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Our society is witnessing a rapid vehicle electrification process. Even though being environmental-friendly, electric vehicles

have not reached their full potentials due to prolonged charging time. Moreover, unbalanced spatiotemporal charging

demand/supply along with the uneven number of charging stations between heterogeneous fleets make electric vehicle

management more challenging, e.g., surplus charging stations across a city for electric buses but limited charging stations

in some regions for electric taxis, which severely limit the charging performance of the whole electric vehicle network in

a city. In this paper, we first analyze a large-scale real-world dataset from two heterogeneous electric vehicle fleets in the

Chinese city Shenzhen. We investigate their mobility and charging patterns and then verify the practicability and necessity

of shared charging. Based on the insights we found, we design a generic real-time shared charging scheduling system

called sharedCharging to improve overall charging efficiency for heterogeneous electric vehicle fleets. Our sharedCharging

also considers sophisticated real-world constraints, e.g., station spaces, availability of charging points, real-time timetable

guarantee, etc. More importantly, we take the electric bus and electric taxi fleets as a concrete example of heterogeneous

electric vehicle fleets given their different operating patterns. We implement and evaluate sharedCharging with streaming

data from over 13,000 electric taxis and 16,000 electric buses, coupled with the charging station data in the Chinese city

Shenzhen, which is the largest public electric vehicle network in the world. The evaluation results demonstrate that the

proposed sharedCharging reduces the waiting time by 63.5% and reduces the total charging time by 15% on average for e-taxis.
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1 INTRODUCTION

Vehicle electrification has been a worldwide popular trend because of the environmental-friendly nature of
electric vehicles (EVs) and ever-increasing concerns over the security of energy supply [43]. There are over
385,000 electric buses (e-bus) in 2017 globally, and it is predicted that the figure will increase to 1.2 million by
2025, which is nearly the half of the worldwide city bus fleet [12]. New York City has the initiative to replace
one-third of its taxis with EVs by the end of 2020 [9]. In addition, it is expected more than 9,000 electric taxis
(e-taxi), roughly 50% of the current taxi fleet in London, will run on London’s roads by 2021 [32]. Moreover, there
is an increasing number of countries deciding to ban fossil fuel vehicles and expecting all EVs in their countries
[46], which indicates that EVs have a promising future [1].
Although the obvious advantages of mitigating air pollution, the unique characteristic of commercial EVs,

i.e., long daily operating time compared to private vehicles, results in higher energy consumption and more
frequent charging activities, which make it essential to deploy a large number of charging points to satisfy their
daily operations [42]. However, some real-world factors, e.g., expensive costs of charging infrastructures, make it
challenging to deploy abundant charging points to avoid long queuing phenomena in charging stations at the
early promotion stage. For example, the average cost for building a charging station with only 10 charging points
will be over 735,000 US dollars [17]. In addition, land resources for charging stations are extremely scarce in
some large cities, e.g., New York City, Beijing, and Shenzhen. Hence, high infrastructure costs and the limited
land resources make it difficult to have abundant charging stations and charging points for all EVs. Finally, even
though there is theoretically enough charging infrastructure for all EVs, the uncontrolled and decentralized
charging behaviors of some EV fleets, e.g., e-taxi fleets, cause the long queuing phenomena for available charging
points when they intensively charge during some specific time durations [43].

Much existing research [7, 24, 25, 27, 50] focuses on how to choose the optimal locations for charging stations
and how to assign charging points in each station tominimize the charging time of EVs considering some passenger
demands or cost constraints. However, to our knowledge, almost all these works [7, 25, 28, 41, 44, 50ś52] only
consider one fleet (e.g., only e-taxis [7, 25] or e-buses [44]). Different mobility patterns and charging patterns
of heterogeneous EV fleets have not been considered based on real-world data. Moreover, only considering
a single fleet may achieve a local optimum but the global optimum can hardly be obtained since some other
fleets’ charging infrastructures may potentially be used to improve the charging efficiency of the whole charging
network. In this paper, we argue that shared charging has the potential to solve this local optimum problem
and enhance the overall charging efficiency for all fleets in urban transport networks through resource sharing.
However, shared charging among heterogeneous EV fleets is also extremely challenging caused by their different
operating patterns.

• Heterogeneous EV fleets (e.g., e-taxis and e-buses) with different purposes have various operating patterns,
which leads to different mobility patterns. For example, buses are large and have fixed routes with
timetable constraints to satisfy the passenger demand; whereas taxis are small and have flexible operating
time since they cruise around the city to meet the stochastic travel demand. These different operating
patterns lead to various real-world constraints, which makes the shared charging scheduling challenging.

• Different charging policies for heterogeneous EV fleets because of their purposes result in unbalanced
spatial distributions of charging resources and different charging patterns. For example, transit buses
are operated for satisfying peoples’ daily life, so e-bus operators can obtain enough land resources to deploy
charging points across a city for satisfying buses’ daily operation, while e-taxi charging stations are mostly
in some areas due to their business characteristics. In addition, e-buses are under centralized management
of bus operators, and their charging schedules are controllable. Based on real-world observations and
our data analyses, e-bus companies tend to charge their e-buses at midnight to reduce their operating
costs due to the time-varying electricity pricing mechanism (i.e., low electricity price in off-peak night

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 108. Publication date: September 2019.



sharedCharging: Data-Driven Shared Charging for Large-Scale Heterogeneous Electric Vehicle Fleets • 108:3

hours) [44], which results in many charging points in e-bus charging stations are unoccupied during the
daytime. While we found e-taxis always have several intensively charging peaks in the daytime due to
their two-shift operating pattern and limited battery capacity, which causes prolonged waiting time in
charging stations. These observations are shown in our data-driven investigation in Section 3. Hence, the
unbalanced deployment of charging stations and different charging patterns make the shared charging
more challenging.

Combining the above two factors, it is challenging to schedule large-scale heterogeneous EV fleets for shared
charging under a real-world data-driven setting. To solve these challenges, in this paper, we design sharedCharging,
a real-time shared charging scheduling system for heterogeneous EV fleets, which schedules different sizes of
EVs with different operating patterns (e.g., e-taxis and e-buses) to improve the overall charging efficiency of the
charging network in a city. In particular, the key contributions of this paper include:

• To the best of our knowledge, this is the first data-driven framework to coordinate the charging events
of large-scale heterogeneous EV fleets with different operating patterns and social purposes, which aims
to improve the overall charging efficiency (e.g., reducing the charging overhead, balancing the uneven
charging resource allocation and utilization) by sharing charging resources. We conduct a comprehensive
comparative study on mobility and charging patterns of two heterogeneous EV fleets, including over
13,000 e-taxis and 16,000 e-buses in the Chinese city Shenzhen, to identify their real-world features and the
potential benefits of shared charging, which have not been studied before.

• Based on the insights obtained from our data-driven comparative analyses, we design a shared charging
scheduling system called sharedCharging, where we formulate a heterogeneous EV fleet scheduling problem
into a classical scheduling problem (i.e., two-type heterogeneous multiprocessor real-time scheduling).
Moreover, sharedCharging considers a few real-world constraints, e.g., station spaces, availability of
charging points, real-time timetable guarantee, and drivers’ participation rates when making scheduling
decisions, which make our sharedCharging more practical for real-world implementation.

• More importantly, we implement and extensively evaluate our sharedCharging based on a real-world
dataset from two heterogeneous EV fleets in the Chinese city Shenzhen. The evaluation results indicate
that our shared charging scheduling reduces the charging waiting time by 63.5% and the total charging
overhead by 15% on average for each charge of e-taxis, while keeping timetables of the e-bus fleet at the
same time. Moreover, sharedCharging effectively improves an unbalanced charging station utilization
problem for both of the two EV fleets.

• Finally, we provide some in-depth discussions for the insights and lessons learned from our data-driven
investigation and scheduling, which can potentially provide policy guidelines and experiences for other
cities that plan to promote large-scale heterogeneous EV fleets and shared autonomous EVs in the future.

The rest of the paper is organized as follows. Section 2 introduces our dataset. Section 3 presents a detailed
data-driven investigation. Section 4 describes the design and implementation of sharedCharging. Section 5
evaluates the performance of sharedCharging. Some lessons learned and limitations are summarized in Section 6.
In Section 7, we discuss the related work, followed by the conclusion of this paper in Section 8.

2 DATA DESCRIPTION

By collaborating with Shenzhen Transportation Committee, we are fortunate to have access to an extremely
large real-world EV dataset collected from the Chinese city Shenzhen. Shenzhen has 12 million population, and
its size is about 792 mi2. Our datasets include data from two large-scale heterogeneous EV fleets, i.e., a 16,000
e-bus fleet and a 13,000 e-taxi fleet. One of the most popular e-bus models in Shenzhen is BYD K9 [8]; whereas all
e-taxis in Shenzhen are BYD E6 [2]. The specifications of the two EV models are in Table 1.
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Table 1. Specifications of one type e-taxi model and e-bus model in Shenzhen.

Model Battery Capacity Charging Rate Maximum Distance Maximum Speed

BYD E6 57 kWh 30 kW 300 km 140 km/h

BYD K9 324 kWh 100 kW 250 km 90 km/h

Table 2. An example of all datasets.

Bus GPS
plateID lineID longitude latitude time

BSXXXXD M4893 114.022901 22.532104 2018-01-14 00:00:04

Taxi GPS
plateID longitude latitude time speed(km/h)

SZDXXXX 114.022901 22.532104 2016-06-16 08:34:43 22

Charging Station
stationID stationName longitude latitude number of charging points

30 NB0005 113.9878608 22.55955418 40

Road Network
roadID startLongitude startLatitude endLongitude endLatitude

27813 114.426971 22.604326 114.4370363 22.5904528

There are four different types of data sources used in this paper, i.e., the bus GPS data, the taxi GPS data, the
charging station data, and the road network data. An example including some primary fields of each of the four
datasets is shown in Table 2, followed by their details.

• Taxi GPS Data include over 80 billion taxi trajectory points with a size of over 15 TB from June 2013
to September 2018, coupled with transaction data of passengers. Each GPS record consists of 13 fields
that describe stationary attributes and dynamic information of a taxi, e.g., the vehicle ID, the longitude &
latitude, time-stamp, speed, and the occupied flag. The GPS data are collected by an onboard device in each
taxi with a cellular connection.

• Bus GPS Data include over 8 TB data from the same duration with taxi GPS data. Each bus GPS record
comprises 19 fields that describe vehicle ID, line ID, position (i.e., the longitude and latitude), time-stamp,
current direction, current speed, odometer reading, etc.

• Charging Station Data include the ID and name of each e-bus and e-taxi charging station, the station
location (i.e., longitude and latitude), the number of charging points in each charging station, and the
opening date for these stations.

• Road Network Data include all 135 thousand road segments and 87 thousand road intersections in
Shenzhen. Each road segment has a road ID, road name, its length, road types, etc.

Based on these datasets, we utilize different approaches to extract charging events in charging stations of
e-taxis and e-buses from their GPS data. For e-taxis, their GPS modules will still upload records to our servers
when they are charging, so we utilize a widely used spatiotemporal constraint-based method from existing works
[25, 41] to extract their charging events. For the temporal constraint, we extract the potential charging events
from e-taxis’ trajectory data based on the fact that an e-taxi will stay for a long time (e.g., 30 minutes) at the
same location to have a charge, which is represented by a sequence of GPS data points in the same position. Next,
we consider the charging station location data, i.e., the spatial constraint to obtain true charging events, which
means the charging events must happen in charging stations (e.g., ranges of using charging station locations as
centers and 200 meters as radii [41]). We also conducted a set of field studies to filter some noise and verify the
algorithm performance at different charging stations in Shenzhen on June 20th, 2017 and May 26th, 2018. The
results show that this method can yield an accuracy of 96%. For e-buses, their GPS modules will stop uploading
records when they are charging, so we can easily extract their charging events from their GPS data, which means
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that the interval between two adjacent GPS records larger than a threshold (e.g., 30 minutes) is extracted as a
charging event of an e-bus.

3 DATA-DRIVEN INVESTIGATION

In this section, we conduct a comprehensive comparative investigation on mobility and charging patterns of
two heterogeneous EV fleets based on the real-world data described in Section 2, from which we show the
practicability and opportunity for shared charging.

3.1 Mobility Patterns of Heterogeneous EV Fleets

Figure 1 and Figure 2 show mobility visualizations of Shenzhen e-taxi and e-bus fleets on road segment levels.
The yellow parts stand for more EV activities, e.g., more GPS records at those locations, and the red parts mean
fewer vehicle activities. We found that the e-bus fleet has larger high-density coverage than the e-taxi fleet in
Shenzhen. The reason is that all buses in Shenzhen are e-buses and they travel across the city to serve passengers,
so most road segments with bus lines have higher GPS density. However, different from traditional gas taxis,
e-taxi drivers prefer to cruise near charging stations due to their łrange anxietyž [41] or places with higher
passengers’ travel demand, which results in more concentrated activities of e-taxis in these areas. The figure
between Figure 1 and Figure 2 shows the number of e-taxi and e-bus GPS records on road segments. We found
that over 85% of road segments have more than 104 e-bus GPS records per day; whereas the percentage is about
20% for the e-taxi fleet. These phenomena indicate e-taxis have a concentrated and limited activity range, which
may cause some charging stations overcrowded and long waiting time for available charging points.

Fig. 1. E-taxi activities in Shenzhen. Fig. 2. E-bus activities in Shenzhen.

From Figure 3, we found that the daily operating distance of 92% of e-buses is shorter than 250 km; whereas the
daily operating distance of only 2% of e-taxis is shorter than 250 km. Figure 4 shows the Cumulative Distribution
Function (CDF) of operating distances of e-buses and e-taxis between two continuous charges (i.e., per-charge
distance). We found that e-buses and e-taxis have similar patterns. Moreover, about 80% of e-buses and e-taxis
will charge before operating over 185 km, although e-buses travel a slightly longer distance than e-taxis after
charging due to their larger battery capacity. Considering both the daily operating distance and per-charge
distance, we found that e-taxis potentially have a higher charging frequency than e-buses, results in more daily
charging events of e-taxis.
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Fig. 3. Daily operating distance. Fig. 4. Operating distance after a charge.

3.2 Charging Patterns of Heterogeneous EV Fleets

Under Charging Time: Figure 5 and Figure 6 show the cumulative daily under charging time (i.e., with chargers
plugged in) and per-charge time of e-taxis and e-buses. We found that e-buses tend to have longer under charging
time than e-taxis, e.g., about 88% of charging events of e-taxis are shorter than 2 hours but only 58% of charging
events of e-buses are shorter than 2 hours because of their different battery capacities, and there is a similar
pattern for the daily under charging time as shown in Figure 5, which implicitly indicate that e-taxis may prefer
shorter under charging time to save time for operating. The typical number of charges in a day for e-taxis and
e-buses are 2-4 and 1-2, respectively.

Fig. 5. Cumulative daily under charg-

ing time.
Fig. 6. Time for a charge. Fig. 7. CDF of time to stations and

waiting time in stations of e-taxis.

Traveling Time & Waiting Time of E-taxis: We then study the time an e-taxi spend for going to charging
stations (i.e., traveling time) and the time for waiting for available charging points in stations (i.e., waiting time).
Figure 7 shows the CDF of the traveling time to charging stations and the waiting time in stations of e-taxis.
Although 60% of the charging activities’ traveling time is shorter than 10 minutes, there are still 20% of charging
activities where drivers need to travel over 20 minutes to charging stations. Some drivers even need to spend
more than an hour to go to a charging station. For the waiting time, we found that 80% of charging activities has
waiting time shorter than 10 minutes, but there are still 15% of charging activities costing more than 20 minutes
for waiting. Hence, one intuitive idea is that if e-taxis can utilize e-bus charging stations, their traveling and
waiting time can potentially reduce, which is validated in Section 5.

Figure 8 shows the average traveling time and waiting time of the e-taxi fleet spent for charging. We found
that the waiting time has a similar pattern with the charging event distribution of e-taxis in Figure 9, e.g., longer
waiting time happens at 0:00-4:00 and 16:00-18:00, which are the charging peaks of the e-taxi fleet. Since the
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Fig. 8. Average time to stations and wait-

ing time in stations of e-taxis.

Fig. 9. Charging events distributions of

e-taxi and e-bus fleets.

charges of e-buses are centrally managed by the operators, the traveling time of e-buses is controllable given that
their scheduling decisions are always made when they arrive at terminals. The waiting time is also is controllable
since bus operators have charging scheduling plans for their fleets to guarantee the daily operation, which is
different from e-taxis charging where e-taxi drivers make charging decisions by themselves. Hence, the waiting
time of e-buses is also controllable, so we do not show the traveling time and waiting time of e-buses here.

3.3 Opportunities for Shared Charging

The obvious differences of mobility and charging patterns between the e-bus fleet and e-taxi fleet leave us an
interesting question: can we share their charging resources together and achieve a better charging efficiency for the

whole charging network? To answer this question, we first analyze the charging event distributions of the two EV
fleets, and then we investigate the existing charging infrastructures for the two EV fleets to investigate if there
are enough charging points to satisfy the charging demand of individual fleets. Finally, we found that there are
both temporal and spatial opportunities to enhance the overall charging efficiency (e.g., reduce the waiting time)
of the e-taxi fleet by sharing the charging infrastructure with e-buses.

Figure 9 shows the charging event distributions of the two EV fleets in 24 hours of a day. We found that there
are three charging peaks of the e-taxi fleet, i.e., 1:00-5:00, 12:00-14:00, and 16:00-18:00. For the e-bus fleet, there
are only two charging peaks in 12:00-14:00 and 21:00-1:00. Comparing the charging event distributions of the
two fleets, we found that they have some common peaks, e.g., 12:00-14:00, which is because both e-taxi and e-bus
drivers can have lunch and rest during this low passenger demand period. However, during some other periods,
e.g., 16:00-18:00, the e-bus fleet has a lower charging demand, but the e-taxi fleet has a higher charging demand.
This is because most e-taxi drivers will have a shift during 18:00-19:00, and they need to return a fully charged
e-taxi to their colleagues. This finding provides a temporal opportunity for the shared charging since we can
schedule some e-taxis to charge in e-bus charging stations during some e-taxi charging peak durations.
The spatial distributions of the charging stations for the two EV fleets are shown in Figure 10, where yellow

circles stand for e-taxi charging stations and blue triangles mean charging stations for e-buses. The sizes of
the circles or triangles stand for the number of charging points in each station, e.g., a larger circle means more
charging points in this station. We found that most large stations for e-taxis are located in the downtown area, but
most large stations for e-buses are in the suburban areas. There is also a distinct difference between the number
of the two types of charging stations, i.e., 405 e-bus charging stations vs. 117 for e-taxis. Certainly, we need also
consider the number of charging points for the two fleets. There are over 5,000 charging points for e-buses while
fewer than 4,000 charging points for e-taxis. In addition, the figure also shows that e-buses charging stations are
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Fig. 10. Charging stations of e-taxis and e-buses.

distributed across the city, but e-taxis charging stations are concentrated in some regions. Hence, we found that
there is an unbalanced number of charging stations for the two heterogeneous EV fleets even though the number
of charging points are similar.
Based on the above finding of the unbalanced number of charging stations for heterogeneous EV fleets, we

further investigate the potential spatial benefits for the e-taxi fleet if it utilizes charging points for e-buses.
Definition 1: We define the charging network connectivity for an EV fleet as the percentage of the number of
stations that have the nearest charging station in K km among all stations, as follow: where Conn(nk ) is the k
connectivity of the charging network n. CS(k) is the number of charging stations which have neighbors in K km.
N is the total number of charging stations in this charging network.

Conn(nk ) =
CS(k)

N
, (1)

Fig. 11. Charging station distance.

Figure 11 shows the CDF of the distance between charging stations. We
found that the charging network connectivity of e-buses is higher than of the
e-taxi charging network. The connectivity will be much higher if we combine
the two networks together. More specifically, as shown at the top corner
of the Figure 10, the 2 connectivity of the e-taxi charging network would
increase from 69% to 98% if e-taxis can leverage the charging stations for
e-buses, which means that e-taxis can find a nearer charging station easily.
Moreover, we also conclude that an e-taxi could find another charging station
within shorter distances by considering e-bus charging stations if it reaches
a charging station without available charging points.
Moreover, all EVs and chargers have the same charging interface standard in China [38], so it is feasible for

e-buses and e-taxis to share charging infrastructures. In addition to China, some other countries or regions
also have their standards for EV charging, e.g., Europe [31], US [16], etc. A difference between various kinds of
charging infrastructures is their charging rates, which can be considered as fast charging mode or slow charging
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mode for heterogeneous EVs. In some other regions, it is also feasible for EVs to utilize adapters to accommodate
different chargers even with different interfaces. Hence, we do not need to rebuild new infrastructures for shared
charging of heterogeneous EV fleets, which provides a good realistic opportunity to utilize existing charging
infrastructures to improve the overall charging efficiency of heterogeneous EVs instead of spending extra costs
for more charging stations.

Based on the above data-driven investigation combined with real-world considerations and field studies (shown
in Section 5.1), we conclude that it is practical and beneficial to share charging stations for heterogeneous EV
fleets to improve the overall charging efficiency of the urban charging networks.

4 SHAREDCHARGING: SCHEDULING DESIGN

Currently, there are many heterogeneous EVs (e.g., e-buses, e-taxis, and e-trucks), which have various sizes and
operating patterns for different purposes. These heterogeneous fleets may be operated by different companies,
e.g., two different companies operate e-taxis and e-buses, respectively. Large size e-buses serve people with
relatively fixed travel demand and small size e-taxis cruise in a city to satisfy sporadic travel demand. Also, the
same company can also have heterogeneous EV fleets, e.g., the United Parcel Service (UPS) has different sizes of
e-trucks for package delivery. These heterogeneous fleets may be jointly considered to charge for higher charging
efficiency. In this paper, we consider e-taxis and e-buses as concrete examples of our heterogeneous fleets. We
provide more discussions on the practicality of shared charging scheduling in Section 6.

4.1 Key Idea of sharedCharging

Before we formulate our problem, we consider a few real-world scenarios for e-buses and e-taxis in Shenzhen as
our design guideline as follows. Currently, most e-bus charging stations are deployed in bus terminals, which
belong to Shenzhen bus companies. E-buses can only be charged at their own terminals, so their charging demand
is more predictable and controllable, even though multiple e-bus lines may share the same bus terminal and thus
they can be charged together. In contrast, e-taxis may have charging demand at arbitrary locations because of
their stochastic cruising patterns. In Shenzhen, the e-bus charging network and the e-taxi charging network are
unconnected, which means that charging infrastructures of e-buses and e-taxis are exclusive for each other and
cannot be shared due to logistic reasons.
As a result, the above real-world constraints, along with the unbalanced charging supply deployment and

different operating/charging patterns (as we presented in Section 3) result in low charging efficiency for the whole
charging network. Hence, in this paper, we envision that heterogeneous EV fleets can share their charging stations,
combined with centralized scheduling, to improve their charging efficiency. Intuitively, we can straightforwardly
combine the e-bus charging network and e-taxi charging network together. However, in practice, e-buses are
much larger than e-taxis, so e-buses need spacious parking lots for them to park and charge, and e-taxi charging
stations are normally too small for e-buses to charge. Most importantly, the charging rate of an e-bus charger is
100 kW, and the charging rate of an e-taxi charger is 30 kW, which means the charging time of e-buses in e-taxi
charging stations will be over three times than in e-bus charging stations, which make it impractical to schedule
e-buses to e-taxi charging stations, and more reasons will be shown in Section 4.3.
Therefore, the key idea of sharedCharging is that: (i) we schedule e-taxis to charge in either their own

charging stations or in charging stations for e-buses if it achieves better charging efficiency, e.g., reducing
charging overhead; (ii) we schedule e-buses to charge in either their own charging stations (i.e., terminals) or
serving another line which has a same terminal with its current line and then charge in other bus lines’ terminal
if it achieves better overall charging efficiency, e.g., reducing charging time for e-taxis or balancing the utilization
rates of e-bus charging stations). At the same time, we also guarantee timetables of all e-bus lines, which means
sharedCharging will not interrupt the operation of the e-bus fleet.
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Our sharedCharging can provide benefits for both the e-taxi fleet and the e-bus fleet. For e-taxis, sharedCharging
provides them more places to charge, which can potentially reduce their waiting time at charging stations during
charging peak durations and traveling time to charging stations. In addition, the utilization of e-taxi charging
stations will be more balanced under sharedCharging scheduling. With sharedCharging, an e-bus can go different
terminals to charge instead of staying at the original two stations, which provides more charging location options
for e-buses. Moreover, sharedCharging will balance the utilization of e-bus charging stations without disrupting
the normal operation of the e-bus fleets, which reduces charging resource waste and increases the utilization
rates of e-bus charging stations due to extra charging events from e-taxis. Combining the benefits for e-taxis and
e-buses, sharedCharging can improve the overall charging efficiency for heterogeneous EV fleets. More details
are shown in the following part of this section.

4.2 Charging Process of Heterogeneous EV Fleets

Suppose there are two large-scale heterogeneous EV fleets in a city, e.g., an e-taxi fleet and an e-bus fleet. We con-
sider the e-taxi fleet hasn e-taxis ST = {ET1,ET2, ...,ETn} and the e-bus fleet hasm e-buses SB = {EB1,EB2, ...,EBm}.
There are two sets of charging stations, i.e., e-taxi charging station CST = {CST1 , CST2 , ..., CSTm1 } and e-bus
charging station CSB = {CSB1 , CSB2 , ...,CSBm2 }. The number of charging points in each charging station is |CSi |,
for i ∈ {T1,T2, ...,Tm1,B1,B2, ...,Bm2}. The two EV fleets send a sequence of sporadic charging requests τ =
{{Rb }, {Rt }} = {{Rt1 ,Rt2 , ...,Rtr 1 }, {Rb1 ,Rb2 , ...,Rbr 2 }} during their daily operation. For each charging activity of
EVs, there are three stages (i.e., traveling, waiting, and service), which can be extracted from GPS data [7, 25, 41].

As shown in Figure 12, an EV sends a charging request at t0, then it will be scheduled to a charging station and
it arrives the charging station at t1, so |tt | = t1 − t0 is the traveling time we define in Section 3.2. (Note that in the
current situation, e-taxis drivers make scheduling decisions by themselves, which means they will choose where
to charge based on their experience.) When it arrives at the charging station at t1, all charging points may be
occupied, so it queues for an available charging point to t2, and |tw | = t2 − t1 is the waiting time in Section 3.2.
|tw | = 0 if there are unoccupied charging points available when the EV arrives at the charging station. At t2, the
EV will start to charge and finish the charging process by t3. Then, the time duration from t2 to t3 is called service

time, which is |ts | = t3 − t2. The total time of the charging process is
�

�tp
�

�

= t3 − t0 = |tt | + |tw | + |ts |.

Fig. 12. Charging process of EVs.

4.3 sharedCharging Charging Scheduling

We design a charging scheduling algorithm sharedCharging to enhance overall EV charging efficiency by sharing
unconnected charging resources of heterogeneous EV fleets. sharedCharging is developed and solved through
transforming the shared charging scheduling into a classical processor scheduling (i.e., two-type heterogeneous
multiprocessor real-time scheduling) problem with the self-suspend [4, 33]. CPU/GPU scheduling [19, 21] is an
active and popular research direction in the Computer Science field, and many CPU/GPUworks can be generalized
to other domains. We quantified some similarities between EV charging and multiprocessor scheduling and then
leverage effective algorithms for the heterogeneous multiprocessor real-time scheduling to solve it. In the next
part, we first introduce the two-type heterogeneous multiprocessor real-time scheduling.

4.3.1 Two-Type Heterogeneous Multiprocessor Real-Time Scheduling. Considering a set of sporadic real-time
including n tasks τ = {τ1,τ2, ...,τn} to be scheduled on a two-type heterogeneous multiprocessors c, which
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consists of a set of heterogeneous cores, and the collection of cores with the same type is called a cluster, so there
are two clusters c1 and c2 on the two-type heterogeneous multiprocessor. For each cluster ck , it consists ofmk

identical cores of type-k (k ∈ {1, 2}) onto which the individual tasks are scheduled. For each task, it may have
different execution rates on different clusters, e.g., r 1i and r

2
i in this two-type heterogeneous multiprocessors,

where i is the ith task. There are three types of heterogeneous multiprocessors scheduling based on if tasks can
be migrated between cores, i.e., non-migrative, intra-migrative, and fully-migrative. Note that among the three
scheduling methods, no single task can run on multiple cores at the same time even though the task may migrate.
These tasks may self-suspend [3, 6, 26] due to shared resource accessing on a multiprocessor platform.

4.3.2 sharedCharging Charging Scheduling Equivalent. Under the heterogeneous EV charging scheduling scenario,
we consider a set of sporadic charging requests/tasks τ running on a two-type heterogeneous charging network c,
which consists of two types of heterogeneous charging stations, i.e., e-bus charging stations and e-taxi charging
stations, which is equivalent to a two-type heterogeneous multiprocessor. Each charging point is considered
as a CPU core, so charging points for e-buses and e-taxis are two sets of heterogeneous core clusters c1 and
c2 with different execution rate r 1i and r 2i . (i) Considering practical situations, drivers would not want to be
interrupted when their EVs are charging, so the shared charging scheduling should be non-preemptive, which
means other later tasks cannot preempt ongoing charging activities. (ii) Since an EV cannot teleport from one
charging station to another charging station, the shared charging scheduling should be non-migrative. Under
non-migrative scheduling, once tasks are assigned to cores, the scheduling problem is reduced to a collection of
independent unicore or identical-multicore scheduling problems, which have been well studied and can be solved
by existing methods [4, 34]. As we described in Section 4.2, a charging process of an EV includes three stages,
which correspond to a suspension stage, another suspension stage, and an execution stage in the heterogeneous
multiprocessor real-time scheduling, respectively. A mapping of charging scheduling to multiprocessor scheduling
can be found in Table 3.

Table 3. Multiprocessor scheduling vs. charging scheduling.

Charging Scheduling CPU Scheduling Charging Scheduling CPU Scheduling

Charging Station Processor Traveling Suspension

Charging Point Core Waiting Suspension

Charging Rate Execution Rate Service Execution

4.3.3 The Global Earliest Deadline First Algorithm. In this part, we show how we solve the charging scheduling of
heterogeneous EV fleets based on a classical method for the heterogeneous multiprocessor real-time scheduling,
i.e., Global Earliest Deadline First (GEDF) [40]. We modify GEDF to accommodate and effectively solve our
heterogeneous EV charging scheduling problem.
The heterogeneous multiprocessor real-time scheduling includes two stages [33]: (i) assigning tasks to each

processor and (ii) performing uniprocessor scheduling on each processor once tasks are assigned to processors.
For the latter problem, it has been well-solved by using EDF algorithm [7], where the non-preemptive issue is
also addressed. Since EVs have no deadlines, we set the charging finish time as the scheduling deadline. Then,
for the first problem, since in two-type heterogeneous multiprocessor scheduling, a task can be scheduled to
any processor, and the heterogeneous multiprocessors have different execution rates r 1i and r

2
i , so one task has

different finish times. However, in our charging scheduling, e-buses can only charge in e-bus charging stations
due to real-world charging space limitation. In a real-world charging scenario, the charging rate of e-buses
charging station is 100 kW, and the charging rate of e-taxis is 30 kW, which means the charging service time
of e-buses in e-taxi charging stations will be over 3 times than in e-bus charging stations. It means that e-bus
charging tasks will always be scheduled to the high execution rate processor under GEDF, which is the equivalent
of the e-bus charging network. In that case, we can keep the constraint that e-buses only charge in e-bus charging
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stations. Hence, we utilize a modified GEDF algorithm with the corresponding mapping to effectively solve the
heterogeneous EV fleets scheduling problem.

For our modified GEDF, which is more efficient than the standard GEDF. Specifically, our modified GEDF can
address problems with asymmetric compatibility. For example, in our heterogeneous EV scheduling scenario,
e-taxis can charge in both e-bus and e-taxi charging stations, while e-buses can only charge in e-bus charging
stations. A direct benefit is that the algorithm’s search space for charging requests from e-buses could be reduced,
so our algorithm is faster than the standard GEDF, which makes our algorithm more practical for real-time
scheduling even with large-scale EVs.

4.3.4 sharedCharging Charging Scheduling Decisions. In this part, we show how we share charging infrastruc-
ture of different EV fleets to achieve a better social benefit without damaging either of the fleets under the
heterogeneous multiprocessor real-time scheduling with a self-suspend scenario.
In this work, we focus on the real-time charging scheduling for heterogeneous EV fleets, considering some

real-world constraints, e.g., spaces in charging stations, charging rate difference, and the availability of charging
points in charging stations. Our sharedCharging can schedule e-taxis to charge in e-bus charging stations if
it can reduce charging overhead of e-taxis, and e-buses can also be rescheduled to charge in other e-bus lines’
charging stations if they share the same terminal. We estimate the reachability of e-buses to other charging
stations by considering their real-time battery levels and the expected energy consumption on different lines,
which is related to road lengths, traveling time, and traffic and can be predicted with the historical and real-time
GPS records [10, 11, 44, 48, 53].
As shown in Figure 13, e-bus line L1 and line L2 share the same terminal/charging station CSB1, and there

are many e-buses serving for the two lines. Currently, EB1 can only charge in CSB1 and CSB2. E-taxis ET1
can only charge at taxi charging stations CST 1 and CST 2. However, under our sharedCharging scheduling, we

Fig. 13. Charging scheduling.

can schedule e-taxis to charge in e-bus charging stations and e-buses can be
rescheduled to charge in other e-bus lines’ charging stations if they share
some same terminals. For example, we can schedule ET1 to charge in CST 1,
CST 2, CSB1, CSB2, and CSB3. For EB1, sharedCharging can also schedule it to
serve line L2 and then charges in CSB3. Since both charging requests/tasks
of e-buses and e-taxis arrive in an online fashion, sharedCharging schedules
the charging task of e-taxis and e-buses one by one. All scheduling decisions
will be based on the charging tasks’ arrival time, i.e., first come first serve

(FCFS). We do not utilize the batch scheduling for better performance because it is impractical to let e-taxi drivers
stop there and wait for our scheduling decisions.

After receiving a charging task, sharedCharging will schedule a charging point (i.e., equivalent of a CPU core)
for it, and then the charging point will suspend until the EV plugs in a charging point. During the whole charging
process, the charging point will be occupied by this EV and cannot be preempted until it finishes charging. The
traveling time |tt | of an EV EVx is decided by the distances and traffic conditions to charging stations. The waiting
time |tw | is related to the number of EVs under charging, the number of queuing EVs in front of EVx at this station,
and the number of charging points |CSi | in this station. In the worst case, all charging points are occupied and
there are some EVs queuing in front of EVx , so it needs to wait for an EV fully charged and to leave. Note that it
is theoretically impossible for scheduling more than |CSi | vehicles to a station due to the long charging duration
of EVs, and it is also consistent with our observations, so the waiting time of EVx is bounded bymax(|ts |) of EVs
which are charging in this station, which means that EVx can definitely obtain an unoccupied charging points
once the EV in front of EVx with the longest charging service time gets fully charged and leaves. The charging
service time |ts | is decided by the remaining battery level of EVx and the charging rate r of the charging points.
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(a) Scheduling Decisions for E-buses: Since e-buses usually have fixed timetables to satisfy passengers’ travel
demand and they can only charge at their terminals, so they always have relatively stable and controllable
charging plans, and it is easy to estimate the charging time for each e-bus [44]. Under sharedCharging charging
scheduling, each e-bus has three charging scheduling decisions when they have a charging request in a charging
station:

(1) Charging at the current station, e.g., EB1 charges at CSB1;
(2) Serving its original line L1 and charges in another terminal of this line, e.g., EB1 charges at CSB2;
(3) Serving another line that shares the same terminal with L1 and then charging in another terminal of the

new line, e.g., EB1 serves a new line L2 and then charges at CSB3.

Taking EB1 for example, the decision (i) is the normal scheduling for it. Since this decision follows the prefixed
schedule, the timetable is always guaranteed. The decisions (ii) and (iii) are made when an e-taxi can have shortest
charging overhead if it leverages the e-bus charging point for EB1, so the e-bus will go to another charging
station to charge and leave the charging points for e-taxis. Another constraint for (ii) and (iii) is that there must
be another e-bus in this terminal that can replace the operation of EB1 to guarantee the timetable of the line L1.
If both (ii) and (iii) are available, we prioritize the EB1 to serve its original line to reduce the impact on the bus
network. More importantly, we leverage the energy difference to break the tie if multiple lines are available under
the decision (iii), which means we schedule the e-bus to serve the line with the least energy consumption since it
may relieve the łrange anxietyž of e-bus drivers and ensure the e-bus can arrive the new charging station. Hence,
all e-bus lines’ timetables are guaranteed, i.e., the real-time requirement is satisfied, and the service quality of the
e-bus network will not decrease.
(b) Scheduling Decisions for E-taxis: There are three different scheduling decisions for an e-taxi charging
request under sharedCharging scheduling:

(1) Scheduling an e-taxi to an e-taxi charging station and achieving the optimal performance, e.g., the minimum
charging overhead (i.e., the earliest deadline). For example, if ET1 has a charging request near CST 1 and
there are charging points available in CST 1, sharedCharging will schedule ET1 to charge in CST 1.

(2) If CSB1 can bring the smallest charging overhead for ET1, and there are unoccupied charging points in
CSB1, we then estimate the accessibility of the charging stations during the charging period of ET1 based
on predictable charging plans of e-buses in CSB1. If there are charging points available in CSB1 during
the charging duration of ET1, sharedCharging then schedules it to charge in CSB1, but if there are some
e-buses need to charge in CSB1, e.g., EB1 for line L1 is waiting in CSB1 for charging but this station is the
optimal charging choice for ET1, we then check if EB1 has enough energy to serve line L1 and then charge
in CSB2. If there are no charging points available in CSB2 or the battery capacity of EB1 is insufficient for
L1, sharedCharging will continue to search for other shorter lines that share the same terminal with L1,
e.g., line L2, to decide if the remaining energy of EB1 is sufficient for serving L2 and there are unoccupied
charging points in CSB2. If the above candidate lines exist, we still cannot directly schedule EB1 to these
lines since one of the most important constraints for e-bus scheduling is the timetable guarantee, i.e., the
real-time requirement for serving passengers. If there are e-buses for L1 or L2 can replace EB1 to serve
L1, then we schedule EB1 to serve L2 and keep the timetable of L1. Only all the above constraints satisfy,
sharedCharging will schedule ET1 to charge in CSB1, which minimizes the charging overhead of ET1 while
keeping the timetables and charging efficiency of the e-bus network.

(3) If it is not feasible to schedule ET1 to charge in CSB1, sharedCharging will further estimate the charging
deadline for ET1 in other charging stations (e.g., CST 2, CSB2, or CSB3), and then schedule it to a charging
station with the minimum charging overhead considering above constraints.
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In summary, the scheduling process of sharedCharging can be seen as Algorithm 1.

Algorithm 1: sharedCharging Charging Scheduling

Input: Charging Requests τ ;

Output: Charging Stations CST , CSB
1 foreach τi ∈ τ do

2 if τi ∈ Rb then

3 if no interaction from Rt then

4 charging in its own station CSBk1 with the earliest deadline;

5 else if another feasible CSBk2 has the earlier deadline than CSBk1 then

6 scheduling it to CSBk2 ;

7 else

8 still charge in CSBk1 ;

9 end

10 end

11 if τi ∈ Rt then

12 if CStm1 has the earliest deadline then

13 scheduling it to CStm1 ;

14 else if CSBk1 has the earliest deadline then

15 if CSBk1 is available based on all constraints then

16 scheduling it to CSBk1 ;

17 else

18 find other possible optimal CSBki or CSTmj
, and go back to step 11;

19 end

20 end

21 end

4.3.5 Remarks on Design Choices. In our sharedCharging design, we consider many real-world constraints,
which we learned from our communications with heterogeneous EV fleets operators and governments.

(i) We implicitly consider e-taxi drivers’ charging preference, i.e., we only schedule e-taxis when they have
charging requests. According to NYC Taxi & Limousine Commission [5], an ideal e-taxi program should cause
minimal disruption to the industry since it has chosen many of its current practices based on years of practice and
learning about what works well and what does not work well in a real-world setting. If we change the charging
time or behaviors of drivers, it may affect the entire taxi system and possibly change drivers’ daily life, e.g., the
arranged charging time conflicts with drivers’ daily schedule, resulting in the low participation of the scheduling
system. As a result, we only schedule e-taxi drivers to the corresponding charging stations after they submitted
charging requests for practical considerations.
(ii) Even though we consider real-world charging requests, some e-taxis drivers will still choose charging

stations based on their experience instead of following our scheduling. For example, if an e-taxi driver lives near
a charging station, the driver would still go to this station and get some rest during the charging process, even
if sharedCharging schedules it to another station with the shortest waiting time. As a result, we evaluate the
scheduling performance under difference drivers’ participating rates in Section 5. However, for e-buses, we can
schedule them to serve any lines since they always follow centralized management. The only issue we need
to consider is to guarantee their timetables if we need to change their original charging plans, which we have
already addressed in Section 4.3.4.

(iii) We did not schedule e-buses to charge in e-taxi charging stations since the space of e-taxi charging stations
is not enough for e-buses to park and charge, which can be seen from the field studies in Section 5.1 and the
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charging rate of e-taxi chargers is too low for e-buses and causing three times of charging durations. Even so, our
scheduling strategy can be extended to the case that e-buses can share the e-taxi charging stations with some
constraint relaxation if the charging time and parking spaces were not considered.
(iv) For a practical real-world reason, we envision that the e-taxis charging in bus charging stations will still

keep the charging rates for e-taxis (i.e., 30 kW) instead of the 100 kW for e-buses even though high charging
rates can reduce the charging time for e-taxis. This is because it will accelerate the battery attenuation if the
charging rates are too high [35].

5 EVALUATION

In this section, we extensively evaluate the performance of our sharedCharging based on the data from two
heterogeneous EV fleets in Shenzhen. We compare sharedCharging with the Ground Truth and some state-of-the-
art baselines. We mainly show the charging overhead of the e-taxi fleet under different scheduling strategies and
the charging resource balance effect of our sharedCharging. Finally, we also compare the system performance
under different driver participation rates.

5.1 Field Studies

During the project, we have conducted a set of field studies to identify real-world charging issues and verify the
patterns we found. Figure 14 shows charging scenarios of e-taxis and e-buses in Shenzhen, we found that the
e-bus charging station has enough space for e-buses and e-taxis to park and charge, but the space in a typical
e-taxi charging station is not enough for e-buses. There is always a long queuing line at noon in this e-taxi
charging station (BYD Baishizhou Charging Station), and e-taxi drivers normally need to wait more than 30
minutes. These field studies help us better understand the real-world issues, the potential impacts of our study,
and the implication of our scheduling.

Fig. 14. Field studies in Shenzhen.

One lesson we learned from our field studies is that during the rapid EV promotion process, even though the
charging infrastructure is increasing, the number of charging points for e-taxis is still far from the objective. In
addition, most new e-taxi drivers are not familiar with the locations of charging stations, and their heuristic
charging behaviors always cause a long waiting time for them. Deploying more charging stations for EVs may
effectively address this problem, but the extremely high land price in Shenzhen makes it expensive to build
charging stations, e.g., a charging station for e-taxis near the downtown areas will cost more than 100 e-taxis
based on our interactions with the charging station providers. As a result, effective charging scheduling is more
practical than building new charging stations, so our shared scheduling is better for current EV operation.
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5.2 Experimental Setup

Data Management: We utilize a 34 TB Hadoop Distributed File System (HDFS) on a cluster consisting of 11
nodes, each of which is equipped with 32 cores and 32 GB RAM. For daily management and processing, we utilize
the MapReduce based Pig and Hive. Due to large-scale EV data, we have been dealing with several kinds of errant
data, e.g., duplicated data, missing data and data with logical errors, and thus we have been conducting a detailed
data curation process.
Evaluation Data: As introduced in Section 2, we utilize streaming GPS records generated by over 16,000 e-buses
and 13,000 e-taxis from the Chinese Shenzhen city, combined with data of over 500 charging stations.
Baseline Setting: To show the effectiveness of our real-time charging scheduling for heterogeneous EV fleets,
we compare our sharedCharging with Ground Truth and a set of baselines, including (i) OCSD in [25] (i.e.,
Nearest Distance scheduling Only considering Taxi charging stations (NDOT)); (ii) Nearest Distance scheduling
With considering Bus charging stations (NDWB); (iii) REC in [7] (i.e., Shortest Waiting time scheduling Only
considering Taxi charging stations (SWOT)); (iv) Recommender in [41] (i.e., Shortest (traveling + waiting) Time
scheduling Only considering Taxi charging stations (STOT)), which is the optimal scheduling considering only
taxi charging stations; (v) shortest (traveling + waiting) time scheduling, which only considers scheduling e-taxis
to bus charging stations but not scheduling e-buses to other terminals (sharedCharging−).
Evaluation Metrics: The objective of our sharedCharging is to increase the charging efficiency of the whole
charging network, which includes two parts, i.e., reducing the charging overhead for the e-taxi fleet and bal-
ancing the charging demand of all charging stations. Hence, we utilize different metrics to measure the system
performance, including (i) traveling time, (ii) waiting time, (iii) total charging overhead, (iv) total charging
overhead decrease, and (v) charging station occupation rate. The traveling time |tt | and waiting time |tw | have
been described in Section 3. The total charging overhead of the nth charging event can be formulated as:
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Definition 2: We define the daily (or hourly) Charging Station Occupation Rate (CSOR) of a station si to quantify
the average occupation time of each charging point in the station, which is described as:

CSOR (si ) =

|si |
∑

j=1
CT

(

s
j
i

)

|si |
, (3)

where CT (s
j
i ) is the daily (or hourly) occupation time of jth charging point s

j
i in the station si ; |si | is the number

charging points in station si . To balance the charging station utilization, we need to reduce the number of charging
stations with very low and very high CSOR since a very low CSOR means resource waste and a very high CSOR
means potential longer waiting time in those stations.
Simulation Setup:We adopt a rolling horizon manner to conduct the simulation, which is widely utilized in
the vehicle mobility intervention research, e.g., order dispatching of for-hire vehicles [45, 49]. The basic idea of
the rolling horizon manner is that we will update the status of all charging stations after scheduling a vehicle,
and then the next decision is made based on the updated information. Each charging event, instead of a vehicle,
is modeled as an agent for simulation so that charging events can be considered independent [7, 41]. We make
a scheduling decision after receiving a charging request, so we can handle each charging request no matter
when and where it occurs based on its real-time status and the updated information. The charging point will be
suspended (i.e., occupied) once it has been assigned to an EV, so it will not be assigned to other EVs before the
assigned EV finishes charging.
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5.3 Charging Overhead of E-Buses

For all e-buses, since they are already under centralized charging management and their charging plans are
controllable, so we assume that they will always send charging requests after they arrive at their terminals
because they can not charge during operating durations with passengers on board. In this case, the traveling
time of e-buses is 0 if they charge in their own terminals. If an e-bus serves another line and charges in other bus
lines’ terminals, they will operate on the new line for picking up passengers. In this case, we also consider its
traveling time is 0 since it will not waste time from its current location to another charging place. However, for
e-taxis, they will not serve passengers when they travel to charging stations, so e-taxis need extra traveling time
for charging.
In our sharedCharging, e-buses have a higher priority to utilize e-bus charging stations, so the charging of

e-taxis happening in e-bus charging stations are built on without impairing e-buses’ performance. The reason
for the higher priority of e-buses is that they have timetables to follow for satisfying bus passengers. Since
timetables of all e-bus lines are guaranteed, and we always schedule them to charge when they have no operating
tasks, so we consider the waiting time of e-buses is 0 due to their abundant charging resources and controllable
charging schedule. This is a difference between e-buses and e-taxis since e-taxi drivers always try to maximize
their operating time for more profits, and their current charging mode is not centralized managed. Since both the
traveling time and waiting time of e-buses are considered 0, so we do not show the performance of them.

Fig. 15. Average traveling time of e-

taxis.

Fig. 16. Average waiting time of e-

taxis.

Fig. 17. Average total charging time for

a charge of e-taxis.

5.4 Charging Overhead of E-Taxis

Figure 15, Figure 16, and Figure 17 show the average traveling time, average waiting time, and the average
total charging time of each e-taxi charge under different scheduling methods. Although we found that NDWB
has the shortest traveling time, followed by NDOT, with about 8 minutes shorter than the Ground Truth, they
will have a very long waiting time during peak hours, resulting in very poor performance. This is because,
under the shortest distance scheduling, many drivers are scheduled to the same charging stations due to their
operation nature, resulting in longer waiting time, so we do not show their performance in the three figures.
Our sharedCharging− and sharedCharging achieve similar performance, with 39% reduction compared with
Ground Truth and better than STOT. From Figure 16, we found our sharedCharging achieves the best performance
regarding the waiting time, with a 63.5% reduction compared with Ground Truth and a 48.7% reduction to STOT.
Compared sharedCharging− with sharedCharging, we found that sharedCharging− will result in longer waiting
time for e-taxis during 4:00-6:00 even though shorter waiting time during the midnight. We found that there is
a charging peak for the e-taxi fleet about 4:00 as shown in Figure 9, which indicates our sharedCharging can
effectively reduce waiting time for e-taxis during their charging peak durations. From Figure 17, we found that
our sharedCharging can achieve the best performance for reducing the charging time of e-taxis.
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Fig. 18. Waiting time decrease. Fig. 19. Total charging time decrease.

We also show the average waiting time and total charging time reduction with their standard deviations, as
shown in Figure 18 and Figure 19. We found that sharedCharging reduces about 15% (16 mins) total overhead for
each charge of e-taxi drivers, which is twice of the improvement of STOT. We found that the NDOT and NDWB
have worse performance than Ground Truth because of their long waiting time. SWOT has worse performance
than STOT due to prolonged traveling time. In addition, we found that all scheduling methods include variances
with different degrees, which means the benefits for different drivers are various, and our sharedCharging
achieves a relatively smaller deviation than other methods.

5.5 Spatial Distribution of Charging Events

We leverage the Charging Station Occupation Rate to describe the spatial distribution of charging events. Figure 20
and Figure 21 show the e-bus and e-taxi charging station occupation rates. The x-axis is the daily charging station
occupation rate, and the y-axis is the percentage of charging stations. We found that the percentage of e-bus
charging stations with low occupation rate decreases significantly by leveraging our sharedCharging, e.g., the
percentage of e-bus charging stations with occupation rates less than 2 has decreased from 27% to 11%, and
other occupation rates are more balanced. Since some e-taxis will be scheduled to the e-bus charging stations,
the total occupation rate of the e-bus charging network has increased. From Figure 21, we found that the total
occupation rate of the e-taxi charging network has decreased, but it becomes more balanced, e.g., most e-taxi
charging stations have occupation rate from 2-7, accounting for over 80%. The percentage of e-taxi charging
stations with occupation rate 1 has decreased from 15% to 5% by our sharedCharging. Hence, our sharedCharging
effectively balances the demand for different charging stations.
We also show the occupation rates of all e-bus and e-taxi charging stations during different hours. Figure 22

and Figure 23 show the actual hourly CSOR of e-buses and e-taxis. Figure 24 and Figure 25 show the performance
of our sharedCharging. The x-axises of Figure 22 to Figure 25 stand for 24 hours of a day, and the y-axises mean
the occupation rate distributions of all e-taxi charging stations or e-bus charging stations. We found that the
occupation rates of e-bus charging stations are high during midnight. For the e-taxi fleet, it has two time slots
with very high charging station occupation rates, i.e., 3:00-7:00 and 17:00-19:00, and both of them are during their
charging peak durations. As shown in Figure 24 and Figure 25, the occupation rates of e-bus charging stations
will increase while the occupation rates of e-taxi charging stations will decrease under our sharedCharging
scheduling, especially during the two charging peak durations of e-taxis. Due to the heuristic charging behaviors
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Fig. 20. E-bus daily CSOR comparison. Fig. 21. E-taxi daily CSOR comparison.

of e-taxi drivers, the waiting times of e-taxis may significantly increase during charging peak durations, while
our sharedCharging can effectively address this issue.

Fig. 22. E-bus hourly CSOR of Ground Truth. Fig. 23. E-taxi hourly CSOR of Ground Truth.

Fig. 24. E-bus hourly CSOR of sharedCharging. Fig. 25. E-taxi hourly CSOR of sharedCharging.

5.6 Performance Under Different Driver Participation Rates

We consider all e-taxis will follow our scheduling advice in the above investigation. However, in a real-world
scenario, some e-taxi drivers will always go to their preferred charging stations even though a shorter time of the
scheduling strategy. Hence, we investigate the scheduling performance if only a part of e-taxi drivers follows our
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scheduling decisions. Figure 26 and Figure 27 show the percentage reduction of traveling time and waiting time
under different driver participation rates. We do not show the performance of our sharedCharging− since it has
similar performance with sharedCharging. Since NDOT and NDWB have a bad performance, we also do not
show them. We found that our sharedCharging always has better performance than STOT, but the performance
has a large decrease if over 50% of drivers do not follow our scheduling. Suppose there are about 80% of drivers
follow our sharedCharging scheduling because it can reduce their charging overhead, our sharedCharging has
the potential to reduce 30% of traveling time and 53% of the waiting time on average for each charging activity.
The performance of our sharedCharging is always better than STOT.

Fig. 26. Traveling time decrease under dif-

ferent driver participation rates.

Fig. 27. Waiting time decrease under dif-

ferent driver participation rates.

6 DISCUSSION

In this section, we first summarize a few insights and lessons learned during the project. We then discuss some
limitations and potential benefits of our work.

6.1 Insights and Lessons Learned

• Unbalanced Charging Demand & Supply. From our data-driven investigation and field studies, we
found that heterogeneous EV fleets have unbalanced charging station allocation and unbalanced charging
demand & supply. The charging peaks of e-taxis potentially prolong their waiting time in charging stations.

• Charging Scheduling for Heterogeneous EV Fleets.We found the heterogeneous EV shared charging
scheduling problem can be mapped to a classical CPU scheduling problem (i.e., two-type heterogeneous
multiprocessor real-time scheduling) after quantifying their similarities. This effort potentially extends our
understanding of real-time multiprocessor scheduling algorithms.

• Possible Behavioral Changes. E-taxi drivers and e-bus drivers may change their operating and charging
behaviors due to the shared charging strategy. E-taxi drivers will have lower łrange anxietyž since more
available charging resources and more denser charging networks. E-taxi drivers may go to e-bus charging
stations to charge and change their previous charging locations and time durations. E-bus drivers may also
need to change their served lines to benefit e-taxis, so they have the potential to serve multiple lines per day.
The charging locations of e-buses may also be changed. However, the utilization rates of e-bus charging
stations will increase and be more balanced. These behavioral changes need to be further investigated after
the sharedCharging deployed in the real world.
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6.2 Limitations

• Practicality of Shared Charging Scheduling. In this paper, we envision that we can jointly schedule
e-taxis and e-buses together. This shared scenario is feasible in many cities where taxi companies and bus
companies are overseen by a joint committee, e.g., Shenzhen Transport Committee, which can perform
such shared scheduling for both buses and taxis. Even though for cities that taxis and buses are operated
separately by competing companies without any incentive for them to perform shared scheduling, our
sharedCharging is still useful for single companies that owning heterogeneous EVs with different operating
patterns and charging patterns, e.g., logistics companies like UPS, given the trend of vehicle electrification
and their diverse business models.

• Implementation in Other Cities. The vehicular networks in different cities typically have different
operating patterns due to geographic and demographic features, so it is extremely significant to implement
sharedCharging in different cities. In this paper, we only use the data from the Chinese Shenzhen city, and
we are in the process of obtaining heterogeneous EV data from other cities for comparative investigation
at a city level. However, since only Shenzhen has such large-scale e-taxi and e-bus networks, it is difficult
to find such large heterogeneous EV fleets for a parallel study currently. One possible direction we are
exploring is to design transfer learning models to transfer the knowledge (e.g., operating pattern, charging
pattern) from the Shenzhen EV network to vehicular networks in other cities for a łwhat ifž investigation.
For example, what if all conventional taxis and buses in New York City or Beijing were replaced by e-taxis
and e-buses, how can we schedule heterogeneous EV fleets for shared charging to reduce the charging
stations needed and enhance the overall social welfare. It opens some very interesting research directions.

• Shared Charging with Other Types of Electric Vehicles. We only perform the sharedCharging using
data from e-taxis and e-buses, while other EVs (electric private vehicles, electric trucks) have not been
considered due to some data access issues, but we argue our sharedCharging is generalizable for other
fleets because of the data-driven characteristic. We are trying to obtain data of electric private vehicles
and electric trucks. In the future, we will consider sharing charging resources for other types of EVs in a
city to verify and enhance our sharedCharging, which paves the way for shared charging of future shared
autonomous electric vehicles.

6.3 Potential Benefits

• Electric Vehicle Promotion. A key obstacle for large-scale EV promotion is the complicated charging
issue [43, 50], e.g., inadequate charging infrastructures, unbalanced charging resource allocation and
intensive charging peaks. Our design provides an approach for heterogeneous EVs to share charging
resources for a higher charging efficiency, which can help other cities or companies to find the possibility
to promote heterogeneous EVs. In addition, our work also has the potential for city governments and
companies to estimate how many charging points are sufficient for them if all their vehicles are replaced
by EVs, which is beneficial for achieving successful large-scale EV promotion.

• Shared Autonomous Electric Vehicles. In the vision of smart cities, all vehicles could be shared au-
tonomous EVs in the future [1, 13, 37]. The large size of vehicles can be shared by a group of passengers
with fixed travel demand. For example, autonomous shared e-buses can be used to serve customized lines
for commuters since e-buses have a larger capacity so it will be efficient than small vehicles and can also
reduce the number of vehicles. For people’s sporadic travel demand, there will be some small vehicles for
these stochastic requests. This kind of mobility strategy is similar to current e-taxi operation. Hence, we
believe our sharedCharging has the potential to provide some guidelines for shared charging of future
shared autonomous EVs.
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7 RELATED WORK

There are two different charging scheduling strategies for EVs, i.e., centralized and decentralized ones [18, 24,
47]. Among existing EV charging research, most of them aim to optimize single EV fleets, while some others
cooperatively optimize multiple heterogeneous EV fleets. Based on the two dimensions, the EV charging research
can be divided into four different categories, which we show in Table 4.

Table 4. Categories of related work.

Scheduling Homogeneous Fleet Heterogeneous Fleets

Decentralized [7, 25, 39, 41, 43, 50] [14, 15, 22, 29, 30, 36]

Centralized [18, 20, 23, 24, 44, 52] sharedCharging

7.1 Decentralized Scheduling

Homogeneous Fleet: The decentralized charging scheduling of electric vehicles has been widely studied by
many researchers, but most of them are for single homogeneous electric vehicle fleets, e.g., e-bus fleets or e-taxi
fleets. Tian et al. [41] design a recommendation system for e-taxis to reduce the total charging time cost for
each driver. Li et al. [25] develop a framework for charging station deployment and charging point placement
framework to minimize the overall charging time of e-taxis. Yan et al. [50] provide a charger deployment scheme
that maximizes the probability of picking up passengers for e-taxis and minimizes the deployment cost. They aim
to schedule e-taxis or find the optimal locations to deploy charging infrastructures for e-taxis for reducing the
operating cost or charging station deployment cost. Dong et al. [7] develop a real-time EV charging scheduling
framework for e-taxi fleets, which informs each e-taxi driver at runtime when and where to have a charge.
Heterogeneous Fleets: Gusrialdi et al. [15] develop a distributed scheduling and cooperative control algorithm
for charging of electric vehicles at highway service stations. However, it only considers local information about
neighboring charging stations, which may result in suboptimal scheduling compared with centralized scheduling.
Kong et al. [22] design a distributed market mechanism to improve the economic and the temporal efficiency
of EV demand response. However, all these works have no real-world data and did not capture the different
charging patterns of heterogeneous EV fleets.

7.2 Centralized Scheduling

Homogeneous Fleet: There are some research efforts for the centralized scheduling of single EV fleets. Kang
et al. [18] propose a population-based heuristic approach to minimize the total charging cost. Kong et al. [23]
propose an effective charging rate control algorithm to optimize the social welfare of EVs. However, it does not
consider the differences in charging patterns between heterogeneous EV fleets.
Heterogeneous Fleets: Different from existing works, our sharedCharging has a data-driven nature, which is
based on the differences in charging patterns between heterogeneous EV fleets after extensive data analyses.
Moreover, sharedCharging considers a set of real-world constraints when making scheduling decisions, which
make our sharedCharging more practical for real-world implementation and application.

7.3 Summary

Few existing works focus on shared charging scheduling of heterogeneous EV fleets mainly because of no
available real-world data to capture their different charging patterns and its complexity. To our best knowl-
edge, sharedCharging is the first work of data-driven real-time scheduling for heterogeneous EV fleets. Such a
data-driven investigation and centralized scheduling enable us to identify the real-world charging patterns of
heterogeneous EV fleets and design optimal scheduling, which is challenging to reveal using homogeneous EV
fleet data or under a decentralized setting.
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8 CONCLUSION

In this paper, we conduct, to the best of our knowledge, the first study for real-time shared charging scheduling
of heterogeneous EV fleets based on their different charging patterns. We design a system called sharedCharging
aiming to improve the charging efficiency of the overall charging network, e.g., reducing charging overhead
and balancing charging resource utilization. More importantly, we take the e-bus and e-taxi fleets as a concrete
example of heterogeneous electric vehicle fleets. We implement and evaluate sharedCharging based on data of
over 16,000 e-buses, 13,000 e-taxis, and over 500 charging stations from the Chinese city Shenzhen. The evaluation
results show that our sharedCharging outperforms the ground truth by 63.5% and outperforms a baseline method
by 48.7% regarding the waiting time of the e-taxi fleet without disturbing e-buses’ timetables. For the immediate
benefit, sharedCharging can reduce the charging overhead for the Shenzhen e-taxi network and improve the
charging efficiency of the overall charging network. For the long-term benefit, our results in sharedCharging
may be leveraged for other cities to operate heterogeneous EV fleets and pave the way for charging scheduling
of future shared autonomous EVs.
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