
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3613–3622

Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

3613

Shared-Private Bilingual Word Embeddings
for Neural Machine Translation

Xuebo Liu† Derek F. Wong†∗ Yang Liu‡ Lidia S. Chao† Tong Xiao§ Jingbo Zhu§

†NLP2CT Lab / Department of Computer and Information Science, University of Macau, Macau
‡Department of Computer Science and Technology, Tsinghua University, Beijing, China

§Northeastern University, Shenyang, China

nlp2ct.xuebo@gmail.com, {derekfw,lidiasc}@um.edu.mo,
liuyang2011@tsinghua.edu.cn, {xiaotong,zhujingbo}@mail.neu.edu.cn

Abstract

Word embedding is central to neural machine

translation (NMT), which has attracted inten-

sive research interest in recent years. In NMT,

the source embedding plays the role of the

entrance while the target embedding acts as

the terminal. These layers occupy most of

the model parameters for representation learn-

ing. Furthermore, they indirectly interface

via a soft-attention mechanism, which makes

them comparatively isolated. In this paper,

we propose shared-private bilingual word em-

beddings, which give a closer relationship be-

tween the source and target embeddings, and

which also reduce the number of model pa-

rameters. For similar source and target words,

their embeddings tend to share a part of the

features and they cooperatively learn these

common representation units. Experiments on

5 language pairs belonging to 6 different lan-

guage families and written in 5 different al-

phabets demonstrate that the proposed model

provides a significant performance boost over

the strong baselines with dramatically fewer

model parameters.

1 Introduction

With the introduction of ever more powerful ar-

chitectures, neural machine translation (NMT)

has become the most promising machine transla-

tion method (Kalchbrenner and Blunsom, 2013;

Sutskever et al., 2014; Bahdanau et al., 2015).

For word representation, different architectures—

including, but not limited to, recurrence-based

(Chen et al., 2018), convolution-based (Gehring

et al., 2017) and transformation-based (Vaswani

et al., 2017) NMT models—have been taking ad-

vantage of the distributed word embeddings to

capture the syntactic and semantic properties of

words (Turian et al., 2010).
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Figure 1: Comparison between (a) standard word em-

beddings and (b) shared-private word embeddings. In

(a), the English word “Long” and the German word

“Lange”, which have similar lexical meanings, are rep-

resented by two private d-dimension vectors. While in

(b), the two word embeddings are made up of two parts,

indicating the shared (lined nodes) and the private (un-

lined nodes) features. This enables the two words to

make use of common representation units, leading to a

closer relationship between them.

NMT usually utilizes three matrices to rep-

resent source embeddings, target input embed-

dings, and target output embeddings (also known

as pre-softmax weight), respectively. These em-

beddings occupy most of the model parameters,

which constrains the improvements of NMT be-

cause the recent methods become increasingly

memory-hungry (Vaswani et al., 2017; Chen et al.,

2018).1 Even though converting words into sub-

word units (Sennrich et al., 2016b), nearly 55% of

model parameters are used for word representation

in the Transformer model (Vaswani et al., 2017).

To overcome this difficulty, several methods are

proposed to reduce the parameters used for word

representation of NMT. Press and Wolf (2017)

propose two weight tying (WT) methods, called

decoder WT and three-way WT, to substantially

reduce the parameters of the word embeddings.

Decoder WT ties the target input embedding and

target output embedding, which has become the

new de facto standard of practical NMT (Sen-

1For the purpose of smoothing gradients, a very large
batch size is needed during training.
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Figure 2: Shared-private bilingual word embeddings perform between the source and target words or sub-words

(a) with similar lexical meaning, (b) with same word form, and (c) without any relationship. Different sharing

mechanisms are adapted into different relationship categories. This strikes the right balance between capturing

monolingual and bilingual characteristics. The closeness of relationship decides the portion of features to be used

for sharing. Words with similar lexical meaning tend to share more features, followed by the words with the same

word form, and then the unrelated words, as illustrated by the lined nodes.

nrich et al., 2017). Three-way WT uses only one

matrix to represent the three word embeddings,

where the source and target words that have the

same word form tend to share a word vector. This

method can also be adapted to sub-word NMT

with a shared source-target sub-word vocabulary

and it performs well in language pairs with many

of the same characters, such as English-German

and English-French (Vaswani et al., 2017). Un-

fortunately, this method is not applicable to lan-

guages that are written in different alphabets, such

as Chinese-English (Hassan et al., 2018).

Another challenge facing the source and target

word embeddings of NMT is the lack of interac-

tions. This degrades the attention performance,

leading to some unaligned translations that hurt

the translation quality. Hence, Kuang et al. (2018)

propose to bridge the source and target embed-

dings, which brings better attention to the related

source and target words. Their method is applica-

ble to any language pairs, providing a tight inter-

action between the source and target word pairs.

However, their method requires additional compo-

nents and model parameters.

In this work, we aim to enhance the word repre-

sentations and the interactions between the source

and target words, while using even fewer pa-

rameters. To this end, we present a language-

independent method, which is called shared-

private bilingual word embeddings, to share a part

of the embeddings of a pair of source and target

words that have some common characteristics (i.e.

similar words should have similar vectors). Fig-

ure 1 illustrates the difference between the stan-

dard word embeddings and shared-private word

embeddings of NMT. In the proposed method,

each source (or target) word is represented by a

word embedding that consists of the shared fea-

tures and the private features. The shared fea-

tures can also be regarded as the prior alignments

connecting the source and target words. The pri-

vate features allow the words to better learn the

monolingual characteristics. Meanwhile, the fea-

tures shared by the source and target embeddings

result in a significant reduction of the number of

parameters used for word representations. The ex-

perimental results on 6 translation datasets of dif-

ferent scales show that our model with fewer pa-

rameters yields consistent improvements over the

strong Transformer baselines.

2 Approach

In monolingual vector space, similar words tend

to have commonalities in the same dimensions

of their word vectors (Mikolov et al., 2013).

These commonalities include: (1) a similar degree

(value) of the same dimension and (2) a similar

positive or negative correlation of the same dimen-

sion. Many previous works have noticed this phe-

nomenon and have proposed to use shared vectors

to represent similar words in monolingual vector

space toward model compression (Li et al., 2016;

Zhang et al., 2017b; Li et al., 2018).

Motivated by these works, in NMT, we assume

that the source and target words that have sim-

ilar characteristics should also have similar vec-

tors. Hence, we propose to perform this sharing

technique in bilingual vector space. More pre-

cisely, we share the features (dimensions) between

the paired source and target embeddings (vectors).

However, in contrast to the previous studies, we

also model the private features of the word em-

bedding to preserve the private characteristics of

words for source and target languages. The private
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features allow the words to better learn the mono-

lingual characteristics. Meanwhile, we also pro-

pose to adopt different sharing mechanisms among

the word pairs, which will be described in the fol-

lowing sections.

In the Transformer architecture, the shared fea-

tures between the source and target embeddings

always contribute to the calculation of the atten-

tion weight.2 This results in paying more attention

strength on the pair of related words. With the help

of residual connections, the high-level representa-

tions can also benefit from the shared features of

the topmost embedding layers. Both qualitative

and quantitative analyses show the effectiveness

on the translation tasks.

2.1 Shared-Private Bilingual Word

Embeddings

Standard NMT jointly learns to translate and align,

which has achieved remarkable results (Bahdanau

et al., 2015). In NMT, the intention is to identify

the translation relationships between the source

and target words. To simplify the model, we pro-

pose to divide the relationships into three main cat-

egories between a pair of source and target words:

(1) words with similar lexical meaning (abbrevi-

ated as lm), (2) words with same word form (ab-

breviated as wf), and (3) unrelated words (abbre-

viated as ur). Figure 2 shows some examples of

these different relationship categories. The num-

ber of the shared features of the word embeddings

is decided by their relationships.

Before presenting the pairing process in detail,

we first introduce the constraints to the proposed

method for convenience:

• Each source word is only allowed to share the

features with a single target word, and vice

versa.3

• Each source word preferentially shares fea-

tures with the target word that has similar

lexical meaning, followed by the word with

same word form, and then unrelated words.

2.1.1 Words with Similar Lexical Meaning

As shown in Figure 2(a), the English word “Long”

and the German word “Lange”, which have simi-

lar meaning, tend to share more common features

2Based on the dot-product attention mechanism, the at-
tention weight between the source and target embeddings is
the sum of the dot-product of their features.

3We investigate the effect of synonym in the experiment
section.

of their embeddings. In our model, the source

and target words with alignment links are regarded

as parallel words that are the translation of each

other. According to the word frequency, each

source word x is paired with a target aligned word

ŷ that has the highest alignment probability among

the candidates, and is computed as follows:

ŷ = argmax
y∈a(x)

logA(y|x) (1)

where a(·) denotes the set of aligned candidates.

It is worth noting the target words that have been

paired with the source words cannot be used as

candidates. A(·|·) denotes the alignment proba-

bility. These can be obtained by either the intrin-

sic attention mechanism (Bahdanau et al., 2015)

or unsupervised word aligner (Dyer et al., 2013).

2.1.2 Words with Same Word Form

As shown in Figure 2(b), the sub-word “Ju@@”

simultaneously exists in English and German sen-

tences. This kind of word tends to share a medium

number of features of the word embeddings. Most

of the time, the source and target words with

the same word form also share similar lexical

meaning. This category of words generally in-

cludes Arabic numbers, punctuations, named en-

tities, cognates and loanwords. However, there

are some bilingual homographs where the words

in the source and target languages look the same

but have completely different meanings. For ex-

ample, the German word “Gift” means “Poison”

in English. That is the reason we propose to first

pair the words with similar lexical meaning in-

stead of those words with same word forms. This

might be the potential limitation of the three-way

WT method (Press and Wolf, 2017), where words

with the same word form indiscriminately share

the same word embedding.

2.1.3 Unrelated Words

We regard source and target words that cannot be

paired with each other as unrelated words. Fig-

ure 2(c) shows an example of a pair of unrelated

words. This category is mainly composed of low-

frequency words, such as misspelled words, spe-

cial characters, and foreign words. In standard

NMT, the embeddings of low-frequency words

are usually inadequately trained, resulting in a

poor word representation. These words are often

treated as noises and they are generally ignored
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Figure 3: The example of assembling the source word embedding matrix. The words in parentheses denote the

paired words sharing features with them.

by the NMT systems (Feng et al., 2017). Mo-

tivated by the frequency clustering methods pro-

posed by Chen et al. (2016) where they cluster the

words with similar frequency for training a hier-

archical language model, in this work, we propose

to use a small vector to model the possible features

that might be shared between the source and target

words which are unrelated but having similar word

frequencies. In addition, it can be regarded as a

way to improve the robustness of learning the em-

beddings of low-frequency words because of the

noisy dimensions (Wang et al., 2018).

2.2 Implementation

Before looking up embedding at each training

step, the source and target embedding matrix are

assembled by the sub-embedding matrices. As

shown in Figure 3, the source embedding E
x ∈

R
|V |×d is computed as follows::

E
x = E

x
lm ⊕E

x
wf ⊕E

x
ur (2)

where ⊕ is the row concatenation operator. Ex
(·) ∈

R
|V(·)|×d represents the word embeddings of the

source words belong to different categories, e.g.

lm represents the words with similar lexical mean-

ing. |V(·)| denotes the vocabulary size of the cor-

responding category.

The process of feature sharing is also imple-

mented by matrix concatenation. For example, the

embedding matrices of the source words with sim-

ilar lexical meaning are computed as follows:

E
x
lm = Slm⊕̃P

x
lm (3)

where ⊕̃ is the column concatenation operator.

Slm ∈ R
|Vlm|×λlmd represent the word embeddings

of the shared features, where λlm denotes the pro-

portion of the features for sharing in this relation-

ship category. P
x
lm ∈ R

|Vlm|×(1−λlm)d represent

the word embeddings of the private features.

Similar to the target word embedding. These

matrix concatenation operations, which have low

computational complexity, are very cheap to the

whole NMT computation process. We also em-

pirically find both the training speed and decoding

speed are not influenced with the introduction of

the proposed method.

3 Experiments

We carry out our experiments on the small-scale

IWSLT’17 {Arabic (Ar), Japanese (Ja), Korean

(Ko), Chinese (Zh)}-to-English (En) translation

tasks, medium-scale NIST Chinese-English (Zh-

En) translation task, and large-scale WMT’14

English-German (En-De) translation task.

For the IWSLT {Ar, Ja, Ko, Zh}-to-En trans-

lation tasks, there are respectively 236K, 234K,

227K, and 235K sentence pairs in each training

set.4 The validation set is IWSLT17.TED.tst2014

and the test set is IWSLT17.TED.tst2015. For

each language, we learn a BPE model with 16K

merge operations (Sennrich et al., 2016b).

For the NIST Zh-En translation task, the train-

ing corpus consists of 1.25M sentence pairs with

27.9M Chinese words and 34.5M English words.

We use the NIST MT06 dataset as the validation

set and the test sets are the NIST MT02, MT03,

MT04, MT05, MT08 datasets. To compare with

the recent works, the vocabulary size is limited to

4https://wit3.fbk.eu/mt.php?release=

2017-01-trnted

https://wit3.fbk.eu/mt.php?release=2017-01-trnted
https://wit3.fbk.eu/mt.php?release=2017-01-trnted
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Architecture Zh⇒En Params Emb. Red. Dev. MT02 MT03 MT04 MT08 All

SMT* - - - - 34.00 35.81 34.70 37.15 25.28 33.39

RNNsearch*

Vanilla 74.8M 55.8M 0% 35.92 37.88 36.21 38.83 26.30 34.81
Source bridging 78.5M 55.8M 0% 36.79 38.71 37.24 40.28 27.40 35.91
Target bridging 76.6M 55.8M 0% 36.69 39.04 37.63 40.41 27.98 36.27
Direct bridging 78.9M 55.8M 0% 36.97 39.77 38.02 40.83 27.85 36.62

Transformer

Vanilla 90.2M 46.1M 0% 41.37 42.53 40.25 43.58 32.89 40.33
Direct bridging 90.5M 46.1M 0% 41.67 42.89 41.34 43.56 32.69 40.54
Decoder WT 74.9M 30.7M 33.4% 41.90 43.02 41.89 43.87 32.62 40.82

Shared-private 62.8M 18.7M 59.4% 42.57↑ 43.73↑ 41.99↑ 44.53↑ 33.81⇑ 41.61⇑

Table 1: Results on the NIST Chinese-English translation task. “Params” denotes the number of model parameters.

“Emb.” represents the number of parameters used for word representation. “Red.” represents the reduction rate

of the standard size. The results of SMT* and RNNsearch* are reported by Kuang et al. (2018) with the same

datasets and vocabulary settings. “↑” indicates the result is significantly better than that of the vanilla Transformer

(p < 0.01), while “⇑” indicates the result is significantly better than that of all other Transformer models (p <

0.01). All significance tests are measured by paired bootstrap resampling (Koehn, 2004).

En⇒De Params Emb. Red. BLEU

Vanilla 98.7M 54.5M 0% 27.62
Direct bridging 98.9M 54.5M 0% 27.79
Decoder WT 80.4M 36.2M 33.6% 27.51
Three-way WT 63.1M 18.9M 65.3% 27.39

Shared-private 65.0M 20.9M 63.1% 28.06‡

Table 2: Results on the WMT English-German transla-

tion task. “‡” indicates the result is significantly better

than the vanilla Transformer model (p < 0.05).

30K for both languages, covering 97.7% Chinese

words and 99.3% English words, respectively.

For the WMT En-De translation task, the train-

ing set contains 4.5M sentence pairs with 107M

English words and 113M German words. We use

the newstest13 and newstest14 as the validation set

and test set, respectively. The joint BPE model is

set to 32K merge operations.

3.1 Setup

We implement all of the methods based on Trans-

former (Vaswani et al., 2017) using the base set-

ting with the open-source toolkit thumt5 (Zhang

et al., 2017a). There are six encoder and de-

coder layers in our models, while each layer em-

ploys eight parallel attention heads. The dimen-

sion of the word embedding and the high-level

representation dmodel is 512, while that of the

inner-FFN layer dff is 2048. The Adam (Kingma

and Ba, 2015) optimizer is used to update the

model parameters with hyper-parameters β1= 0.9,

β2 = 0.98, ε = 10−8 and a warm-up strategy with

warmup steps = 4000 is adapted to the variable

learning rate (Vaswani et al., 2017). The dropout

used in the residual connection, attention mech-

5https://github.com/thumt/THUMT

Model Emb. Red. BLEU

Ar⇒ En
Vanilla 23.6M 0% 28.36

Shared-private 11.8M 50% 29.71↑

Ja⇒ En
Vanilla 25.6M 0% 10.94

Shared-private 13.3M 48.0% 12.35↑

Ko⇒ En
Vanilla 25.1M 0% 16.48

Shared-private 13.2M 47.4% 17.84↑

Zh⇒ En
Vanilla 27.4M 0% 19.36

Shared-private 13.8M 49.6% 21.00↑

Table 3: Results on the IWSLT {Ar, Ja, Ko, Zh}-to-En

translation tasks. These distant language pairs belong-

ing to 5 different language families and written in 5 dif-

ferent alphabets.“↑” indicates the result is significantly

better than that of the vanilla Transformer (p < 0.01).

anism, and feed-forward layer is set to 0.1. We

employ uniform label smoothing with 0.1 uncer-

tainty.

During the training, each training batch con-

tains nearly 25K source and target tokens. We

evaluate the models every 2000 batches via the

tokenized BLEU (Papineni et al., 2002) for early

stopping. During the testing, we use the best sin-

gle model for decoding with a beam of 4. The

length penalty is tuned on the validation set, which

is set to 0.6 for the English-German translation

tasks, and 1.0 for others.

We compare our proposed methods with the fol-

lowing related works:

• Direct bridging (Kuang et al., 2018): this

method minimizes the word embedding loss

between the transformations of the target

words and their aligned source words by

adding an auxiliary objective function.

• Decoder WT (Press and Wolf, 2017): this

method uses an embedding matrix to repre-

https://github.com/thumt/THUMT
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Zh-En λlm λwf λur Emb. BLEU

Vanilla - - - 46.1M 41.37
Decoder WT 0 0 0 30.7M 41.90

Shared-private

0.5 0.7 0.9 21.2M 41.98
0.5 0.5 0.5 23.0M 42.26
0.9 0.7 0 21.0M 42.27

1 1 1 15.3M 42.36
0.9 0.7 0.5 18.7M 42.57

Table 4: Performance of models using different sharing

coefficients on the validation set of the NIST Chinese-

English translation task.

sent the target input embedding and target

output embedding.

• Three-way WT (Press and Wolf, 2017): this

method is an extension of the decoder WT

method that the source embedding and the

two target embeddings are represented by one

embedding matrix. This method cannot be

applied to the language pairs with different

alphabets, e.g. Zh-En.

For the proposed model, we use an unsuper-

vised word aligner fast-align6 (Dyer et al., 2013)

to pair source and target words that have similar

lexical meaning. We set the threshold of align-

ment probability to 0.05, i.e. only those words

with an alignment probability over 0.05 can be

paired as the words having similar lexical mean-

ing. The sharing coefficient λ = (λlm, λwf , λwf)
is set to (0.9,0.7,0.5), which is tuned on both

the NIST Chinese-Enlgish task and the WMT

English-German task.

3.2 Main Results

Table 1 reports the results on the NIST Chinese-

English test sets. It is observed that the Trans-

former models significantly outperform SMT and

RNNsearch models. Therefore, we decide to im-

plement all of our experiments based on Trans-

former architecture. The direct bridging model

can further improve the translation quality of the

Transformer baseline. The decoder WT model im-

proves the translation quality while reducing the

number of parameters for the word representa-

tion. This improved performance happens because

there are fewer model parameters, which prevents

over-fitting (Press and Wolf, 2017). Finally, the

performance is further improved by the proposed

method while using even fewer parameters than

other models.

6https://github.com/clab/fast_align

A(·|·) Lexical Form Unrelated Emb. BLEU

0.5 4,869 309 24,822 22.0M 42.35
0.1 15,103 23 14,874 20.0M 42.53
0.05 21,172 11 8,817 18.7M 42.57

Table 5: Effects on different alignment thresholds used

for pairing the words with similar lexical meaning on

the validation set of the NIST Chinese-English transla-

tion task.

Similar observations are obtained on the

English-German translation task, as shown in Ta-

ble 2. The improvement of the direct bridg-

ing model is reduced with the introduction of

sub-word units since the attention distribution of

the high-level representations becomes more con-

fused. Although the two WT methods use fewer

parameters, their translation quality degrades. We

believe that sub-word NMT needs the well-trained

embeddings to distinguish the homographs of sub-

words. In the proposed method, both the source

and target embeddings benefit from the shared fea-

tures, which leads to better word representations.

Hence, it improves the quality of translation and

also reduces the number of parameters.

Table 3 shows the results on the small-scale

IWSLT translation tasks. We observe that the

proposed method stays consistently better than

the vanilla model on these distant language

pairs. Although the Three-way WT method has

been sufficiently validated on similar translation

pairs at low-resource settings (Sennrich et al.,

2016a), it is not applicable to these distant lan-

guage pairs. Instead, the proposed method is

language-independent, making the WT methods

more widely used.

3.3 Effect on Sharing Coefficients

The coefficient λ = (λlm, λwf , λur) controls the

proportion of the shared features. As shown in

Table 4, the decoder WT model can be seen as

a kind of shared-private method where zero fea-

tures are shared between the source and target

word embeddings. For the proposed method, λ =
(0.5, 0.5, 0.5) and λ = (1, 1, 1) are, respectively,

used for sharing half and all features between the

embeddings of all categories of words. This al-

lows the model to significantly reduce the num-

ber of parameters and also improve the translation

quality. For comparison purpose, we also con-

sider sharing a large part of the features among

the unrelated words by setting s3 to 0.9, i.e.

λ = (0.5, 0.7, 0.9). We argue that it is hard for

https://github.com/clab/fast_align
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1

Source mengmai xingzheng zhangguan bazhake biaoshi , dan shi gaishi jiu you shisan sangsheng .
Reference mumbai municipal commissioner phatak claimed that 13 people were killed in the city alone .
Vanilla bombay chief executive said that there were only 13 deaths in the city alone .
Direct bridging bombay ’s chief executive , said there were 13 dead in the city alone .
Decoder WT chief executive of bombay , said that thirteen people had died in the city alone .
Shared-private mumbai ’s chief executive said 13 people were killed in the city alone .

2

Source suoyi wo ye you liyou qu xiangxin ta de rensheng ye hen jingcai .
Reference thus , i also have reason to believe that her life is also very wonderful .
Vanilla so i have reason to believe her life is also very fantastic .
Direct bridging so i had reason to believe her life was also brilliant .
Decoder WT so , i have reasons to believe that she has a wonderful life .
Shared-private so i also have reason to believe that her life is also wonderful .

Table 6: Translation examples on MT08 test set. The first and second examples show the accuracy and adequacy

of the proposed method, respectively. The bold words in each example are paired and will be discussed in the text.
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Figure 4: Long-distance reordering illustrated by the

attention maps. The attention weights learned by the

proposed shared-private model is more concentrated

than that of the vanilla model.

the model to learn an appropriate bilingual vector

space in such a sharing setting.

Finally, we propose to share more features be-

tween the more similar words by using s1 = 0.9
and reduce the weight on the unrelated words,

which is λ = (0.9, 0.7, 0.5). This strikes the

right balance between the translation quality and

the number of model parameters. To investigate

whether to share the features between unrelated

words or not, we further conduct an experiment

with the setting λ = (0.9, 0.7, 0). The result

confirms our assumption that a small number of

shared features between unrelated words with sim-

ilar word frequency achieve better model perfor-

mance.

3.4 Effect on Alignment Quality

Table 5 shows the performance of different word

alignment thresholds. In the first row, we only pair

the words whose alignment probability A(y|x) is

above the threshold of 0.5 (see Equation 1 for

more details). Under this circumstance, 4,869

words are categorized as parallel words that have
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(b) Shared-private

Figure 5: Word omission problem illustrated by the at-

tention maps. In the vanilla model, the third source

word “ye” is not translated, while our shared-private

model adequately translates it to give a better transla-

tion result.

similar lexical meaning. Based on these observa-

tions, we find that the alignment quality is not a

key factor affecting the model performance. In

contrast, pairing as many as similar words possi-

ble helps the model to better learn the bilingual

vector space, which improves the translation per-

formance. The following qualitative analyses sup-

port these observations either.

3.5 Analysis of the Translation Results

Table 6 shows two translation examples of the

NIST Chinese-English translation task. To better

understand the translations produced by these two

models, we use layer-wise relevance propagation

(LRP) (Ding et al., 2017) to produce the attention

maps of the selected translations, as shown in Fig-

ure 4 and 5.

In the first example, the Chinese word “sang-

sheng” is a low-frequency word and its ground

truth is “killed”. It is observed the inadequate rep-

resentation of “sangsheng” leads to a decline in

the translation quality of the vanilla, direct bridg-

ing, and decoder WT methods. In our proposed
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Figure 6: Visualization of the 2-dimensional PCA projection of the bilingual word embeddings of the two models.

The blue words represent the Chinese embeddings while the red words represent the English embeddings. In (a),

only the similar monolingual words are clustered together. While in (b) and (c), both the monolingual and bilingual

words which have similar meanings are gathered together.

method, a part of the embedding of “sangsheng”

is shared with that of “killed”. These improved

source representations help the model to gener-

ate better translations. Furthermore, as shown in

Figure 4, we observe that the proposed method

has better long-distance reordering ability than

the vanilla. We attribute this improvement to the

shared features, which provide an alignment guid-

ance for the attention mechanism.

The second example implies that our proposed

model is able to improve the adequacy of trans-

lation, as illustrated in Figure 5. The Chinese

word “ye” (also) appears twice in the source sen-

tence, while only the proposed method can ade-

quately translate both of them to the target word

“also”. This once again proves that the shared em-

beddings between the pair words,“ye” and “also”

provide the attention model with a strong interac-

tion between the words, leading to a more concen-

trated attention distribution and effectively allevi-

ating the word omission problem.

3.6 Analysis of the Learned Embeddings

The proposed method has a limitation in that each

word can only be paired with one correspond-

ing word. However, synonym is a quite common

phenomenon in natural language processing tasks.

Qualitatively, we use principal component anal-

ysis (PCA) to visualize the learned embeddings

of the vanilla model and the proposed method,

as shown in Figure 6. In the vanilla model, as

shown in Figure 6(a), only the similar monolin-

gual embeddings are clustered, such as the En-

glish words “died” and “killed”, and the Chinese

words “zhuxi” (president) and “zongtong” (presi-

dent). However, in the proposed method, no mat-

ter whether the similar source and target words

are paired or not, they tend to cluster together; as

shown in Figure 6(b) and 6(c). In other words,

the proposed method is able to handle the chal-

lenge of synonym. For example, both the Chinese

words “ye” (paired with “also”) and “bing” can be

correctly translated to “also” and these three words

tend to gather together in the vector space. This is

similar to the Chinese word “sangsheng” (paired

with “killed”) and the English words “died” and

“killed”. Figure 6(c) shows that the representa-

tions of the Chinese and English words which re-

late to “president” are very close.

4 Related Work

Many previous works focus on improving the

word representations of NMT by capturing

the fine-grained (character) or coarse-grained

(sub-word) monolingual characteristics, such as

character-based NMT (Costa-Jussà and Fonollosa,

2016; Ling et al., 2015; Cho et al., 2014; Chen

et al., 2016), sub-word NMT (Sennrich et al.,

2016b; Johnson et al., 2017; Ataman and Federico,

2018), and hybrid NMT (Luong and Manning,

2016). They effectively consider and utilize the

morphological information to enhance the word

representations. Our work aims to enhance word

representations through the bilingual features that

are cooperatively learned by the source and target

words.

Recently, Gu et al. (2018) propose to use the

pre-trained target (English) embeddings as a uni-

versal representation to improve the representation

learning of the source (low-resource) languages.
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In our work, both the source and target embed-

dings can make use of the common representation

unit, i.e. the source and target embedding help

each other to learn a better representation.

The previously proposed methods have shown

the effectiveness of integrating prior word align-

ments into the attention mechanism (Mi et al.,

2016; Liu et al., 2016; Cheng et al., 2016; Feng

et al., 2017), leading to more accurate and ad-

equate translation results with the assistance of

prior guidance. We provide an alternative that in-

tegrates the prior alignments through the sharing

of features, which can also leads to a reduction of

model parameters.

Kuang et al. (2018) propose to shorten the path

length between the related source and target em-

beddings to enhance the embedding layer. We

believe that the shared features can be seem as

the zero distance between the paired word em-

beddings. Our proposed method also uses several

ideas from the three-way WT method (Press and

Wolf, 2017). Both of these methods are easy to im-

plement and transparent to different NMT archi-

tectures. The main differences are: 1) we share a

part of features instead of all features; 2) the words

of different relationship categories are allowed to

share with differently sized features; and (3) it is

adaptable to any language pairs, making the WT

methods more widely used.

5 Conclusion

In this work, we propose a novel sharing tech-

nique to improve the learning of word embeddings

for NMT. Each word embedding is composed of

shared and private features. The shared features

act as a prior alignment guidance for the attention

model to improve the quality of attention. Mean-

while, the private features enable the words to bet-

ter capture the monolingual characteristics, result

in an improvement of the overall translation qual-

ity. According to the degree of relevance between

a parallel word pair, the word pairs are catego-

rized into three different groups and the number

of shared features is different. Our experimen-

tal results show that the proposed method outper-

forms the strong Transformer baselines while us-

ing fewer model parameters.
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