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Abstract— After intensive research, heterogenous face recog-
nition is still a challenging problem. The main difficulties are
owing to the complex relationship between heterogenous face
image spaces. The heterogeneity is always tightly coupled with
other variations, which makes the relationship of heterogenous
face images highly nonlinear. Many excellent methods have been
proposed to model the nonlinear relationship, but they apt to
overfit to the training set, due to limited samples. Inspired
by the unsupervised algorithms in deep learning, this paper
proposes a novel framework for heterogeneous face recognition.
We first extract Gabor features at some localized facial points,
and then use Restricted Boltzmann Machines (RBMs) to learn
a shared representation locally to remove the heterogeneity
around each facial point. Finally, the shared representations
of local RBMs are connected together and processed by PCA.
Near infrared (NIR) to visible (VIS) face recognition problem
and two databases are selected to evaluate the performance of
the proposed method. On CASIA HFB database, we obtain
comparable results to state-of-the-art methods. On a more
difficult database, CASIA NIR-VIS 2.0, we outperform other
methods significantly.

I. INTRODUCTION

The core of heterogenous face recognition [17] is face

matching across modalities. Although the original definition

of heterogenous face recognition is broad, the two hottest

problems about this topic are Sketch-Photo [32] and NIR-

VIS (Near Infrared-Visual) [36] face recognition. Initially,

heterogeneous face recognition was proposed to appeal the

requirements in practical applications. Sketch-Photo match-

ing is often required in law enforcement when the photo

of suspect is unavailable. NIR-VIS matching module can

make VIS face recognition system work in dark environment

using NIR imaging device. After several research groups

were attracted to this topic, many good methods have been

proposed and these methods quickly spread to other cross-

modal problems, such as face hallucination [31], pedestrian

detection [33] and so on.

The Sketch-Photo problem includes two categories: view

sketch recognition and forensic sketch recognition. For view

sketch recognition, the sketch is drawn by an artist while

viewing the subject on-site, therefore the problem is simple

and very high performance has been achieved on CUFS [32]

and CUFSF [38]. Unlike view sketch, forensic sketch is

drawn according the description of eye-witness, thus even

the best method [13] has very low performance for this

problem. Compared to Sketch-Photo, the difficulty of NIR-

VIS problem is bigger, thus this paper will take NIR-VIS as

an example to verify the proposed method.

It has been shown in existing works that the relationship

of face images between different modalities is very complex,

therefore nonlinear methods usually have better performance

than linear methods. Taking NIR-VIS as an example, the

effect of spectrum is tightly coupled with other variations

of face image, such as 3D shape, pose, identity and so on,

which makes the relationship of face images under different

spectrums highly nonlinear and varying with respect to loca-

tions. Among existing methods, the most successful category

is learning two mappings (linear or nonlinear) to project the

heterogenous face images into a common space [21][16].

Limited by the number of training samples, this kind of

methods have many regularization terms, so need careful

parameter tuning to achieve good performance.

From 2006 to now, unsupervised pre-training has ob-

tained great success in deep learning [7]. One of the most

popular unsupervised learning method in deep learning is

Restricted Boltzmnn Machine (RBM) [26], which is a gen-

erative stochastic neural network that can learn a probability

distribution of input data. To improve the generalization

of existing methods and make the training process easily,

this paper propose a framework based on RBM to learn

the relationship of face images between different modalities.

Because RBM is nonlinear and unsupervised, our framework

can learn the nonlinear relationship well and unlikely prone

to overfitting.

The proposed framework includes 3 main steps: (1) ex-

tracting local Gabor features around facial points, as tradi-

tional face recognition methods do; (2) learning a shared

representation by RBM for each group of local features;

(3) processing the whole RBM representations by PCA and

matching by Cosine similarity. Among them the key step is

(2), in which a 3-layer RBM is constructed and the middle

layer represents the shared properties of heterogeneous data.

The contributions of this paper are as follows.

1) A local to global learning framework is proposed

for heterogeneous face recognition, which can achieve

good results in all experiments.

2) Local RBMs are first used to learn the shared repre-

sentations of heterogenous face images. By plugging

the local RBMs into the framework, we get state-of-

the-art results on the CASIA HFB [19] and NIR-VIS

2.0 [18] databases.

II. RELATED WORKS

Heterogeneous face recognition research started from Tang

and Wang’s work in 2002 [28]. From that time to now,

existing methods can be divided into two categories: Synthe-

sis based and Classification oriented methods. In the early

stage, the mainstream belongs to synthesis based methods,



such as [29], [22] and [30]. [29] proposed a method, named

as eigen-transformation, to synthesize photo by sketch and

then recognized the identity in photo modality. To get more

realistic results, [22] synthesized photo in a patch way, in

which each image patch was first reconstructed by LLE and

then stitched into a whole photo. [30] also proposed a simple

way to transform VIS to NIR face image. Although the

results show that synthesis based method can achieve good

visual quality, the recognition rate based on the synthesized

images is moderate.

In late years, more classification oriented methods were

proposed to improve the recognition rate directly. These

methods just have one target: removing the difference of

modalities, and meanwhile extracting discriminative feature.

Many image processing and coding techniques are their

essential parts, such as DoG filter [20], LBP, HOG [13],

using which the difference between Sketch, NIR or VIS

face images can be reduced significantly. Then, the processed

heterogenous data are mapped to a discriminative space by

linear, nonlinear mapping [21][16] or random trees [38].

Because the target of this kind of methods is more direct

than synthesis based methods, they always perform better. In

general, good methods have two properties: local processing

and nonlinear mapping. The reasons behind the good meth-

ods will be analyzed in Section IV and Section V.

Recently, several methods are proposed for multi-modal

problems in deep learning community. [23] first proposed

a multi-modal deep learning method based on denoising

autoencoder, named as Bimodal Deep AE. But the Bimodal

Deep AE performs poorly in Video-Audio matching experi-

ments. On the contrary, another shallow architecture RBM-

CCA results in surprisingly good performance. Unfortu-

nately, [23] didn’t give any analysis about why the deep net

was worse than RBM-CCA. In 2012, [27] pointed out that

in Bimodal Deep AE the responsibility of the multi-modal

modeling fell entirely on the joint layer, and other layers gave

no contributions. Therefore, they proposed a multi-modal

Deep Boltzmann machine (DBM), which can spread out the

responsibility of the multi-modal modeling over the entire

network. Experiments illustrated the superiority of DBM in

Image-Text retrieval task. Then, [6] applied the multi-modal

DBM in the Image-Text retrieval challenge of ICML 2013

and got the first place in the challenge.

Because the multi-modal RBM in [27] has many good

properties to deal with cross-modal matching problem, we

plug the multi-modal RBM into the face recognition pipeline

to construct a novel method for heterogeneous face recogni-

tion. By combing the advanced modules in these two fields,

the proposed method can work very well in challenging

experiments.

III. BACKGROUND

RBM has been widely used for modeling distribution of

binary data. After Hinton’s work [7], it became a standard

building block of deep neural network. To model the real-

valued data of face images, Gaussian RBM is used in this

paper. This section will review the RBM, Gaussian RBM

and Multi-modal RBM in brief.

A. Restricted Boltzmann Machines

RBM [26] is a generative stochastic graphical model that

can learn the distribution of training data. The model consists

of stochastic visible units v ∈ {0,1}m and stochastic hidden

units h ∈ {0,1}n, which aims to minimize the following

energy function:

E(v,h;a,b,W) =−aT v−bT h−vT Wh, (1)

where a is the biases of visible units; b is the biases of

hidden units; W is the weights matrix to connect the visible

and hidden units.

For image data, real-valued visible units v ∈ R
m are used

to replace the binary ones. The new model is called Gaussian

RBM [8], the energy function of which is defined as:

E(v,h;a,b,W) =
1

2
uT u−bT h− (v� 1

σ
)T Wh, (2)

where u = (v−a)� 1
σ denotes the normalized visible data.

σ is a vector consisting of the standard deviations of each

dimension. � denotes element-wise multiplication of vectors.

Before training Gaussian RBM, the input data are usually

normalized by WPCA or ZCA [2], i.e., the standard devi-

ations σ of the normalized data v̂ is 1. Then, the energy

function can be simplified as:

E(v̂,h;a,b,W) =
1

2
(v̂−a)T (v̂−a)−bT h− v̂T Wh. (3)

Then the distribution over visible and hidden units is

defined as:

P(v̂,h;θ) =
1

Z
e−E(v̂,h;θ), (4)

where θ is an abberation for the parameters of RBM

{a,b,W}; Z is a partition function defined as the sum of

e−E(v̂,h;θ) over all possible configurations.

B. Multi-modal RBM

[27] constructed a multi-modal RBM to model the rela-

tionship between image and text by combining a Gaussian

RBM and Replicated Softmax RBM. For heterogenous face

recognition problem, we use two Gaussian RBM to model

the relationship between face data in two modalities. The

structure of our model is shown in Figure 1. Its energy

function is given by:

E(v̂1, v̂2,h;θ) =
1

2
(v̂1 −a)T (v̂1 −a)+

1

2
(v̂2 −b)T (v̂2 −b)−

cT h− v̂T
1 W1h− v̂T

2 W2h,

(5)

where v̂1 and v̂2 are face images in two modalities; W1 and

W2 are weights matrix for each modality respectively. The

joint distribution over v̂1, v̂2, and h can be calculated based

on the energy function, as similar as Eqn. (4).

Given the normalized training data v̂1 and v̂2, we can learn

the parameters θ . Then, the trained multi-modal RBM can

be used flexibly, such as
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Fig. 1. A multi-modal RBM that modeling the joint distribution of face
images in two modalities. The hidden layer in the model can be seen as a
shared representation of the two input modalities.

1) generating missing modality by sampling from condi-

tional distribution P(v̂1|v̂2),
2) fusing two modalities by sampling from P(h|v̂1, v̂2),
3) inferring shared representation by sampling from

P(h|v̂1) and P(h|v̂2) respectively.

Due to the experience in heterogeneous litera-

ture [21][16][38], this paper uses it for shared representation

inference, which transforms the heterogenous data into

a common space. For the details of multi-modal RBM

learning and inference, please refer to [25][27].

IV. LEARNING SHARED REPRESENTATION

A. Framework
The core of heterogeneous face recognition is modeling

the relationship between different modalities and meanwhile

reserving the discriminative information. To this end, we pro-

pose a framework for heterogenous face recognition by incor-

porating RBM into the traditional face recognition pipeline.

The flowchart of the framework is shown in Figure 2, in

which the heterogenous face images are illustrated by NIR

and VIS for example. First, Gabor features are extracted at

many facial points for two modalities respectively. Based

on the Gabor features, a series of local RBMs are used

to learn the shared representation of two modalities for

each facial point. All local shared representations are then

concatenated and processed by PCA. Finally the similarity

of these modality-free features can be evaluated by Cosine

metric.
The proposed framework has following advantages:

1) Local Gabor feature is the mainstream in face recog-

nition, which has strong discriminative ability and is

robust to variations;

2) The shared representation are learned locally because

the modality gap is smaller in local region, and low

dimensional data is more efficient for computation and

easier to prevent overfitting;

3) PCA can remove the redundance and heterogeneity

further in holistic face.

The details of each step in Figure 2 will be described in

the following subsections.

Ls & Fs L

Solve W
according to Ls→ L

F

F=W(Fs)

Fig. 3. The warping process of facial points. Left: Standard landmarks Ls
(blue dots) and facial points Fs (red dots). Middle: A face image and its
corresponding landmarks L. Right: the warped facial points F for the input
image.

B. Level 1 Representations

The task of level 1 is to extract discriminant and robust

features for each modality. Recently, local features based on

facial points achieved excellent performance in face recog-

nition [4][35], especially in unconstrained face recognition,

e.g., LFW [9]. Although the face images in heterogeneous

databases are both near frontal, facial points are still be used

to deal with the small pose variations.

As shown in Figure 3, a standard set of facial points Fs
are defined for feature extraction and another 48 landmarks

Ls are defined for alignment, similar to [35]. Given a face

image, we need put the facial points to the right place on it.

[35] used a fast 3DMM model to do this work. For simplicity,

this paper uses RBF warping [1] to transform the standard

facial points to the face image. The warping process is shown

in Figure 3. Given the landmarks L of the input image, a

warping function W can be solved based on Ls and L. Then

the warped facial points are calculated by F = W (Fs). We

can see that the facial points can fit the input image well.

The deformation factor of RBF warping is set to 0.1× “eye

distance”.

At the warped 176 × 2 facial points F, local features

are extracted by a Gabor wavelet described in [24]. The

space of Gabor wavelet is sampled in 8 orientations and 5

resolutions, thus giving 5× 8 = 40 features for each facial

point. Since the facial points are defined in a symmetric way,

the features are grouped in left and right halves. Thus we get

two feature vectors with 40×176 dimensions for each face

image. Note that the facial symmetry trick has been used

in many papers [3][19], which can augment the dataset and

improve the computation efficiency.

C. Level 2 Representations

The task of level 2 is to build the relationship between

two modalities. Previous work [34] has proven that the

local relationship is easier to learn than holistic relationship,

therefore we use local RBM to learn shared representation

for each facial point. The structure of the RBMs is 40-80-40,

including two input linear layers and a logistic hidden layer.

Because the dimension of input of the RBM is very low, no

sparse penalty and weight decay are used.
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Fig. 2. The proposed framework for heterogeneous face recognition by combining traditional face recognition modules and local RBMs.

Existing methods, such as CSR [16], CITE [38] and their

nonlinear versions, often learn the relationship in supervised

and discriminative way. Different from them, RBM learns

the joint distribution of the two modalities in a generative

way, so RBM is less affected by overfitting. As described in

[10], the distribution of face is not stationary with respect

to the location in image, so we use many local RBMs to

model the relationship between two modalities, instead of

one holistic RBM.
The level 1 features of two modalities are sent to 176 local

RBMs, and their parameters are learned by using mean-field

inference and an MCMC procedure described in [27]. In the

training stage, the batch size is set to 10 and the number

of batches is set to 50000. After the training is completed,

we can infer the shared representations of two modalities by

sampling from P(h|v̂1) and P(h|v̂2). While sampling from

P(h|v̂1), we treat v̂2 and h as missing data and initialize

them randomly, then generate the hidden representation h by

alternating Gibbs sampler [27]. The hidden representation of

another modality can be generated in a similar way. The

activation probabilities of the hidden layer are called the

shared representation of heterogenous face images. The size

of shared representation of a half face is 80×176.

D. Cross-modal Matching
After the heterogeneity has been removed in local regions,

the heterogeneity over holistic face still exists. As described

in [18], PCA can capture the heterogeneity in its first several

principle components, so we use PCA to process the feature

in a holistic way. First, the 176 local representations are

concatenated into a vector (the dimension is 80 × 176 =
14080) and then the first several principle components of

PCA are removed. The number of removed components is

tuned on the training set or development set. To this stage,

the features of two modalities are actually transformed into a

common space. Their similarity can be calculated by Cosine

metric. And the similarity of two face halves are fused by

sum rule.

We have also tried to learn a discriminative distance

metric by LDA and Metric Learning based on the shared

representations, but got worse results than PCA. The reason

may be due to the limited data. We believe that the supervised

methods will outperform PCA when having larger database

in the future.

V. EXPERIMENTS

To illustrate the superior performance of the proposed

method, we take NIR-VIS face recognition problem to con-

duct experiments. The results on two popular databases, CA-

SIA HFB [19] and CASIA NIR-VIS 2.0 [18], all outperform

the current state-of-the-art methods.

A. Databases

CASIA HFB contains 2095 VIS and 3002 NIR face

images from 202 subjects. We follow the evaluation protocol

in [12] that selects 102 subjects for training and the other 100

subjects for testing. The random selection is repeated in 11

times. The first split (View 1) is used to tune the parameters

of algorithm, and the other 10 splits (View 2) are used to

report the performance.

CASIA NIR-VIS 2.0 is an upgraded version of HFB, the

images in which are captured using the same devices as HFB,

but has larger scale and contains more variations in pose,

facial expression and age. Compared to HFB, NIR-VIS 2.0

is more close to practical applications. This database has

standard evaluation protocols, so we use them directly.

In these two experiments, VIS face images are used as

gallery and NIR face images are used as probe.

B. CASIA HFB

First, Every NIR and VIS face images are processed by

facial points detection and Gabor feature extraction. When



TABLE I

RANK1 RECOGNITION RATES AND VR@FAR=0.1% OF VARIOUS

METHODS ON VIEW 2 OF CASIA HFB.

Rank1 VR
Gabor 59.47±6.72% 33.51±5.70%

Gabor + Remove 20 PCs 94.87±1.72% 71.70±6.42%
Gabor + RBM 98.12±1.13% 84.50±3.75%

Gabor + RBM + Remove 11 PCs 99.38±0.32% 92.25±1.68% 1

NN [12] 88.8% 48.78±3.87%
SR [12] 93.4% 77.56±2.96%

NN + SR [12] 92.2% 79.05±4.48%
Cognitec [12] 93.8% 85.62±2.17%

NN + SR + Cognitec [12] 97.6% 93.45±0.96%
C-DFD [15] 92.2% 65.5%

P-RS [14] - 95.8±6.15% 2

only using Gabor feature, we get very poor results, i.e.,
the Rank1 recognition rate is just 50.47%. By removing

the first 20 principle components of PCA, the differences

between NIR and VIS are reduced significantly. The Rank1

recognition rate of Gabor+PCA increases to 94.87%, but

the VR is still inferior to compared methods. The reason

may be that the first 20 principle components cannot capture

the difference between modalities fully. Thus we think the

heterogeneity and discriminative information are coupled

tightly and need to be dealt with in low level by RBM.

After introducing the RBM, the performance of our

method increases significantly. As shown in Table I, the

VR@FAR=0.1% is improved from 71.70% to 92.25% and

the deviation is also reduced remarkably. Meanwhile, the op-

timal number of removed principle components drops from

20 to 11 (see Figure 4), which indicates that the modality-

free representations are successfully learned by local RBMs.

Compared to other methods in [12] and [15], the Rank1

and VR of our method are obviously higher. The SR (Sparse

Representation) in [12] used the whole gallery to optimize

the matching process, which has been proved can improve

performance, especially in terms of ROC curve. For example,

the VR of our method can be improved from 92.25% to

96.33% by using z-score normalization [11]. Because in face

verification applications we cannot obtain the whole gallery,

we just report the results without using the whole gallery.

By fusing two classifiers and a commercial face recognition

SDK, the VR of NN+SR+Cognitec [12] is still lower than

ours slightly. The reported performance of P-RS [14] is better

than ours, but it is trained on larger training set. And P-

RS is slower than our method because it’s based on kernel

similarities. Although CCA [37], CDFE [21] and CSR [16]

are classical methods for heterogeneous face recognition,

their performances are relative out-of-date (obviously lower

than the numbers in Table I. The reader interested in these

methods can refer Table II in [16] for details.
a) Global, Convolutional and Local RBMs: The layer

in neural network has three popular styles: fully connected

layer, locally connected layer with shared weights (convo-

lutional) and locally connected layer with unshared weights

196.33% with z-score normalization
2133 subjects for training, 67 subjects for testing

TABLE II

THE COMPARISON OF GLOBAL, CONVOLUTIONAL AND LOCAL RBMS

ON VIEW 1 OF CASIA HFB. THE 3RD COLUMN IS VR@FAR=0.1% ON

THE TRAINING SET OF VIEW 1. THE 4TH COLUMN IS VR@FAR=0.1%

ON THE TESTING SET OF VIEW 1.

Architecture VR (Train) VR (Test)
Global 7040-3520-7040 99.94% 1.549%
Conv. 40-80-40 73.31% 71.79%
Local 176×(40-80-40) 99.45% 90.85%

(local). For RBM, we call them as global, convolutional and

local RBMs. To illustrate the advantages of local RBMs,

we plug them into our framework and compare their per-

formances on View 1 of HFB, the information of which

are shown in Table II. The architecture of convolutional and

local RBMs are both 40-80-40. Limited by the memory of

our Geforce GTX670 GPU, the hidden layer of global RBM

only uses 3520 units.

The complexity of the three kinds of RBMs are global >
local > convolutional. Generally, complex models are easier

to overfit to the training set and simple models are prone

to underfitting. The results in Table II prove this point well.

The global RBM just performs well on the training set and

the convolutional RBM performs moderately both on training

and testing set. Among these models, the local RBMs obtain

the best trade-off between complexity and generalization.

Maybe the locality of connection and weight sharing can

be fine-tuned further to get better results, but we leave this

work to the future.

b) Parameter Tuning: As discussed above, the number

of removed principle components greatly affects the perfor-

mance of our method. Generally, if the difference between

modalities is bigger, we need drop more principle compo-

nents. However, there are also some identity information

existing in these components, so we should find a trade-off.

Figure 4 shows the relationship between the performance

and the number of removed principle components on View

1. From the figure we can see that the performance of our

method without RBMs are affected drastically by the first

several principle components. But after using RBMs, the

curves become smoother and quick to reach the optimal

point, which indicates that the heterogeneities are reduced

successfully in local regions by RBMs. Finally, we set the

number of removed PCs to 20 when without RBMs and set

the number to 11 when with RBMs.

c) Failure Cases: Although the Rank1 recognition rate

of our method is very high, there are still four failure cases

on View 1 of HFB, which are shown in Figure 5. From the

figure we can see that the four NIR probe images both have

obvious variations in pose, specular reflectance on eyeglasses

and expression. Even in traditional face recognition, these

factors heavily degrade the performance, thus they are more

difficult to solve when coupling with spectrum variations.

C. CASIA NIR-VIS 2.0

CASIA NIR-VIS 2.0 is a more challenging and practical

database than the above database. The process of this exper-
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iment is as same as HFB, by first tuning the parameters on

View 1 and then reporting results on View 2. From the results

(Table III) we can see that the Rank1 and VR on NIR-VIS

2.0 drop 10-20% compared to HFB. But on this database, the

improvements bringed by removing the first PCs and RBMs

are still obvious, about 40% and 10% respectively.

Because NIR-VIS 2.0 is a relative new database, we

just list the methods in [18] and [5] for comparison. The

results show that the Rank1 recognition rate of the proposed

method is higher than DSIFT+LDA by 12%. Because the

performance of Gabor+PCA is comparable to DSIFT+LDA,

we can know the improvement is mainly produced by RBMs.

Moreover, the proposed method can work well for Sketch-

Photo recognition problem too. We conduct two experiments

on CUFS [32] and CUFSF [38] datasets according to stan-

dard protocols. The Rank1 recognition rate is 100% on CUFS

and is 98.59% on CUFSF which are on a par with the state-

of-the-art results in [38].

TABLE III

RANK1 RECOGNITION RATES AND VR@FAR=0.1% OF VARIOUS

METHODS ON VIEW 2 OF CASIA NIR-VIS 2.0.

Rank1 VR
Gabor 36.18±2.56% 33.37±2.29%

Gabor + Remove 20 PCs 75.54±0.75% 71.40±1.21%
Gabor + RBM 84.22±0.86% 78.39±1.45%

Gabor + RBM + Remove 11 PCs 86.16±0.98% 81.29±1.82%
PCA + Sym + HCA [18] 23.7±1.89% 19.27%

Cognitec [5] 58.56±1.19% -
DSIFT + LDA [5] 73.28±1.10% -

VI. CONCLUSION

This paper proposed a novel framework for heteroge-

neous face recognition by combing RBM and the popular

modules from traditional face recognition methods. Because

of the unsupervised nature of each module, the frame-

work is not prone to overfitting problem, and works well

on many challenging heterogeneous face databases. Based

on Gabor features, the modality-free shared representations

were first learned successfully in low level by many local

RBMs, and further processed by PCA in high level. The

proposed framework outperformed state-of-the-art methods

significantly on CASIA HFB and NIR-VIS 2.0 databases.

Moreover, all experimental results illustrated the success of

local RBMs to learn the shared representations. The future

work will be conducted in two directions: (1) by stacking

many multi-modal RBMs to learn high level representations;

(2) exploring the way to fine tune the model with identity

information.
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