of
the output, and one for submitting requests to change the
value (e.g., the servo’s servoposition vs. setservoposition in
Figure 3). These two entries are important: the set entry is
what the output should be, and this is in turn used by the
Connector to direct the hardware until that value is
achieved in the corresponding entry (depending on the de-
vice, this could be near-instantaneous or take several sec-
onds). Multiple working threads ensure the rapid forward-
ing of all these controlling commands, and execute the
time-sensitive changes without blocking the system.
Metadata entries contain additional information describing
each device. This includes the IP of the actual computer
that is connected to the Phidget device, its physical loca-
tion, its owner, and keywords. The actual metadata is
specified through the local machine’s Connector interface.
This information is stored in an XML file and is automati-
cally added to the shared dictionary entries of each con-
nected Phidget. For example, we see that the servo in Fig-
ure 3 is located at ‘Home’, that it is owned by ‘Jim’, and
that it is part of an information appliance called ‘HomeA-
warenessAppliance’. In our original example, we used the
‘Location’ metadata to find the InterfaceKit in the distant
office. While some metadata fields are always provided,
the end user can fill in a table within the Connector to add
one or more custom fields and values and associate these
with a particular Phidget device. These custom metadata
entries are then stored within that phidget’s data model in
the shared dictionary. For example, the three phidgets
comprising our example appliance may be viewed as a sin-
gle appliance by creating a metadata key ‘ApplianceType’
and setting its value to ‘Jims Awareness Appliance’. An-
other metadata key ‘Where’ can indicate if it is the office
or home side by setting its value to ‘Office‘ or ‘Home’.
Because metadata information originates in the local ma-
chine’s Connector, the metadata information is updated if
and when users move devices between computers (e.g.,

new location, owner…). That is, the metadata information
can offer context-dependant information that can be ex-
ploited by the programmer.
Internally, the Connector accesses either the Phidgets Inc.
dll (as at Figure 2d), or it opens connections to one or more
Phidgets Inc. web services (as at Figure 2e). Through this
web service connection, our Connector can serve as an
intermediary to other computers hosting standard Phidget
devices but not running our SharedPhidgets software (Fig-
ure 2e). This is important for it gives platform-
independence: while SharedPhidgets currently runs only on
Windows, we can still connect to Apple MacIntosh and
Linux boxes hosting phidgets.
In summary, the Connector mediates between the data
model and Phidgets discovered on the local machine or
through web services. As a view onto the model, the con-
nector commands physical hardware to reflect data state
changes made from other client applications. As a control-
ler, it transforms state information of the physical widget
into changes to the data. As a local data store, it adds meta-
data that identifies particular features of that device as it
relates to its local installation.
Finally, all this happens without any user or programmer
intervention. In practice, the Connector is automatically
started on login, and runs in the background. If desired, end
users can raise a Connector GUI, through which they can
monitor the status of all shared devices and their properties,
and where they can add and/or alter the metadata.

DEVELOPER TOOLKIT LIBRARY
The dMVC model considerably simplifies the job of shar-
ing and manipulating Phidget devices across a network and
across multiple machines. Yet we recognize that the dMVC
pattern may be unfamiliar to average programmers. Conse-
quently, our architecture offers a three-tier programming
model, illustrated at Figure 2g and separately described
below, that lets developers choose (and intermix) three
different development strategies that balances power and
simplicity. Regardless of the strategy, standard develop-
ment environments and programming languages are used.
We stress that each strategy trivializes hardware access and
network communication, thus letting developers focus on
their physical interface design ideas.

Programming via the Shared Dictionary
Programmers can develop Phidget applications by address-
ing the shared dictionary directly (Figure 2g, row 1). While
this adds power, programmers need to know the API to the
.NETWORKING shared dictionary (e.g., subscription man-
agement and data organization), regular expressions (for
pattern matching) and be familiar with the dMVC pattern.
With subscription objects, developers receive notification
events of changes to entries in a sub-tree of the dictionary
hierarchy. They would also write custom code as event
handlers (callbacks) that take action on changes to these
dictionary entries.
In spite of the extra work, the shared dictionary program-
ming model is very powerful as developers profit from

pattern matching via path wildcards. That is, they can eas-
ily iterate through and control many devices at the same
time. For example, the single line below returns all motors
on all Phidget devices on all computers, where the ‘?’ is a
regular expression that generates matches for a single hier-
archical level.

/sharedphidgets/phidgetservo/?/setservoposition/?/

By embedding this line in a foreach statement, a program-
mer can iterate over this expression to (say) reset all motors
of all Phidget Servos to 0 degrees.
The dictionary can also be used to create new ‘abstract
devices’ that monitor, transform, and aggregating low level
hardware device values into new data entries. As an exam-
ple, reconsider our office/home appliance of Figure 1. In
that system, the home component created and used the
Availability aggregate. In practice, this should be done by
the office component; this would let us (say) add new sen-
sors to more accurately infer presence without changing the
home side of the appliance. Similar to the code in Figure 1,
the office side could calculate availability state. It then
stores this aggregated sensor value into a new shared dic-
tionary SD entry that models an abstract device called ‘of-
ficepresence:
 SD (“/sharedphidgets/officepresence/1/availability”) = “Present”

The home appliance can then subscribe to this abstract de-
vice instead of the InterfaceKit, where it monitor this key’s
value to control the figurine position and LCD display.

Programming via Phidget Objects
In cases where the power of the Shared Dictionary is not
required, the programmer can develop Phidget applications
by a simpler object-oriented API that completely encapsu-
lates individual Phidget device capabilities. This is what
was done for coding the home part of the appliance shown
in Figure 1. As illustrated in Figure 2g row 2, and as previ-
ously mentioned, the Connection Manager provides a
phidget proxy object matching each Phidget device. This
proxy reads and modifies that Phidget’s entries in the
shared dictionary according to a particular device, and pro-
vides an object-oriented properties/methods API for the
developer. A programmer controls a device by altering its
properties and/or invoking its methods, and monitors
changes to device status by adding event handlers. Net-
working and distributed data sharing aspects are com-
pletely hidden. Not only is this simpler than directly ac-
cessing shared dictionary, but this familiar programming
model requires little extra learning as it matches conven-
tional GUI object-oriented programming and the original
Phidgets programming paradigm [14]. Of course, the actual
Phidget devices being controlled may now be located any-
where on the network. This is not a problem, as the pro-
grammer can quickly link the Phidget object to the actual
Phidget device by filling in two properties: the hosting
computer’s metadata location (as used in our original ex-
ample) and/or its serial number. Of course, some power is
sacrificed. For example, the ‘abstract device’ that reflects
an aggregate of different sensor values cannot be created

through this object-oriented API. However, using the
shared dictionary the programmer can create a new Phidget
proxy object that encapsulates the abstract device, and then
make that new object available to other programmers.

Programming using Metadata and Device Discovery
As a brief but important aside, this section reveals how
programmers can exploit metadata and discover devices.
Metadata is accessed via the shared dictionary or the
Phidget object in a manner similar to other phidgets proper-
ties. For example, one can access the servo’s location and
keywords (Figure 3) through the Servo Object’s properties:

String location = servo.PhidgetDevice.Location;
String keywords = servo.PhidgetDevice.Keywords;

Programmers can also discover devices across the network
by a variety of means. The easiest is filtering: filter terms
are added to a Phidget object, and the device whose meta-
data matches those terms are attached to it. For example,
the following code will discover the InterfaceKit used in
our example and in Figure 3 by matching its Location and
its Owner properties (other filter properties include serial
numbers and IP addresses):

interfaceKit.FilterLocations.Add("Home");
interfaceKit.FilterOwner.Add("Jim");

Custom metadata can be accessed, exploited and even reset
via a hashtable associated with a Phidget Object. Pro-
grammers can iterate over all its metadata entries to look
for matches, or see if a particular one exists through a Con-
tainsKey() method, or get a particular value through the
GetMetadata(“key”) method. A programmer can even add
metadata at runtime. For example, if a programmer had
access to GPS location, that can be added as a metadata on
the fly: servo.PhidgetDevice.AddMetadata("GPSPosition",

 "N-51-02-11:W-114-01-10");

These user-defined metadata entries become immediately
visible in Connector tool, and other connected applications
can explore this information by iterating over the metadata
collection.

Programming via Interface Skins
Some physical user interfaces also contain a GUI counter-
part that allows people to monitor and control Phidget de-
vices, perhaps from remote locations. While these can be
programmed from scratch atop of Phidget Objects, pro-
grammers will typically use interface skins.
We already illustrated interface skins in our home appli-
ance. For example, the skin for the Phidget Servo illus-
trated in Figure 1 shows that the servo phidget is attached,
and the position of its single motor. The end user can also
use its slider to reposition this motor. Figure 1 also shows
the skin for the TextLCD, while Figure 5 shows the skin
for the InterfaceKit.
Interface skins are wrapper objects around the Phidget
proxy object API. They normally provide GUI representa-
tions for every sensor or actuator functionality of the corre-
sponding Phidget device (Figure 2g, 3rd row). Using an
interface builder, programmers simply drag and drop these

skins into a window, as done with our home appliance.
This ‘plug and play’ approach requires minimal program-
ming. In our experiences, skins provide an intuitive starting
point for developers who have never dealt with hardware,
where it entices them to experiment with the variety of
physical interaction devices. It also serves as a very effec-
tive debugging mechanism.
We call them ‘skins’ as a single Phidget device can be rep-
resented by multiple skins (this differs from the strategy
first described in [14]). For example, the Interface Kit can
have a skin that displays all sensor values in a textual table,
as animated sliders, or as a graph that shows changes over
time. If they wish, programmers can create their own cus-
tom skins that visualizes a phidget in different ways, or that
acts as a GUI to an abstract phidget that aggregates proper-
ties collected from several phidget devices (e.g., as de-
scribed in the shared dictionary subsection). A programmer
can even create multiple views onto phidget devices by
connecting multiple skins to one or more phidgets.

Extensibility
Shared Phidgets is an extendable architecture. It is straight-
forward to include new Phidget Devices as they are made
available by Phidgets, Inc. New interface skins can be cre-
ated for existing phidgets, for abstract phidgets, or for new
phidgets devices. The toolkit offers abstract base classes as
the building block for these Phidget proxy classes and the
interface skins; all implemented device objects and skins
are derived from these. The base classes provide the main
API and implementation of the Phidget discovery methods,
shared dictionary connection, and subscription objects.
Devices from other vendors can also be included, albeit
with some more effort.

Discussion
The power of the Shared Phidgets architecture can be con-
sidered at three levels.
First, our distributed Model View Controller approach adds
considerably to how programmers interact with distributed
hardware devices. The hardware toolkits mentioned in the
related work only access devices within a localized setting.
Shared Phidgets remove this limitation, and allows pro-
grammers to easily and transparently access devices re-
gardless of where they are located across the Internet.
Second, the ability to add metadata to devices means that
programmers can now leverage semantic meaning associ-
ated with each device and location. Expected uses include
using this metadata programmatically to decide upon loca-
tion and context-dependant actions, and to discover device
groupings and functions so they can be collectively consid-
ered as an appliance.
Third, and perhaps most importantly, we stress that the
ability to create new abstract devices from a combination
of hardware building blocks is extremely powerful. This is
where Shared Phidgets reflect the offerings of the Context
Toolkit. Letting people define abstract devices is the key to
how we bridge between traditional physical user interfaces
and Dey’s context widget. As a dictionary entry, this new

abstract device can encapsulate and abstract values from
one or more actual devices. It can also interpret, transform
and aggregate them into higher level abstractions. Because
the programmer can also create new API’s and Interface
Skins that further wrap this abstract device, these devices
can be presented as meaningful information appliances
with APIs that reflect the semantics of that appliance.

HIGH LEVEL TOOLS
SharedPhidgets also comes with two important tools, each
constructed atop the programming environment, that lets a
developer or end-user monitor, control and even simulate
all Phidgets distributed across the network (Figure 2h).
Both tools are useful for administrating and/or debugging
all connected devices regardless of what computer they are
actually attached to. Due to space constraints, images of
these tools are not shown, but are available on line (see
§Software Availability).
The Controller Tool provides a direct view into the data
model held by the shared dictionary, and is invaluable for
debugging. By default, all Phidget devices and their data
attributes (including metadata) are listed by their key paths
and value pairs. However, the user can apply filters to dis-
play only key entries of one Phidget type (e.g., all Phidget
Interface Kits), or of a specified serial number, or of spe-
cific data groups (e.g., metadata). As well, the user can
select a field from a single Phidget and use that as a filter,
where only that Phidget’s attributes are shown. The user
can also use this tool to create a simulated Phidget device,
and populate its values. Under the covers, this creates the
needed set of shared dictionary entries according to the
device type. This simulation is extremely powerful, for it
means that the end user can simulate a complete Shared-
Phidget network without actually attaching any hardware –
this simulation can then be used to test other software. For
example, a programmer could have simulated the Inter-
faceKit in the office part of our awareness appliance (Fig-
ure 1), and adjust its values to test the home part of it.
The Device Explorer provides a person with a compact and
more readable overview of all devices across the network,
including their serial number, attached status, metadata
such as location, owner, etc. The user also has the option of
interacting with any device by simply selecting it from the
list; the interface skin for that device is created dynami-
cally, through which the user can monitor and/or adjust its
values. For example, a distant user can connect to the
textLCD in our scenario example (revealing a skin similar
to that shown in Figure 1), observe what it is displaying,
and can change the text by typing into the skin.
Both programs are simply applications built atop the
SharedPhidgets programming model.

EXAMPLES
Space does not allow us to describe the many example dis-
tributed physical user interfaces that can be constructed
through the Shared Phidgets toolkit. However, a few are
listed below just to give a feel for its power.

LumiTouch Replication. LumiTouch, built by MIT’s Tan-
gible Media Group, comprises a pair of interactive picture
frames [6]. When a person touches one frame, the other
frame lights up. Student Kathryn Elliot trivially rebuilt this
(Figure 4) with two InterfaceKits, one per frame, each with
attached LEDs and capacitive sensors. The lights on one
frame are controlled by simply monitoring the capacitive
sensor detecting touch on its distant partner frame.
Tablet Viewer. Want et al. [23] described a system where a
person users a tablet computer to explore information at-
tached to everyday objects. An RFID tag attached to the
physical object associates that object with digital informa-
tion; the tablet reads the tag and brings up that information.
We replicated this by attaching an RFID tag to every
Phidget device and/or sensor in a distributed space and
taping an RFID tag reader to a Tablet PC. We then created
an application where mobile users could scan and quickly
associate an RFID tag with a corresponding phidget or sen-
sor type. When the user rescans that tag, it would either
bring up that device’s skin (allowing immediate monitoring
or control) or, for sensors, it would show the current sensor
value and a graph of its previous values. This is an invalu-
able tool for debugging the state of devices within a physi-
cal environment.
However, its real value appears after a programmer creates
abstract devices and skins that represent a set of phidgets as
a true information appliance. As in Want et al., [23] the
tablet becomes a ‘window’ into the appliance, revealing
information and facilitating interaction with it in a way that
was formerly possible only through extensive custom cod-
ing. For example, the LumiTouch replication in Figure 4
could be repackaged as an abstract device that permits a
remote person to not only activate it by touch, but that lets
them attach text messages to it. If the local person notices
the lights flashing in a certain pattern, she can pass the tab-
let PC over it to display the message within that appliance’s
skin.
Location-based messaging. Previous studies show that
home inhabitants exploit knowledge of each other’s rou-
tines by leaving messages for them at particular locations

[11]. Based on this, Elliot et. al. designed a system that
allowed people to send notes to devices at particular loca-
tions within the home [11]. Her work used the standard
Phidgets library, so much coding was needed to configure
these distributed devices. In contrast, this could be easily
rebuilt in Shared Phidgets. For example, each device (e.g.,
a Phidget LCDDisplay) is already tagged with a location
metadata attribute, e.g., ‘Kitchen’, ‘TV stand’, ‘Hallway’,
etc. If one wants to send a note to (say) the ‘Hallway’, one
can quickly find the device with that metadata value and set
its text display attribute.
Sensor Maps, illustrated in Figure 5, creates a map over-
view of all available Phidget hardware devices and sensors
(any existing map image can be loaded into the applica-
tion). Attached devices are displayed as small circles atop
the map. When a device generates an event (e.g., sensor
value change), the circle expands and fades (the radius de-
pends on the current sensor value being tracked). Figure 5
illustrates one example used to show sensors distributed
across a 3 room laboratory. As in previous examples, users
can click on the device circle to display its interface skin,
as seen in Figure 5, bottom. Regions on the map can be
marked with additional location information, and this data
can be added to all devices bounded by these regions. As
before, its real use would be reflected by abstract devices.
For example, the map could let a person see and control the
state of all appliances located within a smart home.

Figure 5. The Sensor Map Application.

Figure 4. LumiTouch replication, by Kathryn Elliot

CONCLUSIONS
Shared Phidgets is a new generation physical user interface
toolkit that bridges the gap between current hardware-
oriented toolkits and Dey’s Context Toolkit. It recognizes
that many physical user interfaces will comprise interacting
distributed components, and that these components will be
remixed and abstracted in a variety of ways.
In the past, programmers were responsible for all distrib-
uted systems aspects. Through its robust dMVC architec-
ture, Shared Phidgets takes over this chore. Perhaps sur-
prisingly, there is almost no extra programming penalty
(unless one wants the extra power offered by accessing the
shared dictionary directly); distributed phidgets can be
coded in a manner very similar to the original non-
distributed Phidgets system [14].
Another feature includes Interface Skins, which serves as
both views and controllers into the distributed model; new
skins can be created that are customized to the actual physi-
cal user interface. Through metadata, people can add appli-
ance-specific, location and context-dependant attributes to
the physical user interfaces they create.
Finally, the capabilities of phidgets can be interpreted, re-
combined, aggregated, and abstracted into abstract devices,
which bridge into the powers offered by the Context Tool-
kit [8]. These abstract devices can be further abstracted as
programmable objects and skins.

ACKNOWLEDGMENTS
Thanks to Phidgets, Inc., who provides a wonderful plat-
form for us to extend. Research was partially funded by the
NECTAR NSERC research network and its industrial
sponsors: Smart Technologies Inc and Microsoft.
Software availability. Shared Phidgets software, docu-
mentation, tools, tutorials and examples are all freely avail-
able at http://grouplab.cpsc.ucalgary.ca/cookbook/.

REFERENCES
1. Abowd, G. D. Software engineering issues for ubiqui-

tous computing. Proc Int’l Conf. Software Engineering.
IEEE Press, 1999. 75-84.

2. Ark. W. and Selker, T. A look at human interaction
with pervasive computers. IBM Systems Journal 38(4),
1999.

3. Ballagas, R., Ringel, M., Stone, M., and Borchers, J.
iStuff: a physical user interface toolkit for ubiquitous
computing environments. Proc ACM CHI, 2003.

4. Boyle, M. and Greenberg, S. Rapidly Prototyping Mul-
timedia Groupware. Proc DMS Distributed Multimedia
Systems, Knowledge Systems Institute, IL, USA, 2005.

5. Buxton, W. Living in augmented reality: Ubiquitous
media and reactive environments. In K. Finn, A. Sellen
& S. Wilber (Eds.). Video Mediated Communication,
Erlbaum, 1997. 363-384.

6. Chang, A., Resner, B., Koerner, B., Wang, X, and Ishii,
H. LumiTouch: An emotional communication device.
ACM CHI Extended Abstracts, 2001. 313-314.

7. Dahley, A., Wisneski, C. and Ishii, H. Water Lamp and
Pinwheels: Ambient projection of digital information
into architectural space. Summary ACM CHI, 1998.

8. Dey, A. K., Salber, D., and Abowd, G. A conceptual
framework and a toolkit for supporting the rapid proto-
typing of context-aware applications. Human-Computer
Interaction, Vol 16, 2001.

9. Dourish, P. Where the action is: The foundation of em-
bodied interaction. MIT Press. 2001.

10. Dragicevic, P. and Fekete, J. The Input Configurator
toolkit: towards high input adaptability in interactive
applications. Proc. AVI, ACM Press, 2004, 244-247.

11. Elliot, K., Neustaedter, C. and Greenberg, S. Sticky
Spots and Flower Pots: Two case studies in location-
based home technology design. Technical report, Dept.
Computer Science, University of Calgary. April 2006.

12. Greenberg, S. (In Press) Toolkits and Interface Creativ-
ity, J. Multimedia Tools and Applications, Kluwer.

13. Greenberg, S. Collaborative physical user interfaces. In
K. Okada, T. Hoshi and T. Inoue (Eds) Communication
and Collaboration Support Systems. IOS Press, 2005.

14. Greenberg, S. and Fitchett, C. Phidgets: Easy develop-
ment of physical interfaces through physical widgets.
Proc ACM UIST, 2001, 209-218.

15. Greenberg, S. and Kuzuoka, H. Using digital but physi-
cal surrogates to mediate awareness, communication
and privacy in media Spaces. Personal Technologies, 4
(1), Elsevier, January 2001.

16. Greenberg, S. and Roseman, M. Groupware toolkits for
synchronous work. In M. Beaudouin-Lafon (Ed), Com-
puter-Supported Cooperative Work (Trends in Software
7), Chapter 6, Wiley & Sons, 1999.

17. Hartmann, B., Klemmer, S.R., and Bernstein, M. 2005.
d.tools: Integrated prototyping for physical interaction
design. IEEE Pervasive Computing, Oct-Dec 2005.

18. Ishii, H. and Ullmer, B. Tangible bits: Towards seam-
less interfaces between people, bits and atoms. Proc.
ACM CHI, 1997. 234-241.

19. Lee, J., Avrahami, D., Hudson, S., Forlizzi, J., Dietz, P.
and Leigh, D. The Calder toolkit: Wired and wireless
components for rapidly prototyping interactive devices.
Proc ACM DIS, 2004.

20. Making Things. www.makingthings.com. April. 2006.
21. Norman, D. The Invisible Computer. MIT Press, 1998.
22. Phidgets, Inc. www.phidgets.com. April. 2006.
23. Want, R., Fishkin, K., Gujar, A. and Harrison, B.

Bridging physical and virtual worlds with electronic
tags. Proc. ACM CHI, 1999.

24. Weiser, M. and Brown, J. Designing calm technology,
Powergrid Journal, v1.01, July, 1996.

