
Sharing of Computations

Torben Amtoft

Computer Science Department

Aarhus University, Ny Munkegade, DK-8000 Århus C,

Denmark

internet: tamtoft@daimi.aau.dk

August 29, 1993

Danish summary

Denne rapport er en revideret udgave af min afhandling af samme navn,

som i juni 1993 blev accepteret til forsvar af PhD-graden i datalogi ved
Aarhus Universitet.

Motivation

I de senere år har man arbejdet meget med at udvikle værktøjer til at

gøre programmer mere effektive. Af teknikker kan nævnes memoiser-

ing [Kho90]; udfold/fold transformationer [PP91b]; graf-baseret imple-
mentation af “lazy” evaluering [Jon87] og partiel evaluering [JSS89]. At

disse metoder forbedrer effektiviteten skyldes at nogle beregninger de-
les, s̊a de kun skal gøres én gang. Imidlertid er forbindelsen mellem

teknikkerne ikke klart forst̊aet, og det er heller ikke klart hvor stor effek-
tivitetsforbedring (speedup) de kan for̊arsage. Ydermere giver anvendelse

af teknikkerne udfold/fold og partiel evaluering risiko for ødelæggelse af
termineringsegenskaber.

Den existerende litteratur inden for omr̊adet vidner om mangel p̊a en
model for program udførelse/transformering der er abstrakt nok. Behan-

dlingen har været for afhængig af det konkrete sprog/system, og derfor
er de essentielle begreber ofte druknet i detaljer.

Form̊alet med denne afhandling er at præsentere en model (faktisk
to, nemlig én for et funktionelt sprog og én for et logisk sprog) som

jeg tror/h̊aber vil hjælpe til med at isolere de karakteristiske træk ved
optimeringsteknikker der er baserede p̊a at beregninger deles.

Modellen er basered p̊a en transitionssemantik i Plotkin-stil [Plo81].
Grunden til at en transitionssemantik foretrækkes frem for en denota-

tionel semantik er at førstnævnte bedre fanger at udfoldning/foldning er

operationelle begreber.
Hovedidéen, at bruge mange-niveau transitionssystemer, er som føl-

ger:

• Det oprindelige program (kildeprogrammet) er repræsenteret som

regler p̊a niveau 0.

• At udføre kildeprogrammet modelleres af (en sekvens af) transi-

tioner p̊a niveau 1, hvor man p̊a niveau 1 “har adgang til” regler
p̊a niveau 0.

1

• At transformere kildeprogrammet (at foretage “symbolsk evalu-

ering”) bliver ligeledes modelleret af transitioner p̊a niveau 1. Re-
sultatet af transformationen, m̊alprogrammet, vil blive repræsen-

teret som regler p̊a niveau 1.

• At udføre m̊alprogrammet modelleres af transitioner p̊a niveau 2,

hvor man p̊a niveau 2 har adgang til regler p̊a niveau 1.

At beregninger deles afspejles i at en regel p̊a niveau 1, s̊a snart den er

udledt, kan bruges mange gange p̊a niveau 2 – hver anvendelse repræsen-
terer en genvej i beregningsprocessen.

Man kan tænke p̊a kildeprogrammet som en samling axiomer i en teori
T0; s̊a kan man opfatte m̊alprogrammet som enten en samling teoremer i

T0 eller som en samling axiomer i en ny teori T1, som man kan forvente
vil være mere effektiv end T0 – cf. [Gru87].

I vores model kan korrekthed (løst sagt) udtrykkes som følger: hvis

der er en transition p̊a niveau 2 fra en konfiguration C til en anden
konfiguration C ′, skal der ogs̊a være en transition p̊a niveau 1 fra C til

(noget “ækvivalent med”) C ′ (dette er partiel korrekthed); og hvis der
fra en konfiguration C udg̊ar en uendelig kæde af transitioner p̊a niveau

2, skal der ogs̊a udg̊a en uendelig kæde af transitioner fra C p̊a niveau 1
(dette er total korrekthed).

Ligeledes kan man ræsonnere om speedup (hvis man tildeler hver tran-
sition en “omkostning”). F.ex. vil egenskaben at man højest vinder en

konstant faktor ved at foretage en given transformation (løst sagt) kunne
udtrykkes som følger: der existerer en konstant k s̊aledes at det (for alle

A, B) gælder at hver gang der er en niveau 2 transition fra A til B
med omkostning c, findes der ogs̊a en niveau 1 transition fra A til (noget

“ækvivalent med”) B med omkostning ≤ kc.
Bemærk at modellen ser “standard evaluering” som et specialtilfælde

af “symbolsk evaluering” (som det ogs̊a gøres i [DP88], og som det gøres
i PROLOG verdenen). P̊a den anden side har man som oftest “lov til” at

gøre mere under symbolsk evaluering end under standard evaluering, og

dette m̊a tages med i modellen der ellers vil blive b̊ade temmelig triviel og
med særdeles begrænset anvendelsesomr̊ade. N̊ar man f.ex. arbejder med

et “lazy” sprog har man under standard evaluering kun lov til at reducere
det “yderste redex”, mens man typisk har lov til at reducere et vilk̊arligt

redex under symbolsk evaluering; og n̊ar man arbejder med PROLOG har
man under standard evaluering kun lov til at kalde prædikatet yderst til

2

venstre, mens man ofte har lov til at kalde et vilk̊arligt prædikat under
symbolsk evaluering.

I modelskitsen præsenteret ovenfor var kun 2 niveauer angivet, men
man kan naturligvis generalisere til n niveauer – og det er ogs̊a nødvendigt

hvis man skal modellere memoisering hvor man udnytter tidligere gener-
erede regler til at generere nye regler, som f.ex. n̊ar fibonacci programmet

via memoisering kører i lineær tid i stedet for i exponentiel tid.
En vigtig begrebsmæssig forskel mellem det ovenfor angivne perspek-

tiv p̊a transformationer og det perspektiv som er fremherskende i littera-
turen (f.ex. [BD77]) er som følger:

• i den klassiske begrebsramme bliver kildeprogrammet, via en sekvens
af meningsbevarende trin, transformeret ind i m̊alprogrammet;

• i vores begrebsramme “observerer” man hvordan kildeprogrammet
opfører sig, og ved hjælp af den information konstruerer man s̊a et

m̊alprogram.

For en nærmere sammenligning af de to perspektiver se f.ex. [Tur86, p.

293], ifølge hvilken førstnævnte er “suggested by axiomatic mathematics”

og sidstnævnte er “a product of cybernetic thinking”.

En oversigt over afhandlingen

• I kapitel 2 uddyber vi ovennævnte behandling af mange-niveau

transitionssystemer. Vi kigger p̊a flere velkendte teknikker for op-
timering af programmer, diskuterer deres fordele og begrænsninger

og viser hvordan de passer ind i vores begrebsramme.

• Kapitel 3 foreg̊ar i den funktionelle verden; vi betragter evaluer-

ingsstrategier for λ-kalkylen s̊a vel som for “supercombinator” pro-
grammer. Det er velkendt at “lazy” evaluering er suboptimal mht.

evnen til at genbruge beregninger; det er mindre kendt at ogs̊a
“fully lazy” evaluering er suboptimal – kan endda være exponen-

tielt d̊arlig, som vist i [FS91].

For evaluering af λ-udtryk existerer der adskillige smarte metoder
som genbruger beregninger i højere grad end “fully lazy” evaluering

gør (f.ex. [Lam90]). I sektion 3.1 præsenterer vi en parametriseret

3

evalueringsstrategi for supercombinator programmer med det for-
dringsfulde navn “ultimate sharing”. Denne strategi er en “top-

down” implementering af et mange-niveau transitionssystem; hvis
parametrene bliver valgt p̊a passende vis er strategien i stand til

at opn̊a samme genbrug af beregninger som de ovenfor nævnte
metoder.

Kapitlet søger at forene og klargøre idéer fra forskellige steder i

litteraturen, deriblandt [AT89] (Jesper Träff’s og mit speciale).

• Kapitel 4 kan nok betragtes som hovedkapitlet i afhandlingen; et

kort sammendrag følger nedenfor (kapitlet selv indledes med et mere
detaljeret sammendrag):

1. I sektion 4.1-4.5 bliver begrebet mange-niveau transitionssy-
stemer formaliseret i en funktionel ramme, hvor konfigura-

tionerne er grafer. Det vises at niveau 1 transitioner (dvs.
standard evaluering) tilfredsstiller en Church-Rosser egenskab,

og at “normal order reduction” (svarende til “lazy” evaluering)

er en optimal strategi (i forhold til andre strategier p̊a niveau
1).

S̊a længe kun ét niveau er til stede, har lignende fremgangsm̊ader

været anvendt adskillige andre steder i litteraturen – imidler-
tid giver vi behandlingen en drejning s̊a den passer til vores

senere form̊al.

2. Sektion 4.6 behandler de centrale emner korrekthed og speedup.
Sætning 4.6.3 kan fortolkes som udsigende at m̊alprogrammet

højest er en konstant faktor hurtigere end kildeprogrammet;
og sætning 4.6.4 kan fortolkes som udsigende at s̊afremt an-

tallet af niveauer er opadtil begrænset er højest et polynomielt

speedup muligt. Endvidere opstiller sætning 4.6.7 en tilstrække-
lig betingelse for total korrekthed – fidusen er at sikre at hver

regel repræsenterer en smule “fremgang”.

Sektion 4.7 indeholder en detaljeret diskussion af hvordan og
hvorvidt de ovennævnte resultater kan anvendes p̊a den “virke-

lige verden”, f.ex. de mange-niveau transitionssystemer der
blev behandlet i kapitel 2.

I sektion 4.8 bliver nogle ingredienser “faktoriseret ud”, som
hver for sig kan givemere end et konstant (polynomielt) speedup.

4

Dvs. vi undersøger de antagelser der ligger bag sætning 4.6.3
og sætning 4.6.4.

De fleste af de idéer, som bliver fremstillet i disse tre sektioner,

blev præsenteret til PEPM’91 [Amt91] (da blev imidlertid en

model for logiksprog brugt).

Sektion 4.9 sætter arbejdet i perspektiv ved at beskrive andre frem-

gangsm̊ader fra litteraturen.

• I kapitel 5 defineres en non-deterministisk maskine (kaldet en USM)

der implementerer “ultimate sharing” (cf. kapitel 3). Ved at an-
vende resultater fra kapitel 4 kan det vises at maskinen er “kor-

rekt”.

En USM kan gøres deterministisk p̊a mange m̊ader; af særlig inter-
esse er den s̊akaldte PEM som behandles i sektion 5.2. En PEM er

essentielt en “top-down” implementering af partiel evaluering.

Materialet i dette kapitel kan ses som en generalisering af hove-
didéen bag Jesper Träff’s og mit speciale [AT89].

• Kapitel 6 giver et exempel p̊a et “realistisk” program som ved hjælp
af en passende instans af en USM kan komme til at køre exponentielt

hurtigere. Det drejer sig om en simulator for de s̊akaldte 2DPDA’s
[AHU74, kapitel 9]. Det vakte stor opsigt da Cook beviste at det

altid er muligt at simulere en 2DPDA i lineær tid, selv hvis auto-
maten udfører exponentielt mange trin. Vi skal se at denne smarte

simulering kan ses som en instans af det generelle begreb “ultimate
sharing”.

Kapitlet er baseret p̊a fælles arbejde med Jesper Träff, som er pub-

liceret i TCS [AT92] (den grundlæggende idé g̊ar tilbage til specialet
[AT89]). Fremstillingen her vil være væsentligt anderledes, da vi

kan udnytte den generelle teori udviklet i de foreg̊aende kapitler.

• Ogs̊a i kapitel 7 ser vi et exempel p̊a hvordan “smarte algorit-

mer” kan genopfindes via anvendelse af generelle teknikker for pro-

gramoptimering. Vi viser at de velkendte Knuth-Morris-Pratt (KMP)
og Boyer-Moore (BM) algoritmer til delstrengsgenkendelse kan ses

som instanser af en fælles algoritme, parametriseret mht. søges-
trategi. Som sidegevinst bliver det s̊aledes formaliseret at KMP og

BM er “duale”.

5

• I kapitel 8 præsenteres en model for et logisk sprog. Hovedvægten
lægges p̊a at give tilstrækkelige betingelser for total korrekthed af

udfold/fold transformationer.

De grundlæggende idéer i kapitlet blev præsenteret til PLILP’92
[Amt92a]; bortset fra de indledende dele er kapitlet næsten identisk

med den tekniske rapport [Amt92b].

• Kapitel 9 søger at træde et skridt tilbage og betragte hvad der

er opn̊aet. I særdeleshed findes to emner værdige til en nærmere
diskussion:

– i og med at det er essentielt for anvendelser af “ultimate shar-
ing” at vores USM f̊ar velvalgte parametre, er det en p̊atrængende

opgave at udvikle analyseværktøjer der kan hjælpe brugeren
med dette;

– da motivationen var at lave en model der er uafhængig af

konkrete programmeringssprog, virker det utilfredsstillende at
afhandlingen introducerer to (relativt forskellige) modeller –

kan “en større fælles kerne” for den funktionelle model og den

logiske model findes?

6

Contents

1 Introduction 12
1.1 An overview of the thesis 14

1.2 Acknowledgements . 17

2 Multilevel transition systems 19

2.1 Instances of multilevel systems 21
2.1.1 Memoization . 21

2.1.2 Unfold/fold transformations 22
2.1.3 Partial evaluation 25

3 Various Degrees of Sharing 28

3.1 Ultimate Sharing . 33
3.2 Is this really ultimate? . 35

3.3 Two kinds of sharing computations 35
3.4 Applicability of ultimate sharing 35

3.5 Ultimate sharing and related concepts in the literature . . 36
3.6 Choice of framework . 37

4 A model for a functional language or how to get more
than a constant speedup 39

4.1 Graphs and graph reductions 42
4.1.1 Morphisms between graphs 44

4.1.2 The + operator . 48
4.1.3 Pushouts . 50

4.1.4 Algebraic laws . 52
4.1.5 Existence of the pushout 55

4.1.6 A property of the pushout 64
4.2 Passive nodes carrying multiple labels 66

4.3 Modeling demand-driven evaluation 71

4.3.1 Result node . 82

7

4.4 Transitions at level 1 . 82
4.4.1 Normal forms . 89

4.5 Transitions at level i . 94
4.6 Correctness and speedup bounds 98

4.6.1 Total correctness 102
4.7 Applications of the theory 104

4.7.1 Memoization (tabulation) 104
4.7.2 Unfold/(fold) transformations 106

4.7.3 Partial evaluation 110
4.7.4 Discussion of complexity measures 111

4.7.5 Graph representation vs. term representation . . . 114
4.8 How to get more than a constant speedup 114

4.8.1 A non-optimal level 1 evaluation order 114

4.8.2 Introducing sharing during transformation 115
4.8.3 Proving laws by induction 118

4.8.4 How to make really big speedups 120
4.9 Related work . 122

4.10 Possible extensions to the model 128

5 The Ultimate Sharing Machine 132

5.1 The USM . 132
5.2 A machine for partial evaluation 138

5.2.1 A larger example 140
5.2.2 The PEM versus (bottom-up) partial evaluation . 143

5.3 Discussion and related work 143

6 Simulating a 2DPDA by Ultimate Sharing 145

6.1 Defining 2DPDAs . 146
6.2 Complexity of the simulator 148

6.3 Speedup possible by using a USM 151
6.4 A USM implementing Cook’s construction 152

6.5 Previous work . 157

7 Deriving efficient substring matchers by partial evalua-
tion 159

7.1 Introduction . 159
7.2 The KMP method . 161

7.3 The BM methods . 162

8

7.3.1 BMna vs. BMor 163
7.3.2 BMor vs. BMst . 163

7.3.3 BMst vs. BMop . 164
7.3.4 Discussion . 164

7.4 Rewriting subs0 . 166
7.5 PE wrt. various search strategies 169

7.5.1 “Natural” search strategies 169
7.5.2 Obtaining KMP via KMP 170

7.5.3 Obtaining BMop via BMop 172
7.5.4 A strategy BMst to obtain BMst 173

7.5.5 Discussion . 175
7.6 Related work . 176

8 A model for a logic language 178

8.0.1 Speedup bounds in the logic world 179
8.0.2 Ultimate sharing in the logic world 182

8.0.3 A two-level transition system 182
8.0.4 An overview of this chapter 183

8.1 An outline of the theory 185
8.1.1 Modeling control 185

8.1.2 Conditions for total correctness 187
8.1.3 Modeling data . 190

8.1.4 Modeling folding 194
8.1.5 Modeling the full search tree 195

8.2 Related work . 197
8.3 Fundamental concepts . 200

8.3.1 Basic configurations 201
8.3.2 U-mirrors . 204

8.3.3 Properties of U-mirrors 210
8.3.4 Transitions . 213

8.4 Two level transition system 214

8.4.1 The level 0 rules 215
8.4.2 Unfolding at level 1 215

8.4.3 Evaluation strategies and Looping at level 1 219
8.4.4 Folding at level 1 221

8.4.5 Unfold/fold at level 1 222
8.4.6 Fundamental properties of level 1 transitions . . . 222

8.4.7 Unfolding at level 2 225

9

8.5 Conditions for termination preservation 226
8.6 Working with the full search tree 227

8.6.1 Transitions . 228
8.6.2 The level 0 rules 230

8.6.3 Unfolding at level 1 230
8.6.4 Level 1 semantics 233

8.6.5 Folding at level 1 235
8.6.6 Unfold/fold at level 1 235

8.6.7 Unfolding at level 2 237
8.6.8 Level 2 semantics 238

8.6.9 Total correctness 239

9 Concluding remarks 241

9.1 An analysis aiding the PEM 241

9.2 Integrating the functional and logical model 244
9.3 Miscellaneous . 245

10

Preface to the revised version

This report is a revised version of my thesis of the same title, which

was accepted for the Ph.D. degree in Computer Science at University of
Aarhus, Denmark, in June 1993.

The examiners (Neil Jones and Alberto Pettorossi) made many use-
ful remarks, which helped me to see how to improve the original thesis.

In particular, I realized that section 8.1 (where the logic model is out-
lined) could benefit from a major rewriting. Apart from that, only minor

changes have been made.

11

Chapter 1

Introduction

In the recent years a lot of work has been devoted to developing tools for
transforming less efficient programs into more efficient programs. These

include memoization [Kho90]; unfold/fold transformations [PP91b]; graph-
based implementation of lazy evaluation [Jon87] and partial evaluation

[JSS89]. The efficiency improvement caused by these techniques all are
due to the fact that some computations are shared, i.e. they only have

to be done once. However, it is in no way clearly understood how these
techniques relate to each other; neither is it clearly understood how much

speedup one can gain. Finally, it is no easy task to guarantee preserva-
tion of termination properties for the techniques of unfold/fold and partial

evaluation.
From the literature on the techniques above one clearly feels the lack of

a model for program execution/transformation which is abstract enough.
The treatment has been too language-dependent, and accordingly the

essential concepts have been overshadowed by details.
The goal of this thesis is to present a model (actually two, namely one

for a functional language and one for a logic language) which I believe
will help to isolate the characteristic features of program optimization

techniques which are based on sharing of computations. The model is

based on transitions (defined in Plotkin-style [Plo81]) between configura-
tions; the reason for preferring a transition semantics to a denotational

semantics is that the former more naturally expresses the fact that un-
folding/folding etc. is operational in nature1.

The main idea – to use multilevel transition systems – is as follows:

• The original program (the source program) is represented as rules

1Cf. the remark in [GLT89, p. 54]: “The fundamental idea of denotational semantics is to
interpret reduction (a dynamic notion) by equality (a static notion)”.

12

at level 0.

• To execute the source program is modeled by (a sequence of) tran-

sitions at level 1, where one at level 1 “can access” rules at level
0.

• To transform the source program (to do “symbolic evaluation”)
likewise is modeled by transitions at level 1. The result of trans-

formation (the target program) will then be represented as rules at
level 1.

• To execute the target program is modeled by transitions at level 2,
where one at level 2 can access rules at level 1.

The sharing aspect of the above comes from that fact that a level 1
rule, once derived, can be used many times at level 2 – each application

representing a shortcut in the computation process.
If one thinks of the source program as a set of axioms in a theory T0,

one can consider the target program as either a set of theorems in T0 or
as a set of axioms in a new theory T1, which one can expect to be more

efficient than T0 – cf. [Gru87].
Within the model one can (loosely speaking) express correctness as

follows: If there is a transition at level 2 from some configuration C into

another configuration C ′, then there must also be a transition at level
1 from C to (something “equivalent to”) C ′ (partial correctness), and if

there from configuration C is an infinite chain of transitions at level 2,
there also must be an infinite chain of transitions from C at level 1 (total

correctness).
Likewise one can reason about speedup if one assigns a “cost” to each

transition; e.g. the property that one gains at most a constant by doing
some transformation can be expressed as follows: there exists a constant

k such that (for all C,C ′) each time there is a level 2 transition from
C to C ′ with cost c, there is a level 1 transition from C to (something

“equivalent to”) C ′ with cost c′, where c′ ≤ kc.
Notice that a key point in the above model sketch is that “standard”

evaluation is viewed as a special case of “symbolic” evaluation (as done
in [DP88], and as done in the PROLOG world). On the other hand,

in practice one is allowed to do more during symbolic evaluation than
during standard evaluation, and the model has to account for these dif-

ferences (without doing so the theory will become rather trivial as well

13

as of limited use for modeling purposes). For example, during standard

evaluation of a lazy language one will only accept that the outermost
redex is reduced, whereas one maybe is entitled to reduce an arbitrary

redex during symbolic evaluation. Likewise, in a logic language like PRO-

LOG one is typically only allowed to call the leftmost predicate during

standard evaluation, whereas one is allowed to call an arbitrary predicate
during symbolic evaluation.

In the model sketched above only 2 levels are present, but of course
one can generalize to n levels – and such a generalization is also necessary

for modeling memoization where one during generation of rules exploits
previously generated rules, as when e.g. the fibonacci program due to

memoization runs in linear time instead of in exponential time.

An important conceptual difference between the perspective on trans-
formations presented above and the perspective prevalent in the literature

(e.g. [BD77]) is as follows:

• in the standard framework, the source program gradually – by a

sequence of (hopefully) meaning preserving steps – is transformed
into the target program;

• in our framework the behavior of the source program is “observed”,
and by means of the information thus gained a target program is

constructed.

For a further discussion of the merits of the two perspectives see [Tur86,

p. 293], according to which the former is “suggested by axiomatic math-
ematics” and the latter is “a product of cybernetic thinking”.

1.1 An overview of the thesis

• In chapter 2 we elaborate on the concept of multilevel transition
systems. In particular we examine several well-known program op-

timization techniques, discuss their merits and limitations and show
how they fit into the framework of multilevel transition systems.

• Chapter 3 takes place within a functional setting, considering eval-
uation strategies for the λ-calculus as well as for supercombinator

programs. It is well-known that lazy evaluation is suboptimal wrt.
the ability for reusing (sharing) computations; it is less known that

14

also “fully lazy” evaluation is suboptimal – it may even be expo-
nentially bad, as shown in [FS91].

Several clever methods exist for “a more than fully lazy” evalu-

ation of λ-expressions (e.g. [Lam90]); in section 3.1 we present
a parametrized evaluation strategy for supercombinator programs

with the pretentious name “ultimate sharing”, to be seen as a “top-
down” implementation of a multilevel transition system – we argue

that if parameters are chosen appropriately, this strategy is able to
achieve the same degree of sharing as the abovementioned methods.

This chapter attempts to unify and elucidate ideas from various

places in the literature, including [AT89] (Jesper Träff’s and mine
Master’s Thesis).

• Chapter 4 may be considered the main chapter of the thesis, and
can be summarized as follows (the chapter itself contains a more

detailed overview):

1. In section 4.1-4.5, the idea of multilevel transition systems

is formalized in a functional setting where the configurations

are graphs. It is shown that level 1 transitions (i.e. standard
evaluation) satisfy a Church-Rosser property, and that “nor-

mal order reduction” is optimal among evaluation strategies
at level 1.

As long as only one level is present, developments rather sim-

ilar to the one presented here have been seen numerous places
in the literature – however, our development has been given a

twist in order to suit our later purposes.

2. In section 4.6, the crucial issues of correctness and speedup are
addressed. In particular, theorem 4.6.3 can be interpreted as

saying that the target program will be faster than the source

program by at most a constant; and theorem 4.6.4 can be
interpreted as saying that by having an upper bound on the

number of levels employed in a multilevel system one at most
gains a polynomial speedup. Moreover, theorem 4.6.7 gives

criteria for total correctness – the trick is to ensure that each
rule represents some “progress”.

In section 4.7 it is discussed in detail how the above results

relate to the “real world”, e.g. the multilevel systems examined

15

in chapter 2.

In section 4.8 we factor out some reasons why a program op-

timization technique may yield more than a constant (polyno-
mial) speedup (that is, we investigate the underlying assump-

tions behind theorem 4.6.3 and theorem 4.6.4).

The main ideas exposed in these three sections were presented

at PEPM’91 [Amt91], however in a logic programming setting.

Finally, section 4.9 attempts to put the present work in perspective

by describing other approaches from the literature.

• In chapter 5 an abstract, non-deterministic machine (to be called
an USM) implementing ultimate sharing (cf. chapter 3) is defined.

By applying results from chapter 4, the machine can be proven
“correct”.

Of the numerous instances of the USM, the so-called PEM is of

special interest and will be treated in depth in section 5.2. The PEM
can be considered a top-down implementation of partial evaluation.

The material presented in this chapter may be viewed as a gener-
alization of the main idea behind [AT89] (Jesper Träff’s and mine

Master’s Thesis).

• Chapter 6 presents a “realistic” program which by means of a suit-

able instance of the USM can be made to run exponentially faster.

The program to be considered is a simulator for two-way determin-
istic pushdown automata (2DPDA) [AHU74, chap. 9]. It caused

much surprise when Cook showed that it is always possible to sim-
ulate a 2DPDA in linear time (wrt. the length of the input tape),

even if the automaton carries out an exponential number of steps.
We shall see that the effect of this clever simulation can be acquired

using the general concept of ultimate sharing.

This chapter is based on joint work with Jesper Träff which has been
reported in TCS [AT92] (but the basic idea dates back to [AT89]).

The exposition here will be rather different, as we can build upon
the general theory developed in the previous chapters.

• As in chapter 6, also in chapter 7 we shall see that ingenious algo-

rithms can be reinvented by application of general program opti-
mization techniques: we show that the well-known Knuth-Morris-

16

Pratt (KMP) and Boyer-Moore (BM) algorithms for substring match-

ing can be seen as specializations of a common substring matching
algorithm, parametrized wrt. search strategy. This further formal-

izes the intuition that KMP and BM are “dual”.

• In chapter 8 a model is set up for a logic language; special em-

phasis is put on giving criteria for total correctness of unfold/fold
transformations.

The basic ideas in this chapter have been presented at PLILP’92

[Amt92a]; the chapter itself is (apart from the introductory parts)
almost identical to the technical report [Amt92b]. Section 8.1 at-

tempts to give the main intuition behind the approach and section
8.2 compares with related work; the rest of the chapter is highly

technical and perhaps ought to be an appendix instead.

• Chapter 9 contains the concluding remarks. In particular, two is-

sues are discussed:

– It is essential for the success of the USM that it is instantiated

by appropriate parameters. Can some analysis guide the user?

– Can the functional model and the logic model be brought

closer together?

1.2 Acknowledgements

My academic career can be divided into two rather distinct parts: the

graduate study at DIKU, University of Copenhagen and the PhD study
at DAIMI, University of Aarhus.

I was initiated to the brave new world of “semantics based program
manipulation” in fall 1985, at which time Valentin Turchin was visiting

DIKU invited by Neil Jones. Together with Anders Bondorf I struggled
to get hold of the basic concepts within the area, and together with

Anders Bondorf I made a project guided by Valentin Turchin (and later
Neil Jones). More than seven years after, my intuition about program

manipulation is still heavily influenced by Valentin Turchin.
To be a graduate student at DIKU was a very special period of life

(which I, also for other reasons, tried to prolong as far as possible. . .),
due to the extremely stimulating research environment created by Neil

17

Jones. Warm thanks to Neil Jones for being a very inspiring advisor, and
for patiently providing constructive criticism on numerous drafts making

it possible to convert them into readable papers.
Many other members of Neil Jones’ group would deserve a mention

(e.g. Torben Mogensen for always being able and willing to explain the
behavior of even the most complicated program analysis, Olivier Danvy

for his infecting enthusiasm, Carsten Kehler Holst for being the one to
ask in order to understand what partial evaluation really is about) but

in particular I wish to thank Jesper Träff, my partner on Master’s Thesis
work with whom I have stayed in at least weekly but often daily contact

ever since, thanks to e-mail.
Life in Århus, Jutland, has been a very pleasing experience – so far

no attempts at ethnic cleansing have been made, and I even (from Oct

89 to Sep 92) enjoyed a scholarship from University of Aarhus.
Currently I am supported by the DART-project; thanks to my em-

ployers Hanne Riis Nielson and Flemming Nielson for giving me time to
complete this thesis. Also thanks to Hanne and Flemming for being the

most consistent representatives for the (implicit) DAIMI paradigm: do
not have confidence in anything unless you have proved it (the DIKU

paradigm is not to have confidence in anything unless you have seen that
it runs).

Thanks to my PhD-advisor Brian Mayoh for always being optimistic,
for his broad knowledge within numerous fields of computer science and

for his ability to quickly capture the essence of a text.
A very special thank is due to Jens Palsberg for giving valuable com-

ments on a draft of this thesis, and for many fruitful discussions during
the last three years – in which period our interests have converged.

Many other people at DAIMI deserve a mention – like Henrik Ander-
sen (now in Copenhagen) for being a most stimulating office mate and

Michael Schwartzbach for emphasizing the beauty of keeping things as
simple as possible – but in particular I wish to thank Sten Agerholm, my

current office mate, for making a three-months visit to Cambridge at the

end of 1992 thus giving me single access to a work station and removing
my (closest) access to small talk (without this contribution, the present

work would not have been possible. . .).
Finally, I wish to thank my friends outside DAIMI and my family –

not least my father, Henning Hansen, who (in spite of being single) has
been an outstanding support and encouragement.

18

Chapter 2

Multilevel transition systems

In this chapter we will elaborate a bit on the intuition presented p. 12 –
in particular, we will show how several well-known program optimization

techniques can be considered as instances of multilevel transition systems.
A multilevel system, in its most bare form, consists of

• A set of configurations, C.

• For each natural number i a set of transitions Ti, where each Ti is a

binary relation on C. Thus (C1, C2) ∈ Ti is supposed to mean that
there is a transition from C1 to C2 at level i – we will also write

i ⊢ C1 → C2.

• For each non-negative number i a set of rules Ri, where each Ri is

a binary relation on C. We will demand that for all i Ri ⊆ Ti, i.e.
that a level i rule is also a level i transition.

• An inference system for the i ⊢ relation, where the inference rules
are of form

. . . i ⊢ C11 → C12, i ⊢ C21 → C22 . . .

. . . i ⊢ C1 → C2

and where there is an axiom stating that

(C1, C2) ∈ Ri′, i
′ < i

i ⊢ C1 → C2

i.e. at level 1 only the level 0-rules can be used, at level 2 also the
level 1-rules are applicable etc. There may be some side conditions;

a possible one being that i = i′ + 1 (so at level 2 one can use the
level 1-rules but not the level 0-rules).

19

We say that a multilevel system is an n-level system if Ri = ∅ for i ≥ n

(but Rn−1 �= ∅) – in particular, in a 2-level system only R1 (and R0) will
be �= ∅.

As can be seen, a multilevel system will be determined (given a fixed
set of configurations and inference rules) from the sets Ri, since then the

sets Ti will be fixed.

Pragmatics

In order to specify and implement a multilevel system a number of issues,
some of which are listed below, must be settled. These decisions will then

implicitly define the sets Ri.

• Given that a rule at level i with “source” s is wanted, it remains to

find the corresponding “target”, i.e. a t such that i ⊢ s→ t. Many
such t may exist, representing various degrees of “reduction”. Often

one will reduce s until some sort of “normal form” is reached; of

course care has to be taken to ensure termination.

• Often there is a choice between whether to use the rules in R0,

which can be assumed to be easily accessible, but which represent
small computation steps only; or to use the higher level rules, which

might be costly to find (and compute), but potentially represent
larger computation steps.

• For any i ≥ 1, it must be settled which configurations will be
sources of transitions in Ri, and when these rules are to be gen-

erated. Roughly speaking, there are two ways to proceed:

– To compute the rules bottom-up, i.e. start to compute all the

rules wanted as members of R1, then (if any) the rules in R2,
etc. When all rules are stored, the system is able to evaluate

expressions (in the world of logic programming: solve queries),

now working at the top level. This approach is thus a two-
stage technique; the advantage being that the rules can be

“compiled” (into more efficient representations) between the
two stages – the disadvantage being that rules that are never

needed might be generated.

– To use a top-down (or call-by-need) approach: rules are gen-
erated only when needed to solve a given query (in an efficient

20

way). This approach is thus a one-stage technique; the ad-

vantage being that one does not have to determine in advance
which rules to generate (without knowing the actual query) –

the disadvantage being that a lot of administration overhead
is potentially present.

The discussion above will be concretized in the next section.

2.1 Instances of multilevel systems

We now examine three well-known techniques for program optimization

and show how their behavior can be expressed in terms of multilevel
systems.

2.1.1 Memoization

This is a classical technique, introduced by [Mic68]. The rules are of form

f(α)→ β

(α and β are constants) making it possible to share the computation of

f(α) between its various invocations. When applying the technique, two
issues must be settled:

• Which functions to memoize on? In [Kho90] some syntactic criteria
for deciding when memoization will be useful are given, at the same

time exhibiting a method for “compile time garbage collection” of
obsolete rules.

• Which kind of equality to use when deciding whether a function has
been called with the “same” argument before? The natural choice

is “structural equality”, but this can lead to very time-consuming
comparisons and in the case of lazy data structures even cause infi-

nite loops. Therefore, [Hug85] suggests to use “equality of pointers”
instead (of course, then less computation will be shared).

Memoization is a top-down method – its bottom-up counterpart is often
termed tabulation and is treated e.g. in [Bir80] and [Coh83]1.

1In [Bir80] the top-down method is termed exact tabulation (as only the rules needed are
generated), whereas the bottom-up method may give rise to overtabulation. In [Coh83] the top-

21

Example 2.1.1 Consider the fibonacci function

fib(0) →1
fib(1) →1
fib(n) →fib(n-1) + fib(n-2) for n ≥ 2.

a suitable representation of which will constitute the rules in R0.

Memoization-based evaluation of fib(n) amounts to creating a n-1 level
transition system where R1 consists of the transition from fib(2) to 2;

where R2 consists of the transition from fib(3) to 3, etc. ✷

One must realize that memoization (in the form sketched above) is not

able to catch all repeated computations – if e.g. f first is called with (α,β1)
as argument and then with (α,β2) as argument (β1 �= β2), memoization

will give us nothing, even though a lot of computation in f may depend on
its first argument only. This suggests that it might be useful to memoize

on “smaller units of computation” – as will be done in section 3.1.

2.1.2 Unfold/fold transformations

The unfold/fold framework for program transformation dates back to
[BD77] and has since been the subject of much interest, primarily aimed

at making the process of finding “eureka”-definitions more systematic,
e.g. [NN90], [PP90], [PP91b], [PP92]. Also supercompilation [Tur86] can

be seen as a variant over the concept.
The process of first transforming a source program into a target pro-

gram by the unfold/fold method and then running the target program
can be considered as implementing a 2-level system2 – the target program

being the rules at level 1 – by the bottom-up approach. No particular
requirements exist concerning the form of the level 1-rules.

Unfold/fold transformations are typically done manually, thus elimi-
nating the risk (otherwise potentially present in bottom-up approaches)

of generating infinitely many rules (or looping while generating a rule).

down method is termed the large-table method, whereas the bottom-up method is termed the
small-table method (as rules can be discarded when they have been used to generate the desired
higher level rules).

2This does not model all applications of the unfold/fold technique, since it may happen that a
rule derived during transformation is unfolded/folded against later on – thus 3 levels are present.
However, it will always be possible to describe an unfold/fold transformation as a finite sequence
of “2-level” transformations.

22

On the other hand, in e.g. [Wad90], [PP90] and [PP91b] mechanizable

strategies are given which are guaranteed to terminate for certain kinds
of source programs.

Example 2.1.2 Consider the function f defined by3

f([]) →[]
f(a::x) →b ::f(x)
f(b::x) →c ::f(x)
f(c::x) →a ::f(x)
and suppose this program is often used to evaluate expressions containing

subterms of the form f(f(t)). Then it might be a good idea to introduce
the eureka definition

g(x) →f(f(x))
and replace such subterms with g(t).

Remark: this definition is to be considered as an extra

level 0-rule, not as a level 1-rule. The justification for this
is that g does not appear in the source program, hence we

– without causing ambiguity – can add the definition to the
source program and then start the transformation process on

the modified source program.

We have to derive level 1-rules for g; first we look at the term g([]). By
one unfolding, this yields f(f([])); by one more unfolding, this yields f([]);

and by one more unfolding we end up with [] – enabling us to store the
level 1-rule

g([]) →[]
Next, we consider the term g(a::x). By one unfolding, this yields f(f(a::x));
by one more unfolding, this yields f(b::f(x)); and by one more unfolding

we get c::f(f(x)). Finally, this can be folded back to c::g(x) giving the
level 1-rule

g(a::x) →c::g(x)
In an analogous way, we get the level 1-rules

3Here a,b and c are constants, x is a variable, [] is the empty list and :: is the list constructor.

23

g(b::x) →a::g(x)
g(c::x) →b::g(x)

and the four level 1-rules for g constitute the target program. ✷

Some noteworthy points concerning the unfold/fold technique:

1. In most applications of the technique, the process of folding an
expression e into another expression e′ is conceptually equivalent to

considering e′ as an abbreviation of e. Referring back to example
2.1.2, if one considers g(x) as an abbreviation of f(f(x)) one can by

unfolding alone obtain the level 1-rules

f(f([])) →[]
f(f(a::x)) →c::f(f(x))
f(f(b::x)) →a::f(f(x))
f(f(c::x)) →b::f(f(x))

which determine the same “flow of control” as the target program
involving g – however, if implemented naively is less efficient.

In the theory developed in chapter 4, only unfolding will be modeled

– the discussion above suggests that this is no serious restriction.
Moreover, in chapter 8 (when a logic language is treated) folding is

handled explicitly.

2. The reason why we can expect the transformation in example 2.1.2

to improve efficiency is that the level 1-rules represent a “short-
cut” in the computation process: instead of unfolding f twice g is

unfolded once. This suggests that the speedup will be roughly a fac-

tor two. An attempt to formalize this intuition is made in chapter
4.

3. One must be careful not to decrease the termination domain – in
example 2.1.2, this would have happened if we after having unfolded

g(a::x) into f(f(a::x)) immediately folds back into g(a::x) yielding the
level 1 rule

g(a::x) →g(a::x)

24

Conditions to prevent this from happening are given in [Kot85]. In

chapter 4 the problem is addressed anew, with the aim of giving
more intuitively understandable conditions than in [Kot85]. For a

logic language, the issue is treated in depth in chapter 8.

4. In the unfold/fold framework one usually also – apart from doing

unfolding and folding – is allowed to perform various algebraic ma-

nipulations. In section 4.8.3 it is discussed how this fits with the
multilevel system view.

2.1.3 Partial evaluation

Partial evaluation (PE for short) can be viewed as a special case of the
unfold/fold technique, where the (level 1) rules are of form

f(α, y)→ε(y)

with α a constant and ε(y) an expression with y as only free variable. We
say that f has been specialized wrt. α, and that the first argument of f is

static and the second dynamic (of course the above can be generalized to
an arbitrary number of static/dynamic arguments)4. To generate such a

rule may be a good idea if some of f’s computation can be done even if
only the first argument is known, cf. the discussion at the end of section

2.1.1.

Example 2.1.3 Consider the Ackerman function, represented by the
level 0 rules

ack(0,n) →n+1
ack(m,0) →ack(m-1,1) for m > 0

ack(m,n) →ack(m-1,ack(m,n-1)) for m > 0, n > 0

If ack is partially evaluated wrt. its first argument being 2, the following

level 1 rules (specialized versions of ack) will typically be generated:

ack(2,0) →ack(1,1)
ack(2,n) →ack(1,ack(2,n-1)) for n > 0

ack(1,0) →ack(0,1)
ack(1,n) →ack(0,ack(1,n-1)) for n > 0

4The concept of PE may be extended a bit, as e.g. in [Tak91] where “context” is taken into
account, and in [BCD90] where a function can be specialized wrt. an argument satisfying some
predicate.

25

If we introduce ack2, ack1 and ack0 such that ack2(n) is an abbreviation

(cf. the discussion in section 2.1.2) of ack(2,n) etc, the level 1 rules will
take the form

ack2(0) →ack1(1)
ack2(n) →ack1(ack2(n-1)) for n > 0

ack1(0) →ack0(1)
ack1(n) →ack0(ack1(n-1)) for n > 0

ack0(n) →n+1

and will thus constitute a “self-contained” target program.

The only computation which has been done at PE-time is the eval-
uation of m − 1 for m = 1, 2 (and the pattern matching wrt. the first

argument) – not enough to reduce the enormous complexity of ack! ✷

The concept of partial evaluation dates back to Kleene’s smn-theorem

from recursion theory (where efficiency improvement was no concern);
and in the recent decade the field has evolved tremendously. For a com-

prehensive treatment of central aspects of PE as well as a historical sur-
vey, see [JSS89].

In contrast to most (general) unfold/fold systems, PE is usually in-
tended to be done automatically. As the bottom-up approach is used

this implies the risk of non-termination, and in fact the great majority of
existing partial evaluators may loop (even when doing PE on programs

which themselves terminate). Two sources for non-termination exist:

1. when generating the code for a specialized function, an attempt is

made to unfold infinitely often.

2. an attempt is made to specialize a function with respect to infinitely

many values.

These problems have been attacked in several ways, e.g.:

• In [Ses88] (1) is avoided by testing for cycles in the call graph (this
technique being potentially very space consuming), but (2) remains

a possibility.

• In SIMILIX [BD91] one decreases the risk of (1) by not unfolding

dynamic tests, i.e. tests whose outcome cannot be decided by the

26

static arguments alone. However, as all specialized versions possibly
needed have to be generated in advance – including some which turn

out to be not needed – (2) may occur and actually also (1).

• In [Hol91] an analysis for ensuring that (2) cannot happen is given.

If the analysis reveals that (2) might happen, one will have to make
some static arguments dynamic (thus giving rise to less sharing of

computations).

• In [Sah91] a partial evaluator for full PROLOG is given which does

not violate termination properties. A number of ways to ensure
this are proposed, one of which in the functional context translates

into putting an upper limit on the number of specialized versions
of each function.

In section 5.2 we shall present a top-down version of PE and prove it to
preserve termination properties (i.e. terminate unless the source program

itself loops).

27

Chapter 3

Various Degrees of Sharing

When evaluating an expression in a functional language (e.g. the λ-
calculus [Bar84]), some subcomputations may have to be done several

times, this being a cause of inefficiency. Consequently, several techniques
have been devised to increase the amount of sharing. Below, we are going

to list some of these techniques in order of increasing sophistication.
First some terminology (from the λ-calculus): a redex met when fol-

lowing the leftmost path from a node is called a spine redex (of this node).
For instance, in (λx.((λy.y)e1)e2)e3 the expression itself is a spine redex

(the topmost one) and (λy.y)e1 is a spine redex (the bottommost one).
When no spine redices exist, the expression is said to be in head nor-

mal form. Notice that it is always safe to reduce a spine redex of e, in
the sense that if e reduces to a head normal form then this reduction

involves the reduction of all spine redices of e [BKKS87, theorem 4.9].
A reduction which reduces the topmost spine redex is termed a normal

order reduction.

Lazy evaluation

One can work with “DAG”s instead of trees, i.e. allow a subexpression to
be shared among several expressions. When the normal order strategy is

applied, this amounts to using lazy evaluation instead of simple CBN.

Fully lazy evaluation

The use of DAGs is not sufficient to avoid duplication of computations.
To see this, consider the λ-expression E defined by

E = (λf. + (f 2)(f 3))(λy. + (h 4)y)

28

♠
♠ ♠
♠

♠ ♠
♠

♠
♠

♠

♠
♠ ♠

♠

♠
♠

♠
♠

♠
♠ ♠

♠
♠
♠

♠

♠
♠

♠

✁
✁✁

▲
▲▲

❇
❇
❇

✔
✔
✔

❆
❆❆

✔
✔
✔

▲
▲▲

❅
❅❅

❆
❆❆

✁
✁
❇
❇

✂
✂
✂

❉
❉
❉

✡
✡
❇
❇

✆
✆✆

✲

☞
☞
☞

❚
❚
❚

✓
✓✓

▲
▲▲

❙
❙❙

❈❈☎
☎
☎☎❤❤❤❤

❙❙✔
✔✔

✁
✁
❆
❆

✁
✁
❆
❆

✲

❅
❅

✡
✡

❙
❙❙

✄
✄✄

☞
☞
☞

❉
❉
❉

❡
❡
❡

✆
✆✆

❚
❚❚

✄
✄✄

▲
▲▲

✡
✡
✡

☞
☞
☞

▲
▲▲

✓
✓✓

❊
❊
❊❊

@

@

@

@

@

@

λf λy

@

@+

f 2

f 3 +

h 4

y

β

@

@

@

@

+ 3

2

λy

@

@

@+

h 4

y

β

@

@ @

@

+
3λy

y@

@+

h 4

@

@

@

2

+

h
4

Figure 3.1: Naive β-reduction of E

where h is some (expensive) built-in function.
A naive evaluation of E will give rise to a sequence of β-reductions

the first two steps of which are depicted in figure 3.1.
When doing the first β-reduction, the subexpression λy.+ (h 4)y can

be shared since we are working with DAGs. But when performing the
second β-reduction, i.e. when applying the abovementioned expression to

2, everything below the “λy” (i.e. the subexpression +(h 4)y) is duplicated
(since 2 has to be inserted on y’s place in one of the copies but not in the

other). Hence h 4 will be evaluated twice.
However, one can do better: actually there is no need to copy +(h 4),

since +(h 4) does not contain y free – in [Jon87, p. 246] this observation
is attributed to [Wad71]. An implementation clever enough to avoid such

unnecessary copying is termed fully lazy [Jon87, p. 210].
Usually, one does not implement functional languages by means of

β-reductions of λ-expressions – instead, one transforms into supercom-
binators by lambda-lifting ([Jon87]). By doing so, E might be naively

translated into the supercombinator program

E = L M

L x = + (x 2)(x 3)

M y = + (h 4) y

29

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✲ ✲✲

❏
❏
❏

✡
✡
✡

❆
❆
❆

✡
✡
✡

✓
✓
✓✓

❊
❊
❊❊

❚
❚❚

❚
❚❚

❚
❚
❚
❚
❚
❚

✁
✁
✁✁

❚
❚
❚❚

☞
☞
☞
☞☞

❇
❇
❇
❇❇

☎
☎
☎
☎☎

▲
▲
▲
▲▲

✁
✁
✁

❆
❆
❆

✁
✁
✁

❏
❏
❏

✂
✂
✂

❆
❆
❆

L M

@@E

@ @

@+

2

3

M

@

@ @

M 3+

2

@

@

+ @

h 4

Figure 3.2: Combinator based reduction of E

This program will be evaluated as depicted in figure 3.2. As the expression

h 4 is “hidden” in the definition of the supercombinator M, h 4 will be
evaluated each time M is applied – i.e. twice.

Again, one can do better: one can modify the lambda-lifting algorithm
so it abstracts away the maximal free expressions, as done in [Hug82].

Then the resulting supercombinator program will be fully lazy in the sense
that it has the “same” sharing properties as the original λ-expression

when evaluated by a fully lazy implementation. Now E is translated into
(as the maximal free expression h 4 is abstracted away from the definition

of M)

E = L (M (h 4))

L x = + (x 2)(x 3)

M x y = + x y

E can now be evaluated as depicted in figure 3.3: only one copy of h 4

then ever exists.
In some sense, fully lazy evaluation guarantees that redices present

in the source program are not copied [HG91]. However, when looking
at a program written in a high-level functional language, it is a rather

tricky issue to see which subcomputations are shared (when the program

30

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✒✑

✓✏
✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✒✑

✓✏
✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

❅
❅

❙
❙

❙
❙

❙
❙

✔
✔✔

❊
❊
❊
❊
❊❊

☞
☞☞

✁
✁
✁

❏
❏
❏

✓
✓

❚
❚❚

✡✡

❚
❚❚

✡
✡
✡

❈
❈
❈❈

✔
✔✔

✲ ✲✲

✆
✆
✆
✆
✆✆

❏
❏
❏

❆
❆
❆

✡
✡
✡

��
❙
❙
❙❙

✱
✱✱

❏❏✂
✂
✂

�
�
�

✂
✂
✂

❈
❈

❆
❆

✄
✄
✄✄

✄
✄

�����

4 4h

M

3

@

@

@

@

h

M
@

@

4h

M
@

@

3

L @

@@E

+

@

@

2

@

@

2

+

@

+

Figure 3.3: (Fully lazy) combinator reduction of E

is translated into the λ-calculus). In fact, the discussion in [Jon87, chap.

23] ends up with (p. 400)

We conclude that it is by no means obvious how lazy a

function is, and that we do not at present have any tools
for reasoning about this. Laziness is a delicate property of a

function, and seemingly innocuous program transformations
may lose laziness.

Moreover, as pointed out in [FS91] we have

Fully lazy evaluation is not fully lazy

and may in fact be exponentially bad. To see this, consider – as in [FS91]
– the family of λ-expressions given recursively by

A0 = λx.I

An = λh.(λw.wh(ww))An−1 for n ≥ 1

Bn = AnI for all n

where I = λx.x.

Let us now perform a fully lazy sequence (i.e. the topmost spine redex

is reduced, and expressions not containing the bound variable free are not
copied) of β-reductions on Bn. We want to show by induction that Anx

reduces to I for any λ-expression x, and at the same time we want to

31

calculate the number of reduction steps T (n). For n = 0 the claim is

obvious, and T (0) = 1. For n ≥ 1 a key observation is that when An is
applied to x, everything in the body of An is copied except the subex-

pression An−1 (and except (w w)) – even by a fully lazy evaluation. This
justifies that we can describe the reduction sequence in “linear form”:

Anx → (λw.wx(ww))An−1

→ An−1x(An−1An−1)

→T (n−1) I(An−1An−1)
→ An−1An−1

→T (n−1) I

From the above we see that T (n) = 2T (n− 1) + 3, giving us

T (n) = 4 · 2n − 3

This is exponentially bad – to see this, notice that An actually β-reduces
to A0 in 4n steps: by induction we have

An = λh.(λw.wh(ww))An−1

→ λh.An−1h(An−1An−1)

→4(n−1) λh.(A0h(A0A0))

→ λh.I(A0A0)→ λh.A0A0 → λh.I
= A0

where we exploit that the occurrences of An−1 in λh.An−1h(An−1An−1)

can be shared. Notice that in the above reduction sequence, only spine
redices are reduced.

By reducing something which is not the topmost spine redex (but

nevertheless a spine redex), we thus gain an exponential speed-up.
Now let us translate the above example to supercombinators (still

following [FS91]): we arrive at

L h w = w h (w w)

Mn h = L h Mn−1

M0 h = I

hence Bn is translated to MnI. Let us show that Mnx for any x reduces
to I: for n = 0 this reduces to I in 1 step, and for n ≥ 1 we by induction

32

have

Mnx → LxMn−1

→ Mn−1x(Mn−1Mn−1)

→∗ I(Mn−1Mn−1)
→ (Mn−1Mn−1)

→∗ I

As was to be expected, this is isomorphic to the fully lazy β-reduction of
Anx – still run time is exponential.

In the β-reduction world, we overcome the exponential complexity
by reducing a spine redex which is not the topmost, i.e. to reduce even

though not all variables are known. But this is just the essence of par-
tial evaluation! Accordingly, in the supercombinator world the analogous

path to success (being inspired by the concept of multilevel systems in-
troduced in chapter 2) is to combine partial evaluation and memoization

into a reduction strategy to be termed ultimate sharing, to be sketched
and discussed in the following section. An abstract machine for ultimate

sharing is defined in chapter 5.

3.1 Ultimate Sharing

Let us sketch how one by means of ultimate sharing may evaluate Bn –
for simplicity, let us assume n = 3.

1. Starting with the expression M3I, we apply the equation for M3 to

arrive at LIM2. Applying the equation for L, we get M2I(M2M2).

2. Perhaps inspired by the fact that M2 in the expression above is
applied to two (distinct) arguments, we decide to partially evaluate

M2 (wrt. to zero known arguments!). Thus, instead of looking at the
expression M2I we look at the more general expression M2v, where

v is a “variable”. The aim of this is to “factor out” the argument-
independent computation of M2, so this computation can be shared

among various invocations of M2.

(a) The expression M2v is via LvM1 reduced to M1v(M1M1). In

this expression, we continue working on M1v.

i. M1v reduces via LvM0 to M0v(M0M0). The applications

of M0 can be carried out directly, giving us I via I(M0M0)
and M0M0.

33

ii. We have thus found out that M1v reduces to I – in 5 steps.
This fact is now stored as a rule at level 1 (since no rules,

except for the “predefined” at level 0, have been exploited
to deduce it).

(b) We return to the evaluation of M2v, which we so far have

reduced to M1v(M1M1). Due to the rule just derived, we infer
that this reduces to I(M1M1). This in turn reduces to M1M1,

and now we can gain the benefits ofmemoization: by retrieving
the level 1 rule just stored we see that this reduces to I.

(c) We have thus found out that M2v reduces to I – in 5 steps,

excluded the steps needed for deriving the rule for M1. Again,
we store this fact as a rule; this time at level 2, since a level 1

rule was used for the deduction.

3. We return to the evaluation of M3I, which we so far have reduced

to M2I(M2M2). Making use of the rule for M2 twice, this reduces
- via I(M2M2) and M2M2 – to I.

4. Thus, we have finally solved the problem: M3I has been reduced

(at level 3) to I – in 5 steps, excluded the steps needed for deriving
the rule for M2.

It should be emphasized that “ultimate sharing” is a non-deterministic
reduction strategy. In order to make it deterministic (for implementation

purposes), one has to settle on the following issues:

• when to start looking at a more general expression.

• which more general expression to look at (in general, there will be
several possibilities).

• when to stop the current reduction sequence and store the result
obtained so far.

• when to examine whether previously stored rules are useful.

Conceptually one can imagine these decisions to be made by an oracle;

in reality these decisions will be made either by the user or by means
of some analysis/heuristics, either beforehand or during evaluation. See

section 9.1 for a brief discussion on how to perform such an analysis.

34

3.2 Is this really ultimate?

Just as “fully lazy” evaluation is not fully lazy, one may argue that “ul-

timate sharing” is not ultimate sharing. In particular, a machine able to
perform induction proofs will do better in the example above: by prov-

ing the theorem ∀n, x : Mnx →∗ I it is possible to evaluate Bn using a
constant number of steps. So our usage of the term “ultimate sharing” is

perhaps somewhat misleading. . .

3.3 Two kinds of sharing computations

Notice that we have introduced two ways of reusing computations: shar-

ing (of nodes in a graph) and memoization (checking if a similar subgraph
has been met before). The reader may wonder if one should not apply

Occam’s razor and abandon one of these features. However, the intuition
is that

• as sharing of nodes comes for free in an efficient implementation, it
is performed implicitly;

• as memoization is potentially expensive it is performed explicitly,
on selected expressions only.

3.4 Applicability of ultimate sharing

The example given shows that an evaluation strategy based on ultimate
sharing may be exponentially better than one just being fully lazy. This

example may seem contrived, but in chapter 6 we shall see a “realis-

tic” program which runs exponentially faster if executed by an ultimate
sharing strategy.

Ultimate sharing can be considered as a top-down implementation of a
multilevel transition system, cf. the discussion p. 20. In particular, a top-

down version of partial evaluation can be obtained, as will be described
in section 5.2. Just as (bottom-up) PE often is used for compilation pur-

poses (by doing PE on interpreters) [JSS89], in [AT89] the idea above was
used for implementing “lazy and incremental” compilation (by evaluating

an interpreter using a strategy based on ultimate sharing).

35

On the other hand, it should also be clear that for most applications
ultimate sharing will be a far too heavy tool (unless in a very restricted

form), the implementation overhead being prohibitively expensive.

3.5 Ultimate sharing and related concepts
in the literature

The idea of improving the efficiency of an algorithm by reusing previously
computed results is, of course, by no means new – this is just the philoso-

phy behind dynamic programming (see e.g. [Har87]). However, when the
algorithm to be improved is one for implementing a functional language

we so to speak step up one level, since to make this particular algorithm
faster (for some inputs) amounts to making many programs faster.

Concepts resembling ultimate sharing seem to have come up rather
independently – in various disguises – several places in the recent years:

• in [AT89] it is denoted partial memoization and is worked out for an
eager, first-order combinator language – a system was implemented

(guided by instructions from the user) and proved correct.

• in [HG91] the concept (which is there christened complete laziness)

is elaborated in a higher-order setting; one of the main purposes is
to argue that partial evaluation for higher order languages is able to

achieve strictly more sharing than “full laziness” – their treatment
being a source of inspiration for this chapter. Further, it is sketched

how to implement complete laziness via the underlying evaluation

mechanism in a lazy language (thus, in effect all subexpressions are
memoized upon).

• in [Gru] a reduction strategy for the pure λ-calculus, termed call-
by-mix, is proposed: the redex selected for reduction is the bot-

tommost spine redex; and when doing this reduction some other
tricks are employed in order to keep subexpressions shared as long

as possible. The properties of this strategy would surely be worth a
closer study; Grue (personal communication) has not investigated

the issue further.

• in [Lam90] (which [GAL92] attempts to elaborate on) an algorithm

for graph reduction of λ-expressions is given which attempts to

36

avoid duplication of computation by keeping track of how redices
propagate – on the other hand, “accidental sharing” (that is redices

which are identical but not copies of the same original redex) is not
detected. The trick employed is to let graphs contain not only

“fan-ins” but also “fan-outs”, i.e. a node may point at several other
nodes, the one to actually “choose” given from the context. Thus

graphs which differ only “far below” can share representation.

• in [Kah92] a system implementing not only a “hashing cons” but

also a “hashing apply” is described, i.e. the mapping from nodes
in the heap into terms is guaranteed to be injective – thus also

“accidental sharing” is detected, and our distinction (section 3.3)
between sharing and memoization collapses. On the other hand,

due to the absence of partial evaluation a hashing apply is not
as powerful as ultimate sharing: if we for instance had definitions

M x = L x; L x = 7 then one by the latter method is able to

recognize that M x = 7 for all x, a fact which cannot be detected
by the former method.

3.6 Choice of framework

What we have seen so far suggests that efforts taken to maximize shar-
ing can be done within several models of computation, and that there

is a close correspondence between reduction strategies in the various
frameworks1. As usual when different frameworks are involved, it is rather

difficult to compare the effects formally, and we shall not attempt to do
so. In the subsequent chapters, we settle upon one framework. For some

pragmatic reasons, I have chosen to use a language with named combina-
tors and pattern matching, implemented by means of graph reductions,

instead of the λ-calculus:

• One does not have to worry about free variables getting bound by

β-reduction (this problem being a main reason why the “bottom-
most spine redex” strategy may be considered unfeasible in practice

[Jon87, p. 200]).

1For SKI-combinators, as defined in [Tur79], the trick to obtain the effects of fully lazy
evaluation is [Jon87, p. 267] to incorporate the rule S (K p) (K q)→ K (p q).

37

• If one wants to include constants (like if and plus), what we surely

will do for modeling practical applications, the language will any-
way get the flavor of a combinator language (there will be δ-rules

etc).

38

Chapter 4

A model for a functional language
or how to get more than a constant
speedup

This chapter will be devoted to formalizing the concept of multilevel

transition system, as introduced in chapter 2, in a functional setting. As
this can be considered the main chapter of the thesis, a larger overview

is appropriate:

• Section 4.1 sets up the basic machinery of graphs and graph reduc-

tions. It should be clear from section 3.1 that it will be most useful
to be able to express that a graph G1 is more general than a graph

G2, likewise we want to express that a graph G1 rewrites to a graph
G2. The latter will be modeled by the existence of a reduction (cf.

definition 4.1.9) from G1 to G2; the former will be modeled by the

existence of a specialization (cf. definition 4.1.10) from the sum of
(cf. section 4.1.2) G1 and some graph G to G2.

Also, it should be clear from chapter 2 and section 3.1 that it will

be useful to make sure that “if there is a reduction r from graph g
to g′, and g is more general than G, then r gives rise to a reduction

r′ from G to some new graph G′, where g′ is more general than G′”.
This will be modeled by a pushout (cf. definition 4.1.19), this being

the standard way of expressing such “reduction within a context”
(see e.g. [ENRR87]).

Section 4.1 is rather long and technical, especially the proof that the

pushout actually exists (section 4.1.5). However, in order to read
the rest of this chapter it will be sufficient if one understands how

graphs, specializations, reductions, sums and pushouts are defined

39

– furthermore, one should be aware of the algebraic laws stated in
section 4.1.4.

We do not in any way claim our approach to be original, in par-
ticular the approach in [Rao84] is rather close to ours. However,

the development (especially in section 4.3) is given a new particular
twist in order to suit our (later) purposes.

• The graphs in section 4.1 have all been singlelabeled; in section 4.2
multilabeled graphs are introduced – enabling one to express e.g.

that the value of one node is twice the value of another; or that a
given node can assume any value except 7. It is sketched how the

development from section 4.1 carries over; for instance pushouts

will still exist – this material may be skipped by the reader.

• In section 4.3 we equip graphs with demand functions, which for

each node in the graph estimate “how far” it (at least) must be
reduced – 2 means that the node must be reduced to “normal

form”, 1 means that the node (at least) must be reduced to “weak
head normal form”, and 0 means that nothing can be said for sure.

Of course, some well-formedness criterion must be met (definition
4.3.2).

The purpose of introducing a demand function is to capture the
property of a “redex the reduction of which is needed” in a syntactic

way, enabling an efficient implementation of an “optimal evaluation
strategy”.

It is sketched how the development from section 4.1 carries over; for
instance pushouts will still exist – this material is rather long and

may be skipped by the reader. Finally the notion of a result node
can be defined (section 4.3.1) – such a node has, of course, demand

2.

• Section 4.4 considers the level 1 transitions and investigates their
properties. Of special interest is normal order reductions, reduc-

tions where only redices with demand ≥ 1 are reduced – graphs
with no such redices are said to be in normal form (section 4.4.1).

In order for interesting properties to hold, it is necessary to put
some rather tight requirements on the form of the level 0 rules.

Theorem 4.4.4 now states that the transition system is confluent,
and theorem 4.4.14 states that normal order reduction is optimal

40

in the sense that if some reduction reaches a normal form in c steps
any normal order reduction reaches an “equivalent” normal form in

≤ c steps.

• Section 4.5 completes the definition of the multilevel transition sys-

tem, by considering the level i transitions. It is shown that they
satisfy some “closedness” properties.

• Section 4.6 states results concerning “correctness”, i.e. whether one
gets the same result by working at level i as one does when working

at level 1, and at the same time addresses the question how much
speedup one can expect to gain (at most) by working at level i

instead of level 1. In particular,

– theorem 4.6.3 expresses partial correctness and at the same

time gives a speedup bound: there exists a constant k (depen-
dent on the rules) such that if reduction at level i reaches a

normal form in ci steps then (normal order) reduction at level
1 reaches an equivalent normal form in ≤ kci steps;

– theorem 4.6.4 can be interpreted as saying that by having an

upper bound on the number of levels employed in a multilevel

system, one at most gains a polynomial speedup;

– theorem 4.6.7 gives criteria for total correctness, i.e. that if
reduction at level i loops then also (normal order) reduction

at level 1 loops – the trick is to ensure that each rule represents
some “progress”.

• In section 4.7 examples are given showing how the results from
section 4.6 apply to “multilevel systems as one encounters them in

the real world”, cf. section 2.1 – that is, we examine memoization,
unfold/fold transformations and partial evaluation. Section 4.7.4 is

devoted to a discussion of the relevance of our complexity measure.
Finally, section 4.7.5 briefly attempts to justify that we later on

mostly will represent graphs as terms.

• Section 4.8 is (in my opinion!) perhaps the most interesting part

of the chapter. Here we factor our some reasons why a program
optimization technique may yield more than a constant speedup

(or more than a polynomial speedup), namely

41

– that the strategy used at level 1 is not optimal (if e.g. “call-

by-value” is used) and transformation “simulates” an optimal
strategy (section 4.8.1);

– that some sharing is introduced during the transformation pro-

cess (section 4.8.2);

– that some “laws” (or lemmas) are proved and exploited during
transformation (section 4.8.3).

Finally (section 4.8.4), we will explain the remarkable speedup
achieved in [PB82] (the fibonacci function transformed from being

exponential into being logarithmic) in terms of the above “factor-
ization”.

• Section 4.9 attempts to put the present work into perspective by
describing (in more or less detail) other approaches from the liter-

ature.

• Finally, in section 4.10 some ways in which our model could be

extended are discussed – this includes allowing reductions to take
place in parallel; to model call-by-value reduction; and to model

garbage collection.

4.1 Graphs and graph reductions

In the multilevel transition systems to be treated, the configurations will
be graphs – motivated by the fact that functional languages mostly (as

indicated in chapter 3) are implemented by means of graph reduction
[Jon87].

We will assume a set of symbols S, each s ∈ S having a fixed arity
Ar(s). The intuition is that if a node is labeled s then this node has Ar(s)

children. Also, to each s ∈ S we assign a “function arity”, written Far(s).
S might include the natural numbers with arity 0 (and function arity 0),

the list constructor :: with arity 2 and (arbitrarily) function arity 0, the
plus operator + with arity 0 and function arity 2 etc, together with “user

defined function symbols” with arity 0.

Remark: We do not impose any “type discipline” in our

model, as our concern is the operational behavior. Then,

42

since “badly typed programs may go wrong” (paraphrasing

[Mil78]), “stuck configurations” may arise.

Definition 4.1.1 A graph is a triple (N,L,S) where

• N is a (finite) set of nodes, N being the union of three disjoint sets:

– The set of active nodes, denoted A – to be thought of as appli-
cation nodes. A node named a (possibly with some subscript)

is implicitly assumed to be active.

– The set of passive nodes, denoted P – to be thought of as

constructor nodes. A node named p (possibly with some sub-

script) is implicitly assumed to be passive.

– The set of virtual nodes, denoted V – to be thought of as

“holes” where other graphs are to be plugged in. A node
named v (possibly with some subscript) is implicitly assumed

to be virtual.

• L is a labeling function from P to S. We will often write Ar(p)
instead of Ar(L(p)). (When drawing pictures, active nodes will be

labeled by a special symbol @ .)

• S (the successor function) is a mapping which to each p ∈ P assigns
a mapping from {1 . . .Ar(p)} to N , and which to each a ∈ A assigns

a mapping from {1, 2} to N . We will often write S(n, i) for S(n)(i)

or simply write “the i′th child of n”. By assigning each active node
arity 2, we can consider S as a mapping which to each n ∈ N \ V
assigns a mapping from {1 . . .Ar(n)} to N .

✷

Definition 4.1.2 We define a relation ≪ by stipulating n1≪n2 iff n1 ∈
rg(S(n2)). ≺ is the transitive closure of ≪, � is the reflexive closure of

≺. ✷

Given active node a, we say that n = Sp(a, i) (n is i steps down the
spine of a) if either i = 1, n = S(a, 1) or there exists active node a′ with

a′ = S(a, 1), n = Sp(a′, i− 1).

Definition 4.1.3 An active node a is said to be a genuine partial ap-

plication if there exists i and passive node p such that p = Sp(a, i), and
such that Far(L(p)) > i. ✷

43

Definition 4.1.4 An active node a is said to be a partial application if it
is a genuine partial application or there exists i and virtual node v such

that v = Sp(a, i) ✷

So if a is a partial application, S(a, 1) is either a partial application,

virtual or passive. And if a is a genuine partial application, S(a, 1) is

either a genuine partial application or passive.

Example 4.1.5 As + has function arity 2, an active node a is a genuine
partial application if S(a, 1) is labeled +. On the other hand, if a =

S(a′, 1) for some a′ then this a′ is not a partial application, since now all
arguments to + will be present. ✷

The intuition behind giving partial applications an explicit status in the
theory is that these nodes are guaranteed never to be “redices” - however,

non-genuine partial applications may become redices “if placed in some
context”.

4.1.1 Morphisms between graphs

A morphism from G1 to G2 is a (total) mapping from the nodes of G1

to the nodes of G2. If m1 is a morphism from G1 to G2 and m2 is

a morphism from G2 to G3, one by functional composition can define
m1⋆m2, a morphism from G1 to G3. Likewise, one for any G can define

the morphism idG as the identity mapping.

Remark: If one had defined morphisms to be partial map-

pings, garbage collection would be modeled. The theory is
being somewhat complicated by such an approach – in sec-

tion 4.10 we briefly sketch how to pursue this line.
When illustrating morphisms by means of figures, we will

often garbage collect some of the nodes (so one can concen-
trate on the essential parts of the morphism). It should be

rather easy to “complete” such figures.

We will be interested in several kinds of morphisms, e.g. specializations

and reductions, to be motivated briefly:

• A specialization from G1 to G2 models that G1 is “more general”

than G2. For instance, the graph (represented by the term) f(v) (v
being a virtual node) is more general than the term g(f(3),3), as

44

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

❚
❚
❚
❚

✔
✔
✔
✔

✔
✔
✔
✔

❚
❚
❚
❚

✔
✔
✔
✔

❚
❚
❚
❚

❚
❚
❚
❚

✔
✔
✔
✔

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✔
✔
✔
✔

❚
❚
❚
❚

✔
✔
✔
✔

�����✔
✔
✔
✔

✲

✲

@

@

@

@

@

@

@

f fv v

g v1 g

f

3

3

s

in1

Figure 4.1: A specialization.

1) v has been instantiated to 3 in the latter graph 2) in the latter

graph, some context (g) is included. Accordingly, as depicted in
figure 4.1, there is a specialization s from G1 to g(f(3),3) where G1

is the “sum” of f(v) and the graph g(v1,3). s maps e.g. v into 3 and
v1 into the bottommost application node.

• A reduction from G1 to G2 models that G1 “is reduced to” G2 during
the process of evaluating G1. For instance, one could imagine that

f(x) →x + x is a clause in the source program. Then there will be a
reduction r1 from f(x) to x + x, as depicted in the left part of figure

4.2. Here r1 maps the application node in the former graph into the
topmost application node in the latter graph. On the other hand,

if f(x) →x is a clause in the source program then the situation is as
depicted in the right part of figure 4.2, where there is a reduction

r2 from f(x) to x. Here r2 maps the application node in the former
graph as well as the virtual node v into the virtual node in the

latter graph. In both cases, the f-node has been implicitly garbage

collected.

Some notation: we say that a morphism m from G1 to G2 respects

a node n iff the following holds1: m(n) is the same kind of node (ac-
tive/passive/virtual) as n; if n is passive then L2(m(n)) = L1(n) (hence

also Ar2(m(n)) = Ar1(n)); and if n is active or passive then for all

1[Rao84] uses the terminology that m is a morphism at n iff the last two conditions hold, i.e.
if labels and successors are preserved.

45

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

❚
❚
❚
❚

✔
✔
✔
✔

✔
✔
✔
✔

✔
✔
✔
✔

❧
❧
❧❧

✲ ✔
✔
✔
✔

❚
❚
❚
❚

✲
@ @

@f v

+

v

@

f

f v

v

r1 r2

Figure 4.2: Two reductions.

i ∈ {1 . . .Ar(n)}: m(S1(n, i)) = S2(m(n), i).

Definition 4.1.6 Let m be a morphism from G to G′. We say that m

is an isomorphism iff m is bijective and respects all nodes. ✷

It seems fair to say that if there is an isomorphism from G to G′, then “G
and G′ cannot be distinguished”. We say that G and G′ are isomorphic.

Definition 4.1.7 Let m be a morphism from G to G′. We say that m
is a homomorphism iff m respects all active and passive nodes. ✷

Lemma 4.1.8 Suppose h1 is a homomorphism from G1 to G2 and h2 is

a homomorphism from G2 to G1, such that h1⋆h2 = idG1
, h2⋆h1 = idG2

.
Then h1 and h2 are isomorphisms. ✷

Definition 4.1.9 A reduction r from G to G′ is a morphism such that

1. r respects all passive and virtual nodes, and all partial applications.

2. r is injective on virtual nodes, i.e. r(v1) = r(v2) implies v1 = v2.

✷

The motivation for 1 is that one, during graph reduction, only performs

“non-trivial rewriting” on nodes which are “redices”. The motivation for
2 is that one cannot allow two distinct “holes” to be unified - if e.g. the

first hole is a placeholder for a passive node and the second hole is a
placeholder for a partial application, then a conflict will arise.

Definition 4.1.10 A specialization s from G to G′ is a morphism such
that

1. s respects all active and passive nodes.

46

2. If s(a1) = s(a2), with a1 �= a2, then a1 and a2 are partial applica-

tions.

3. For all a′ in G′ there exists an a such that s(a) = a′; for all p′

in G′ there exists a p such that s(p) = p′; for all v′ in G′ there
exists a v such that s(v) = v′ (this is a stronger requirement than

surjectivity).

✷

Condition 1 is quite natural; and condition 3 is motivated by our choice
to model “G is more general than G′” by the existence of a specialization

from the sum of some G1 and G to G′, rather than by the existence of a
specialization from G itself to G′ (cf. lemma 4.1.18). Concerning condition

2, the technical motivation is that if s(a1) = s(a2), a1 �= a2 and a1 not a
partial application, then – as a reduction r does not necessarily preserve

active nodes which are not partial applications – r(a1) is “out of control”
and may differ “significantly” from r(a2), thus making it impossible to

define the pushout2. Pragmatically, the motivation is that it will never

pay off to “split” an active node – e.g. when looking at a graph f(gx)(gx)
where the two occurrences of gx are shared, it will do no good to look at

a more general graph where the two occurrences are not shared.

Observation 4.1.11 It is easily seen that if a is a (genuine) partial appli-

cation and r a reduction, then r(a) is also a (genuine) partial application.
If s(a) is a partial application then so is a – but a is not necessarily a

genuine partial application, even if s(a) is.
On the other hand, if a is a genuine partial application so is s(a) – but

s(a) is not necessarily a partial application, if a is only a (non-genuine)
partial application. ✷

Fact 4.1.12 For all G, idG is a morphism belonging to all kinds (i.e. a
reduction, a homomorphism etc). An isomorphism belongs to all kinds

of morphisms. All kinds of morphisms are stable under ⋆. ✷

Proof: The claims concerning idG are trivial; so is the fact that iso-

morphisms, homomorphisms and reductions are closed under ⋆. Now let

us see that specializations are closed under ⋆:

2Cf. the remarks [Rao84, p. 11], to motivate why restrictions somewhat similar to condition
2 have been given.

47

1 and 3 are trivial. For 2, assume that s2(s1(a)) = s2(s1(a
′)) with

a �= a′. Since s1 satisfies 1, s1(a) and s1(a
′) are active. If s1(a) = s1(a

′),
we from s1 satisfying 2 can conclude that a and a′ are partial applications.

If s1(a) �= s1(a
′), we from s2 satisfying 2 can conclude that s1(a) as well

as s1(a
′) are partial applications, and hence (by observation 4.1.11) also

a and a′ are partial applications. ✷

4.1.2 The + operator

Given two graphs G1 and G2, we can define G1+G2 in the standard way3,

i.e. as the “disjoint union” of G1 and G2. Let in1 (a morphism from G1

to G1+G2) and in2 be the “injection functions”.

Observation 4.1.13 Given morphisms m1 from G1 to G′1 and m2 from
G2 to G′2, there exists a unique morphism m from G1+G2 to G′1+G′2 such

that

in1⋆m = m1⋆in1
′, in2⋆m = m2⋆in2

′

If m1 and m2 both are isomorphisms (homomorphisms, reductions, spe-
cialization) then also m is an isomorphism (homomorphism, reduction,

specialization). ✷

This m is denoted m1+m2.

As we do not in any way distinguish between isomorphic
graphs, we have to check that + “respects” isomorphism. But

it is immediate from what is said so far that if G1 and G′1 are
isomorphic, and G2 and G′2 are isomorphic, then also G1+G2

and G′1+G′2 are isomorphic.

Fact 4.1.14 + is commutative and associative, up to isomorphism. ✷

Fact 4.1.15 + is a functor, i.e. (with symbols having appropriate func-

tionality):

1. idG1
+idG2

= idG1+G2

3Of course, it would be nice to have a categorical definition. However, with the extensions to
the model to be presented later on it does not seem quite easy to come up with such a definition
– and actually fact 4.1.16 provides the categorical property we shall need.

48

2. (m1⋆m
′
1)+(m2⋆m

′
2) = (m1+m2)⋆(m′1+m′2)

✷

Proof: For 1), this follows from

in1⋆idG1+G2
= in1 = idG1

⋆in1, in2⋆idG1+G2
= in2 = idG2

⋆in2,

For 2), this follows from the equation below (and the symmetric one)

in1⋆((m1+m2)⋆(m′1+m′2)) = m1⋆in1⋆(m′1+m′2) = (m1⋆m
′
1)⋆in1

✷

Fact 4.1.16 Suppose m and m′ are morphisms from G1+G2 to G′, and

suppose we have

in1⋆m = in1⋆m
′, in2⋆m = in2⋆m

′.

Then m = m′. ✷

Observation 4.1.17 Given graph G, it is obviously possible to find a

morphism smash from G+G to G such that

in1⋆smash = idG, in2⋆smash = idG

✷

Given graphs G1 and G, we now give a sufficient condition for the exis-

tence of a graph G2 such that there is a specialization from G1+G2 to
G:

Lemma 4.1.18 Let G1 and G be given. Suppose there exists a mor-
phism m from G1 to G with the following properties:

1. m is respects all active and passive nodes.

2. If m(a1) = m(a2), with a1 �= a2, then a1 and a2 are partial applica-

tions.

Then there exists G2 and specialization s from G1+G2 to G, such that

s(in1(n)) = m(n) for n in G1. ✷

49

Proof: First we define G2. There will be four types of nodes: 1) active

nodes in G which are not of form m(a) 2) passive nodes in G which are
not of form m(p) 3) virtual nodes in G which are not of form m(v) (and

hence do not belong to rg(m) 4) some “new” virtual nodes – more about
that soon.

The labels of the passive nodes are inherited from G. The children of
a node n in G2 are found as follows: as n also belongs to G, we can talk

about its i’th child (i.e. S(n, i)) in G, to be called n′. If n′ is of type 1,2
or 3, then let n′ be the i’th child of n in G2 also. Otherwise, create a new

virtual node of type 4 and let this node be the i’th child of n in G2.
Now we have to define s, a mapping from G1+G2 to G. Given n in

G1+G2. If n = in1(n1) with n1 in G1, then we let s(n) = m(n1). If

n = in2(n2) with n2 in G2 of type 1,2 or 3, we let s(n) = n2 (a node in G).
Finally, suppose n = in2(v), with v a node in G2 of type 4. There must

exist a unique node n′ in G2, active or passive, such that v is the i’th
child of n′ in G2. Then we stipulate that s(n) should be the i’th child of

n′ in G.
It is rather straightforward to see that this yields a specialization. ✷

4.1.3 Pushouts

As promised in the introduction of this chapter, we now embark on the
following crucial task: to formalize that “if there is a reduction r from g

to g′, and g is more general than G, then r gives rise to a reduction r′

from G to some new graph G′, where g′ is more general than G′”:

Definition 4.1.19 Given a specialization s from g to G, and a reduction
r from g to g′. We say that (G′,r′,s′) (or just (r′, s′)) is a pushout of (r,s)

iff

• r′ is a reduction from G to G′.

• s′ is a specialization from g′ to G′.

• s⋆r′ = r⋆s′

• If G′′ is a graph, s′′ is a morphism from g′ to G′′ and r′′ is a morphism
from G to G′′ 4 such that s⋆r′′ = r⋆s′′, then there exists a morphism

4Notice that s′′/r′′ is not necessarily assumed to be a specialization/reduction.

50

✲

✻
✲

✻

�
�
�
��✒

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

✟✟
✟✟

✟✟
✟✟
✟✟
✟✟
✟✟✯

g g′

G G′

G′′

r

s

r′

s′

r′′

s′′

h

Figure 4.3: The pushout property.

h from G′ to G′′ such that r′⋆h = r′′, s′⋆h = s′′ – as illustrated in

figure 4.3.

✷

Fact 4.1.20 Suppose (G′,r′,s′) is a pushout of (r,s). Given r′′, s′′ as in
definition 4.1.19, the h will be unique. Further, if s′′ is a specialization

(and r′′ is a reduction), h will be a homomorphism. ✷

Proof: The uniqueness of h follows from s′⋆h = s′′ and s′ being surjec-
tive. Now suppose that r′′ is a reduction and s′′ is a specialization. We

have to check that h respects all passive and active nodes.
Given P ′ in G′. As s′ is a specialization, there exists p′ in g′ such that

s′(p′) = P ′. As s′′ is a specialization, s′′(p′) is passive, i.e. h(P ′) is passive.
Also, L′′(h(P ′)) = L′(P ′). Now let N ′ = S ′(P ′, i) for i in the appropriate

domain, and let n′ = S ′(p′, i). Then s′(n′) = N ′, as s′ is a specialization.
Now, as s′′ is a specialization,

h(S ′(P ′, i)) = h(N ′) = h(s′(n′)) = s′′(n′) = S ′′(s′′(p′), i) = S ′′(h(P ′), i)

In the same way it can be showed that h respects active nodes. ✷

Observation 4.1.21 Standard categorical reasoning shows that the push-

out, if it exists, is unique up to isomorphism: suppose (G′′, r′′, s′′) as well
as (G′, r′, s′) is a pushout of (r, s). Then there exists morphism h such

that r′⋆h = r′′, s′⋆h = s′′ and also there exists morphism h′ such that
r′′⋆h′ = r′, s′′⋆h′ = s′. By fact 4.1.20, h and h′ are homomorphisms.

51

Now r′′⋆(h′⋆h) = r′′, and s′′⋆(h′⋆h) = s′′. Still by fact 4.1.20, there exists

unique morphism h′′ such that r′′⋆h′′ = r′′, s′′⋆h′′ = s′′. Clearly h′′ = idG′′,
so h′⋆h = idG′′. Similarly, h⋆h′ = idG′. Lemma 4.1.8 then tells us that h

and h′ are isomorphisms. ✷

Thus the following is well-defined (up to isomorphism):

Definition 4.1.22 Given reduction r from g to g′, and specialization s

from g to G. If (G′, r′, s′) is a pushout of (r, s), we write r′ = Rs(r),
s′ = Ss(r). ✷

4.1.4 Algebraic laws

Fact 4.1.23 With symbols having the appropriate functionality, we have

1. The pushout of (r, id) is (r, id), i.e.

Rid (r) = r,Sid (r) = id (4.1)

2. The pushout of (id , s) is (id , s), i.e.

Rs(id) = id ,Ss(id) = s (4.2)

3. Suppose that (r1, s
′
1) is a pushout of (r, s1), and (r2, s

′
2) is a pushout

of (r1, s2). Then (r2, s
′
1⋆s
′
2) is a pushout of (r, s1⋆s2), i.e.

Rs1⋆s2
(r) = Rs2

(Rs1
(r)),Ss1⋆s2

(r) = Ss1
(r)⋆Ss2

(Rs1
(r)) (4.3)

4. Suppose that (r′1, s1) is a pushout of (r1, s), and (r′2, s2) is a pushout
of (r2, s1). Then (r′1⋆r

′
2, s2) is a pushout of (r1⋆r2, s), i.e.

Rs(r1⋆r2) = Rs(r1)⋆RSs(r1)
(r2),Ss(r1⋆r2) = SSs(r1)

(r2) (4.4)

✷

Proof: This is standard categorical reasoning. First we will prove

(4.1): clearly r⋆id = id ⋆r. Now suppose r⋆s′′ = id ⋆r′′. Then we can
choose h = s′′, as then r⋆h = r′′, id ⋆h = s′′.

(4.2) is proven dually. Now for (4.3) (and (4.4) will follow dually),
where the situation is as depicted in figure 4.4: clearly Rs2

(Rs1
(r)) is a

reduction, and Ss1
(r)⋆Ss2

(Rs1
(r)) is a specialization. Also we have

r⋆Ss1
(r)⋆Ss2

(Rs1
(r)) = s1⋆Rs1

(r)⋆Ss2
(Rs1

(r)) = s1⋆s2⋆Rs2
(Rs1

(r))

52

✲

❄ ❄

✲

❄✲ ✲����������������������������!

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇◆

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

r′′

s′′
h

s1 s2

r Rs1
(r) Rs2

(Rs1
(r))

Ss1
(r) Ss2

(Rs1
(r))

Figure 4.4: Algebraic law (3).

Next suppose r⋆s′′ = s1⋆s2⋆r
′′. There exists h such that Ss1

(r)⋆h = s′′,
Rs1

(r)⋆h = s2⋆r
′′. Thus there exists h′ such that Ss2

(Rs1
(r))⋆h′ = h,

Rs2
(Rs1

(r))⋆h′ = r′′

As we also have

Ss1
(r)⋆Ss2

(Rs1
(r))⋆h′ = Ss1

(r)⋆h = s′′

this shows (4.3). ✷

Fact 4.1.24 Again with symbols having appropriate functionalities, we

have (provided the pushouts mentioned on the right hand side exist)

Rs1+s2
(r1+r2) = Rs1

(r1)+Rs2
(r2)

Ss1+s2
(r1+r2) = Ss1

(r1)+Ss2
(r2)

✷

Proof: First consider the calculation, where we use fact 4.1.15:

(r1+r2)⋆(Ss1
(r1)+Ss2

(r2))

= (r1⋆Ss1
(r1))+(r2⋆Ss2

(r2)) = (s1⋆Rs1
(r1))+(s2⋆Rs2

(r2))

= (s1+s2)⋆(Rs1
(r1)+Rs2

(r2))

53

Next suppose that (r1+r2)⋆s
′′ = (s1+s2)⋆r

′′, with r′′ and s′′ being mor-

phisms into G′′. Our task is to find h (into G′′) such that

(Rs1
(r1)+Rs2

(r2))⋆h = r′′, (Ss1
(r1)+Ss2

(r2))⋆h = s′′ (4.5)

For a start, we have

r1⋆in1⋆s
′′ = in1⋆(r1+r2)⋆s

′′ = in1⋆(s1+s2)⋆r
′′ = s1⋆in1⋆r

′′

Thus there exists morphism h1 into G′′ such that

Rs1
(r1)⋆h1 = in1⋆r

′′,Ss1
(r1)⋆h1 = in1⋆s

′′

Similarly, also there exists morphism h2 into G′′ such that

Rs2
(r2)⋆h2 = in2⋆r

′′,Ss2
(r2)⋆h2 = in2⋆s

′′

We will define h = (h1+h2)⋆smash (recall that smash, a morphism from
G′′+G′′ into G′′, satisfies in ⋆smash = id). Now we have the calculation

(Rs1
(r1)+Rs2

(r2))⋆(h1+h2)⋆smash

= ((Rs1
(r1)⋆h1)+(Rs2

(r2)⋆h2))⋆smash

= ((in1⋆r
′′)+(in2⋆r

′′))⋆smash = r′′

where the last equality follows from fact 4.1.16 exploiting that

in1⋆((in1⋆r
′′)+(in2⋆r

′′))⋆smash = (in1⋆r
′′)⋆in1⋆smash = in1⋆r

′′,

in2⋆((in1⋆r
′′)+(in2⋆r

′′))⋆smash = (in2⋆r
′′)⋆in2⋆smash = in2⋆r

′′

Hence we have shown the first half of (4.5) – the second is shown in a
symmetric way. ✷

Lemma 4.1.25 Suppose (r′, s′) is a pushout of (r′, s′). Suppose r re-
spects a, a an active node in g. Then r′ respects s(a). ✷

Proof: We have r′(s(a)) = s′(r(a)) which is active. And, since r
respects a and s,s′ respect all active nodes, we have

r′(S(s(a), i)) = r′(s(S(a, i))) = s′(r(S(a, i)))

= s′(S ′(r(a), i)) = S ′(s′(r(a)), i) = S ′(r′(s(a)), i)

✷

54

4.1.5 Existence of the pushout

Fact 4.1.26 Given specialization s from g to G, and reduction r from g

to g′. Then the pushout of (r, s) always exists. ✷

Proof: We are going to give a constructive definition of (G′, r′, s′): to

be more precise, we are going to define G′ as the quotient of g′ wrt. the
equivalence relation ∼ defined in

Definition 4.1.27 ∼, an equivalence relation on g′, is the reflexive tran-
sitive closure of ≈, where n′1 ≈ n′2 iff there exists n1, n2 in g such that

r(n1) = n′1, r(n2) = n′2, s(n1) = s(n2). ✷

In order to facilitate reasoning about ∼, we introduce a transition system

where

• the configurations are pairs of the form (n, n′) with n in g, n′ in g′

such that n′ = r(n).

• the transition relation > is defined as the union of >1, >2 and >3,

where

1. (n1, n
′
1) >1 (n2, n

′
2) if n′1 = n′2.

2. (n1, n
′
1) >2 (n2, n

′
2) if n2 �= n1, s(n1) = s(n2).

3. (n1, n
′
1) >3 (n2, n

′
2) if there exists n such that n �= n1, s(n1) =

s(n), r(n) = n′2(= r(n2)), and such that n �= n2.

Lemma 4.1.28 For all n′1, n
′
2 in g′, n′1 ∼ n′2 iff n′1 = n′2 �∈ rg(r) or there

exists n1,n2 (with r(n1) = n′1, r(n2) = n′2) such that (n1, n
′
1) >∗ (n2, n

′
2).

✷

Proof: If (n1, n
′
1) >1 (n2, n

′
2) then n′1 = n′2, and if (n1, n

′
1) >2 (n2, n

′
2)

or (n1, n
′
1) >3 (n2, n

′
2) then n′1 ≈ n′2. This shows “if”.

To show “only if”, suppose n′1 ∼ n′2. If n′1 �∈ rg(r), clearly n′1 = n′2.
So assume that n′1, n

′
2 ∈ rg(r), with n′1 �= n′2. There exists n′3 �= n′1 such

that n′1 ≈ n′3, n
′
3 ∼ n′2. Hence also n′3 ∈ rg(r). Inductively, we can assume

that there exists n3b, n2 such that (n3b, n
′
3) >∗ (n2, n

′
2). By definition of

≈, there exists n1, n3a such that (n1, n
′
1) >2 (n3a, n

′
3). Hence, perhaps by

doing an intermediate >1-transition, (n1, n
′
1) >∗ (n2, n

′
2). ✷

55

Lemma 4.1.29 Suppose (n1, n
′
1) >∗ (n2, n

′
2). Then there exists (n3, n

′
3)

and (n4, n
′
4) such that

(n1, n
′
1) >i

1 (n3, n
′
3) >∗3 (n4, n

′
4) >j

2 (n2, n
′
2)

where i and j are either 0 or 1. ✷

Proof: We have to make several observations, concerning how one can

permute the transitions in a sequence:

• a >1-transition, followed by a >1-transition, is equivalent to one

>1-transition.

• a >2-transition, followed by a (non-trivial) >1-transition, is equiv-

alent to a >3-transition.

• a >3-transition, followed by a >1-transition, is equivalent to either
a >2-transition or a >3-transition.

• a >2-transition, followed by a >2-transition, is equivalent to either

a >2-transition or an empty transition.

• a >2-transition, followed by a >3-transition, is equivalent to either

a >3-transition or a >1-transition.

Each of these permutations decrease the length of the transition sequence.

When no more are applicable, any remaining >1-transitions will be left-
most and any remaining >2-transitions will be rightmost. ✷

Lemma 4.1.30 Suppose (n1, n
′
1) >3 (n2, n

′
2). Suppose that we do not

have both n2 active and n′2 virtual. Then we can draw the following
inferences: (we use n for the node in g such that s(n1) = s(n), r(n) = n′2,
n �= n1, n �= n2)

• First we observe that n cannot be virtual. For then n′2 will be so

too, and as r is injective on virtual nodes and n �= n2 we will have
n2 active contradicting our assumption.

• Assume n1 is passive (so also n′1 is passive). As n cannot be virtual,

n will be passive. Then n′2 is passive, and n′2 has the same label as
n as n1 as n′1. Moreover, for i in the appropriate domain we have

s(S(n1, i)) = S(s(n1), i) = S(s(n), i) = s(S(n, i))

56

and hence also

S ′(n′1, i) = r(S(n1, i)) ≈ r(S(n, i)) = S ′(n′2, i)

• Assume n1 is active. As n cannot be virtual and s(n) = s(n1) which
is active, we from s being a specialization and n �= n1 deduce that

n as well as n1 is a partial application. Hence also n′1 and n′2 are
partial applications. As before, for i in the appropriate domain we

have

S ′(n′1, i) ≈ S ′(n′2, i)

✷

Lemma 4.1.31 Suppose (n1, n
′
1) >∗3 (n2, n

′
2). Then we can draw the

following inferences:

• If n′1 is active, then either

– n′1 = n′2

– n′2 is virtual, n2 is active

– n′1 and n′2 are partial applications, and S ′(n′1, i) ∼ S ′(n′2, i).

• If n′1 is passive, then either

– n′1 = n′2

– n′2 is virtual, n2 is active

– n′2 is passive as well, with same label as n′1, and S ′(n′1, i) ∼
S ′(n′2, i).

• If n′1 is virtual and n1 is active, then also n′2 is virtual and n2 is
active.

✷

Proof: Induction in the length of the >∗3-sequence. If the length is

zero, the claim is trivial. Otherwise, assume that there exists (n3, n
′
3)

such that (n1, n
′
1) >3 (n3, n

′
3) and (n3, n

′
3) >∗3 (n2, n

′
2).

First suppose n′1 is active, hence also n1 is active. Now apply lemma
4.1.30: either n′3 is virtual and n3 is active, in which case the induction

57

hypothesis gives the rest, or n′1 as well as n′3 are partial applications with

S ′(n′1, i) ≈ S ′(n′3, i). Also here, the induction hypothesis gives the rest.
Next suppose n′1 is passive. If n1 is active, lemma 4.1.30 tells us that

(as n1 cannot be a partial application) n′3 is virtual and n3 is active, and
then the induction hypothesis gives the rest. So we can assume n1 to be

passive. Then lemma 4.1.30 tells us that either n′3 is virtual and n3 is
active, in which case the induction hypothesis gives the rest, or n′3 is a

passive node with same label as n′1 and S ′(n′1, i) ≈ S ′(n′3, i). Also here,
the induction hypothesis gives the rest.

Finally, if n′1 is virtual and n1 is active then (as n1 cannot be a partial
application) by lemma 4.1.30 we find that n′3 is virtual and n3 is active.

Then apply the induction hypothesis. ✷

Lemma 4.1.32 Suppose (n1, n
′
1) >2 (n2, n

′
2). Suppose we do not have n′2

virtual (and thus neither n2 is virtual). Then we can draw the following

inferences (using s(n1) = s(n2) and n1 �= n2):

• If n1 is passive, then also n2 is passive (and hence also n′1 and n′2
are passive). Moreover, as above we see that n′1 and n′2 have the

same label, and that

S ′(n′1, i) ≈ S ′(n′2, i)

• If n1 is active, then n1 and n2 must be partial applications. Hence

also n′1 and n′2 are partial applications, and as above we have

S ′(n′1, i) ≈ S ′(n′2, i)

✷

Now we are ready to prove that ∼ is “well-behaved”:

Lemma 4.1.33 Suppose n′1 ∼ n′2. Suppose n′1 �= n′2, and suppose n′2 is
not virtual. Then

• if n′1 is active, then n′2 as well as n′1 is a partial application, and
S ′(n′1, i) ∼ S ′(n′2, i).

• if n′1 is passive, then n′2 is passive with same label as n′1, and
S ′(n′1, i) ∼ S ′(n′2, i).

58

✷

Proof: By lemma 4.1.28 and lemma 4.1.29 there exist n1, n2 such that

(n2, n
′
2) can be derived from (n1, n

′
1) by zero or more >3-steps followed

by at most one >2-step. If (n1, n
′
1) >∗3 (n2, n

′
2), the claim follows from

lemma 4.1.31. So assume that there exists (n3, n
′
3) such that

(n1, n
′
1) >∗3 (n3, n

′
3) >2 (n2, n

′
2)

In the following we can exclude the possibility that n′3 is virtual and n3

active, as then lemma 4.1.32 tells us that n′2 is virtual. Now apply lemma

4.1.31 in the two cases:

• n′1 is active: then either n′1 = n′3 or n′1 and n′3 are both partial

applications with S ′(n′1, i) ∼ S ′(n′3, i). In both cases, n3 is active so
lemma 4.1.32 tells us (as n′2 is not virtual) that n′3 as well as n′2 are

partial applications, with S ′(n′2, i) ∼ S ′(n′3, i).

• n′1 is passive: then either n′1 = n′3 or n′3 is also passive with same

label as n′1 and with S ′(n′1, i) ∼ S ′(n′3, i). In both cases, n3 is either
active or passive, and then lemma 4.1.32 tells us (as n′2 is not virtual,

and as n′3 is not a partial application) that n′2 is passive with same
label as n′3 and with S ′(n′2, i) ∼ S ′(n′3, i) .

✷

Defining G′, r′, s′

Lemma 4.1.33 shows that the following is well-defined:

Definition 4.1.34 We define G′ as follows:

• The nodes of G′ are the equivalence classes of the nodes of g′ wrt.

∼.

• A node in G′ will be active iff it (viewed as a set of g′-nodes) contains

an active node; a node is passive iff it contains a passive node;
consequently a node is virtual iff it contains virtual nodes only.

• If P ′ is passive in G′, P ′ = [p′]∼ with p′ passive in g′, then L′(P ′) =
L′(p′).

59

• If P ′ is passive in G′, P ′ = [p′]∼, then for i ∈ {1 . . .Ar(L(p′))} we

define

S ′(P ′, i) = [S ′(p′, i)]∼

Similarly, if A′ is active with A′ = [a′]∼ we define for i = 1, 2

S ′(A′, i) = [S ′(a′, i)]∼

✷

Now we are able to define r′ and s′:

Definition 4.1.35 s′, a morphism from g′ to G′, is defined by stipulating
s′(n′) = [n′]∼.

r′, a morphism from G to G′, is defined as follows: let N be a node
in G. Let n be such that s(n) = N . Now let r′(N) = [r(n)]∼. ✷

We have to ensure that r′ is well-defined: assume s(n1) = s(n2) = N with
n1 �= n2. Then r(n1) ≈ r(n2), hence [r(n1)]∼ = [r(n2)]∼.

We have to show that r⋆s′ = s⋆r′; so consider n in G. Now

(s⋆r′)(n) = r′(s(n)) = [r(n)]∼ = s′(r(n)) = (r⋆s′)(n)

Next assume s′′ is a morphism from g′ to G′′, and assume r′′ is a morphism
from G to G′′ such that r⋆s′′ = s⋆r′′. We have to define h, a morphism

from G′ to G′′, such that r′⋆h = r′′, s′⋆h = s′′. So let N ′ be a node in G′.
Find n′ in g′ such that [n′]∼ = N ′. Then define h(N ′) = s′′(n′).

Of course we have to check this is well-defined, i.e. that n′1 ∼ n′2
implies s′′(n′1) = s′′(n′2). It will be enough to show that n′1 ≈ n′2 implies

s′′(n′1) = s′′(n′2). So assume there exists n1, n2 with r(n1) = n′1, r(n2) =
n′2, s(n1) = s(n2). Now

s′′(n′1) = s′′(r(n1)) = r′′(s(n1)) = r′′(s(n2)) = s′′(r(n2)) = s′′(n′2)

By definition, s′′ = s′⋆h. We are left with showing r′′ = r′⋆h. So consider

N in G. Let n in g be such that s(n) = N . Then

r′′(N) = r′′(s(n)) = s′′(r(n)) = h(s′(r(n)))

= h(r′(s(n))) = h(r′(N)) = (r′⋆h)(N)

60

r′ is a reduction, s′ is a specialization

First we show

Lemma 4.1.36 Suppose (v, v′) >∗ (n, n′), with s(v) = V a virtual node

in G. Then n′ will be virtual, and if s(n) is virtual then s(n) = V . ✷

Proof: First we define a predicate P with free variables n, n′:

P (n, n′) ≡ n′ is virtual, n is virtual implies s(n) = V

This is an invariant of >3, i.e. (n1, n
′
1) >3 (n2, n

′
2), P (n1, n

′
1) implies

P (n2, n
′
2). To see this, suppose there exists n with s(n1) = s(n), r(n) =

n′2, n �= n1, n �= n2. We can assume that n′1 is virtual, and n1 virtual

implies s(n1) = V . Two cases:

• If n1 is active, then – as n1 is not a partial application – n will be

virtual. Then also n′2 is virtual, and n2 cannot be virtual.

• If n1 is virtual, by assumption s(n) = s(n1) = V . Hence, n is

virtual. So also n′2 is virtual, and n2 cannot be virtual.

Now assume (v, v′) >∗ (n, n′), with s(v) = V . By lemma 4.1.29, the

situation is

(v, v′) >i
1 (n1, n

′
1) >∗3 (n2, n

′
2) >j

2 (n, n′), i, j ∈ {0, 1}

Clearly, P (n1, n
′
1) holds. Due to P being an invariant of >3, also P (n2, n

′
2)

holds. If j = 0, the claim is clear. So suppose j = 1, i.e. s(n2) = s(n)

with n �= n2. Two cases:

• n2 is active. As r(n2) = n′2 is virtual, n2 is not a partial application,

so n is virtual hence also n′ is virtual. On the other hand, s(n) =

s(n2) is not virtual.

• n2 is virtual. As P (n2, n
′
2) holds, s(n) = s(n2) = V . Hence, n′ is

virtual.

✷

Fact 4.1.37 r′ is a reduction. ✷

61

Proof: First we show that r′ respects passive nodes: let P be a passive

node in G. There exists p in g with s(p) = P . Now r(p) will be passive,
so [r(p)]∼ = r′(P) is passive. Moreover, r′(P) has the same label as r(p)

as p as P . Finally,

r′(S(P, i)) = r′(s(S(p, i))) = s′(r(S(p, i))) = [S(r(p), i)]∼
= S([r(p)]∼, i) = S(s′(r(p)), i) = S(r′(P), i)

Next we show that r′ respects partial applications: let A be a partial

application in G. There exists a in g with s(a) = A. a will be a partial
application. As r respects partial applications, r(a) will be active so

[r(a)]∼ = r′(A) will be active. Moreover, as above we have

r′(S(A, i)) = S(r′(A), i)

We also have to show that r′ respects virtual nodes. So let V be virtual
in G, and let v be such that s(v) = V . Let v′ = r(v). We want to show

that [v′]∼ is virtual. This can be done by showing that v′ ∼ n′ implies n′

is virtual. So assume v′ ∼ n′, v′ �= n′. By lemma 4.1.28 there exists n

such that (v, v′) >∗ (n, n′). By lemma 4.1.36, n′ will be virtual as desired.

Turning to the requirement 2 for a reduction, i.e. that r′ is injective
on virtual nodes, suppose r′(V1) = r′(V2) with v1, v2 such that s(v1) = V1,

s(v2) = V2. With v′1 = r(v1), v′2 = r(v2) this means that v′1 ∼ v′2. If
v′1 = v′2, v1 = v2 and V1 = V2. So assume v′1 �= v′2, then lemma 4.1.28 tells

us that there exists n1, n2 such that (n1, v
′
1) >∗ (n2, v

′
2). But then also

(v1, v
′
1) >∗ (v2, v

′
2). Lemma 4.1.36 now says that V1 = V2. ✷

Fact 4.1.38 s′ is a specialization. ✷

Proof: The only non-trivial point is 2 – but this follows from lemma
4.1.33. ✷

This concludes the proof of fact 4.1.26. ✷

Example 4.1.39 Consider the specialization s presented in figure 4.1
and the reduction r2 presented in figure 4.2. With r = r2+idG for G =

gv13, let us find the pushout of (r, s). This is depicted in figure 4.5, where
all application nodes have been numbered for reference purposes.

r is defined as follows: r(a1) = v, r(a2) = a′2, r(a3) = a′3, r(g) = g,
r(v1) = v1, r(3) = 3, r(v) = v, r(f) = f (garbage collected in the figure).

62

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

▲
▲
▲
▲▲

☞
☞
☞
☞☞

☞
☞
☞
☞☞

▲
▲
▲
▲▲

☞
☞
☞
☞☞

▲
▲
▲
▲▲

☞
☞
☞
☞☞

▲
▲
▲
▲▲

✲ ▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

☞
☞
☞
☞☞

▲
▲
▲
▲▲

☞
☞
☞
☞☞

✔
✔✔

☞
☞
☞
☞☞

☞
☞
☞
☞☞

▲
▲
▲
▲▲

▲
▲
▲
▲▲

✲ ✲

✲

☞
☞
☞
☞☞

☞
☞
☞
☞☞

❄ ❄

❍❍❍❍❍

▲
▲
▲
▲
▲
▲
▲

s

s′

r r′

in1

in1

f v

g v1

3

f v
g

f

3

g v1

3

g

a1

a2

a3

A2

A3

A1

a′2

a′3

v

v 3

A′2

A′3

Figure 4.5: A pushout.

s is defined as follows: s(a1) = A1, s(a2) = A2, s(a3) = A3, s(g) = g,

s(f) = f, s(3) = 3, s(v1) = A1, s(v) = 3.
We notice that v ≈ v1, and v ≈ 3. Hence the only non-singleton

equivalence class is the one containing v, v1 and 3. This class will be
passive.

We denote A′2 = [a′2]∼, and A′3 = [a′3]∼. Then, r′(A1) = [r(a1)]∼ = 3,
r′(A2) = [r(a2)]∼ = A′2, r

′(A3) = [r(a3)]∼ = A′3, r
′(g) = g, r′(f) = f and

r′(3) = 3.
Thus, the behavior of the pushout is “as expected”. ✷

Example 4.1.40 Consider the pushout depicted in figure 4.6, where r
and r′ both map the application node into the virtual node. This pushout

may seem a bit “pathological” in the sense that even though r does not
“create” any virtual nodes, r′ does. On the other hand, since r corre-

sponds to the rule f(x) →x we cannot expect the term f(f(. . . (f(f(. . .)))))

63

✝ ✦
✥✗

✒✑
✓✏

✒✑
✓✏

☞
☞
☞☞

▲
▲
▲
▲▲

❄

✲

☞
☞
☞☞

❄

✲

@ @

f v f

f v f v

s

r r′

s′

Figure 4.6: A “pathological” pushout.

(which corresponds to the graph in the upper right corner) to have a well-
defined value5. ✷

4.1.6 A property of the pushout

Given G and GL, it may be possible to find several Gi’s and si’s such that

si is a specialization from GL+Gi to G. The following lemma shows that
it doesn’t really matter which one we choose, as long as all si coincide on

GL:

Lemma 4.1.41 Suppose r is a reduction from GL to GR. Suppose s1 is a

specialization from GL+G1 to G and s2 is a specialization from GL+G2 to
G such that for all n in GL, s1(n) = s2(n)6. Let (G′1, r

′
1, s
′
1) be the pushout

of (r+idG1
, s1) and let (G′2, r

′
2, s
′
2) be the pushout of (r+idG2

, s2). The
situation is as depicted in figure 4.7. Then there exists an isomorphism

h from G′1 to G′2 such that r′1⋆h = r′2. ✷

Proof: Let G′1 be the quotient of GR+G1 wrt. ∼1, and let G′2 be the

quotient of GR+G2 wrt. ∼2, as in the proof of fact 4.1.26.

We are going to define h as follows: given N ′ in G′1, find n′ in GR+G1

such that [n′]∼1
= N ′. If n′ �∈ rg(r+idG1

), then n′ will belong to GR and

we can prescribe h(N ′) = [n′]∼2
. Otherwise, find n in GL+G1 such that

(r+idG1
)(n) = n′. Now define h(N ′) = r′2(s1(n)).

5See also section 4.7.5.
6We will not bother about writing the injection functions.

64

❄

✻

✏✏
✏✏

✏✏
✏✏

✏✏✏✶

�����������!

✏✏
✏✏
✏✏

✏✏
✏✏✏✶

�����������!

❄

❄

✻

G

G′1

G′2

s1

s2

h

GL+G1

GL+G2

GR+G1

GR+G2

s′1

s′2

r′1

r′2

r+idG2

r+idG1

Figure 4.7: Two “equivalent” pushouts.

This “definition” involves two choices, so we have to ensure that h(N ′)
actually is independent of those. For the latter choice (how to find n),
assume that n1 �= n2 but (r+idG1

)(n1) = (r+idG1
)(n2) = n′. It must hold

that n1, n2 both belong to GL, and r(n1) = r(n2) = n′. By assumption,
we have s1(n1) = s2(n1), s1(n2) = s2(n2). Hence

r′2(s1(n1)) = r′2(s2(n1)) = s′2((r+idG1
)(n1))

= s′2((r+idG1
)(n2)) = r′2(s2(n2)) = r′2(s1(n2))

For the former choice (how to find n′), it will be sufficient if we show that

if n′1 ≈1 n
′
2, [n′1]∼1

= N ′ (= [n′2]∼1
) then h(N ′) does not depend on whether

we choose n′1 or n′2. There will exist n1, n2 such that (r+idG1
)(n1) = n′1,

(r+idG1
)(n2) = n′2, s1(n1) = s1(n2). Thus also r′2(s1(n1)) = r′2(s1(n2)) as

desired.

Notice that the definition of h can be stated in another way: given
N ′ in G′1, find N in G such that r′1(N) = N ′ and let h(N ′) = r′2(N). If

no such N exists, N ′ must be a singleton class of form [n′]∼1
with n′ in

GR not in rg(r); then define h(N ′) = [n′]∼2
. It is then quite obvious that

r′1⋆h = r′2.
Dually we can define h′, a morphism from G′2 to G′1. It then follows

from the definitions that h⋆h′ = idG′

1
, h′⋆h = idG′

2
. By lemma 4.1.8, it

in order to show that h is an isomorphism is enough to show that h is

a homomorphism, i.e. that h respects all passive and active nodes. Let

65

N ′ be such a node in G′1, and let n′ in GR+G1 be a node of same kind

(active/passive) with [n′]∼1
= N ′. Now two possibilities:

• n′ belongs to GR. Whatever n′ ∈ rg(r) or not, since s1(n) = s2(n)

for n in GL we have h(N ′) = [n′]∼2
which is of same kind as n′ as

N ′ (and with same label). Moreover, as S(n′, i) also belong to GR,

h(S(N ′, i)) = h([S(n′, i)]∼1
) = [S(n′, i)]∼2

= S([n′]∼2
, i) = S(h(N ′), i)

• n′ belongs to G1. Now h(N ′) = r′2(s1(n
′)). It will be enough if we

can show that r′2 respects s1(n
′), for then (as S(n′, i) also belongs

to G1)

h(S(N ′, i)) = h([S(n′, i)]∼1
) = r′2(s1(S(n′, i)))

= r′2(S(s1(n
′), i)) = S(r′2(s1(n

′)), i) = S(h(N ′), i)

Assume, for the sake of contradiction, that r′2 does not respect
s1(n

′). Then s1(n
′) is active, so n′ is active. Let a ∈ GL+G2 be

such that s2(a) = s1(n
′). As r′2 does not respect s2(a), lemma 4.1.25

tells us that (r+idG2
) does not respect a. Hence a belongs to GL.

Now by our assumptions

s1(a) = s2(a) = s1(n
′)

with n′ �= a, n′ active and a active but not a partial application.

This is a contradiction, as s1 is a specialization.

✷

4.2 Passive nodes carrying multiple labels

For applications, it is desirable to have graphs where passive nodes can
have multiple labels – for instance, one might wish to be able to express

that some passive node is a positive integer but �= 7. Also, it is desirable
to be able to express that the labels of two (passive) nodes are related in

some way – for instance that the value of the first node is twice the value
of the second node.

We therefore modify the model developed in the previous section by
letting L be a non-empty set of labeling functions – in the special case

66

where this set is a singleton, this amounts to the “old” definition. We
will require that if l1, l2 ∈ L, then for all p we have Ar(l1(p)) = Ar(l2(p))

– thus it makes still sense to write Ar(p). If l(p) = s for all l ∈ L, we
shall write L(p) = s – otherwise, we term p a multilabeled node. If L is a

singleton, we say that G is singlelabeled.
Now to model that a node p is a positive integer �= 7, we define

L = {li|i ∈ ℵ \ {7}} where li(p) = i. And to model that the value of p1

is twice the value of p2, we define L = {li|i ∈ Z} where li(p1) = 2 · i,
li(p2) = i.

In the rest of this section we indicate how to modify the development

of section 4.1 in order to reflect the enhanced model.
First note that the notion of a genuine partial application carries

through; on the other hand a node a with Sp(a, i) = p and p multilabeled

is now considered a (non-genuine) partial application.
In the following let m be a morphism from G to G′ (equipped with

sets of labeling functions L and L′). That m respects a node n now (only)
means that m(n) is of the same kind as n (and in the case of passive nodes

of the same arity), and that S ′(m(n), i) = m(S(n, i)) for i ∈ {1 . . .Ar(n)}.
The notion that “the label is respected” is now captured by the following

Definition 4.2.1 For l ∈ L and l′ ∈ L′, we say that l ∝m l′ if for all p in
G, m(p) is passive and l′(m(p)) = l(p). ✷

In the case of L and L′ being singleton sets, this just amounts to the old
definition of “m respects all passive nodes”.

Observation 4.2.2 Given l′ ∈ L′, there exists at most one l ∈ L such
that l ∝m l′.

If m has the property that for any passive node p′ in G′ there exists
p in G with m(p) = p′, then the converse relation holds – given l ∈ L,

there exists at most one l′ ∈ L′ such that l ∝m l′.
If l1 ∝m1

l2, and l2 ∝m2
l3, then l1 ∝(m1⋆m2) l3. ✷

Two conditions on morphisms turn out to be of interest:

• we say that m satisfies SPEC, provided for all l′ ∈ L′ there exists

(unique) l ∈ L such that l ∝m l′.

• we say that m satisfies SAME, provided m satisfies SPEC and that

for all l ∈ L there exists unique l′ ∈ L′ with l ∝m l′.

67

Fact 4.2.3 If m1 and m2 both satisfy SPEC so does m1⋆m2. If m1 and
m2 both satisfy SAME so does m1⋆m2. ✷

Proof: The claim concerning SPEC is trivial (using observation 4.2.2).

Concerning SAME, existence is obvious – for uniqueness, we must check
that if l1 ∝(m1⋆m2) l

′
3 and l1 ∝(m1⋆m2) l

′′
3 then l′3 = l′′3 : from m1 and m2

satisfying SPEC we find that there exists l′2,l
′
1,l
′′
2 and l′′1 such that l′2 ∝m2

l′3,
l′1 ∝m1

l′2, l
′′
2 ∝m2

l′′3 and l′′1 ∝m1
l′′2 . Using observation 4.2.2, we first see that

l′1 ∝(m1⋆m2) l
′
3, l
′′
1 ∝(m1⋆m2) l

′′
3 and then see that l′1 = l1 = l′′1 . As m1 and m2

satisfy SAME, we then first find l′2 = l′′2 and then l′3 = l′′3 , as desired. ✷

We now redefine the various kinds of morphisms as follows:

Definition 4.2.4 Isomorphisms and reductions must (in addition) sat-
isfy SAME; homomorphisms and specializations must (in addition) satisfy

SPEC. ✷

Observation 4.2.5 If r is a reduction from G to G′, and G is singlela-
beled, also G′ is singlelabeled. ✷

The intuition is that reductions should neither increase nor decrease the

set of possible labels; while a specialization may decrease this set. For
instance, if p can be either 7 og 8 then r(p) also can be either 7 or 8 –

on the other hand, knowing p to be either 7 or 8 is more general than
knowing p to be 7.

Lemma 4.1.8 still holds – to see this, observe that l1 ∝h1
l2 iff l2 ∝h2

l1
(to show e.g. the “if”-part, note that given p1 in G1 we have h1(p1) passive

with h2(h1(p1)) = p1. As l2 ∝h2
l1, l1(p1) = l2(h1(p1))). So given l1, there

(since h2 satisfies SPEC) exists unique l2 with l2 ∝h2
l1, i.e. there exists

unique l2 with l1 ∝h1
l2.

Observation 4.1.11 also carries through (here we need the set of la-
beling functions to be non-empty). From fact 4.2.3 it follows that fact

4.1.12 still holds.

The + operator, revisited

If G1 and G2 are equipped with sets of labeling functions L1 and L2, we
equip G1+G2 with a set of labeling function L = L1+L2 determined by

L = {l1+l2|l1 ∈ L1, l2 ∈ L2}
where (l1+l2)(in1(p1)) = l1(p1), (l1+l2)(in2(p2)) = l2(p2).

68

By observing that l1+l2 ∝(m1+m2) l
′
1+l′2 iff l1 ∝m1

l′1 and l2 ∝m2
l′2, it

is easily seen that observation 4.1.13 is still valid. The next interesting
point is

Lemma 4.2.6 Lemma 4.1.18 still holds provided we add an extra con-
dition on m: m must satisfy SPEC. ✷

Proof: First note that given l ∈ L, it is possible to find (unique) l2
such that l2 ∝s2

l (here s2 is the restriction of s on G2). Hence we can

define

L2 = {l2|∃l ∈ L : l2 ∝s2
l}

Now we are able to show that s satisfies SPEC: given l ∈ L, there (by
assumption) exists l1 ∈ L1 such that l1 ∝s1

l – and we have just seen that

there also exists l2 ∈ L2 such that l2 ∝s2
l. Therefore we have l1+l2 ∝s l,

as desired. ✷

Pushouts, revisited

We first show that fact 4.1.20 still holds, i.e. that h satisfies SPEC. So
let (with symbols having their obvious meanings) L′′ ∈ L′′; our task is

to find L′ ∈ L′ such that L′ ∝h L
′′. As r′′ satisfies SPEC, there exists

(unique) L ∈ L such that L ∝r′′ L
′′. As r′ satisfies SAME, there exists

unique L′ ∈ L such that L ∝r′ L
′ (and we want to show that L′ ∝h L

′′).
As s satisfies SPEC, there exists (unique) l ∈ L such that l ∝s L. As s′

satisfies SPEC, there exists (unique) l′1 ∈ L′ such that l′1 ∝s′ L
′; and as

s′′ satisfies SPEC there exists (unique) l′2 ∈ L′ such that l′2 ∝s′′ L
′′. As r

satisfies SPEC, there exists (unique) l1,l2 such that l1 ∝r l
′
1, l2 ∝r l

′
2. Now

we see (by observation 4.2.2) that

l1 ∝(r⋆s′) L
′, l ∝(s⋆r′) L

′

and as r⋆s′ = s⋆r′ this (again by observation 4.2.2) implies that l1 = l.

In a similar way, we from

l2 ∝(r⋆s′′) L
′′, l ∝(s⋆r′′) L

′′

and r⋆s′′ = s⋆r′′ conclude that l = l2(= l1). But since l ∝r l
′
1 and l ∝r l

′
2

we from r satisfying SAME infer l′1 = l′2.

69

We are now ready to show that L′ ∝h L
′′: given P ′ in G′, find p′ in g′

such that s′(p′) = P ′. Then

L′′(h(P ′)) = L′′(h(s′(p′))) = L′′(s′′(p′)) = l′2(p
′)

= l′1(p
′) = L′(s′(p′)) = L′(P ′)

Next we turn our attention to fact 4.1.26, i.e. to the existence of the

pushout. We will present a construct t which to each L ∈ L returns
a labeling function of G′, t(L). Then we can equip G′ with the set of

labeling functions

L′ = {t(L)|L ∈ L}
So let such L be given. As s satisfies SPEC, there exists unique l with
l ∝s L. As r satisfies SAME, there exists unique l′ with l ∝r l

′. Now, for

these particular labeling functions l, l′ and L we can repeat the develop-
ment from pp. 55-59 – in particular, we can show that if p′1 ∼ p′2 then

l′(p′1) = l′(p′2). Hence it makes sense to define t(L) by stipulating that
t(L)(P ′) = l′(p′), with p′ such that s′(p′) = P ′.

Clearly we have l′ ∝s′ t(L). Also we have L ∝r′ t(L): given P , find p

such that s(p) = P – then r′(P) = s′(r(p)). Now

t(L)(r′(P)) = t(L)(s′(r(p))) = l′(r(p)) = l(p) = L(P).

From the above, it is immediate that s′ and r′ satisfies SPEC. For r′

to be a reduction, we must also show that given L there exists unique L′

such that L ∝r′ L
′. For existence we can use L′ = t(L) – for uniqueness,

suppose that we also have L ∝r′ t(L1). As L1 ∝r′ t(L1) holds, we conclude

L = L1.
Finally, we must show that lemma 4.1.41 still holds – it will be enough

to show that h is a homomorphism. So let L′2, a labeling function of G′2,
be given. There exists L2 (a labeling function of G2) and LR2 (a labeling

function of GR) such that LR2+L2 ∝s′
2
L′2; and L (a labeling function of

G) such that L ∝r′
2
L′2. Moreover, there exists LL2 (a labeling function

of GL) such that LL2 ∝r LR2 – then also LL2+L2 ∝(r+idG2
)
LR2+L2. By

uniqueness properties, it is now quite easy to see that LL2+L2 ∝s2
L.

Now there exists L′1 (a labeling function of G′1) such that L ∝r′
1
L′1.

Also there exists L1 and LR1 (labeling functions of G1/GR) such that
LR1+L1 ∝s′

1
L′1. We can find LL1 (a labeling function of GL) such that

LL1 ∝r LR1 – then also LL1+L1 ∝r+idG1

LR1+L1. By uniqueness proper-

ties, it is now quite easy to see that LL1+L1 ∝s1
L.

70

For p in GL, we now have LL1(p) = L(s1(p)) = L(s2(p)) = LL2(p).

Hence LL1 = LL2 – and since r satisfies SAME, also LR1 = LR2.
We are now in position to show that actually L′1 ∝h L

′
2: let N ′ in G′1

be given, and let n′ in GR+G1 be such that s′1(n
′) = N ′. We split up the

investigation, corresponding to the two cases in the definition of h:

• if n′ �∈ rg(r+idG1
), we have that n′ belongs to GR and h(N ′) =

s′2(n
′). Then

L′2(h(N ′)) = L′2(s
′
2(n
′)) = LR2(n

′)

= LR1(n
′) = L′1(s

′
1(n
′)) = L′1(N

′)

• if n in GL+G1 is such that (r+idG1
)(n) = n′, we have h(N ′) =

r′2(s1(n)). Then

L′2(h(N ′)) = L′2(r
′
2(s1(n))) = L(s1(n)) = (LL1+L1)(n)

= (LR1+L1)(n
′) = L′1(s

′
1(n
′)) = L′1(N

′)

4.3 Modeling demand-driven evaluation

In order to cope with “lazy evaluation”, we now extend the model by
labeling each node by either 0, 1 or 2. The intuition is as follows:

• If n is labeled 2, n must be reduced to “normal form” – where
(loosely speaking) a node is in normal form if it is passive and its

children are in normal form.

• If n is labeled 1, n must be reduced to “weak head normal form”

(and perhaps later to normal form) – i.e. to a passive node or to a
(genuine) partial application.

• If n is labeled 0, n does not (yet) have to be reduced.

We assume the existence of a function Nd, which to each (function)

symbol f assigns a “set of needed arguments” Nd(f), where Nd(f) ⊆
{1 . . .Far(f)}. The intuition behind i ∈ Nd(f) is that f cannot be “ap-

plied” until its i’th argument has been reduced to “weak head normal
form”.

Some notation:

71

• we say that an active node a is enabled by f (written En(a, f)) if

there exists an i and a p such that Sp(a, i) = p, L(p) = f and
Far(f) = i. Notice that if En(a, f) then S(a, i) is a genuine partial

application (or passive, if Far(f) = 1).

• Given active node a, we say that n = Arg(a, i) (n is the i’th argu-

ment of a) if either i = 1, n = S(a, 2) or there exists active node a′

with a′ = S(a, 1), n = Arg(a′, i− 1). Notice that the numbering of

the arguments is “reversed”.

• Given active node a such that En(a, f). Let i ∈ Nd(f), and let

n = Arg(a, i) (such n will exist). Then we write Ndarg(a, n).

• Given active node a such that En(a, f). Suppose that for all n such

that Ndarg(a, n) we have that n is passive. Then we write Rdx(a),
formalizing the notion that “a is a redex”.

Example 4.3.1 Suppose f is defined as below:

f(0,x) = g(x)

f(n,x) = h(x) if n > 0

In order to reduce f it is necessary to know the value of its first argument.
Accordingly, Nd(f) = {2} (remember the ordering of the arguments is

reversed!).
Then consider the graph in figure 4.8, where the active nodes (and the

passive node with children) have been numbered. Suppose that “initially”
node I is labeled 2, i.e. “the context is that” I is to be reduced to normal

form. Then also its children are to be reduced to normal form; accordingly
we give node II (and the node 12) label 2. We have En(II, f) (but not

Rdx(II)), and hence (as IV = Arg(II, 2)) Ndarg(II, IV). Consequently,
node IV has to be reduced to weak head normal form, so we give it label

1 (it holds that Rdx(IV)). Node V I is not (yet) needed (but we have
Rdx(V I)), so it will carry label 0. The nodes III, V and V II will carry

label 1 (as they already are genuine partial applications). ✷

Now we are ready for

Definition 4.3.2 A D-graph G (in the following just called a graph) is

a graph together with a function D, the demand function, which maps
each node into the set {0,1,2}, and which satisfies:

72

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✜
✜✜




✜
✜✜

✜
✜✜




✜
✜✜

�����������

✜
✜✜

✜
✜✜








 ✜

✜✜



C

@

@@

@

@

@

12

f

f 13

14 15

16

f

I

II

III

IV

V

V I

V II

Figure 4.8: A graph illustrating demand-driven evaluation.

1. For all p and for all i ∈ {1 . . .Ar(L(p))}, ifD(p) = 2 thenD(S(p, i)) =

2 (if p must be reduced to normal form, so must all its children).

2. For all a, if D(a) ≥ 1 then D(S(a, 1)) ≥ 1 (if one has to reduce a
to (weak head) normal form, one must know something about its

spine).

3. For all a, if D(a) ≥ 1 and Ndarg(a, n) then D(n) ≥ 1.

4. If n is passive or a genuine partial application, then D(n) ≥ 1.

✷

Observation 4.3.3 It is easily seen that if {Di|i ∈ I} all satisfy 1-4,
then so will D defined by taking pointwise minimum. Also, the D which

maps every node into 2 will satisfy 1-4. Thus, given a mapping D from the
nodes of G into {0, 1, 2}, there exists a least D such that D satisfies 1-4

and such that D ≤ D pointwise. This least D will be denoted Clo[G](D).
✷

Definition 4.3.4 Suppose we are given a graph G and a mapping D from

the nodes of G into {0, 1, 2}. Consider the inference system in figure 4.9.
Then define

D(n) = max{d| ⊢ D(n) ≥ d}
✷

73

Due to (4.6) this is well-defined for all n; and due to (4.7) we see that for

d = 0, 1, 2

D(n) ≥ d iff ⊢ D(n) ≥ d.

Lemma 4.3.5 For n in G and d = 0, 1, 2,

Clo[G](D)(n) ≥ d iff (⊢)D(n) ≥ d

and hence also

Clo[G](D)(n) = D(n)

✷

Proof: The “if”-part is a simple induction in the proof tree for ⊢
D(n) ≥ d. Now for the “only-if”-part: it is easily seen (due to (4.8)-
(4.11)) that D satisfies condition 1-4 and that (due to (4.6)) D ≤ D, and

hence (as Clo[G](D) is the least mapping doing so)

Clo[G](D) ≤ D (pointwise)

by means of which the “only-if”-part follows. ✷

Let m be a morphism from G to G′, equipped with demand functions
D and D′. Several conditions on m turn out to be of interest:

STEP m respects all passive nodes; and also respects all active nodes a
which do not satisfy Rdx(a).

EQ for all n in G, D(n) = D′(m(n)).

INC for all n in G, D(n) ≤ D′(m(n)).

INC1 there exists function D with D = Clo[G](D) such that for all n in
G, D(n) ≤ D′(m(n)).

PRES D′ = Clo[G′](D′), where (with max(∅) = 0)

D′(n′) = max{D(n)|m(n) = n′}

SEQ m can be written on the form m = m1⋆ . . . ⋆mn, with each mi satis-
fying STEP and PRES.

We now state some results concerning the relationship between those
conditions:

74

⊢ D(n) ≥ d if D(n) = d (4.6)

⊢ D(n) ≥ d

⊢ D(n) ≥ d′
if d > d′ (4.7)

⊢ D(p) ≥ 2

⊢ D(S(p, i)) ≥ 2
(4.8)

⊢ D(a) ≥ 1

⊢ D(S(a, 1)) ≥ 1
(4.9)

⊢ D(a) ≥ 1

⊢ D(n) ≥ 1
if Ndarg(a, n) (4.10)

⊢ D(n) ≥ 1 if n is passive or

a genuine partial application (4.11)

Figure 4.9: Inference rules to find D = Clo[G](D)

Observation 4.3.6 If m satisfies PRES or EQ, then m satisfies INC. If m

satisfies INC, then also m satisfies INC1. ✷

Lemma 4.3.7 If m satisfies STEP and INC1, then also m satisfies INC.
✷

Proof: Let D = Clo[G](D). By lemma 4.3.5, it will be enough to show

⊢ D(n) ≥ d implies D′(m(n)) ≥ d (4.12)

This will be done by induction in the proof tree for the left hand side:

• If (4.6) has been applied, (4.12) follows from m satisfying INC1.

• The case where (4.7) has been applied is straightforward.

• Suppose (4.8) has been applied, i.e. we have ⊢ D(n) ≥ 2 because
n = S(p, i), ⊢ D(p) ≥ 2. By induction, D′(m(p)) ≥ 2. As m satisfies

STEP, m respects p – hence m(p) is passive and S ′(m(p), i) = m(n).
Hence D′(m(n)) ≥ 2, as desired.

• Suppose (4.9) has been applied, i.e. we have ⊢ D(a) ≥ 1 because

n = S(a, 1), ⊢ D(a) ≥ 1. By induction, D′(m(a)) ≥ 1. As m
satisfies STEP, two possibilities:

75

– Rdx(a) does not hold. Then m respects a, so m(a) is active

and S ′(m(a), 1) = m(n). Hence D′(m(n)) ≥ 1, as desired.

– Rdx(a) does hold. Then n is a genuine partial application

or passive, so m(n) will be a genuine partial application or
passive – in both cases, D′(m(n)) ≥ 1.

• Suppose (4.10) has been applied, i.e. we have ⊢ D(n) ≥ 1 because

Ndarg(a, n), ⊢ D(a) ≥ 1. By induction, D′(m(a)) ≥ 1. Now two
possibilities:

– m respects a. Then, in the usual way, we get D′(m(n)) ≥ 1.

– m does not respect a. Then it must hold that Rdx(a), implying
that n is passive. But then also m(n) is passive, so D′(m(n)) ≥
1.

• Suppose (4.11) has been applied, i.e. we have ⊢ D(n) ≥ 1 because
n is passive or a genuine partial application. Then, as m satisfies

STEP, also m(n) is passive or a genuine partial application, hence
D′(m(n)) ≥ 1.

✷

Lemma 4.3.8 Suppose m1 (from G1 to G2) satisfies PRES, and suppose
m2 (from G2 to G3) satisfies PRES as well as STEP. Then m = m1⋆m2 will

satisfy PRES. ✷

Proof: From m1 and m2 satisfying PRES we have the following defini-
tions, where G1 is equipped with D1 etc.:

D2(n2) = max{D1(n1)|m1(n1) = n2} and D2 = Clo[G2](D2)

D3(n3) = max{D2(n2)|m2(n2) = n3} and D3 = Clo[G3](D3)

Our task is to show that

D3 = D′3 (4.13)

where we (not quite consistent with our notational conventions) have

D′3(n3) = max{D1(n1)|m(n1) = n3} and D′3 = Clo[G3](D
′
3)

First the “≥”-part (where we do not need to assume that m2 satisfies
STEP): this can be carried out by showing that for all n3 ∈ G3

D′3(n3) ≤ D3(n3)

76

which in turn can be done by showing that for all n1 such that m(n1) = n3

D1(n1) ≤ D3(n3)

But for such n1 we have

D1(n1) ≤ D2(m1(n1)) ≤ D2(m1(n1)) ≤ D3(m2(m1(n1)))

≤ D3(m2(m1(n1))) = D3(n3)

Next the “≤”-part of (4.13). This can be carried out by showing that for

all n3 ∈ N3

D3(n3) ≤ D′3(n3)

which in turn can be done by showing that for all n2 such that m2(n2) =
n3

D2(n2) ≤ D′3(n3)

As m2 satisfies STEP, lemma 4.3.7 tells us it will be sufficient to show that

for all n2 ∈ N2

D2(n2) ≤ D′3(m2(n2))

which in turn can be done by showing that for all n1 such that m1(n1) =

n2

D1(n1) ≤ D′3(m2(n2))

But for such n1 we have

D1(n1) ≤ D′3(m(n1)) = D′3(m2(n2))

≤ D′3(m2(n2))

✷

Lemma 4.3.9 Suppose m satisfies SEQ. Then m also satisfies PRES. ✷

Proof: Induction in the “length” of m, i.e. in the minimal n such that

m = m1⋆ . . . ⋆mn with each mi satisfying PRES and STEP. If this length is
zero, m = id and the claim is clear. Otherwise, we can write m = m1⋆m2

with m2 satisfying PRES and STEP, and with (by the induction hypothe-
sis) m1 satisfying PRES. Lemma 4.3.8 now enables us to conclude that m

satisfies PRES. ✷

77

Lemma 4.3.10 Let m be a morphism from G′ to G′′, m′ be a morphism

from G to G′ and m′′ be a morphism from G to G′′, such that m′⋆m = m′′.
Suppose m′ and m′′ satisfies PRES, and suppose m satisfies STEP. Then

m satisfies INC. ✷

Proof: Let G, G′, G′′ be equipped with demand functions D, D′ and
D′′ respectively. We have D′ = Clo[G′](D′) and D′′ = Clo[G′′](D′′), where

D′(n′) = max{D(n)|m′(n) = n′},D′′(n′′) = max{D(n)|m′′(n) = n′′}
Due to lemma 4.3.7, it will be enough to show that D′(n′) ≤ D′′(m(n′))
for all n′ in G′. This amounts to showing that D(n) ≤ D′′(m(n′)) for

n′ = m′(n), i.e. that D(n) ≤ D′′(m′′(n)) for all n in G. But this is trivial.
✷

Specializations and reductions, revisited

We now redefine the various kinds of morphisms as follows:

Definition 4.3.11 For D-graphs, we demand

• Isomorphisms to satisfy EQ.

• Specializations and homomorphisms to satisfy INC.

• Reductions to satisfy SEQ.

✷

The motivation for demanding specializations to satisfy INC is that the

existence of a specialization s from g to G should model that g is more
general than G - and it is more general for a node to be labeled 0 than to

be labeled 1 (than to be labeled 2), as the former denotes that we cannot
say anything definite while the latter denotes that we know that the node

must be reduced to weak head normal form.
Lemma 4.1.8 and fact 4.1.12 still hold with our new definitions.

Concerning +, the only non-trivial point is to verify that m1+m2 is a
reduction when m1 and m2 are: by fact 4.1.15, we have

m1+m2 = (m1⋆id)+(id ⋆m2) = (m1+id)⋆(id +m2)

and thus it will be enough to show that m+id is a reduction when m is.
We can write m = m1⋆ . . . ⋆mn, with each mi satisfying STEP and PRES,

78

and proceed by induction in (the minimal such) n. If n = 0, m = id and

then id +id = id is a reduction. Otherwise, we have m = m1⋆m2 with
m1 a “shorter” reduction than m and with m2 satisfying STEP and PRES.

By the induction hypothesis, m1+id is a reduction; and it is easily seen
that m2+id will satisfy STEP and PRES. But then

(m+id) = (m1⋆m2)+(id ⋆id) = (m1+id)⋆(m2+id)

will be a reduction.

Lemma 4.3.12 Lemma 4.1.18 (modified into lemma 4.2.6) still holds
provided we add an extra condition on m: it must satisfy INC. ✷

Proof: The proof is modified as follows: we equip G2 with a demand
function D2 = Clo[G2](0), where 0 is the constant function. We have to

check that s satisfies INC – but as s satisfies STEP, it by lemma 4.3.7 will
be enough to show that s satisfies INC1. And this can be done by showing

that (with symbols having their obvious meaning)

1. D1(n) ≤ D(s(in1(n))) for all n in G1

2. 0 ≤ D(s(in2(n))) for all n in G2.

But as s(in1(n)) = m(n), 1 follows from the new condition imposed. ✷

Pushouts, revisited

We have to check that what has been said about pushouts is still valid.
Concerning the development in section 4.1.3, the only interesting task

is to ensure that the second claim of fact 4.1.20 still holds, i.e. that h
satisfies INC. But as reductions (cf. lemma 4.3.9) satisfy PRES, this is a

consequence of lemma 4.3.10 (since we know h respects all passive and
active nodes).

Concerning the existence of the pushout of a reduction r and a spe-
cialization s, we proceed by induction on n where n is the minimal n

such that r can be written as r1⋆ . . . ⋆rn with each ri satisfying PRES and
STEP. Fact 4.1.23,2 caters for the basic step; and fact 4.1.23,4 will take

care of the induction step provided we can show that the pushout ex-

ists when r satisfies STEP and PRES: for this purpose let g, g′ and G be

79

equipped with demand functions Dg, Dg′ and D respectively. We have
Dg′ = Clo[g′](Dg′), where

Dg′(n
′) = max{Dg(n)|r(n) = n′}

Let (G′, r′, s′) be the pushout (in the “old sense”) of (r, s). Now equip G′

with demand function D′ = Clo[G′](D′), where

D′(N ′) = max{D(N)|r′(N) = N ′}

The following points must be shown:

• That r′ satisfies PRES. But this is an immediate consequence of the

definition of G′.

• That r′ satisfies STEP. But suppose A in G is not a redex. Then

there exists a in g with s(a) = A, such that a is not a redex.
Therefore r will respect a. By lemma 4.1.25 we conclude that r′

respects A.

• That s′ satisfies INC, i.e. that for all n′ in g′ we have Dg′(n
′) ≤

D′(s′(n′)). As s′ satisfies STEP, lemma 4.3.7 tells us that it is enough
to show that Dg′(n

′) ≤ D′(s′(n′)). But this amounts to showing that

Dg(n) ≤ D′(s′(n′)) for all n such that r(n) = n′, i.e. (as r⋆s′ = s⋆r′)
that Dg(n) ≤ D′(r′(s(n))) for all n in g. But for such n we have (as

s satisfies INC)

Dg(n) ≤ D(s(n)) ≤ D′(r′(s(n))) ≤ D′(r′(s(n)))

That lemma 4.1.41 carries through is a consequence of lemma 4.3.10 (as
all we have to check is that h is a homomorphism).

The following lemma expresses that if we only reduce redices the eval-
uation of which is not demanded, and the resulting graph contains a redex

the evaluation of which is demanded, then this redex was present already
in the original graph.

Lemma 4.3.13 Let G and G′ be graphs, equipped with demand func-
tions D and D′. Suppose r is a reduction from G to G′, which respects

any node n except if n is a redex and D(n) = 0. Suppose G′ contains a

redex a′ with D′(a′) ≥ 1. Then there exists a in G with r(a) = a′, such
that a is a redex in G with D(a) ≥ 1. ✷

80

Proof: In the following it is helpful to note that if a is active with
D(a) ≥ 1 then “the spine and the ribs of a is preserved”, e.g. if r(a) is

a redex in G′ then a is a redex in G, and if Ndarg′(r(a), n′) then there
exists n with r(n) = n′ such that Ndarg(a, n).

By the remark above it will be sufficient to show

1. If n′ is active in G′, not a partial application and D′(n′) ≥ 1, then
there exists n in G with D(n) ≥ 1 such that r(n) = n′.

2. If n′ is passive in G′ and D′(n′) ≥ 2, then there exists n in G with

D(n) ≥ 2 such that r(n) = n′.

As r satisfies PRES, we have that D′ = Clo[G′](D′) where

D′(n′) = max{D(n)|r(n) = n′}
We will proceed by induction in the proof tree for ⊢ D′(n′) ≥ d (where

all inferences will have d ≥ 1):

• axiom 4.6 has been applied, i.e. D′(n′) ≥ d. Thus there exists n in
G with D(n) ≥ d such that r(n) = n′, i.e. the claim.

• rule 4.7 has been applied, i.e. ⊢ D′(n′) ≥ d′ with d′ > d. By

induction there exists n in G with D(n) ≥ d′ (> d) such that
r(n) = n′.

• rule 4.8 has been applied, i.e. d = 2 and n′ = S ′(p′, i) with ⊢
D′(p′) ≥ 2. By induction, there exists n in G with D(n) ≥ 2 such

that r(n) = p′. By assumption, r respects n, so n is passive and
r(S(n, i)) = n′. Moreover D(S(n, i)) ≥ 2.

• rule 4.9 has been applied, i.e. d = 1 and n′ = S ′(a′, 1) with ⊢
D′(a′) ≥ 1. By induction, there exists n in G with D(n) ≥ 1 such

that r(n) = a′. By assumption, r respects n, so n is active and
r(S(n, i)) = n′. Moreover D(S(n, i)) ≥ 1.

• rule 4.10 has been applied, i.e. d = 1 and Ndarg(a′, n′) with ⊢
D′(a′) ≥ 1. By induction, there exists n1 in G with D(n1) ≥ 1 such
that r(n1) = a′. By assumption, r respects n1, implying that n1 is

active. The initial remark tells us that there exists n with r(n) = n′

such that Ndarg(n1, n). Hence D(n) ≥ 1.

• axiom 4.11 has been applied, i.e. d = 1 and n′ is passive or a genuine
partial application. Then the claim follows vacuously.

81

✷

4.3.1 Result node

Given node n0 in a graph G, let Dn0 denote the function defined by

Dn0(n0) = 2, Dn0(n) = 0 for n �= n0.
Given graph G equipped with demand function D, we say that n0 is

a result node of G if D = Clo[G](Dn0). The intuition is that the “result
of the computation” will be the graph “headed by n0”, hence n0 must

be reduced to normal form. Notice that if G is acyclic, G may contain at
most one result node.

Fact 4.3.14 Suppose n0 is a result node of G, and let r be a reduction
from G to G′. Then r(n0) is a result node of G′. ✷

Proof: We have r = r1⋆ . . . ⋆rn with each ri satisfying STEP and PRES.

Clearly, it will be sufficient if we can show the claim for each ri, so in the
following we can assume r to satisfy STEP and PRES.

Let G and G′ be equipped with demand functions D and D′, where
D = Clo[G](Dn0) and where (as r satisfies PRES) D′ = Clo[G′](D′) with

D′(n′) = max{D(n)|r(n) = n′}. Let D′r(n0) = Clo[G′](D′r(n0)), then our
task is to show that D′ = D′r(n0).

We clearly have Dn0(n) ≤ D′r(n0)(r(n)) for all n in G, so as r satisfies
STEP lemma 4.3.7 tells us that D(n) ≤ D′r(n0)(r(n)) for all n. Hence,

D′ ≤ D′r(n0) pointwise and thus also D′ ≤ D′r(n0).
To show the opposite inequality it is sufficient to show that D′r(n0) ≤ D′

pointwise, and this amounts to showing that D′(r(n0)) = 2. But this is
immediate. ✷

4.4 Transitions at level 1

After this long preparation, we are now in position to define what a mul-

tilevel transition system (cf. chapter 2) means in a functional framework

(i.e. the graph reduction model developed in section 4.1-4.3). In this sec-
tion we solely focus on the level 1 transitions, i.e. the “normal mode of

computation”. We shall write

(r : G⇒a G
′) ∈ R0

82

to denote that r, a reduction from G to G′ “which reduces the redex a”, is

a level 0 rule. We shall assume that the level 0 rules are indexed by some
set J ,7 that is there exists a J-indexed family {(rj, GLj, GRj, aj)|j ∈ J}
with the property that (r : G⇒a G

′) ∈ R0 iff there exists j ∈ J with
r = rj, G = GLj, G

′ = GRj and a = aj. Also, we shall write

1 ⊢ (j) r : G⇒a G
′

to denote that r, a reduction from G to G′, is a “single step transition”
at level 1 which “reduces a by means of the j’th level 0 rule”, a a redex

in G. Finally, we shall write

1 ⊢∗ r : G⇒c
Nn G′

to denote that r, a reduction from G to G′, consists of c steps the n
of which are “normal order steps”. It is rather straight-forward how

to formalize this; we have the following inference rules (where D is the
demand function of G):

1 ⊢ (j) r : G⇒a G
′

1 ⊢∗ r : G⇒1
N1 G

′ , if D(a) ≥ 1

1 ⊢ (j) r : G⇒a G
′

1 ⊢∗ r : G⇒1
N0 G

′ , if D(a) = 0

1 ⊢∗ idG : G⇒0
N0 G

1 ⊢∗ r1 : G1 ⇒c1
Nn1

G2, 1 ⊢∗ r2 : G2 ⇒c2
Nn2

G3

1 ⊢∗ r1⋆r2 : G1 ⇒(c1+c2)
N(n1+n2) G3

If 1 ⊢∗ r : G⇒1
N1 G

′ we say that r is a normal order step; if 1 ⊢∗ r : G⇒1
N0 G

′

we say that r is a non-normal order step. If 1 ⊢∗ r : G⇒n
Nn G′ for some

n, we say that r is a normal order reduction.
We are left with defining when 1 ⊢ (j) r : G⇒a G

′ holds:

Definition 4.4.1 Let (rj : GLj ⇒aj
GRj) ∈ R0. It will now hold that

1 ⊢ (j) r : G⇒a G
′ provided there exists graph G1 and specialization s

from GLj+G1 to G such that (G′, r,) is the pushout of (rj+idG1
, s), and

such that a = s(in1(aj)). ✷

7J is not necessarily assumed to be finite, but of course any given application will use a finite
number only.

83

❄

✲

❄

✲

rj+idG1

r

s

GLj+G1

G G′

GRj+G1

Figure 4.10: Condition for 1 ⊢ (j) r : G⇒a G
′

The situation is depicted in figure 4.10.

The level 0 rules

In order for e.g. the Church-Rosser property to hold, we need to make

some assumptions about the level 0 rules:

1. For all j ∈ J , aj is a redex in GLj and all other active nodes in GLj

are genuine partial applications (hence rj will satisfy STEP).

Moreover, for all n in GLj we have n�aj (cf. definition 4.1.2) – i.e.

aj is “above” all other nodes.

2. Let G be a graph with redex a. Then at most one rule “matches

a”, i.e. there exists at most one j ∈ J such that there exists G1 and
specialization s from GLj+G1 to G with s(in1(aj)) = a. Moreover,

if G is singlelabeled then there must always exist such j.

We will now by means of two examples show that these assumptions are

quite natural and thus do not limit the scope of the theory significantly.
First let us see how an “operator” could be encoded as a set of level 0

rules; consider + (we have Far(+) = 2 and Nd(+) = {1, 2} as + needs
its both arguments). Then there will exist a single level 0 rule8 for +, as

depicted in figure 4.11 (where no nodes are garbage collected). The left
hand side is equipped with a set of labeling functions L, given by

L = {Lv1,v2|v1, v2 ∈ S}
where Lv1,v2(p1) = v1, Lv1,v2(p2) = v2. The right hand side is equipped
with a set of labeling functions L′, given by

L′ = {L′v1,v2|v1, v2 ∈ S}
8This is not quite correct; there should also be (“error”) rules where the passive nodes have

arity > 0.

84

We always have L′v1,v2(p1) = v1 and L′v1,v2(p2) = v2 (thus the reduction

satisfies SAME). Concerning L′v1,v2(p) we have:

1. L′v1,v2(p) = v1 + v2, if v1 and v2 both are integers;

2. L′v1,v2(p) = Error (a special element of S) otherwise.

Finally, the left hand sides of the rules are equipped with demand function

Clo[](0), where 0 is the constant function.
We will now argue that condition 2 is satisfied – uniqueness is triv-

ial, so let us see that if G is singlelabeled and contains redex a and
L(Sp(a, 2)) = + then the level 0 rule for + matches a. Assume wlog.

that – with n1 = Arg(a, 1) and n2 = Arg(a, 2) – L(n1) = 8, L(n2) = 7.
With G′ the left hand side of figure 4.11 (with redex a′), we want to apply

lemma 4.3.12 – to this end we have to find a morphism m from G′ to G
such that m(a′) = a and such that m

1. respects all active and passive nodes;

2. satisfies that if m(a1) = m(a2) with a1 �= a2 then a1 and a2 are

partial applications;

3. satisfies INC;

4. satisfies SPEC.

m is defined “the natural way” – that 1 holds is clear. For 2, we have

to ensure that it cannot hold that m(a′) = m(S(a′, 1)). But if this was
the case, then a = S(a, 1) and a would not be a redex (as then also

Sp(a, 2) = a). 3 follows since passive nodes/genuine partial applications

(the only nodes with D′(n) ≥ 1) are mapped into passive nodes/genuine
partial applications. Finally, 4 is obvious – use L7,8.

Let us also see how a “user defined function” is encoded as a set of
level 0 rules; consider f defined by

f([],y) = []

f((n :: x),y) = h(x,y)

This gives rise to the two level 0 rules (in addition to an “error rule”,
if the first argument to f is e.g. a number) depicted in figure 4.12 (with

some nodes garbage collected).

85

✒✑
✓✏

✒✑
✓✏ ✒✑

✓✏✡
✡
✡

❆
❆
❆

✡
✡
✡

❆
❆
❆

✲

✡
✡
✡

❆
❆
❆

@

@

+ p1

p2

+ p1

p2

p

@

Figure 4.11: Level 0 rules for +

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✔
✔
✔✔

❆
❆
❆❆

✔
✔
✔✔

❆
❆
❆❆

✲

✔
✔
✔✔

❆
❆
❆❆

✔
✔
✔✔

❆
❆
❆❆

✔
✔
✔✔

❆
❆
❆❆

✲

✔
✔
✔✔

❆
❆
❆❆

✔
✔
✔✔

❆
❆
❆❆

@

@

f []

v1

[] @

@

::f

v1 v2

v3

@

@

h v2

v3

Figure 4.12: Level 0 rules for f

Sometimes one has a choice about how to represent a user
defined function: consider e.g. g defined by g(x) = h(x+1).

Then one can either represent the + operator explicitly (as
a node in the graph); then Nd(g) = ∅ or one can “code the

addition into the labeling functions” (in effect unfold the +
operator); then Nd(g) = {1}. So if h does not need its ar-

gument, the former coding should be employed – otherwise
some extra strictness is imposed.

The Church-Rosser property

The following lemma shows that “reduction is uniquely determined by
the redex being reduced”:

Lemma 4.4.2 Suppose 1 ⊢ (j1) r1 : G⇒a G
′
1 and 1 ⊢ (j2) r2 : G⇒a G

′
2.

Then j1 = j2, r1 = r2 and G′1 = G′2 (modulo isomorphism). ✷

Proof: Let (rj1 : GLj1 ⇒aj1
GRj1) ∈ R0, (rj2 : GLj2 ⇒aj2

GRj2) ∈ R0.

There exists graphs G1 and G2, specialization s1 from GLj1+G1 to G and

86

specialization s2 from GLj2+G2 to G, such that (G′1, r1,) is the pushout

of (rj1+idG1
, s1) and (G′2, r2,) is the pushout of (rj2+idG2

, s2).
Now, by the second requirement to the level 0-rules, j1 = j2. Then,

by the second part of the first requirement to the level 0-rules, we from
s1(in1(aj1)) = s2(in1(aj1)) can conclude that s1(in1(n)) = s2(in1(n)) for

all n in GLj1 (since s1 and s2 respect all active and passive nodes). Fi-
nally, apply lemma 4.1.41 to find isomorphism h from G′1 to G′2 such that

r1⋆h = r2. ✷

We can now formulate a “diamond lemma”:

Lemma 4.4.3 Suppose 1 ⊢ (j1) r1 : G⇒a1
G′1 and 1 ⊢ (j2) r2 : G⇒a2

G′2.
Then one of two holds:

1. a1 = a2, j1 = j2, r1 = r2 and G′1 = G′2 (modulo isomorphism).

2. a1 �= a2. Then there exist r′1, r
′
2 and G′ such that

1 ⊢ (j2) r′1 : G′1 ⇒r1(a2) G
′, 1 ⊢ (j1) r′2 : G′2 ⇒r2(a1) G

′

and such that r1⋆r
′
1 = r2⋆r

′
2.

✷

Proof: If a1 = a2 the claim follows from lemma 4.4.2, so assume
a1 �= a2. Let

(rj1 : GLj1 ⇒aj1
GRj1) ∈ R0, (rj2 : GLj2 ⇒aj2

GRj2) ∈ R0.

There exists graphs G1, G2 and specializations s1 from Gj1+G1 to G, s2

from Gj2+G2 to G such that (G′1, r1,) is the pushout of (rj1+idG1
, s1),

(G′2, r2,) is the pushout of (rj2+idG2
, s2) and s1(in1(aj1)) = a1, s2(in1(aj2)) =

a2. Now define m, a morphism from GLj1+GLj2 to G, by stipulating m
to coincide with s1 on GLj1 and to coincide with s2 on GLj2. We want

to apply lemma 4.3.12; to this end we must show

• that m respects active and passive nodes, which is trivial;

• that m satisfies INC, which is trivial;

• that m satisfies SPEC, which is trivial;

87

• that if m(a) = m(a′) then a and a′ both are partial applications.

If e.g. a and a′ both come from GLj1, then both are partial appli-
cations since s1 is a specialization. So assume that a comes from

GLj1 and a′ comes from GLj2. For the sake of a contradiction we
assume that a is not a partial application. Then, due to the first

requirement to level 0 rules, a = aj1 and we have a1 = m(a′). Now
a′ is either a genuine partial application or equal aj2; in the former

case we find that also m(a′) = a1 is a genuine partial application
(contradiction) and in the latter case we find a1 = a2 (contradic-

tion).

So there exists G3 and specialization s from GLj1+GLj2+G3 to G, such

that s and s1 coincide on GLj1, and such that s and s2 coincide on GLj2.
The situation is as depicted in figure 4.13, where r′j1 = idG3

+rj1+idGLj2
,

r′′j1 = idG3
+idGRj1

+rj2, r
′
j2 = idG3

+idGLj1
+rj2 and r′′j2 = idG3

+rj1+idGRj2
.

Here we have (re)defined (G′1, r1, s
′
1) as the pushout of (r′j1, s); that this

coincides (modulo isomorphism) with the “old” definition of G′1 and r1

is a consequence of lemma 4.4.2 – likewise for G′2 and r2. Then we de-

fined (G′′1, r
′
1, s
′′
1) as the pushout of (r′′j1, s

′
1) and likewise (G′′2, r

′
2, s
′′
2) as the

pushout of (r′′j2, s
′
2).

We have r′j1⋆r
′′
j1 = r′j2⋆r

′′
j2(= idG3

+rj1+rj2). According to fact 4.1.23,
4, the pushout of (r′j1⋆r

′′
j1, s) is (G′′1, r1⋆r

′
1, s
′′
1) and the pushout of (r′j2⋆r

′′
j2, s)

is (G′′2, r2⋆r
′
2, s
′′
2). Hence G′′1 = G′′2 (which we can take to be G′), and

r1⋆r
′
1 = r2⋆r

′
2. What is left (in order to show 1 ⊢ (j2) r′1 : G′1 ⇒r1(a2) G

′)
is to show that s′1(in (aj2)) = r1(a2). But this is an immediate conse-

quence of s⋆r1 = r′j1⋆s
′
1. ✷

Then we can show that the transition system is confluent:

Theorem 4.4.4 Suppose 1 ⊢∗ r1 : G⇒c1
Nn1

G1 and 1 ⊢∗ r2 : G⇒c2
Nn2

G2.
Then there exists G′, r′1, r

′
2, n

′
1, n

′
2, c

′
1 and c′2 such that

1 ⊢∗ r′1 : G1 ⇒c′
1

Nn′

1

G′, 1 ⊢∗ r′2 : G2 ⇒c′
2

Nn′

2

G′

Moreover, r1⋆r
′
1 = r2⋆r

′
2 and c1 + c′1 = c2 + c′2. Finally, suppose c1 = n1

and c2 = n2 (i.e. r1 and r2 are normal order reductions) – then c′1 = n′1,
c′2 = n′2. ✷

Proof: First notice that we have the following property (where lemma

4.4.3 caters for the case c1 = 1 and c2 = 1, as then either r′1 = r′2 = id ,
c′1 = c′2 = 0 or c′1 = c′2 = 1):

88

❄

✻

✲

✘✘✘
✘✘✘

✘✘✘
✘✘✘

✘✿

③

✲

③

✲

✘✘✘
✘✘✘

✘✘✘
✘✘✘✘✿

✲

.

❄

✻

❄

✻

s

s

G

G′1

G′2

G′′1

G′′2

r1

r2

r′1

r′2

s′1

s′2

s′′1

s′′2

r′j1 r′′j1

r′j2 r′′j2

G3+

+G3

G3+

+G3

GLj1+GLj2

GLj1+GLj2

GRj1+GLj2

GLj1+GRj2

G3+

+G3

GRj1+GRj2

GRj1+GRj2

Figure 4.13: A proof of the diamond property.

If 1 ⊢∗ r1 : G⇒c1
Nn1

G1 and 1 ⊢∗ r2 : G⇒c2
Nn2

G2, with c1 ei-
ther 0 or 1 and c2 either 0 or 1, then there exists G′, r′1, r

′
2,

and c′1, c
′
2, n

′
1, n

′
2 ∈ {0, 1} such that 1 ⊢∗ r′1 : G1 ⇒c′

1

Nn′

1

G′ and

1 ⊢∗ r′2 : G2 ⇒c′
2

Nn′

2

G′. Moreover, r1⋆r
′
1 = r2⋆r

′
2 and c1+c′1 =

c2+c′2. Finally, if c1 = n1 and c2 = n2 then c′1 = n′1 and

c′2 = n′2.

Then the theorem easily follows by “completing the lattice”, as suggested

in figure 4.14. ✷

4.4.1 Normal forms

When defining a transition system, a distinguished subset of the config-

urations are termed “normal forms”. At first glance, it seems natural to
say that G is in normal form iff G contains no redices, since this amounts

to saying that there exists no G′ such that 1 ⊢ (j) r : G⇒a G
′. However,

in the absence of “garbage collection” this is too restricted: some redices

which are no longer needed may prevent a graph from being in normal
form.

89

�
�

��✠
�
�

��✠

❅
❅
❅❅❘
❅
❅
❅❅❘

❅
❅
❅❅❘

�
�
��✠

❅
❅
❅❅❘

�
�
��✠

❅
❅
❅❅❘

❅
❅
❅❅❘

�
�
��✠

�
�
��✠

G

G1 G2

G′

r1

r′1

r2

r′2

Figure 4.14: The confluence property.

Therefore we rather settle on (where G is equipped with demand
function D):

Definition 4.4.5 A graph G is in normal form if it contains no redex a
with D(a) ≥ 1. ✷

Another condition turns out to be of interest:

Definition 4.4.6 A graph G is said to be in well-typed normal form if

all nodes n with D(n) = 2 are passive. ✷

For the connection between normal forms and well-typed normal forms,

we have

Fact 4.4.7 Suppose G has result node n0, and is in well-typed normal

form. Then also G is in normal form. ✷

Proof: We have that D = Clo[G](Dn0). It will be sufficient to show that

a is a partial application if D(a) ≥ 1, i.e. if ⊢ D(a) ≥ d with d ∈ {1, 2}
using the inference system in figure 4.9. Below, this will be done by

induction in the proof tree.
If ⊢ D(a) ≥ d because Dn0(a) = d, then d = 2 (and a = n0). As G is

in well-typed normal form, a is passive – but this is a contradiction.

If ⊢ D(a) ≥ 1 because ⊢ D(a) ≥ 2, or if ⊢ D(a) ≥ 2 because a =
S(p, i), ⊢ D(p) ≥ 2 then again well-typedness tells us that a is passive,

again yielding a contradiction.
If ⊢ D(a) ≥ 1 because a = S(a′, 1), ⊢ D(a′) ≥ 1 then by the induction

hypothesis a′ is a partial application – hence also a is a partial application.

90

If ⊢ D(a) ≥ 1 because Ndarg(a′, a), ⊢ D(a′) ≥ 1 then by induction a′

is a partial application - but this yields a contradiction.
If ⊢ D(a) ≥ 1 because a is passive or a genuine partial application,

then clearly a is a partial application! ✷

For the opposite direction, suppose G has result node n0 and is in normal

form but not in well-typed normal form. This could for instance happen
if n0 is a cons-cell with partial applications as children. Then it seems

fair to say that G is “ill-typed” in the sense that “the result node cannot
be assigned a first-order type”9. Recall from the beginning of this chapter

that we do not want to formulate any type system.

Definition 4.4.8 Let G be singlelabeled and in well-typed normal form,

and let n be a node in G with D(n) = 2. Then we can define ValG(n), “the
value of n”, as follows: let l = L(n) (exists as n is passive), let a = Ar(l),

and let {ni|i ∈ {1 . . . a}} be defined by ni = S(n, i). As D(ni) = 2, it
makes sense to define

ValG(n) = l(ValG(n1), . . . ,ValG(na))

(ValG(n) may be an infinite term, if G is cyclic). ✷

As already mentioned, even if G is in normal form there may exist G′

such that 1 ⊢ (j) r : G⇒a G
′. However, for our purposes the content of

the following lemma will be sufficient:

Lemma 4.4.9 Suppose G is in normal form and 1 ⊢∗ r : G⇒c
Nn G′. Then

G′ is in normal form, and n = 0. G′ is in well-typed normal form if and
only if G is, in which case also – provided G and hence also G′ is single-

labeled – ValG′(r(n)) = ValG(n) for n such that D(n) = 2. ✷

Proof: It will be enough to show that if 1 ⊢ (j) r : G⇒a G
′ and G is

in normal form then

1. D(a) = 0.

2. G′ is in normal form.

3. G′ is in well-typed normal form iff G is.

4. If G is in well-typed normal form and singlelabeled, then ValG′(r(n)) =

ValG(n) for n with D(n) = 2.

9Notice that we are not saying that it should be possible to assing an arbitrary node a
first-order type.

91

1 is straightforward (as G contains no redex a with D(a) ≥ 1). Then 2

follows by lemma 4.3.13. 4 is immediate, as r respects passive nodes (but
this does not show the “if”-part of 3, since in principle G′ might contain

non-passive nodes n with D′(n) = 2). To show 3, proceed as follows:

“if” Suppose G is in well-typed normal form. It will be sufficient to

prove the following: if ⊢ D′(n′) ≥ 2 using the inference system in
figure 4.9 (where D′(n′) = max{D(n)|r(n) = n′}), then there exists

n in G with D(n) = 2 such that r(n) = n′ (and hence n′ is passive,
as n is passive). This will be done by induction in the proof tree,

with only two non-trivial cases:

• Suppose ⊢ D′(n′) ≥ 2 because n′ = S ′(p′, i), ⊢ D′(p′) ≥ 2.

By induction, there exists p in G with D(p) = 2 such that
r(p) = p′. Let n = S(p, i), then D(n) = 2 and r(n) = n′.

• Suppose ⊢ D′(n′) ≥ 2 because D′(n′) = 2. But this just means

that there exists n in G such that D(n) = 2, r(n) = n′.

“only if” Suppose G is not in well-typed normal form. Then there exists

a node n with D(n) = 2 which is not passive. As G is in normal

form, n is not a redex (and in particular not equal a). But then, as
r respects all nodes but a, r(n) is not passive – yet D′(r(n)) = 2,

showing that G′ is not in well-typed normal form.

✷

The following lemma states that one is not able to arrive at a normal
form by doing a non-normal order step:

Lemma 4.4.10 Suppose 1 ⊢ (j) r : G⇒a G
′, with G′ in normal form

and with D(a) = 0. Then also G is in normal form. ✷

Proof: Suppose G contains a redex a1 with D(a1) ≥ 1. Then, as r
respects all nodes but a and a �= a1, we conclude that r(a1) is a redex in

G′ with D′(r(a1)) ≥ 1 – i.e. G′ is not in normal form. ✷

We will expect “normal forms to be unique”. In some sense, this is the

content of the following theorem:

Theorem 4.4.11 Let G be a singlelabeled graph with result node n0.

Suppose 1 ⊢∗ r1 : G⇒N G1 and 1 ⊢∗ r2 : G⇒N G2, with G1 and G2 in
well-typed normal form. Then ValG1

(r1(n0)) = ValG2
(r2(n0)). ✷

92

Proof: By theorem 4.4.4, there exist G′, r′1 and r′2 such that

1 ⊢∗ r′1 : G1 ⇒N G′, 1 ⊢∗ r′2 : G2 ⇒N G′, and such that r1⋆r
′
1 = r2⋆r

′
2.

By fact 4.3.14, r1(n0) (r2(n0)) is a result node of G1 (G2), and then by fact

4.4.7 G1 and G2 are in normal form. By lemma 4.4.9, G′ is in well-typed
normal form and ValG′(r′1(r1(n0))) = ValG1

(r1(n0)), ValG′(r′2(r2(n0))) =

ValG2
(r2(n0)). But this shows that ValG1

(r1(n0)) = ValG2
(r2(n0)). ✷

Next we show that “all normal order reductions have equal length”:

Lemma 4.4.12 Suppose 1 ⊢∗ r1 : G⇒n
Nn G1 and 1 ⊢∗ r2 : G⇒n

Nn G2. Then

G1 is in normal form iff G2 is in normal form, in which case G1 = G2. ✷

Proof: By theorem 4.4.4, we find that there exists G′, r′1, r
′
2 and n′ such

that 1 ⊢∗ r′1 : G1 ⇒n′

Nn′ G′, 1 ⊢∗ r′2 : G2 ⇒n′

Nn′ G′. Suppose G1 is in normal

form. Then it must hold that n′ = 0, hence G2 = G1. ✷

The following lemma says that instead of first doing a non-normal order

step and then a normal order step, one can do the normal order step first:

Lemma 4.4.13 Let G be singlelabeled. Suppose 1 ⊢ (j) r1 : G⇒a G1

and 1 ⊢ (j1) r2 : G1 ⇒a′
1
G2, with D(a) = 0 and D1(a

′
1) ≥ 1 (where D

(D1) is the demand function of G (G1)). Then there exist r′1, r
′
2, G

′
1 and

a′ with r1(a
′) = a′1 and D(a′) ≥ 1 such that

1 ⊢ (j1) r′1 : G⇒a′ G
′
1, 1 ⊢ (j) r′2 : G′1 ⇒r′

1
(a) G2

and r1⋆r2 = r′1⋆r
′
2. ✷

Proof: Lemma 4.3.13 tells us that there exists a′ in G with r1(a
′) = a′1

such that D(a′) ≥ 1 and a′ is a redex. Hence (as G is singlelabeled) there
exists r′1 and G′1 such that 1 ⊢ (j′1) r′1 : G⇒a′ G

′
1 (for some j′1). a �= a′, so

lemma 4.4.3 applied to r1 and r′1 says that there exists r′2,r
′′
2 and G′2 such

that

1 ⊢ (j) r′2 : G′1 ⇒r′
1
(a) G

′
2, 1 ⊢ (j′1) r′′2 : G1 ⇒r1(a′) G

′
2

and r′1⋆r
′
2 = r1⋆r

′′
2 . Now, by lemma 4.4.2 applied to r2 and r′′2 exploiting

that r1(a
′) = a′1, we have r2 = r′′2 , G′2 = G2 and j1 = j′1. Hence the claim.

✷

We now can show that “normal order reduction is optimal”:

Theorem 4.4.14 Let G be singlelabeled. Suppose 1 ⊢∗ r : G⇒c
Nn G′,

with G′ in normal form. Then there exists G′′ in normal form, reduction

r′ and c′ with n ≤ c′ ≤ c, such that 1 ⊢∗ r′ : G⇒c′
Nc′ G

′′. Moreover, G′′ is
in well-typed normal form iff G′ is. ✷

93

Proof: By repeated applications of lemma 4.4.13, we find that there ex-
ist r′, r′′, G′′, c′ ≥ n and c′′ such that 1 ⊢∗ r′ : G⇒c′

Nc′ G
′′, 1 ⊢∗ r′′ : G′′ ⇒c′′

N0 G
′,

r′⋆r′′ = r and c′ + c′′ = c.
By repeated application of lemma 4.4.10, we see that G′′ is in normal

form. The last claim of the theorem follows from lemma 4.4.9. ✷

In a similar vein, we can show that “if there exists a looping evaluation

with arbitrary many normal order steps, then also normal order reduction
will loop” First we make the following

Definition 4.4.15 Given G (singlelabeled). We say that G loops at level
1 by a normal order strategy, if for all n and G′ such that

1 ⊢∗ : G⇒n
Nn G′

G′ is not in normal form. ✷

Theorem 4.4.16 Let singlelabeled graph G be given. Suppose for all
n, there exists n1 ≥ n, r1 and G1 such that 1 ⊢∗ r1 : G⇒Nn1

G1. Then G

loops at level 1 by a normal order strategy. ✷

Proof: Let 1 ⊢∗ : G⇒n
Nn G′; we want to show that G′ is not in normal

form. By assumption, there exists r1, G1 and n1 ≥ n + 1 such that

1 ⊢∗ r1 : G⇒Nn1
G1. By repeated application of lemma 4.4.13, we find

G′1 and n′1 ≥ n1 such that 1 ⊢∗ : G⇒n′

1

Nn′

1

G′1. Hence, as n′1 ≥ n + 1, we
find G′′ and c ≥ 1 such that

1 ⊢∗ : G⇒n
Nn G′′ and 1 ⊢∗ : G′′ ⇒c

Nc G
′
1

the right hand side of which shows that G′′ is not in normal form. Now

apply lemma 4.4.12 to the left hand side. ✷

4.5 Transitions at level i

Now we embark on defining the level i transitions, i > 1. We shall write

i ⊢ r : G⇒Nn G′

to denote that r, a reduction from G to G′, is a “single step” at level i

which “represents n normal order steps at level 1”. We shall write

i ⊢∗ r : G⇒c
Nn G′

94

to denote that r, a reduction from G to G′, consists of c steps at level

i and “represents n normal order steps at level 1” (it should be noticed
that it may happen that n > c). Finally, we shall write (for i ≥ 1)

(r : G⇒c
Nn G′) ∈ Ri

to denote that r, a reduction from G to G′, is a level i rule.

• The following inference system determines when it holds that
i ⊢∗ r : G⇒c

Nn G′ (i > 1):

i ⊢ r : G⇒Nn G′

i ⊢∗ r : G⇒1
Nn G′

i ⊢∗ idG : G⇒0
N0 G

i ⊢∗ r1 : G1 ⇒c1
Nn1

G2, i ⊢∗ r2 : G2 ⇒c2
Nn2

G3

i ⊢∗ r1⋆r2 : G1 ⇒(c1+c2)
N(n1+n2) G3

• Concerning Ri, the set of level i rules (i ≥ 1), we must demand:

1. if (r : G⇒c
Nn G′) ∈ Ri, then i ⊢∗ r : G⇒c

Nn G′;

2. Ri is a finite set for all i ≥ 1.

The pragmatics behind 2 is that it will not be possible (in finite

time) to generate infinitely many rules.

• i ⊢ r : G⇒Nn G′ (i > 1) will hold provided (for some G1,G
′
1,G2,s

and r1) (G′, r,) is the pushout of (r1+idG2
, s) where s is a special-

ization from G1+G2 to G, where r1 is a reduction from G1 to G′1,
and where either

1. (r1 : G1 ⇒a1
G′1) ∈ R0 – then n = 1 if D(s(in1(a1))) ≥ 1, oth-

erwise n = 0 – or

2. (r1 : G1 ⇒c1
Nn1

G′1) ∈ Ri′ for some i′ < i – then n = n1.

This captures the intuition that “rules at lower levels can be ex-

ploited”. As discussed in chapter 2, in concrete multilevel systems
there are often restrictions on which lower level rules can be used.

95

It is convenient to note that the above definition of i ⊢ r : G⇒Nn G′ is

also applicable to the case i = 1. Then we find, with n = 1 if D(a) ≥ 1
and n = 0 otherwise, that

1 ⊢ r : G⇒Nn G′ ⇔ ∃j : 1 ⊢ (j) r : G⇒a G
′

Now also the above definition of i ⊢∗ r : G⇒c
Nn G′ can be extended to

the case i = 1.

Properties of level i transitions

The following lemmas express that “if r is a reduction more general than
r1, and r is a level i transition, then so is r1”. They are all easy conse-

quences of the algebraic laws stated in section 4.1.

Lemma 4.5.1 Suppose i ⊢ r : G⇒Nn G′, i ≥ 1. Suppose s is a special-
ization from G to G1. Let (G′1, r1,) be the pushout of (r, s). Then also

i ⊢ r1 : G1 ⇒Nn1
G′1, with n1 ≥ n. ✷

Proof: We have that (G′, r,) is the pushout of (r2+idG3
, s2) where s2

is a specialization from G2+G3 to G, and where either

1. (r2 : G2 ⇒a2
G′2) ∈ R0, n = 1 if D(s2(in1(a2))) ≥ 1, n = 0 otherwise

or

2. (r2 : G2 ⇒c2
Nn2

G′2) ∈ Ri′ for some i′ < i, n = n2.

In both cases, we then exploit that – by fact 4.1.23 (4.3) – (G′1, r1,) is

the pushout of (r2+idG3
, s2⋆s). Hence i ⊢ r1 : G1 ⇒Nn1

G′1 for some n1.
In case 1, we have n1 = 1 if D1(s(s2(in1(a2)))) ≥ 1, n1 = 0 otherwise

– as s satisfies INC this shows that n1 ≥ n. In case 2, we clearly have
n1 = n2 = n. ✷

Lemma 4.5.2 Suppose i ⊢∗ r : G⇒c
Nn G′, i ≥ 1. Suppose s is a special-

ization from G to G1. Let (G′1, r1,) be the pushout of (r, s). Then also
i ⊢∗ r1 : G1 ⇒c

Nn1
G′1, with n1 ≥ n. ✷

Proof: Induction in the proof tree for i ⊢∗ r : G⇒c
Nn G′. Three cases:

1. We have c = 1 and i ⊢ r : G⇒Nn G′. By lemma 4.5.1 there exists
n1 ≥ n such that i ⊢ r1 : G1 ⇒Nn1

G′1, and hence also

i ⊢∗ r1 : G1 ⇒1
Nn1

G′1.

96

2. We have G′ = G, r = idG and c = n = 0. By fact 4.1.23 (4.2) we

have G′1 = G1, r1 = idG1
. Hence i ⊢∗ r1 : G1 ⇒0

N0 G
′
1, as desired.

3. We have i ⊢∗ r′′ : G⇒c′′
Nn′′ G′′ and i ⊢∗ r′ : G′′ ⇒c′

Nn′ G′, r = r′′⋆r′,
c = c′′+c′ and n = n′′+n′. Let (G′′1, r

′′
1 , s
′′
1) be the pushout of (r′′, s).

Then, by fact 4.1.23 (4.4), the pushout of (r′, s′′1) is (G′1, r
′
1,) where

r1 = r′′1⋆r
′
1. By induction, there exists n′′1 ≥ n′′, n′1 ≥ n′ such

that i ⊢∗ r′′1 : G1 ⇒c′′

Nn′′

1

G′′1, i ⊢∗ r′1 : G′′1 ⇒c′

Nn′

1

G′1. Hence we have

i ⊢∗ r1 : G1 ⇒c
Nn1

G′1, with n1 = n′′1 + n′1 ≥ n′′ + n′ = n.

✷

Lemma 4.5.3 Suppose i ⊢ r : G⇒Nn G′, i ≥ 1. Then for all G1, also
i ⊢ r+idG1

: G+G1 ⇒Nn G′+G1 ✷

Proof: We have that (G′, r,) is the pushout of (r2+idG3
, s2) where s2

is a specialization from G2+G3 to G, and where either

1. (r2 : G2 ⇒a2
G′2) ∈ R0, n = 1 if D(s2(in1(a2))) ≥ 1, n = 0 otherwise

or

2. (r2 : G2 ⇒c2
Nn2

G′2) ∈ Ri′ for some i′ < i, n = n2.

Now s2+idG1
is a specialization from G2+G3+G1 to G+G1. By fact

4.1.24, the pushout of (r2+idG3
+idG1

, s2+idG1
) is (G′+G1, r+idG1

,). This

shows that i ⊢ r+idG1
: G+G1 ⇒Nn G′+G1. ✷

Lemma 4.5.4 Suppose i ⊢∗ r : G⇒c
Nn G′, i ≥ 1. Then for all G1, also

i ⊢∗ r+idG1
: G+G1 ⇒c

Nn G′+G1. ✷

Proof: Induction in the proof tree for i ⊢∗ r : G⇒c
Nn G′. Three cases:

1. We have c = 1 and i ⊢ r : G⇒Nn G′. By lemma 4.5.3,

i ⊢ r+idG1
: G+G1 ⇒Nn G′+G1, and hence also

i ⊢∗ r+idG1
: G+G1 ⇒1

Nn G′+G1.

2. We have G′ = G, r = idG and c = n = 0. As idG+idG1
= idG+G1

,
we clearly have i ⊢∗ r+idG1

: G+G1 ⇒0
N0 G

′+G1.

3. We have i ⊢∗ r′′ : G⇒c′′
Nn′′ G′′ and i ⊢∗ r′ : G′′ ⇒c′

Nn′ G′, r = r′′⋆r′,
c = c′′ + c′ and n = n′′ + n′. By induction, we have

i ⊢∗ r′′+idG1
: G+G1 ⇒c′′

Nn′′ G′′+G1 and

i ⊢∗ r′+idG1
: G′′+G1 ⇒c′

Nn′ G′+G1.

97

By fact 4.1.15 we – as desired – get i ⊢∗ r+idG1
: G+G1 ⇒c

Nn G′+G1.

✷

Corollary 4.5.5 Suppose i ⊢∗ r1 : G1 ⇒c1
Nn1

G′1 and i ⊢∗ r2 : G2 ⇒c2
Nn2

G′2,
i ≥ 1. Then

i ⊢∗ r1+r2 : G1+G2 ⇒(c1+c2)
N(n1+n2) G

′
1+G′2

✷

Proof: By lemma 4.5.4, we have

i ⊢∗ r1+idG2
: G1+G2 ⇒c1

Nn1
G′1+G2, i ⊢∗ idG′

1
+r2 : G′1+G2 ⇒c2

Nn2
G′1+G′2

By fact 4.1.15, we have (r1+idG2
)⋆(idG′

1
+r2) = r1+r2 – hence the claim. ✷

4.6 Correctness and speedup bounds

In this section we will investigate the relationship between the various

levels present in a multilevel system. In particular, we will

1. give bounds for the speedup one can expect to gain when working

at level i instead of level 1;

2. give conditions for a multilevel system to be “correct”, in the sense
that “working at level i gives the same result as working at level 1”

– the nontrivial point is to ensure that working at level i does not
increase the risk of nontermination.

First some notation:

• for i ≥ 1, define Ci as the maximum of the c’s such that there
exists a rule (: ⇒c

N) ∈ Ri – however, if this maximum is 0 we

stipulate Ci = 1. Since we required each Ri to be finite, Ci <∞. As
rules represent shortcuts in the computation process, the intuition

is that Ci is “the maximal shortcut represented by a level i rule”.

• for i ≥ 1, define Ti as follows: Let {(rj, Gj, G
′
j, cj, nj)|j ∈ J} be

such that (r : G⇒c
Nn G′) ∈ Ri iff there exists j ∈ J with r = rj,

G = Gj, G
′ = G′j, c = cj and n = nj. Then we stipulate

Ti =
∑

j∈J
cj + 1

98

(the “+1” is added for technical reasons and will often be dispensed

with in examples.) One should think of Ti as denoting “the total
cost of deriving the level i rules”, as intuitively the cost of deriving

a rule is proportional to the shortcut it represents.

• for i ≥ 1, we define

T T i =
i∑

j=1

Tj

to be interpreted as the total cost of deriving the rules at level ≤ i.

Next we are – hardly surprising! – able to show that “level i can simulate
level i + 1”:

Lemma 4.6.1 Suppose i + 1 ⊢∗ r : G⇒c
Nn G′, i ≥ 1. Then there exists

c′ ≤ Ci · c, n′ ≥ n such that i ⊢∗ r : G⇒c′
Nn′ G′. ✷

Proof: We will use induction in the proof tree for i + 1 ⊢∗ r : G⇒c
Nn G′.

Three cases:

• A rule at level i′ < i+ 1 has been exploited, then c = 1. Two cases:

– i′ < i. Then we also have i ⊢∗ r : G⇒c
Nn G′, and as Ci ≥ 1 we

have c ≤ Cic.
– i′ = i (so i′ �= 0). Then there exists (r1 : G1 ⇒c1

Nn1
G′1) ∈ Ri,

G2 and specialization s from G1+G2 to G, such that (G′, r,)

is the pushout of (r1+idG2
, s). Moreover n1 = n.

By assumption, we have i ⊢∗ r1 : G1 ⇒c1
Nn G′1. By lemma 4.5.4,

we have

i ⊢∗ r1+idG2
: G1+G2 ⇒c1

Nn G′1+G2

and by lemma 4.5.2 we then find that there exists n′ ≥ n such

that

i ⊢∗ r : G⇒c1
Nn′ G′

As c1 ≤ Ci by definition, we finally obtain c1 ≤ Cic as desired.

• We have G′ = G, r = idG and c = n = 0. But then clearly
i ⊢∗ r : G⇒0

N0 G
′ – and 0 ≤ Ci0, 0 ≥ 0.

99

• We have i + 1 ⊢∗ r1 : G⇒c1
Nn1

G′′, i + 1 ⊢∗ r2 : G′′ ⇒c2
Nn2

G′ with r =

r1⋆r2, c = c1 + c2 and n = n1 + n2. By induction, there exists
c′1 ≤ Cic1, c

′
2 ≤ Cic2, n

′
1 ≥ n1 and n′2 ≥ n2 such that

i ⊢∗ r1 : G⇒c′
1

Nn′

1

G′′, i ⊢∗ r2 : G′′ ⇒c′
2

Nn′

2

G′

By defining c′ = c′1 + c′2, n′ = n′1 + n′2 we thus as desired obtain

i ⊢∗ r : G⇒c′
Nn′ G′. And

c′ ≤ Ci(c1) + Ci(c2) = Cic, n′ ≥ n1 + n2 = n

✷

By repeated application of lemma 4.6.1, we find

Corollary 4.6.2 Suppose i ⊢∗ r : G⇒ci

Nni
G′, i > 1. Then there exists

c1,n1 such that

1 ⊢∗ r : G⇒c1
Nn1

G′.

where c1 ≤ C1 . . . Ci−1ci, n1 ≥ ni. ✷

The partial correctness/speedup theorem(s)

We are now ready for a main theorem, which can be read as follows:

suppose G at level i by an arbitrary strategy reduces to a normal form.
Then G at level 1 by a normal order strategy will reduce to an equivalent

normal form; and the cost of working at level 1 does not exceed the cost
of working at level i by more than a factor C1 . . . Ci−1.

Theorem 4.6.3 Let G be singlelabeled with result node n0. Suppose
for i > 1 we have

i ⊢∗ r : G⇒ci

Nni
G′, G′ in well-typed normal form.

Then there exists r′, G′′ and c1 such that

1 ⊢∗ r′ : G⇒c1
Nc1 G

′′ where

• G′′ is in well-typed normal form, and ValG′(r(n0)) = ValG′′(r′(n0));

• ni ≤ c1 ≤ C1 . . . Ci−1 · ci.

✷

100

Proof: By corollary 4.6.2 we find that 1 ⊢∗ r : G⇒c′
Nn′ G′ where c′ ≤

C1 . . . Ci−1ci, n
′ ≥ ni. By theorem 4.4.14, there exists G′′ in well-typed nor-

mal form, reduction r′ and c1 with n′ ≤ c1 ≤ c′ such that 1 ⊢∗ r′ : G⇒c1
Nc1 G

′′.
That ValG′(r(n0)) = ValG′′(r′(n0)) follows from theorem 4.4.11. ✷

Theorem 4.6.3 is formulated relative to a fixed multilevel system (i.e. a

fixed set of rules): working within this multilevel system one can gain a

constant factor only. But given a graph G such that 1 ⊢∗ r : G⇒c
Nn G′

with G′ in normal form it will of course always be possible to construct a

multilevel system (even a 2-level system) such that 2 ⊢∗ r : G⇒1
Nn G′ –

just store the above level 1 transition as a level 1-rule! However, by doing

so we have just transferred the cost from “run time” to “rule generation
time”.

This motivates why we now formulate a speedup bound which does
not depend on the actual multilevel system (only on the number of levels

employed), and which takes “rule generation time” into account:

Theorem 4.6.4 In theorem 4.6.3, we have

T T i−1 + ci ≥ i i
√
c1

✷

Here the left hand side can be interpreted10 as the total cost associated
with working at level i, and c1 can be interpreted as the total cost associ-

ated with working at level 1 – thus there is justification for the following

Essential Result 4.6.5 By having an upper bound on the number of
levels employed in a multilevel system, one at most gains a polynomial

speedup.

Proof: (of theorem 4.6.4) We have c1 ≤ C1 . . . Ci−1ci, and hence (as
Ci ≤ Ti)
i · i
√
c1 ≤ i · i

√

C1 . . . Ci−1ci ≤ i · i
√

T1 . . . Ti−1ci

Thus the theorem will follow if we can show

i · i
√

T1 . . . Ti−1ci ≤ T T i−1 + ci

which amounts to showing

iiT1 . . . Ti−1ci ≤ (T1 + . . . + Ti−1 + ci)
i

10Wlog. we can assume that a program is run once only, as if it is to be run on several
arguments these can be supplied simultaneously.

101

But this is an instance of the inequality

ii(n1 . . . ni) ≤ (n1 + . . . + ni)
i, all nj ≥ 0 (4.14)

the validity of which follows from the two observations below:

• if n1 = . . . = ni(= n), then (4.14) reads

ii · ni ≤ (i · n)i

which certainly holds (with = instead of ≤).

• for fixed value of n1 + . . .+ni, n1 . . . ni assumes its maximum value
when n1 = . . . = ni. This is an easy consequence of the observation

below, which trivially holds:

Given n,n′ and d, with 0 ≤ d ≤ n ≤ n′. Then n · n′ ≥
(n− d) · (n′ + d).

✷

4.6.1 Total correctness

Theorem 4.6.3 showed that working at higher levels always will be par-
tially correct, in the sense that every result could have been achieved at

level 1 too. Now we are aiming at conditions for total correctness, the
meaning of this term being

1. if reduction of G at level i gets “stuck”, then it also gets stuck at

level 1;

2. if reduction of G at level i “loops”, then it also loops at level 1.

Concerning 1, it is easily seen (by combining corollary 4.6.2 and theorem
4.4.14) that the following holds:

Corollary 4.6.6 If i ⊢∗ : G⇒N G′, with G singlelabeled and with G′

in normal form but not in well-typed normal form, then there exists G′′

in normal form but not in well-typed normal form such that (for some c)

1 ⊢∗ : G⇒c
Nc G

′′. ✷

On the other hand, a configuration may be “stuck at level i” even if it
does contain a redex a with D(a) ≥ 1 – this will happen if

102

• one is not allowed to use (all) level 0 rules, when working at level i

and

• the set of rules one is allowed to use is not “complete”.

We do not wish to formulate conditions for a set of rules to be “complete”,
as such a treatment will depend heavily on the concrete multilevel system

– hence we from now on solely focus upon condition 2, i.e. that “looping
at level i implies looping at level 1”.

The discussion back in section 2.1.2 suggests that “all rules should
represent some computation step”, so obviously it would be a bad idea if

we had (idG : G⇒0
N0 G) ∈ Ri for some i. However, it is not enough that

all rules represent some computation step – they should also represent

a useful computation step. In our formalism (which has been partly
designed for this purpose!) this can be coded up in the theorem below

which says “if one, when working at level i, only uses either level i′ rules
(1 ≤ i′ < i) representing at least one normal order step or a level 0 rule

the redex of which is needed; then total correctness is ensured”.

Theorem 4.6.7 Given i > 1. Assume we have the following (restricted)

definition of when i ⊢ r : G⇒Nn G′ holds: (G′, r,) shall be the pushout
of (r1+idG2

, s) where s is a specialization from G1+G2 to G, and where

either

1. (r1 : G1 ⇒a1
G′1) ∈ R0 with D(s(in1(a1))) ≥ 1 or

2. (r1 : G1 ⇒c1
Nn1

G′1) ∈ Ri′ for some i′ < i with n1 ≥ 1.

Now suppose that G0 (singlelabeled) is such that for all k ≥ 0 there exist
Gk and nk such that

i ⊢∗ : G0 ⇒k
Nnk

Gk

i.e. “G0 loops at level i by some strategy”. Then G0 loops at level 1 by a

normal order strategy. ✷

Proof: Let k be given. It is immediate from the assumptions of the

theorem that nk ≥ k. By corollary 4.6.2 we find that there exists n′k ≥
nk(≥ k) such that

1 ⊢∗ : G0 ⇒Nn′

k
Gk

Now apply theorem 4.4.16. ✷

It may not be quite obvious how the above theorem applies to concrete

103

multilevel systems. In section 4.7.2, examples will be given to clarify this
issue.

Not surprisingly, the same assumptions guarantee that “we do not
risk a slowdown by working at level i”:

Theorem 4.6.8 Let the assumptions about which transitions are made
at level i be as in theorem 4.6.7. Now suppose (with G singlelabeled)

i ⊢∗ : G⇒c
Nn G′, with G′ in normal form.

Then there exists G′′ in normal form and c1 ≥ c such that

1 ⊢∗ : G⇒c1
Nc1 G

′′

✷

Proof: From the assumptions we find that n ≥ c. By corollary
4.6.2, we find that there exists n1 ≥ n such that 1 ⊢∗ : G⇒Nn1

G′.
By theorem 4.4.14, we find G′′ in normal form and c1 ≥ n1 such that
1 ⊢∗ : G⇒c1

Nc1 G
′′; hence the claim. ✷

The above theorem gives a sufficient condition for “the speedup factor
being at least 1”. One may ask whether we in general can give condi-

tions for “the speedup factor being at least k”. This does not seem quite
easy – of course, a natural requirement would be that if one uses a rule

(: ⇒Nn) ∈ Ri′, 1 ≤ i′ < i then n ≥ k. However, excessive use of level
0 rules will make the speedup factor closer to 1 than to k – and we do not

want to exclude the possibility of using level 0 rules, as target programs

should be allowed to use operators like +!

4.7 Applications of the theory

We now examine how the results from section 4.6 apply to some concrete

multilevel systems, in particular those from section 2.1. At the end of
the section, we briefly discuss our complexity measure.

4.7.1 Memoization (tabulation)

The fibonacci function is represented by four level 0 rules, two of which
are depicted in figure 4.15 (the rule corresponding to fib(1) = 1 and the

“error rule” are omitted).

104

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✁
✁
✁✁

▲
▲
▲▲

✲
✁
✁
✁✁

▲
▲
▲▲

✲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

▲
▲
▲▲

@ @ @

@

@

@fib 0

1

fib 0 fib p1

+

fib p2

fib
p3

p1

Figure 4.15: Level 0 rules for the fibonacci function.

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✔
✔
✔
✔

▲
▲
▲▲

✲

✔
✔
✔
✔

▲
▲
▲▲

▲
▲
▲▲

✔
✔
✔
✔

✔
✔
✔
✔

▲
▲
▲▲

▲
▲
▲▲

✲ ✲

✔
✔
✔
✔

✔
✔
✔
✔

▲
▲
▲▲

▲
▲
▲▲

✲

fib

@

2

@

@@

@+

fib 1

fib

0 + 1

1

@

@

2

Figure 4.16: Deriving a level 1 rule for fib.

In the second rule, the left hand side (right hand side) is equipped

with set of labeling functions L (L′) given by

L = {li|i ≥ 2},L′ = {l′i|i ≥ 2}

where li(p1) = i; and l′i(p1) = i, l′i(p2) = i− 1, l′i(p3) = i− 2.
Using four level 1 transition steps, we can then generate a level 1 rule

(corresponding to fib(2) = 2) as depicted in figure 4.16 – as usual, some
nodes are implicitly garbage collected.

In general we find Ci = 4, Ti = 4 (as only one rule at each level
is present) and T T i = 4i. Hence the cost of evaluating fib(n) using

memoization (or tabulation) is roughly 4n (as about n levels are used).
On the other hand, the cost of evaluating fib(n) at level 1 is exponential,

say about an for some a.

105

The above fits with theorem 4.6.4, which predicts that the cost of
working at level n cannot be less than n n

√
an, i.e. not less than an. So in

this example, we (apart from a constant factor) get “as much speedup as
we can expect”.

The lesson to be learned is (not surprisingly) that one can gain an
exponential speedup by means of memoization.

4.7.2 Unfold/(fold) transformations

We now reconsider example 2.1.2, where for instance f(f([a,a])) evaluates
to [c,c]11. Consequently, we expect to have the level 2 reductions depicted

in figure 4.17 – the numbers drawn beside some nodes denote the value of
the demand function. Let G be the graph on the left hand side of figure

4.17, let n0 be its “topmost” node, let G′ be the graph on the right hand
side and let r be the reduction implicit present in the figure (defined by

composition of the three depicted reductions) – then r(n0) will be the
topmost node of G′. The demand function has been chosen such that n0

is a (the) result node of G (and hence r(n0) is a result node of G′) – we
employ that Nd(f) = {1}. In short, we can write

2 ⊢∗ r : G⇒3
N G′ (4.15)

That this actually holds is due to R1 containing four rules (corresponding
to those depicted page 24, point 1), one of which (the one corresponding

to f(f(a ::x)) → c ::f(f(x))) is derived in figure 4.18.
Let G1 be the graph on the left hand side of figure 4.18, and let G′1

be the graph on the right hand side. We have

1 ⊢∗ : G1 ⇒2
N2 G

′
1 (4.16)

since both redices reduced are labeled with demand 1.

It is important to note that there really is a specialization from G1 to
G (so rule (4.16) really can be used at level 2) – if the demand functions

were chosen in a different way, INC might not have been satisfied.
Now let us see how the theorems from section 4.6 apply – we have

C1 = 2, T1 = 4 · 2 = 8 and T T 1 = 8.

1. Theorem 4.6.3 (applied to (4.15)) states that 1 ⊢∗ r′ : G⇒c
N G′′,

where c ≤ C1 ·3 = 6 and where ValG′(r(n0)) = ValG′′(r′(n0)). Actu-

ally, it is quite easy to see that c = 6 (and r′ = r, G′′ = G′). Hence

11We use the standard convention that [v1, . . . , vn] denotes (v1::(v2:: . . . (vn::[]) . . .)).

106

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

▲
▲
▲▲

✁
✁
✁✁

✲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

✲

✁
✁
✁✁

▲
▲
▲▲

✁
✁
✁✁

▲
▲
▲▲

@

@

::

::

f

f

a

a []

@

::

@

::

c

f

f

a []

::

::

@

@

c

c

f

f []

::

::c

c []

2 2

1

1

2

1

1

2

2

2

1

2

2

Figure 4.17: Evaluating f(f([a,a])) at level 2.

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✲

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✲

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

@

@f

f

a v

::

@

::

@

::

@

@

f

f v

b

c

f

f v

1

1

1

1

1

1

1

1

1

Figure 4.18: Deriving a level 1 rule for f(f(x))

107

we (in our model!) gain a speedup of a factor two, formalizing the

intuition presented page 24, point 2.

2. Theorem 4.6.7 states that the transformation (as expected!) is cor-
rect (i.e. the domain of termination is not decreased), since all level

1 rules applied (as e.g. (4.16)) represent at least one normal order
step (in fact, two).

Total correctness of unfold/(fold) transformations

We now elaborate further on clarifying the implications of theorem 4.6.7,
by giving a (toy) example of the unfold/fold technique and then show

how this translates into our model. Consider the source program

f(x) = 7

g(y) = g(y)

After making the eureka definitions

h1(x) = f(g(x))

h2(x) = g(f(x))

one can come up with two transformations:

1. start with h1(x), unfold into f(g(x)), unfold g yielding f(g(x)) and

then fold back into h1(x) – thus deriving the target program
h1(x) = h1(x).

2. start with h2(x), unfold into g(f(x)), unfold g yielding g(f(x)) and
then fold back into h2(x) – thus deriving the target program

h2(x) = h2(x).

The new definitions of h1 and h2 loop on any input. As the old definition
of h1 terminates (using a normal order strategy) on any input (with

result 7), transformation 1 is not correct. On the other hand, as the old
definition of h2 loops on any input, transformation 2 is to be considered

correct.
Intuitively, the reason why transformation 2 is correct is that g is in

a needed position when unfolded – on the other hand, in transformation
1 g is not in a needed position when unfolded.

Now let us encode the above into our framework: here the application
of h1 (h2) on (say) 8 is represented as the two graphs G1 and G2 depicted

108

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

☞
☞
☞☞

▲
▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲
▲▲

@

@

@

@f

g 8

g

f 8

2

0

2

0

Figure 4.19: G1 = f(g(8)), G2 = g(f(8)).

✍✌✎☞

✍✌✎☞
✍✌✎☞

✍✌✎☞
✍✌✎☞

✍✌✎☞
✍✌✎☞

✍✌✎☞
✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✲

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✲

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

r1 r2
@

@

@

@

@

@

@

@f

g v

f

g v

g

f v

g

f v

Df1

Dg1

Df1

Dg1

Dg2

Df2

Dg2

Df2

Figure 4.20: Transformation 1 and transformation 2.

in figure 4.19, both having their topmost node as result node (we have

Nd(f) = Nd(g) = ∅). At level 1, G1 reduces to a normal form (which will
still contain the redex g(8); this however has demand 0) in one step. At

level 1, G2 loops (by any strategy).
Transformation 1 and 2 are represented by the two level 1 rules r1 and

r2, depicted in figure 4.20. Let us discuss how to choose the demands Df1,

Dg1, Df2 and Dg2 (r1 and r2 will be valid level 1 transitions no matter
what we choose).

First observe that in order for these rules to be applicable when eval-
uating G1/G2 at level 2, we must require Dg1 = 0 and Df2 = 0 (as

specializations must satisfy INC). On the other hand, we can choose Df1

and Dg2 freely.

By assigning Dg2 the value 1, r2 represents one normal order step –
and hence theorem 4.6.7 says that transformation 2 is correct, as was to

be expected.
On the other hand (as Dg1 has been assigned the value 0) r1 represents

zero normal order steps, and hence theorem 4.6.7 cannot be applied – no
wonder, since transformation 1 does not preserve termination properties.

109

4.7.3 Partial evaluation

As hinted at in section 2.1.3, we consider (define) partial evaluation as a

2-level system where the level 1 rules are of form

1 ⊢∗ r : G⇒c
Nn G′, c ≥ 1

Here G contains redex a where En(a, f) holds (f is the function being
“specialized”), and moreover it must hold that

• for all n in G we have n�a (so the “call of” f does not appear in
any “context”);

• all other active nodes in G are partial applications (so the arguments
to f are virtual or passive – possibly multilabeled).

That we demand c ≥ 1 (and therefore also had to require a to be a redex)
corresponds to the following intuition: first the call of f is replaced by the

body of the definition of f (where the known arguments are substituted
in); then we do zero or more “simplification steps” (it will be natural to

“unfold as far as possible”, i.e. demand G′ to be in normal form).

Total correctness

The target program resulting from partial evaluation will always have the
same termination properties as the source program (if both are evaluated

under a normal order strategy). To see this, we have to check that the
condition of theorem 4.6.7 is satisfied. This will be the case if n ≥ 1

(we use the terminology from above), which will hold if D(a) = 1. And
provided one during evaluation of the target program only attempts to

“reduce redices with demand ≥ 1” (which in effect means that the target
program is evaluated under a normal order strategy), such rules are still

applicable.

Speedup considerations

Theorem 4.6.3 in effect says that there exists a constant K such that if the
source program terminates in c1 steps and the target program terminates

in c2 steps, then Kc2 ≥ c1. So apparently “one by partial evaluation gains
a constant speedup only”. However, it is important to note that this K

depends on

110

1. which arguments are static and which are dynamic;

2. the actual value of the static arguments;

3. the partial evaluation strategy used (i.e. whether we “unfold as far
as possible”).

Of course, one can use theorem 4.6.4 to show that c2 + T T 1 ≥ 2
√
c1

(T T 1 should be interpreted as “the cost of producing the target pro-

gram”), so we can state that “one by partial evaluation gains a polyno-
mial (quadratic) speedup at most”.

Now consider the special (but common! [JSS89]) case where an inter-
preter int for a language L (int taking two arguments: an L program p

and some input i to p) is partially evaluated wrt. a particular L program
P . The resulting target program T can be considered equivalent to P ,

in the sense that T applied to some input I yields the same result as int
applied to (P, I) – and according to theorem 4.6.3 one never gains more

than a factor K by using T instead of using int, this K being independent
of I.

On the other hand, in practice K is often independent of P too –

that is, K depends on the interpreter only and is often termed “the
interpretation overhead”. It should be emphasized that this notion of a

“fixed” interpretation overhead is not supported by our theorems. There
are good reasons for this, as it is easy to construct “interpreters” where

the corresponding interpretation overhead can become arbitrarily large.
However, for many “realistic” interpreters the interpretation overhead in

fact is independent of the program being interpreted, loosely speaking
due to the fact that each construct in the language being interpreted

gives rise to a run-time action.

4.7.4 Discussion of complexity measures

Given a source program s (coded as a set of level 0 rules) and a target
program t (coded as an i-level system). Let C be a complexity measure,

such that

• Cs(d) is the cost of running s on input d;

• Ct(d) is the cost of running t on d;

• C(t) is the cost of generating t.

111

So far in this section, we have interpreted theorem 4.6.3 as saying

there exists a constant Ks,t (dependent on s and t) such

that for all d,

Cs(d) ≤ Ks,tCt(d) (4.17)

Also, we have interpreted theorem 4.6.4 as saying

there exists a constant Ks (possibly dependent on s but

not on t) such that for all d,

C(t) + Ct(d) ≥ Ks
i

√

Cs(d) (4.18)

These interpretations are in fact valid (with Ks,t = C1 . . . Ci−1; Ks = i)
provided C = C0, where C0 is the complexity measure which assigns unit

cost to each function call regardless of

• how difficult it is to “lookup the code” of the function;

• how much “unification” has to be done before the function can be
applied.

A very natural question is now: do (4.17) and (4.18) still hold when C is
a more “realistic” measure?

When answering this question, we do not want to go into details
concerning what constitutes a realistic measure – initially we just point

out that complexity theory is an area with an enormous number of pitfalls,
including:

• If integer operations (addition, subtraction, multiplication, division
and equality test) are assigned unit cost, the model “collapses” in

the sense that e.g. complete factorization of a number n can be done
in time O(log n)2 [Knu81, p. 398].

• Consider the well-known Towers of Hanoi problem (see e.g. [Har87]),
which in a logic language can be solved by the program

hanoi(1,A,B,C,[mv(A,B) | L]-L).
hanoi(s(N),A,B,C,L-S) :- hanoi(N,A,C,B,L1-S1), hanoi(N,C,B,A,L2-S2),

append(L1-S1,[mv(A,B) | L2]-S2,L-S).
append(L1-L2,L2-L3,L1-L3).

112

where we use the technique of difference lists (see e.g. [SS86]) to

make it possible to append lists by a single unification.

By using the technique of tabulation, a query hanoi(n,A,B,C,Moves)
can now be solved using a number of predicate calls which is linear

in n – just build up facts as follows:

hanoi(s(1),A,B,C,[mv(A,C),mv(A,B),mv(C,B) | L]-L)
hanoi(s(s(1)),A,B,C, [mv(A,B),. . . ,mv(A,B) | L]-L)
. . .

However, as the size of the facts themselves grow exponentially we

do not reduce complexity.

• In complexity theory, all functions on a finite set are deemed con-

stant. Thus an intuitively clear statement like “this chess program
uses time exponential in the lookahead (the depth of the explored

part of the game tree)” makes no sense, as chess is a finite game.

• In classical complexity models, constants do not matter – that is, if

X can be recognized in time f(n) then for any c > 0 X also can be
recognized in time c · f(n). For e.g. Turing machines, the trick is to

encode a sequence of symbols into one single symbol12. However,
recently Neil Jones (as reported in [Nie92, p. 17]) came up with

a model, closer to “computational practice”, where constants do
matter.

After this digression, we return to the question of whether (4.17) and
(4.18) can be expected to hold for a realistic complexity measure C –

only very informal arguments are used!
First observe that we can expect C(t) to be “much larger” than C0(t),

even in the absence of “cheating” like the Towers of Hanoi example just

mentioned. This reflects the fact that “generation of rules” is rather time
consuming due to bookkeeping etc. Hence, we can expect (4.18) to be

“even more valid”!
Next take a look at (4.17). This inequality will still hold, provided we

can find a constant K such that the cost of making a function call in the

12This somewhat conflicts with Turing’s philosophical motivations for the design of his ma-
chine [Tur36], namely that there is a bound on the number of symbols a human computer can
distinguish between at one glance.

113

source program is less than K times the cost of making a function call
in the target program. To be concrete, consider the Ackerman function

from example 2.1.3. If one measures the cost of a function call as the
number of arguments to the function, we can there use K = 2 – the

generalization is immediate . . . !

4.7.5 Graph representation vs. term representation

From now on, we will (for ease of notation) very seldom explicitly code
expressions, programs etc. (represented as terms) into graphs, as the

translation back and forth is rather straightforward – variables in terms
are coded as virtual nodes in graphs, sharing in graphs is represented by

means of where abstractions in terms, etc. In particular, we shall often
“reason on term level”.

A very natural question arises: is this “sound” and “complete”, i.e. is
“graph rewriting” and “term rewriting” able to “simulate” each other?

A similar problem is addressed in [BvEG+87], where it is shown that
under certain weak assumptions graph rewriting is a sound and complete

implementation of term rewriting. This result does not immediately carry
over to our framework, nevertheless it indicates that our somewhat sloppy

approach can be justified formally – to do so, however, would be a rather
cumbersome task.

4.8 How to get more than a constant speedup

Superficially read, theorem 4.6.3 says that “by doing program transfor-

mation within the unfold/fold framework, one can at most gain a constant
speedup”. This is, of course, not a valid interpretation – one must closely

examine the assumptions implicitly present in the theory. By doing so
we are able to factor out some features, the presence of which enables

more than a constant speedup:

4.8.1 A non-optimal level 1 evaluation order

Recall that theorem 4.6.3 says that there exists a constant K such that

if G at level i (by an arbitrary strategy) reduces to a normal form in ci
steps, then G at level 1 by a normal order strategy reduces to normal
form in c1 steps where c1 ≤ Kci. However, it is not claimed that G at

114

level 1 by an arbitrary strategy reduces to normal form in a number of
steps ≤ Kci.

Thus theorem 4.6.3 does not (immediately) apply to a language with
a strict semantics (call-by-value) – it is very easy to come up with a

counterexample: consider the program

f(x) = 7

g(x) = ε(x)

h(x) = f(g(x))

where ε(x) is an expression taking time exponential in (the size of) x.

Hence also h(x) will – in a strict semantics – take exponential time.
However, by a single unfolding (where a redex is “discarded”) we get the

target program

h(x) = 7

so now h(x) runs in constant time – an exponential speedup has been
achieved! Moreover, if ε(x) is a nonterminating expression we gain an

“infinite speedup”, that is the domain of termination is increased.
It is worth mentioning already now that this source of speedup also

occurs (and is perhaps much more common) within the world of logic
programming. See section 8.0.1 for a further discussion and examples.

The partial evaluator SIMILIX [BD91] treats a strict language (SCHEME),
and it is a design principle that the target program must exhibit exactly

the same observable runtime behavior (i.e. same side-effects, same result)
as the source program. Hence one cannot allow the domain of termination

to be increased, so care is taken to ensure that redices are not discarded

during transformation (by inserting let-expressions). In section 4.10 we
briefly sketch how to model this kind of approach.

4.8.2 Introducing sharing during transformation

We have just seen that an exponential speedup can be achieved if one dur-
ing transformation of the source program is allowed to use an evaluation

order not permitted during execution of the source program. Similarly,
an exponential speedup may be achieved if one during transformation is

allowed to identify some expressions (by means of where-abstractions)

115

which one is not permitted to identify during execution. A classical ex-
ample of this is how one transforms the fibonacci function from being

exponential into being linear [BD77]:
First we introduce the function g(x) = (fib(x),fib(x+1)) – this is the

tupling strategy, cf. [Pet84]. For x = 0 we by unfoldings alone get

g(0) = (1,1)

For x ≥ 1, we perform the transformation sequence

g(x) → (fib(x),fib(x+1)) → (fib(x),(fib(x) + fib(x-1))) →
(v,(v+u)) where (u,v) = (fib(x-1),fib(x))

and after folding back into g we have thus derived the target function

g(x) = (v,(v+u)) where (u,v) = g(x-1), if x ≥ 1.

and now g is clearly linear (and we can compute fib using g).

In figure 4.21 and figure 4.22 it is shown how this transformation
process is expressed within our graph model. First assume that we have

the “level 1 rule” depicted in figure 4.21, where G, G′ and G′′ are equipped
with the sets of labeling functions L, L′ and L′′ given by

L = {li|i ≥ 1},L′ = {l′i|i ≥ 1},L′′ = {l′′i |i ≥ 1},
Here we have li(p1) = l′i(p1) = i, li(p2) = i + 1, l′i(p3) = l′′i (p3) = i and
l′i(p4) = l′′i (p4) = i − 1. Moreover, we have r1(a1) = a′1, r1(a2) = a′2,
r2(a

′
1) = a′′1, r2(a

′
2) = a′′2 and hence with r = r1⋆r2 also r(a1) = a′′1,

r(a2) = a′′2.

By means of this rule (and the rule corresponding to g(0) = (1,1))
fib(n) can be evaluated using O(n) steps – the first two steps in such an

evaluation (for n = 8) are sketched in figure 4.22. We see that for any
i < n, only one “copy” of fib(i) exists – hence no sharing is lost.

However, figure 4.21 does not denote a level 1 transition – clearly r1

is, but r2 is not. If we had an axiom stating

1 ⊢∗ r : G⇒0
N0 G

′ if r respects all nodes and is surjective (4.19)

then it would hold that 1 ⊢∗ r2 : G′ ⇒0
N0 G

′′ – since p1 and p3 are labeled

identically, we can allow r2(p1) = r2(p3)(= p3) and therefore also allow
r2(a

′
1) = r2(a

′
3).

To summarize: if we allow (4.19) during transformation of the source
program but do not allow (4.19) during execution of the source program

(except for the special case where r = id) we are able to get an expo-
nential speedup.

116

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏ ✒✑

✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

☞
☞
☞☞

▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲▲

▲
▲
▲▲

☎
☎☎

☞
☞
☞☞

▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲▲

☞
☞
☞☞

▲
▲
▲▲

☎
☎☎
▲
▲
▲▲

✲ ✲@ @

fib p1 fib p2

@ @

@ @

@

fib p1

+

fib p3

fib
p4

@

@ @

@+

fib p3

fib
p4

G G′ G′′

r1 r2a1 a2 a′1 a′2

a′3
a′′1

a′′2

Figure 4.21: Introducing sharing.

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏ ✒✑

✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✂
✂
✂
✂✂

❇
❇
❇
❇❇

✂
✂
✂
✂✂

❇
❇
❇
❇❇

✲

✂
✂
✂
✂✂

✂
✂
✂
✂✂

❇
❇
❇
❇❇



✂
✂
✂
✂✂

❇
❇
❇
❇❇

✂
✂
✂
✂✂

❇
❇
❇
❇❇

✲

✂
✂
✂
✂✂

✂
✂
✂
✂✂

✂
✂
✂
✂✂

❇
❇
❇

✂
✂
✂

❏
❏
❏✂

✂
✂
✂✂

❏
❏
❏
❏❏

✔
✔✔

❚
❚❚

❛❛❛❛

❝
❝
❝
❝
❝
❝
❝
❝❝

✥✥✥✥✥

@ @

fib 7 fib 8

@

@

@

@+

fib 7

fib 6

@

@

@

@

@

@

+

+

fib 6

fib 5

Figure 4.22: Linear evaluation of fib.

117

4.8.3 Proving laws by induction

A very useful and common technique for getting significant speedups is

to prove and use certain algebraic identities during transformation. In
this section we shall see an example of this: exploiting that the operation

appending two lists is associative, a list reversing program is transformed
from being quadratic into being linear (as in [BD77]).

The source program is depicted below, where ++ (appending two
lists) for notational convenience is an infix operator.

rev([]) = []

rev(v ::x) = rev(x) ++ [v]

[]++ y = y

(v ::x) ++ y = v ::(x ++ y)

We shall assume that all lists in question are finite. In the following, let

|x| be the length of a list x and let T (e) be the number of steps needed
for evaluating the expression e using the source program.

Trivially, T (x++ y) = |x| + 1. Concerning T (rev(x)), we therefore
have the equations

T (rev([])) = 1,

T (rev(v::x)) = 1 + T (rev(x)) + |rev(x)|+ 1 = T (rev(x)) + |x|+ 2

and by an easy induction we see that

T (rev(x)) =
(|x|+ 1)(|x|+ 2)

2
(4.20)

so rev is quadratic (as expected).

It turns out to be useful to prove that ++ is associative, i.e. that

(x++ y)++ z = x++ (y++ z) (4.21)

for all lists x, y and z. In fact, at the same time we shall prove that

T ((x++ y)++ z) = T (x++ (y++ z)) + |x| (4.22)

i.e. the right hand side of (4.21) can be arbitrarily more efficient than the
left hand side – this is the reason why one by replacing the left hand side

with the right hand side may get more than a constant speedup.

118

The proof will be conducted by induction on |x| – for x = [], the

claims are trivial. For x = (v::x′), the claims follow from the induction
hypothesis (applied to x′) together with the derivation sequences

((v::x′)++ y)++ z → (v::(x′++ y))++ z → v::((x′++ y)++ z)

(v::x′)++ (y++ z) → v::(x′++ (y++ z))

Now consider expressions13 of form rev(x)++ a (which is a generalization
of the expression rev(x)++ [v] met in the source program). For x = []

we have

rev([])++ a→ []++ a→ a

and for x = (v::x′) we have – by one unfolding, one application of the law
(4.21) and two more unfoldings –

rev(v::x′)++ a→ (rev(x′)++ [v])++ a

= rev(x′)++ ([v]++ a)→2 rev(x′)++ (v::a) (4.23)

By considering rev1(x,a) as an abbreviation of rev(x) ++ a, we have thus

derived the target program

rev1([],a) = a

rev1((v ::x),a) = rev1(x,(v ::a))

by means of which list reversal can be computed in linear time (using
rev(x) = rev1(x, [])).

Let us finally elaborate a bit on the exact nature of the speedup
gained. Consider the target program execution sequence

rev([v1 . . . vn])→ rev1([v1 . . . vn], []) (4.24)

→i−1 rev1([vi . . . vn], [vi−1 . . . v1])→
rev1([vi+1 . . . vn], [vi . . . v1]) (4.25)

→n−i rev1([], [vn . . . v1])→ [vn . . . v1] (4.26)

and let us examine how much “progress wrt. the source program” each

of those steps represent:

1. (4.24) corresponds to a negative progress of size n + 1 (as it takes
n + 1 steps to rewrite rev([v1 . . . vn])++ [] into rev([v1 . . . vn])).

13a plays the role of an “accumulating parameter”.

119

2. (4.25), i.e. the “typical step”, represents a progress of size 3 +

|[vi+1 . . . vn]| = n − i + 3 – this follows from (4.23) combined with
(4.22).

3. (4.26) represents a progress of 2 (as it takes two step to rewrite

rev([])++ [vn . . . v1] into [vn . . . v1]).

Hence the total progress amounts to

−(n + 1) +
n∑

i=1

(n− i + 3) + 2 = −n− 1 + n2 −
n∑

i=1

(i) + 3n + 2

= n2 − n(n + 1)

2
+ 2n + 1 =

n2 + 3n + 2

2
=

(n + 1)(n + 2)

2

so now we have derived (4.20) in an alternative way – luckily (!) with the
same result.

4.8.4 How to make really big speedups . . .

One of the most remarkable successes of the unfold/fold framework is

the transformation of the fibonacci function from exponential time into

logarithmic time, done in [PB82].
Of course it had been known for a long time that it is possible to com-

pute fibonacci numbers in logarithmic time, e.g. by successive squaring
of matrices – the virtue of [PB82] is that it is shown how to get from the

inefficient program into its efficient counterpart in a systematic way.
We now reconstruct the transformation in [PB82], with the aim of

exposing the causes of speedup explicitly – at the price of giving no hints
at how one can come up with such a transformation. Essentially, it is a

three-stage process:

1. first make a clever eureka definition;

2. then prove a very useful identity by induction, as in section 4.8.3;

3. finally use the tupling strategy to improve sharing properties, as in

section 4.8.2.

Concerning 1, the trick is to generalize fib and come up with the definition

G(a,b,0) = a

G(a,b,1) = b

G(a,b,n) = G(a,b,n-1) + G(a,b,n-2), if n ≥ 2.

120

Clearly fib(n) = G(1,1,n).

Concerning 2, we want to prove

∀n, k ≥ 0 : G(a, b, n + k) = G(1, 0, k)G(a, b, n)

+ G(0, 1, k)G(a, b, n + 1) (4.27)

This can be done by induction in k (in [PB82] this induction is only done

implicitly): if k = 0 (4.27) reads

∀n ≥ 0 : G(a, b, n) = 1 ·G(a, b, n) + 0 ·G(a, b, n + 1)

which certainly holds; and if k = 1 (4.27) reads

∀n ≥ 0 : G(a, b, n + 1) = 0 ·G(a, b, n) + 1 ·G(a, b, n + 1)

which also is true. For k ≥ 2, we have (with the second equality sign due
to the induction hypothesis)

G(a, b, n + k)

= G(a, b, n + (k − 1)) + G(a, b, n + (k − 2))

= G(1, 0, k − 1)G(a, b, n) + G(0, 1, k − 1)G(a, b, n + 1) +

G(1, 0, k − 2)G(a, b, n) + G(0, 1, k − 2)G(a, b, n + 1)

= (G(1, 0, k − 1) + G(1, 0, k − 2))G(a, b, n) +

(G(0, 1, k − 1) + G(0, 1, k − 2))G(a, b, n + 1)

= G(1, 0, k)G(a, b, n) + G(0, 1, k)G(a, b, n + 1)

As a corollary to (4.27), we get

G(1, 0, 1 + k) = G(1, 0, k)G(1, 0, 1) + G(0, 1, k)G(1, 0, 2)

= 0 + G(0, 1, k)(0 + 1) = G(0, 1, k) (4.28)

G(0, 1, 1 + k) = G(1, 0, k)G(0, 1, 1) + G(0, 1, k)G(0, 1, 2)

= G(1, 0, k) + G(0, 1, k) (4.29)

From (4.27) we can derive a program which is roughly quadratic (as we
have T (2n) ≈ 4 · T (n)). In order to do better, we embark on point 3: it

turns out to be a good idea to define

t(k) = (G(1,0,k),G(0,1,k),G(1,1,k),G(1,1,k+1))

121

We clearly have

t(0) = (1, 0, 1, 1)

and if t(k) = (p, q, r, s) we have (by means of (4.27), (4.28) and (4.29))

t(2k) = (G(1, 0, k)G(1, 0, k) + G(0, 1, k)G(1, 0, k + 1),

G(1, 0, k)G(0, 1, k) + G(0, 1, k)G(0, 1, k + 1),

G(1, 0, k)G(1, 1, k) + G(0, 1, k)G(1, 1, k + 1),

G(1, 0, k)G(1, 1, k + 1) + G(0, 1, k)G(1, 1, k + 2))

= (p2 + q2, pq + q(p + q), pr + qs, ps + q(r + s))

Also, still with t(k) = (p, q, r, s), we have

t(2k + 1) = (G(1, 0, k)G(1, 0, k + 1) + G(0, 1, k)G(1, 0, k + 2),

G(1, 0, k)G(0, 1, k + 1) + G(0, 1, k)G(0, 1, k + 2),

G(1, 0, k)G(1, 1, k + 1) + G(0, 1, k)G(1, 1, k + 2),

G(1, 0, k)G(1, 1, k + 2) + G(0, 1, k)G(1, 1, k + 3))

= (pq + q(q + p), p(p + q) + q(p + 2q),

ps + q(r + s), p(r + s) + q(2s + r)

The expressions for t(2k) and t(2k + 1) clearly define a function with

logarithmic runtime.

4.9 Related work

In this section the work reported so far in this chapter is compared with

other approaches from the literature, with special emphasis on papers dis-
cussing “bounds of speedup possible” and/or “conditions for total (par-

tial) correctness”. We attempt the order of exposition to be chronological,
but do not claim the list to be exhaustive.

The seminal paper on unfold/fold transformations [BD77] addresses
both the abovementioned issues. Concerning correctness, an informal ar-

gument (attributed to Gordon Plotkin) is given for partial (but not total)
correctness: let I be the set of function symbols, let Es be the set of equa-

tions in the source program, and let {si|i ∈ I} be the (domain-theoretic)
functions thus defined. Clearly the si’s satisfy Es. By manipulating Es,

we end up with a set of equations, Et, constituting the target program.

As the unfold/fold rules clearly are “sound”, any function satisfying Es

122

also satisfies Et. Now, domain theory tells us that {ti|i ∈ I}, the “new

meaning” of the function symbols, is to be found as the least functions
satisfying Et. From the si’s satisfying Et we therefore infer ti ≤ si – but

this just amounts to partial correctness. Some remarks:

• From section 4.8.1 we recall that partial correctness does not neces-

sarily hold if a strict semantics is used. Accordingly, the above argu-
ment implicitly presupposes a non-strict semantics (corresponding

to a normal order evaluation strategy) in order for “equational rea-
soning” to be valid – otherwise, it would not be sound to e.g. infer

f(g(x)) = 7 from an equation f(x) = 7.

Interestingly enough, Appendix 1 in [BD77] presupposes a call-by-
value strategy: a program is given which (by such a strategy) is

rather inefficient, as large data structures are built but only small

parts are used. It is said that even though the program originally
was put forward as an argument for the concept of coroutines14, a

similar economy in computation can be gained by the unfold/fold
technique. Their development corresponds to the observation in

section 4.8.1: by discarding some redices during transformation one
gains a (potentially arbitrarily big) speedup wrt. a call-by-value

semantics.

• The abovementioned argument for partial correctness does not give

any clue concerning how to argue for total correctness of a given
transformation – of course it will suffice if we can prove that any

function satisfying Et also satisfies Es
15, but we would certainly

like a condition more based on the “syntactic structure” of the

transformation. It seems very hard to come up with such conditions
using the framework of denotational semantics, cf. my claims p. 12.

Concerning speed-up issues, [BD77, p. 48] informally reasons as follows:

1. unfolding leaves efficiency unchanged;

2. application of laws, as well as introduction of where-abstractions,
are potential sources of efficiency improvements.

14Essentially giving rise to the same flow of control as lazy evaluation.
15As pointed out by David Sands this in general seems unfeasible, as an essential ingredient

of program transformation is to “forget” some information.

123

3. folding (at least) preserves efficiency (and therefore also guarantees

total correctness, as the introduction of looping surely does not
preserve efficiency), provided “one folds with an argument which

is lower in some well-founded ordering than the argument in the
equation being transformed”16.

1 does not hold in our model as we measure complexity in terms of the
number of unfoldings (while [BD77] (p. 65) measures complexity in terms

of the number of arithmetic operations). 2 is just the core insight of
section 4.8.3 and section 4.8.2. There is no counterpart to 3 in our work:

we give conditions on the “function symbol level” (i.e. on which functions
are unfolded), not on the “function argument level” – hence there is no

need for devising a well-founded ordering relation!

[Kot80] describes a framework for proving programs to be equivalent,
using two techniques:

1. The so-called McCarthy method – p1 and p2 are equivalent if there
exists p3 such that p1 and p2 both transform to p3 using the un-

fold/fold method (also using some predefined laws).

2. The so-called second order replacement method – if two terms t1
and t2 are equivalent, one can substitute t2 for t1.

The (in our view) most interesting claim of the paper is that technique

1 alone is not complete, in the sense that there exist programs which
are equivalent but cannot be proven so by means of 1 (of course, when

technique 2 is added completeness is trivial!) The reason is stated p. 67:

The proof [that the McCarthy method is incomplete] is a

direct consequence of the fact that fold/unfold method per-
forms only linear equivalences . . .

Here the definition of a “linear equivalence” (p. 66) between source pro-
gram s and target program t amounts to saying that there exists a linear

function f such that if expression e in n steps reduces to e′ when evaluated
using t, then e in f(n) steps reduces to e′′ when evaluated using s where

e′′ is “more defined than” e′ (for instance we could have e′′ = c(c(x)) and
e′ = c(g(x)) with c being a constructor symbol and g being a function

16This is often considered the recipe for how to ensure total correctness, as e.g. in [Hen87, p.
183].

124

symbol). The steps are assumed to be “parallel outermost steps” (re-

sembling normal order evaluation). No proofs (or references to such) are
given of the abovementioned “fact” – but the content is rather close to

theorem 4.6.3. . .
In [Kot85] (identical to the technical report [Kot82]) the problem of

assuring total correctness is addressed (but, alas, again all theorems are
given without proofs or references to proofs). The language treated is

a first-order functional language (without branching). The setup is that
first a number of unfoldings are made; then some predefined laws are

applied; and finally a number of foldings are made. Some conditions for
total correctness are given, e.g. proposition 3 and theorem 2 (p. 428)

– these essentially say that a transformation is safe if the number of

unfoldings exceeds the number of foldings. It is worth noting that chapter
8, which addresses the problem of total correctness for a logic language,

is built upon a generalized version of this intuition.
[Sch80] introduces (using a first-order functional language with call-

by-value semantics) the notion of expression procedures, a variant over
the unfold/fold framework – as in our model, folding is viewed as an

abbreviation. Some syntactic requirements on transformations are put
forward guaranteeing total correctness – for instance, one must only sub-

stitute within a “strict” context: from a rule k(x) → k(x) it would be
wrong to deduce the rule If p(x) h(x) k(x) → If p(x) h(x) k(x), as this

will introduce a loop which (in the case of p(x) evaluating to true) was
not present before. The correctness proof works by exploiting that an

expression e terminates iff there exists a well-founded ordering ≺ on ex-
pressions derivable from e such that if e in one step rewrites to e′ then

e′ ≺ e.
In [JSS89] one finds the following remarks:

Program transformation is concerned with rather radical
changes to a program’s structure, so the final program may

have properties very different from those of the original one.

A common goal for instance is to change a program’s running
time as a function of input size, often from exponential to

polynomial or from polynomial to linear.
We have argued that partial evaluation can achieve order-

of-magnitude linear speedups (e.g. of target programs over
interpreters) but it seems unlikely that partial evaluation can

125

yield non-linear speedups in general. One reason is that par-
tial evaluation uses only a single transformation technique,

essentially a generalization of well-known compiler optimiza-
tions.

So the goals of partial evaluation are in a sense more mod-
est and, we think, achievable by simpler methods than those

of program transformation in general.

This intuition has, so to speak, been formalized in section 4.8.

In [Red89] an alternative approach to unfold/fold transformations is
presented, using concepts from the theory of term rewriting systems17.

For instance, if one to the usual rules for the fibonacci function fib adds
the “eureka definition” <fib(n),fib(n+1)> → g(n) then the computation

of “critical pairs” in some sense simulates the usual unfold/fold process.
In [Hon91] it is shown that unfoldings, foldings and introduction of

where-abstractions do not (modulo a constant) change the “inherent com-

plexity” of a function, where the inherent complexity is the number of
steps needed to evaluate the function on an ideal parallel machine (i.e.

no communication overhead etc.) – for instance, the “exponential” fi-
bonacci function (example 2.1.1) and the “linear” fibonacci function (sec-

tion 4.8.2) both have linear inherent complexity. A denotational approach
is attempted, making it possible to express the inherent complexity as the

“number of fixed point unfoldings needed” – however, some operational
reasoning nevertheless (as to be expected) sneaks into the theory. In sec-

tion 4.10 we will sketch how to extend our model to encompass inherent
complexity.

[Mar91] investigates a class of term rewriting systems where terms are
labeled – thereby implicitly defining DAGS but not cyclic graphs in gen-

eral. By focusing upon the derivations where all redices with same label
are reduced simultaneously, graph reduction is mimiced. Now, loosely

speaking, a “call-by-need derivation” is one where only needed redices
are reduced, a redex being “needed” if it can never disappear (except

when reduced). It is proved that “call-by-need” derivations are optimal –

analogous to18 our theorem 4.4.14. In general it can only be known “after-

17The relationship between these two frameworks in general seems rather overlooked – other
attempts to narrow the gap include [Bel91]. A substantial difference is that the term rewriting
community often restricts attention to terminating reduction sequences.

18Another result in this direction is presented in [Yos93], where a weak λ-calculus (i.e. no
reductions under a λ) with explicit environments (so the Church-Rosser property holds) is

126

wards” (from a normalizing derivation) what constitutes a needed redex,

but for some subclasses of term rewriting systems (including supercombi-
nators without pattern matching) we know that the “leftmost-outermost”

redex will be needed19.
Note that the purpose of the demand function employed in our model

is to be able to capture “neededness” in a syntactic way (i.e. without look-
ing at some future derivations), in some sense generalizing the concept of

“leftmost-outermost” redex to combinators with pattern matching.
An interesting approach to reasoning about cost is given in [San90,

chap. 4], where bisimulation techniques (well-known from e.g. [Mil89])
are used for formalizing that “two expressions compute the same answer

using the same amount of time” – to be more precise we say that R is

a cost simulation iff, whenever e1 R e2, the following holds: if e1 using
k1 steps reduces to a q1 in “head normal form”, there exists q2 (in head

normal form) such that e2 in k2 steps reduces to q2, such that k1 = k2

and such that either q1 and q2 are identical “atomic” values or q1 and q2

are composite data structures where the arguments are related pairwise
by R.

An immediate generalization of the above approach would be to relax
the requirement k1 = k2 and demand only k1 ≤ c · k2, with c a constant

(depending solely on R). Then it might be possible to reason about when
a concrete transformation yields a constant speedup only.

[Hof92] considers jungle evaluation, a kind of term rewriting systems
based on graph grammars. Instead of overwriting a node with the result

of “evaluating it”, as in our model, a pointer is drawn from the node to
the result.

The rewriting system uses four kinds of rules:

1. evaluation rules, which correspond to replacing a function call by

the body of the function;

2. tabulation rules, which are evaluation rules that in addition make

preparations for storing the result of the function call;

treated. In this setting, it is proved that the leftmost reduction strategy is optimal.
19Similar work in this direction includes [Sta80], which investigates general (acyclic) graph

reductions and whose Result 3 states that “sound contractions” (reducing “sound nodes”) are
“optimal contractions”, a “sound node” loosely speaking being one the “ancestors” of which are
never reduced before the node itself is – the paper then gives criteria for being sound. Also,
[BKKS87] investigates the issue of detecting redices in a λ-expression the reduction of which is
needed in order to arrive at (head) normal form.

127

3. lookup rules, which model the retrieval of a previously stored result;

4. folding rules, which increase sharing by identifying nodes “with

identical children”.

Rule 2 and 3 account for “lazy memoization” (i.e. on equality of pointers,

cf. the discussion in section 2.1.1); by also employing 4 one can get “full
memoization” (i.e. on structural equality) – the latter is implemented in

[Kah92] (cf. section 3.5).
In our model, rule 1 corresponds to “use of level 0 rules”; rule 2

and rule 3 are implicitly present in the multilevel framework; and rule 4
correspond to the rule (4.19) proposed in section 4.8.2.

[Hof92, theorem 4.13] states a correctness result, saying that an eval-
uation using 2,3 and 4 can be simulated using 1 and 4 – this in some

sense corresponds to our partial correctness theorem 4.6.3.

4.10 Possible extensions to the model

In this section we briefly outline some directions in which our model could

be extended.

Inherent complexity

In order to model “inherent complexity” as used in [Hon91] (cf. section
4.9), we allow one “step” to perform several reductions in parallel. To

be more precise, for i ≥ 1 we say that i ⊢ r : G⇒N G′ (we do not care
about the number of normal order steps) provided there exist level i′ rules

(i′ < i) r1 . . . rp (p ≥ 0), graph G1 and specialization s such that (G, r,)
is the pushout of ((r1+ . . .+rp+idG1

), s). Moreover, we have the inference

rules

i ⊢ r : G⇒N G′

i ⊢∗ r : G⇒1
N G′

(4.30)

i ⊢∗ r : G⇒0
N G′ if r respects all nodes and is surjective (4.31)

i ⊢∗ r1 : G1 ⇒c1
N G2, i ⊢∗ r2 : G2 ⇒c2

N G3

i ⊢∗ r1⋆r2 : G1 ⇒(c1+c2)
N G3

with rule (4.31) corresponding to (4.19). Clearly, we have i ⊢∗ idG : G⇒c
N G

for any c (use p = 0 above).

128

Similar to what we did in section 4.5 we can show that if i ⊢∗ r : G⇒c
N G′,

s is a specialization from G to G1 and (G′1, r1,) is the pushout of (r, s),
then also i ⊢∗ r1 : G1 ⇒c

N G′1.
Also, if i ⊢ r1 : G1 ⇒N G′1 and i ⊢ r2 : G2 ⇒N G′2 then

i ⊢ r1+r2 : G1+G2 ⇒N G′1+G′2. Then it is easy to show that if

i ⊢∗ r1 : G1 ⇒c1
N G′1 and i ⊢∗ r2 : G2 ⇒c2

N G′2

then i ⊢∗ r1+r2 : G1+G2 ⇒c
N G′1+G′2, where c = max(c1, c2).

Lemma 4.6.1 then still holds: if i + 1 ⊢∗ r : G⇒c
N G′ with i ≥ 1, then

there exists c′ ≤ Ci · c such that i ⊢∗ r : G⇒c′
N G′.

In order to simulate the results of [Hon91], we (as one cannot use
(4.31) during “execution of the source program”) have to show that if

1 ⊢∗ r : G⇒c
N G′ then also 1 ⊢∗ r : G⇒c

N G′′ (with G′′ “similar” to G′),
where the latter derivation does not use rule (4.31). It will clearly be

sufficient if we can show that an application of (4.31) followed by an
application of (4.30), can be replaced by an application of (4.30) followed

by an application of (4.31). But this should not be too difficult.

Modeling call-by-value

Recall from section 4.8.1 that one by discarding redices during trans-
formation may increase the domain of termination for a strict language

(thus violating partial correctness); hence it may be of interest to come
up with conditions ensuring that all transformations are “strict”.

We define a predicate B on the set of virtual nodes, with the intuitive
interpretation that if B(v) holds then v cannot be a placeholder for a

graph containing active nodes.
Then define n ∈ B, a predicate on the set of all nodes with the intuitive

interpretation that if n ∈ B then n can never appear in a context where

there are active nodes “below” n. n ∈ B will hold iff it is not possible to
deduce ⊢ n �∈ B, using the following inference system:

not B(v)

⊢ v �∈ B
⊢ S(p, i) �∈ B
⊢ p �∈ B ⊢ a �∈ B

Now require all morphisms m in question (reductions, isomorphisms etc.)

to satisfy that

if B(v) then m(v) ∈ B′. (4.32)

129

As all such m in addition respect all passive nodes, we can deduce that
n ∈ B implies m(n) ∈ B′ – this just amounts to proving that ⊢ m(n) �∈ B′
implies ⊢ n �∈ B, and is done by induction in the proof tree of the former
derivation.

In addition, we require isomorphisms and reductions m to satisfy:
B′(v′) iff there exists v with m(v) = v′ such that B(v).

Then the development in section 4.1 carries through – the only non-
trivial point is to ensure that the pushout exists. Using the terminology

from section 4.1.5, equip G′ with a predicate B′ such that B′(V ′) iff there
exists V in G with r′(V) = V ′ such that B(V) holds. We now only need

to check that s′ satisfies (4.32): assume B′(v′), then there exists v with
B(v) such that r(v) = v′. As s satisfies (4.32), s(v) ∈ B; and as r′ (by

definition) satisfies (4.32), r′(s(v)) ∈ B′ – but r′(s(v)) = s′(r(v)) = s′(v′),
hence the claim.

Now demand all virtual nodes, appearing in level 0 rules, to satisfy

B(v) – then it is impossible to do a step which is not call-by-value. And
it is easy to derive the following theorem, expressing partial correctness

as well as “only a constant speedup is possible”:

Theorem 4.10.1 Given G. Suppose for i > 1 we have

i ⊢∗ r : G⇒ci

N G′

Then there exists c1 ≤ C1 . . . Ci−1 · ci such that

1 ⊢∗ r : G⇒c1
N G′

✷

Modeling garbage collection

Recall the remark on page 44: if reductions only need to be partial map-

pings, i.e. we allow r(n) =⊥, then garbage collection is modeled. How-
ever, one has to ensure that one does not throw away something which

is needed in another context. Therefore we define a predicate E, the
intuitive interpretation of E(n) being that “some larger context needs

n”.
We then must demand reductions r to satisfy: if E(n) then r(n) �=⊥;

and E ′(n′) should hold iff there exists n with E(n) and r(n) = n′. Also, we
must demand specializations s to be total and to satisfy: if s(n1) = s(n2)

with n1 �= n2 then E(n1) and E(n2); and if E ′(s(n)) then also E(n).
Then it will be possible to proceed as before.

130

A more symmetric notion of reduction

In order to model folding which is not an abbreviation (cf. p. 24), it would

be convenient if reductions were “less directed” – corresponding to the
intuition that folding represents a step in the “wrong” direction. That

is, instead of r being a (partial) mapping we would rather like r to be a
relation. We have not investigated this idea further in the current setting

– however, in chapter 8 we shall see a logic model where it is possible to
reverse some “unfoldings”.

131

Chapter 5

The Ultimate Sharing Machine

As promised in chapter 3, we now define a non-deterministic machine (to
be called an USM) for ultimate sharing (the concept presented in section

3.1), using the framework from chapter 4. Further, we prove that under
some rather weak and natural conditions the machine is “correct”. The

machine can, of course, be made (almost) deterministic in several ways
– one such way is described in great detail, as it amounts to a top-down

version of partial evaluation (cf. section 2.1.3).

5.1 The USM

We suppose a predefined set of level 0 rules, R0. On the other hand, for
i ≥ 1 the set of level i rules Ri is initially empty and will gradually be

built up while the USM runs. A crucial property of the machine is that

the sets Ri form a “monotone” data structure in the sense that elements
are added, but never deleted. In other words, if (r : G⇒c

Nn G′) ∈ Ri

holds at some time it will hold at any later time. This implies that if
i ⊢∗ r : G⇒c

Nn G′ holds at some time, it will hold ever after. As usual,

we will demand that if (r : G⇒c
Nn G′) ∈ Ri then also i ⊢∗ r : G⇒c

Nn G′.
For ease of exposition, we do not explicitly include the sets Ri in the

configurations, but rather treat the addition of a rule to Ri as a “side-
effect”.

The configurations

A configuration of the USM (to be thought of as a stack, with the top
being rightmost) takes the form

[t1l1t2 . . . tk−1lk−1tk], k ≥ 1 (5.1)

132

where k is termed the height of the configuration. Here each tj takes the
form (Gj, G

′
j, rj, cj, nj, ij) where rj is a reduction from Gj to G′j. G′k is

termed the current goal of the configuration. The following relation is
an invariant of the USM:

∀j ∈ {1 . . . k} : ij ⊢∗ rj : Gj ⇒cj

Nnj
G′j (5.2)

Each lj takes the form (sj, Hj) (Hj a graph). We have the invariant:

∀j ∈ {1 . . . k − 1} : sj is a specialization from Gj+1+Hj to G′j (5.3)

The intuitive interpretation of the USM being in configuration (5.1) is

as follows: initially it started to evaluate G1; when reaching G′1 it pre-
ferred to look at a G2 “more general than” G′1; then it evaluated G2 until

reaching G′2;. . . ; finally it started evaluating Gk and has now reached G′k.
Given a graph G we can define SC(G), the “start configuration given

by G”, by

SC(G) = [(G,G, idG, 0, 0, 1)]

which clearly satisfies (5.2) and (5.3). A terminal configuration takes the

form

[(G,G′, r, c, n, i)], with G′ in well-typed normal form.

The transitions

The USM is able to make three kinds of transitions, each of which is

easily seen to preserve the invariants (5.2) and (5.3):

• A PUSH step amounts to “looking at a more general graph”. To be

more precise, we have

[. . . (Gk, G
′
k, rk, ck, nk, ik)]

> [. . . (Gk, G
′
k, rk, ck, nk, ik), (s,H), (G,G, idG, 0, 0, 1)]

provided s is a specialization from G+H to G′k. We say that G has
been pushed.

• An UNFOLD step amounts to “exploiting a previously generated rule”
(or a level 0 rule). To be more precise, we have (with r′ a reduction

from G′k to G′′k)

[. . . (Gk, G
′
k, rk, ck, nk, ik)]

> [. . . (Gk, G
′′
k, rk⋆r

′, ck + 1, nk + n,max(ik, i + 1))]

provided (G′′k, r
′,) is the pushout of (r+id , s) where either

133

– (r : ⇒Nn) ∈ Ri or

– (r : ⇒a) ∈ R0, in which case i = 0, and n = 1 if D(s(a)) ≥ 1

(D being the demand function of G′k), otherwise n = 0.

(To ensure that (5.2) is preserved, we exploit that if i ⊢∗ r : G⇒c
Nn G′

then also i′ ⊢∗ r : G⇒c
Nn G′ for i′ > i.) An UNFOLD step is said to

be progressing if n > 0.

• A POP step amounts to “stop working at the more general graph;

but save the result and use it”. To be more precise, we have

[. . . (Gk, G
′
k, rk, ck, nk, ik)(s,H)(G,G′, r, c, n, i)]

> [. . . (Gk, G
′′
k, rk⋆r

′, ck + 1, nk + n,max(ik, i + 1))]

where (G′′k, r
′,) is the pushout of (r+idH , s). At the same time we

extend Ri such that (r : G⇒c
Nn G′) ∈ Ri. A POP step is said to be

progressing if n > 0.

Given a configuration of form

[(G1, G
′
1, r1, c1, n1, i1) . . . (Gk, G

′
k, rk, ck, nk, ik)] (5.4)

we define I = max(i1 . . . ik). The following invariant of > is easy to

check:

Fact 5.1.1 Suppose SC(G) >∗ a configuration of form (5.4). Then G =

G1, I ≥ 1, and for j ≥ 1 we have Rj = ∅ iff j ≥ I. ✷

A complexity measure

Recall the definition of Ci, Ti and T T i from section 4.6. Given a config-

uration of form (5.4), we now define

CC = c1 + . . . + ck + T T i, i = I − 1

and when considering an USM execution sequence of the form C1 >∗ C2,

CC refers to the latter configuration C2. Intuitively, CC is the “work done
by the USM so far”. This is not an unreasonable interpretation, as shown

by

Fact 5.1.2 Starting from a configuration of form SC(G), we have

CC = |POP|+ |UNFOLD|+ I − 1 (5.5)

(here e.g. |POP| denotes the number of POP steps). ✷

134

Proof:

• Initially, (5.5) reads 0 + 0 = 0 + 0 + 1− 1, which is true.

• A PUSH step leaves both sides of (5.5) unchanged.

• An UNFOLD step adds one to both sides of (5.5) – to see this, observe

that the step does not change the value of I: as Ri is not empty,
fact 5.1.1 says that i < I and hence i + 1 ≤ I.

• For a POP step, whereRi is extended such that (r : G⇒c
Nn G′) ∈ Ri,

we must distinguish between two cases:

– If i < I, the left hand side of (5.5) is increased by−c+1+c = 1;

and the right hand side of (5.5) is increased by 1.

– If i = I, I will be increased by one. Hence the left hand side
of (5.5) will be increased by −c+1+ c+1 = 2 (due to the way

Ti is defined in section 4.6); and the right hand side of (5.5)
will be increased by 2.

✷

Partial correctness and speedup

Theorem 5.1.3 Suppose SC(G) >∗ [(G,G′, r, c, n, i)], where G is single-

labeled with result node n0 and G′ is in well-typed normal form. Then

there exists r′, G′′ and c1 such that

1 ⊢∗ r′ : G⇒c1
Nc1 G

′′ where

• G′′ is in well-typed normal form, and ValG′(r(n0)) = ValG′′(r′(n0));

• c1 ≤ C1 . . . Ci−1 · c;
• CC ≥ i i

√
c1.

✷

Proof: As (5.2) is an invariant of >, we have

i ⊢∗ r : G⇒c
Nn G′

Then apply theorem 4.6.3 and theorem 4.6.4, exploiting CC = c+T T i−1.

✷

135

Let us briefly digress on “stuck” configurations: a stuck
configuration of the USM must be of form [(G,G′, r, c, n, i)]
(as otherwise we could do a POP step). But now G′ is in normal
form (as otherwise we could do an UNFOLD step using a level

0 rule). Hence, as a terminal configuration is not considered
stuck, i ⊢∗ r : G⇒c

Nn G′ with G′ in normal form but not in

well-typed normal form. Then apply corollary 4.6.6 to see
that G also at level 1 by a normal order strategy ends up in

a “stuck” configuration.

Total correctness

Now we embark on giving conditions for total correctness, i.e. for “if the
USM loops starting from G, then G loops at level 1 by a normal order

strategy”.
For a USM configuration (of form (5.4)), we define N as n1 + . . .+nk

– the intuitive interpretation is “the total number of level 1 normal order
steps performed by the USM”. Observe that progressing UNFOLD steps

increase N ; all other steps leave N unchanged.

Definition 5.1.4 Let S1 > S2 > . . . > Si > . . . be a (possibly infinite)

execution sequence of the USM. We say that the sequence is progressing
provided

1. all POP steps are progressing;

2. if the sequence is infinite then it contains an infinite number of steps

which are either POP steps or progressing UNFOLD steps.

✷

The intuition behind 1 is that one should not stop computation and save
the result before one has done something useful. Condition 2 amounts to

saying that there should not exist an infinite sequence containing PUSH

steps and non-progressing UNFOLD steps only, that is one should not re-

peatedly look at more and more general configurations without doing

something useful in between.
It turns out that if a USM carries out progressing execution sequences

only, total correctness is guaranteed. To show this, two lemmas are
needed:

136

Lemma 5.1.5 Suppose there is a progressing infinite execution sequence
of the USM. Then N will grow towards infinity. ✷

Proof: Assume N is bounded (for the sake of getting a contradiction).
That is, after some point t the USM never performs a progressing UNFOLD

step. As the execution sequence is progressing we then (by condition 2)
can conclude that the USM performs an infinite number of POP steps.

Now two possibilities:

• A PUSH step is made after point t. As all subsequent UNFOLD steps

are non-progressing, the next POP step (and there is such a step!)
will be non-progressing. But this violates condition 1.

• No PUSH steps are made after point t. But as the stack cannot
shrink to negative size, this is impossible.

✷

Lemma 5.1.6 Suppose G (singlelabeled) is such that there exists an
execution sequence of the USM, starting from SC(G), where N grows

towards infinity. Then G loops at level 1 by a normal order strategy. ✷

Proof: Given n. By assumption, the USM encounters a configuration

with N ≥ n. Now perform a sequence of POP steps (always possible) – as
this leaves N unchanged, we end up with a configuration of form

[(G1, G
′
1, r1, c1, i1, n1)] with n1 ≥ n

By fact 5.1.1 G1 = G. As (5.2) holds, we have

i1 ⊢∗ r1 : G⇒c1
Nn1

G′1

By corollary 4.6.2, there exists n′1 ≥ n1(≥ n) such that

1 ⊢∗ r1 : G⇒Nn′

1

G′1

Now apply theorem 4.4.16. ✷

By combining lemma 5.1.5 and lemma 5.1.6 we get our “correctness the-
orem”:

Theorem 5.1.7 Suppose G (singlelabeled) is such that there exists an
infinite and progressing execution sequence of the USM starting from

SC(G). Then G loops at level 1 by a normal order strategy. ✷

137

5.2 A machine for partial evaluation

We now outline an (almost) deterministic version of the USM, to be

called a PEM (Partial Evaluation Machine), which simulates the effects
of partial evaluation.

For ease of exposition, we make the following assumptions (which are
immediate to generalize):

• all functions f have three arguments: x1, x2 and x3;

• for all functions f , x1 is the only argument “needed by f” (cf. the

function Nd from section 4.3) – i.e. in order to unfold f one needs
to know the value of x1 but not the value of x2 or x3;

• the static arguments of f (cf. section 2.1.3) are x1 (no loss of gener-
ality, as in order to do any computation one has to know the value

of x1) and x2.

Let the current goal of the PEM (cf. page 133) be G′. Now the next

action of the PEM is found according to the priority list below:

1. if the height of the current configuration is 1 and G′ contains a

function application of form f(α1, α2, e3) with demand ≥ 1 and
there exists a rule in Ri (i ≥ 1) with left hand side f(α1, α2, x3),

then perform an UNFOLD step using this rule;

2. if the height of the current configuration is 1 and G′ contains a

function application of form f(α1, α2, e3) with demand ≥ 1 then
perform a PUSH step, pushing f(α1, α2, x3) (giving this application

demand 1, which is clearly possible);

3. if G′ contains a function application of form f(α1, e2, e3) with de-

mand ≥ 1 then perform an UNFOLD step using the corresponding
level 0 rule (which will exist);

4. if the height of the current configuration is > 1, then perform a POP

step;

5. otherwise halt.

The intuition is as follows: when working at the “top level” (i.e. when

executing the “target program”), one should attempt to use specialized

138

functions – if they already exist (1) use them, otherwise (2) start to

generate them. Apart from that, unfold as far as possible (3 and 4).
It is easily seen that if/when the PEM stops, the configuration will be

of form [(G,G′, , , ,)] where G′ does not contain a redex with demand
≥ 1, i.e. G′ is in normal form.

An invariant

Fact 5.2.1 Assuming that the PEM starts from SC(G), the invariant

below will hold during execution:

A configuration either takes the form [t1] or the form

[t1l1t2]. With t1 of form (G,G′1, , , , i) we have i = 1 or
i = 2. With t2 (if it exists) of form (G2, G

′
2, , c, n, i) we have

i = 1, c = n, and G2 is of form f(α1, α2, x3) – this application
having demand 1. For i ≥ 2, Ri = ∅. If (: G⇒c

Nn) ∈ R1

then G is of form f(α1, α2, x3) (this application having de-
mand 1), and c = n > 0 (hence each POP step is progressing).

Also, each UNFOLD step is progressing.

✷

Proof: Mostly a straightforward induction in the number of steps
performed by the PEM, using case analysis wrt. 1-4 above. Perhaps the

only interesting point is to assure that each POP step is progressing – so

consider the configuration before a POP step:

[(G,G′1, , , ,)l1(G2, G
′
2, , c, n, i)]

Suppose n = 0. Then by the invariant also c = 0, implying G′2 = G2.

But then G′2 is a redex with demand 1, hence it is possible to do a step

of type 3 – so the PEM will not do a POP step! ✷

Correctness

That partial correctness holds is an instance of theorem 5.1.3; now for
total correctness: from fact 5.2.1 it is easy to see that any execution

sequence of the PEM will be progressing. Hence we can apply theorem
5.1.7 and get

139

Theorem 5.2.2 Suppose G (singlelabeled) is such that there exists an

infinite execution sequence of the PEM starting from SC(G). Then G
loops at level 1 by a normal order strategy. ✷

Speedup issues

Concerning the speedup possible by using the PEM, we can employ the-

orem 5.1.3 where we by fact 5.2.1 have i = 1 or i = 2. We see that we
cannot hope for more than a quadratic speedup. As the PEM amounts

to a top-down implementation of partial evaluation, this is just a restate-
ment of an observation made already in section 4.7.3.

5.2.1 A larger example

We now illustrate the behavior of the PEM by running it on an interpreter

for a small language (called TINY) with syntax

e ::= c | Input | Plus(e, e) | Rec(e) | If(e, e, e)
Here c ranges over integer constants, Input refers to the (sole) input of the

program, If(e1, e2, e3) branches according to whether e1 evaluates to zero,
and Rec(e) calls the program recursively with e as input. As an example,

consider the TINY program Π below which given input n computes n/2

(assuming n is even and positive):

Π = If(Input, 0,Plus(1,Rec(Plus(Input, (−2)))))

We now present an interpreter for TINY with three parameters: the cur-

rent expression, the whole program and the input – it is straightforward
to code this interpreter as a set of level 0 rules (where Int and Branch

both need their first argument).

Int(c,p,d) = c

Int(Input,p,d) = d

Int(Plus(e1,e2),p,d) = Int(e1,p,d) + Int(e2,p,d)

Int(Rec(e),p,d) = Int(p,p,Int(e,p,d))

Int(If(e1,e2,e3),p,d) = Branch((Int(e1,p,d)=0),e2,e3,p,d)

Branch(true,e2,e3,p,d) = Int(e2,p,d)

Branch(false,e2,e3,p,d) = Int(e3,p,d)

140

Now let us see what happens when the PEM is run on the expression
Int(Π,Π, 6), where all arguments except the last to Int and Branch are

to be considered static. Some remarks: we do not generate specialized
versions of + and =; and in the following it is easy to check that we only

reduce redices with demand ≥ 1.
First the PEM does a PUSH in order to look at the expression Int(Π,Π, v).

After doing an UNFOLD we arrive at

Branch((Int(Input,Π, v) = 0), 0,Φ,Π, v)

with Φ denoting the expression Plus(1,Rec(Plus(Input, (−2)))). By one
more UNFOLD step we arrive at Branch(v = 0, 0,Φ,Π, v). We cannot do

further UNFOLD steps, but do a POP step enabling us to store the level 1
rule

1 ⊢∗ : Int(Π,Π, v)⇒N Branch(v = 0, 0,Φ,Π, v) (5.6)

and at the top level we now have the expression Branch(6 = 0, 0,Φ,Π, 6).

By an UNFOLD step we get Branch(false, 0,Φ,Π, 6), and now we do a PUSH

and look at the expression Branch(false, 0,Φ,Π, v). By an UNFOLD step,

we get Int(Φ,Π, v) which by one more UNFOLD step yields

Int(1,Π, v) + Int(Rec(Plus(Input, (−2))),Π, v)

By two UNFOLD steps we arrive at

1 + Int(Π,Π, Int(Plus(Input, (−2)),Π, v))

and by one more UNFOLD step we get

1 + Branch(Int(Input,Π, v1) = 0, 0,Φ,Π, v1)

where v1 = Int(Plus(Input, (−2)),Π, v)

The where abstraction is used in order to reflect that our graph model

does not duplicate arguments. By one UNFOLD step we get

1 + Branch(v1 = 0, 0,Φ,Π, v1)

where v1 = Int(Plus(Input, (−2)),Π, v)

which by one more UNFOLD step rewrites into

1 + Branch(v1 = 0, 0,Φ,Π, v1)

where v1 = Int(Input,Π, v) + Int((−2),Π, v)

141

and by two UNFOLD steps we finally get

1 + Branch(v1 = 0, 0,Φ,Π, v1) where v1 = v + (−2)

We cannot do further UNFOLD steps, but do a POP step enabling us to
store the level 1 rule

1 ⊢∗ : Branch(false, 0,Φ,Π, v)⇒N

1 + Branch(v1 = 0, 0,Φ,Π, v1) where v1 = v + (−2) (5.7)

and we return to the top level with the expression (as v is to be “bound”
to 6)

1 + Branch(v1 = 0, 0,Φ,Π, v1) where v1 = 6 + (−2)

By two UNFOLD steps, we get

1 + Branch(false, 0,Φ,Π, 4)

Fortunately, we can now reuse rule (5.7) and by an UNFOLD step we get

(with v bound to 4)

1 + 1 + Branch(v1 = 0, 0,Φ,Π, v1) where v1 = 4 + (−2)

Still working at top level, we do two UNFOLD steps and arrive at

1 + 1 + Branch(false, 0,Φ,Π, 2)

Again, we can reuse rule (5.7) and by an UNFOLD step get

1 + 1 + 1 + Branch(v1 = 0, 0,Φ,Π, v1) where v1 = 2 + (−2)

which by two UNFOLD steps rewrites into

1 + 1 + 1 + Branch(true, 0,Φ,Π, 0)

Now the PEM performs (even though it does not save any work) a
PUSH step and looks at the configuration Branch(true, 0,Φ,Π, v). By one

UNFOLD step we get Int(0,Π, v) and by one more UNFOLD step we get 0,
enabling us to do a POP step and store the level 1 rule

1 ⊢∗ : Branch(true, 0,Φ,Π, v)⇒N 0 (5.8)

At the same time we return to top level, with the expression 1 + 1 + 1 + 0

which by a few UNFOLD steps rewrites to 3, the “final result”.

142

5.2.2 The PEM versus (bottom-up) partial evalua-

tion

The PEM employs the strategy to “unfold as far as possible” during spe-
cialization. This closely corresponds to the unfolding strategy used by

most modern partial evaluators (eg. SIMILIX [BD91]), where the special-
ization algorithm unfolds until meeting a test which cannot be decided

– such “dynamic tests” will then be the specialization points. Accord-
ingly, in the example from section 5.2.1 the right hand side of the level 1

rules contains the function Branch, but not the function Int (as the latter
represents a static test which can be unfolded).

An advantage of the PEM over bottom-up PE is that it preserves
termination properties (theorem 5.2.2 ctr. the discussion in section 2.1.3).

A disadvantage is that the time used for looking up the appropriate level
1 rule may be prohibitively big – on the other hand, one can do some

optimization: instead of storing the rule (5.7) as it is one should rather
store it as

1 ⊢∗ : Branch1(false, v) ⇒N 1 + Branch1(v1 = 0, v1)

where v1 = v + (−2)

where Branch1(b, v) “denotes” Branch(b, 0,Φ,Π, v). Due to this trick, the

system implemented in [AT89] is not unreasonably inefficient. One might
also devise a clever hash function to enable quick retrieval of rules, similar

to what is done in [Kah92].

5.3 Discussion and related work

An interesting variation of the PEM is to drop the requirement that the

height is ≤ 2 – that is, one is allowed to do a PUSH step or to do an UNFOLD

step using a rule inRi, i ≥ 1 even if the height of the current configuration

is > 1. Then I can grow arbitrarily big, hence an exponential speedup is
possible in principle – in chapter 6 we shall see that there actually exists

a “natural” problem where an exponential speedup can be gained by such
an approach. On the other hand, if the example from section 5.2.1 is run

with this strategy a lot of superfluous rules will be stored, as a rule will be
generated for each subexpression of the program being interpreted (this,

on the other hand, may be useful for “incremental compilation” [AT89]).

143

A system implementing something rather similar to the PEM (with

the above extension, but without ultimate sharing in its full generality)
is described in [AT89]. The correctness proof of the system is conducted

by means of a well-founded ordering, namely the lexicographical ordering
of ℵ3. The first component essentially (i.e. when translated into the

framework presented here) measures the number of steps needed to reduce
an expression at level 1; the second component essentially measures “how

many PUSH steps are left before we start to do something useful” (cf.
our definition of an execution sequence being progressing); and the third

component is the “size” of the expression (the need for this comes from
the use of a structural operational semantics).

As already mentioned in section 3.5, [Kah92] describes a system where

all nodes in the heap are unique. This is a very clean and uniform ap-
proach; our approach – with the explicit distinction between the (cheap)

sharing provided by the graph reduction mechanism itself and the (ex-
pensive) sharing provided by the memoization aspect – is perhaps more

flexible.

144

Chapter 6

Simulating a 2DPDA by Ultimate
Sharing

As promised in section 3.4 and section 5.3, we now present a “realistic”

program which by means of ultimate sharing can be made to run expo-
nentially faster. The program to be considered is a simulator for two-way

deterministic pushdown automata (2DPDA) [AHU74, chap. 9]. It caused
much surprise when [Coo71] showed that it is always possible to simu-

late a 2DPDA in linear time (wrt. the length of the input tape), even if

the automaton carries out an exponential number of steps – in particular
this result gave Donald Knuth inspiration to his fast substring matching

algorithm [KMP77, p. 338]. We shall see that the effect of this clever
simulation can be acquired using the general concept of ultimate sharing.

This chapter is based on joint work with Jesper Träff which has been
reported in [AT92] (but the basic idea dates back to [AT89]). The ex-

position here is substantially different, as we can build upon the general
theory developed in the previous chapters.

We proceed as follows: first we define a 2DPDA, write a (naive) sim-
ulator and give an example of an automaton which runs in exponential

time. Next we define a deterministic version of the ultimate sharing
machine (closely resembling the PEM, with the extensions proposed in

section 5.3). We show that it is “correct” to run this machine on our
simulator, and that we by doing so obtain linear runtime. Finally, we

compare with previous work.

145

6.1 Defining 2DPDAs

A 2DPDA is an automaton operating on a read-only tape and on a “push-

down store” (i.e. a stack where only the top element can be accessed).
The action to be chosen next by the automaton is determined from its

current internal state, the current tape symbol and the top element of the
stack. An action either halts the automaton (and announces “accept” or

“reject”) or consists of three subactions: 1) the internal state is (possibly)
changed; 2) the “tape head” is (possibly) moved one step to the left or

one step to the right1; 3) the stack is either left as it is or the topmost
element is removed or a symbol is pushed upon the stack.

2DPDAs are interesting as they recognize a large class of languages,
encompassing

1. all regular languages – this is immediate since this amounts to the
languages recognized by a DFA, and a DFA is a special case of a

2DPDA;

2. all deterministic context-free languages – also this is immediate

since these are defined as those which can be recognized by a one-
way deterministic push-down automaton, this also being a special

case of a 2DPDA (where only tape moves to the right are allowed).
This class contains [HU79, p. 261] exactly those languages which

can be generated by means of LR(1) grammars, this class in turn

being equal to the class of languages which can be generated by
means of LR(k) grammars.

2DPDAs can even recognize some languages which are not context-free,
e.g. {anbncn|n ≥ 0}. According to [HU79, p. 124], it is not known whether

there exists a context-free language which cannot be recognized by a
2DPDA.

In order to write a simulator for 2DPDAs, we must find a way to code
automata and tapes. Our approach will be to have (conceptually!) a set

of level 0 rules for each 2DPDA and each tape – thus there will be an
infinite number of level 0 rules, cf. page 83. For instance, if the 27’th

tape (assuming some enumeration) is of length 4 and is of form abaa we

1Our development would not be affected if we allowed the head to move an arbitrary number
of steps.

146

shall have the level 0 rules

tape27(0) = †L tape27(1) = a tape27(2) = b
tape27(3) = a tape27(4) = a tape27(5) = †R

where †L (†R) is a special symbol denoting the left end (right end) of a
tape.

In a similar way we can code automata: suppose e.g. that the 17’th
automation in state σ upon reading b on the tape and reading ω on top

of the stack performs the action: push a ω1, move 1 step to the left and
enter state σ1. Then there will be a level 0 rule

aut17(ω, σ, b) = ((PUSH ω1), σ1,−1)

The symbol PUSH should not be confused with the symbol PUSH: the for-
mer denotes that the stack of the 2DPDA is pushed; the latter that the

stack of the USM is pushed. We also have symbols POP and LEAVE,
denoting that the stack is popped/left unchanged; and have symbols

ACCEPT and REJECT with the obvious meaning. Finally, there will
be a distinguished state symbol σ0 and a distinguished stack symbol Z0:

the former denotes the “initial state”; the latter denotes the “bottom of
the stack”.

To avoid runtime errors, we must make two requirements:

1. We do not have level 0 rules of form auti(, , †L) = (, ,−1) (in
order to stay within the tape). Similarly for †R.

2. We do not have level 0 rules of form auti(Z0, ,) = (POP, ,) (in

order not to pop an empty stack).

We are now in position to present the simulator sim which easily can be
coded up as level 0 rules (sim needs its third argument and branch needs

its first argument):

sim(aut,tape,(stacktop::stackrest),state,pos) =

branch(aut(stacktop,state,tape(pos)),aut,tape,stacktop,stackrest,pos)

branch(((PUSH newtop),newstate,move),aut,tape,stacktop,stackrest,pos) =

sim(aut,tape,(newtop :: (stacktop :: stackrest)),newstate,pos+move)

branch((POP,newstate,move),aut,tape,stacktop,stackrest,pos) =
sim(aut,tape,stackrest,newstate,pos+move)

branch((LEAVE,newstate,move),aut,tape,stacktop,stackrest,pos) =

147

sim(aut,tape,(stacktop :: stackrest),newstate,pos+move)

branch(ACCEPT,aut,tape,stacktop,stackrest,pos) = ACCEPT

branch(REJECT,aut,tape,stacktop,stackrest,pos) = REJECT

To simulate the actions of 2DPDA α when run on tape τ , proceed as

follows: find i and j such that α is represented by the function auti, τ is
represented by the function tapej. Then evaluate the expression

sim(auti, tapej, [Z0], σ0, 1) (6.1)

It is immediate that the simulator is correct in the following sense: with G

of form (6.1) there exists a G′ in normal form such that 1 ⊢∗ : G⇒c
Nc G

′

iff α terminates when run on τ (and G′ then “codes the result”). This

c will be denoted T (α, τ) and equals 4k, where k is the number of steps
performed by α when run on τ .

6.2 Complexity of the simulator

For a tape τ , |τ | denotes the length of the tape (†L and †R included); for

a 2DPDA α, |α| denotes the number of state symbols times the number
of stack symbols.

sim has (at least) exponential (worst-case) complexity, as expressed
in

Fact 6.2.1 There exists a 2DPDA αexp with the following property: it
terminates on all input tapes, but for all N there exists a n ≥ N and a τ

with |τ | = n, such that T (αexp, τ) ≥ 2n. ✷

(We shall now exhibit such an automaton; note that this automaton is

the “natural” way to encode an “interesting” general problem and thus
cannot be considered “contrived”. . .)

Proof: Much as in [ANTJ89] we come up with a parametrized con-
struction: for each DFA (with transition function δ) using the binary

alphabet {0, 1}, a 2DPDA is constructed which given input tape of form

†L
n

︷ ︸︸ ︷

a . . . a †R
decides whether there exists a string of n binary digits which are accepted

by the DFA. The idea is to first test whether the DFA accepts 00 . . . 00,

148

then test whether the DFA accepts 00 . . . 01, then test whether the DFA
accepts 00 . . . 10, etc.

For ease of exposition assume that a 2DPDA in one step is able to
make two PUSH actions, and also assume that it is possible in one step

first to do a POP action, then test on the resulting stack top and after-
wards perform yet a POP action possibly followed by some PUSH actions

– it is straightforward how to eliminate this “syntactic sugar”.
The 2DPDA has two states: pushzero, which takes the role as the

initial state σ0, and next. The automaton will be designed in such a way
that the following invariant holds:

Suppose the number of a’s to the left of the tape head is i
(0 ≤ i ≤ n, but the tape head never points at †L). Then the

stack is of form (it grows to the right)

s0d1s1 . . . sj−1djsj . . . disi (6.2)

where each sj is a state of the DFA and s0 is the initial state,
where each dj is a bit (i.e. belongs to {0, 1}) and where for all

j ∈ {1 . . . i} we have δ(sj−1, dj) = sj. Wlog. we can assume

that s0 does not occur in the range of δ – then we can safely
identify s0 with Z0, causing (6.2) to hold initially.

Concerning “which bit strings have been tested for accep-
tance”, we have

• When in state pushzero, the next string of length n to

test for acceptance (wrt. the DFA) is d1 . . . di 0 . . . 0 –
all binary strings (of length n) strictly less than (wrt.

the standard ordering) that string have already been re-
jected.

• When in state next, all binary strings (of length n) less
than or equal d1 . . . di 1 . . . 1 have already been rejected.

Next for the full definition of the 2DPDA:

• When in state pushzero, the next action of the 2DPDA is found

according to the priority list below:

1. Suppose the current tape symbol is †R and the current stack
symbol is an accepting state of the DFA. Then return ACCEPT

(the invariant tells us that i = n, and that d1 . . . di is an ac-
cepting string).

149

2. Suppose the current tape symbol is †R and the current stack
symbol is not an accepting state of the DFA. Then transfer

control to state next (the invariant tells us that i = n and
that all strings strictly less than d1 . . . di have been rejected;

as the DFA does not accept d1 . . . di the invariant for next

follows).

3. Let the current stack symbol be s (from the invariant we know
that s is a state of the DFA), and let s′ = δ(s, 0). Then push

a 0 followed by s′ on the stack, move the tape head one to the

right, and reenter state pushzero.

• When in state next, the next action of the 2DPDA is found accord-
ing to the priority list below:

1. Suppose the current stack symbol is Z0 (i.e. s0). Then return

REJECT (according to the invariant all binary strings of length
n less than or equal 1 . . . 1 have been rejected).

2. Suppose the top of the stack is of form 1 s. Then pop these
two symbols, move the tape head one to the left, and reenter

state next.

3. Suppose the top of the stack is of form 0 s. Then pop these two
symbols, push a 1 followed by δ(s, 1), and enter state pushzero

(that the invariant is preserved follows from the fact than being
less than or equal d1 . . . di−1 0 1 . . . 1 amounts to being strictly

less than d1 . . . di−1 1 0 . . . 0).

If one e.g. considers the DFA which tests whether the input contains an
odd number of 1’s and an odd number of 0’s, the 2DPDA derived by the

procedure above can be used as the αexp desired: given N , choose an
odd n such that n ≥ N , n ≥ 2. Now consider a tape τ with |τ | = n – as it

contains n− 2 symbols different from †L and †R, αexp run on such tape
will test whether any string of length n− 2 is accepted by the DFA. But

as n − 2 is odd, the DFA will reject all such strings. Hence the 2DPDA

enters state pushzero at least once for each bit string of length n − 2,
that is the automaton performs at least 2n−2 steps. Hence we infer that

T (αexp, τ) ≥ 4 · 2n−2 = 2n

as desired (when the syntactic sugar is eliminated, this inequality will of
course still hold!) ✷

150

6.3 Speedup possible by using a USM

Given a deterministic instance of the USM.

Let G = sim(auti, tapej, [Z0], σ0, 1), where auti codes automaton α and
tapej codes automaton τ . Assume there is a transition sequence from

SC(G) to a terminal configuration. The CC thus defined (cf. chapter 5)
is termed CC(α, τ). On the other hand, if there is an infinite transition

sequence from SC(G) (or the machine gets “stuck”) we write CC(α, τ) =
∞.

Suppose I is bounded by i0 (if for instance the PEM is used i0 = 2).
According to theorem 5.1.3, then at most a polynomial speedup can be

achieved2. Combining with fact 6.2.1, we have

Fact 6.3.1 Consider a deterministic instance of the USM where I ≤ i0,
i0 a constant. Then there exists a 2DPDA αexp, which terminates on all

tapes, with the following property: for all N there exists a n ≥ N and a
τ with |τ | = n, such that

CC(αexp, τ) ≥ i0
i0
√

2n = i0 · 2n/i0

✷

On the other hand, in the next section we shall show what amounts to

“Cook’s theorem”:

Theorem 6.3.2 There exists a deterministic instance of the USM and a

constant c with the following property: for all automata α and all tapes
τ , CC(α, τ) �=∞ iff α terminates when run on τ , in which case

CC(α, τ) ≤ c|α||τ |
✷

In particular, there exists a constant c′ (= c · |αexp|) such that for all

tapes τ we have

CC(αexp, τ) ≤ c′|τ |
By comparing with fact 6.3.1 we conclude that the machine claimed to

exist in theorem 6.3.2 can have no bound on I.
2[AT92, p. 355] makes the unjustified claim that only a constant speedup is possible in such

cases.

151

6.4 A USM implementing Cook’s construc-
tion

In this section we will prove theorem 6.3.2 by exhibiting a machine, to

be called a 2DM, with the desired properties. First some preliminary

definitions:

• An expression of form sim(α, τ, s, σ, π) with s a variable (and α, τ , σ

and π constants) and with demand 1 is said to be of type STACK-0

(we know nothing about the stack).

• An expression of form sim(α, τ, (ω1::s), σ, π) with s a variable and
with demand 1 is said to be of type STACK-1 (we know the topmost

element of the stack).

• An expression of form sim(α, τ, (ω1::(ω2::s)), σ, π) with s a variable

and with demand 1 is said to be of type STACK-2 (we know the two
topmost elements of the stack).

• An expression of form sim(α, τ, [Z0], σ0, 1) with demand 2 is said
to be of type INIT (cf. (6.1)).

• An expression of form sim(α, τ, [], σ0, 1) with demand 2 is said to
be of type STACK-EMPTY.

• An expression of form ACCEPT or REJECT is said to be of type
FINAL.

Defining the 2DM

Let the initial configuration be of form SC(G), with G of type INIT. The

first step of the 2DM will be a PUSH step, where an expression of type
STACK-1 is pushed (clearly there will be a unique such expression, namely

sim(α, τ, (Z0::s), σ0, 1)). The further actions are found according to the
priority list below, where we let the current configuration be of form

[(G1, G
′
1, , c1, n1,) . . . (Gk, G

′
k, , ck, nk,)] (6.3)

1. if G′k is of form STACK-2 or of form STACK-1 and ck > 0 and an

UNFOLD step using a rule at level i ≥ 1 is possible, then do this
UNFOLD step;

152

2. if G′k is of form STACK-2 or of form STACK-1 and ck > 0 then do

a PUSH step, pushing an expression of type STACK-1. Clearly such
an expression will be uniquely defined, if e.g.

G′k = sim(α, τ, (ω1::(ω2::s)), σ, π)

then we push sim(α, τ, (ω1::s’), σ, π);

3. if it is possible to perform an UNFOLD step, using a level 0 rule, then
do it;

4. if k > 1, then perform a POP step;

5. otherwise halt.

Pushing expressions of type STACK-1 captures Cook’s original insight:
from knowing the top of the stack one can do a substantial amount of

computation, even though the rest of the stack is unknown. The reason
for demanding ck > 0 is that otherwise an infinite sequence of PUSH steps

would be possible.

An invariant of the 2DM

Some preparations are needed for showing that the 2DM satisfies theorem
6.3.2:

Observation 6.4.1 Let the 2DM be in a configuration of form (6.3).
Suppose G′k is of type STACK-1, and suppose ck = nk = 0. Then, after

four steps of the 2DM, it will be in a configuration which is similar, except
from the fact that now ck = nk = 4, and G′k is either of type STACK-2,

of type STACK-1, of type STACK-0 or of type FINAL. ✷

Proof: Since ck = 0, neither 1 nor 2 are applicable but 3 is. The 2DM

thus performs an UNFOLD step using a level 0 rule, and afterwards G′k will
be of form

branch(α(ω1, σ, τ(π)), α, τ, ω1, s, π)

Next reduce the redex τ(π); then reduce the redex α(. . .) and finally

reduce the redex branch(. . .) – all of those redices have demand 1. ✷

Conceptually, we will consider the four steps mentioned in observation

6.4.1 as one single step. By doing so, we are able to formulate

153

Lemma 6.4.2 After the first step, the 2DM obeys the following invariant
(let the current configuration be of form (6.3)):

1. For j ∈ {2 . . . k}, Gj is of type STACK-1.

2. For j ∈ {2 . . . k − 1}, nj > 0.

3. For j ∈ {2 . . . k − 1}, either G′j is of type STACK-2 and cj = 4 or
G′j is of type STACK-1 and 4 ≤ cj ≤ 5.

4. If (: G⇒c
Nn G′) ∈ Ri, i ≥ 1, then G is of type STACK-1, G′ is of

type STACK-0 or of type FINAL, n > 0 and 4 ≤ c ≤ 6.

5. If k > 1, then either

• G′k = Gk, ck = nk = 0 or

• G′k is of type STACK-2, ck = 4, nk > 0 or

• G′k is of type STACK-1, 4 ≤ ck ≤ 5, nk > 0 or

• G′k is of type STACK-0, 4 ≤ ck ≤ 6, nk > 0 or

• G′k is of type FINAL, 4 ≤ ck ≤ 6, nk > 0.

6. G1 is of type INIT, and either k ≥ 2 and G′1 = G1 and c1 = n1 = 0

or k = 1 and c1 = 1, n1 > 0 and G′1 is of type FINAL or of type
STACK-EMPTY.

✷

Proof: It is immediate that the invariant holds after the first step of

the 2DM; let us now check that part 1-6 is preserved by any subsequent
step of the 2DM:

1. Suppose an UNFOLD step is performed, using a rule in Ri with i ≥ 1.
The only interesting point is to check that part 5 still holds. As 5

holds before the step, we from ck > 0 can infer that nk > 0 and that

either G′k is of type STACK-2 with ck = 4 or G′k is of type STACK-1

with 4 ≤ ck ≤ 5. Due to the form of the rules3 (part 4), after the

step it in the former case holds that G′k is of type STACK-1 or of
type FINAL with ck = 5; and in the latter case it holds that G′k is

of type STACK-0 or of type FINAL with 5 ≤ ck ≤ 6.

3If there for instance is a rule, representing a reduction from sim(α, τ, (ω::s), σ, π)
to sim(α, τ, s, σ1, π1), then this rule can be used to generate a reduction from
sim(α, τ, (ω::(ω1::s)), σ, π) to sim(α, τ, (ω1::s), σ1, π1).

154

2. Suppose a PUSH step is performed. Since part 5 holds before the
step, we from ck > 0 can infer that nk > 0 and that either G′k is of

type STACK-2, ck = 4 or G′k is of type STACK-1, 4 ≤ ck ≤ 5. Now
it is easy to see that the invariant is preserved.

3. Suppose a (sequence of, cf. observation 6.4.1) UNFOLD step is made,

using level 0 rules. The only interesting point is to check that part
5 still holds. G′k cannot be of type FINAL or of type STACK-0, as

such expressions cannot be reduced further. Neither can G′k be of
type STACK-2 or STACK-1 with ck > 0, as then an UNFOLD step

using a rule at a level ≥ 1 or a PUSH step would have been made.
As part 5 holds before the step, we hence infer that G′k = Gk and

ck = nk = 0. From part 1 we see that G′k is of type STACK-1; now

observation 6.4.1 gives the claim.

4. Suppose a POP step is made. Since part 5 holds before the step,
and no other steps were possible, we conclude that nk > 0, 4 ≤
ck ≤ 6 and that G′k is of type STACK-0 or of type FINAL. It is now
immediate that part 1-4 still hold. If k > 2 before the step we must

show that part 5 still holds – this is done by observing that if k > 2
then by part 3 either G′k−1 is of type STACK-2 with ck−1 = 4 or

G′k−1 is of type STACK-1 with 4 ≤ ck−1 ≤ 5.

Finally, if k = 2 before the step we must show that part 6 still holds.
But this is obvious: if G′2 is of type FINAL also G′1 will become of

type FINAL; and if G′2 is of type STACK-0 G′1 (as G1 is of type INIT)
will become of type STACK-EMPTY.

✷

Partial correctness

Now we can prove that the 2DM is partially correct:

Theorem 6.4.3 Let G = sim(α, τ, [Z0], σ0, 1). Suppose the 2DM makes
the transition sequence

SC(G) >∗ [(G,G′, , c, n, i)]

and then halts. Then G′ is of type FINAL, and the automaton α run on
the tape τ returns the answer indicated by G′. ✷

155

Proof: According to lemma 6.4.2 part 6, G′ is of type FINAL or of type

STACK-EMPTY. Theorem 5.1.3 now says (still with our implicit coding
terms/graphs) that 1 ⊢∗ : G⇒N G′. But due to requirement 2 on page

147, we infer that G′ cannot be of type STACK-EMPTY. This concludes
the proof. ✷

Total correctness

Also total correctness holds:

Theorem 6.4.4 Let G = sim(α, τ, [Z0], σ0, 1), and suppose the 2DM

when started in configuration SC(G) loops. Then the automaton α loops
when run on tape τ . ✷

Proof: We want to apply theorem 5.1.7; to do so we have to show that
any execution sequence of the 2DM is progressing. But this follows from

lemma 6.4.2: by part 4 all POP steps are progressing and all UNFOLD steps
using rules at level ≥ 1 are progressing, and it is easy to see that also all

UNFOLD steps using level 0 rules are progressing. And by the precondi-
tions for a PUSH step, there cannot be an infinite sequence of such steps. ✷

Complexity of the 2DM

Suppose the 2DM terminates. Then, by lemma 6.4.2 part 6, we have

CC = 1 + T T i, i = I − 1

Let N be the total number of rules at level ≥ 1. By fact 5.1.1, N ≥ I−1.
Also N ≥ 1, as the 2DM starts by doing a PUSH step. Exploiting lemma

6.4.2 part 4, which states that the maximum cost of a rule is 6, we infer
that

CC ≤ 1 + I − 1 + 6N ≤ N + N + 6N ≤ 8N (6.4)

Let us put some bound on N : suppose (: G1 ⇒c1
Nn1

G′1) ∈ Ri1 and

(: G2 ⇒c2
Nn2

G′2) ∈ Ri2, i1, i2 ≥ 1. By lemma 6.4.2 part 4, G1 and G2

both are of type STACK-1, ie. they are of form

G1 = sim(α, τ, (ω1::s), σ1, π1), G2 = sim(α, τ, (ω2::s), σ2, π2)

156

(it is easy to see that the α’s and τ ’s are identical). We want to show

that there is at most one rule for each triple (ω, σ, π): assume for the
sake of getting a contradiction that an expression sim(α, τ, (ω::s), σ, π) is

pushed twice. Since a PUSH step is not performed if a corresponding rule
already exists, the second push is done before the stack of the 2DM has

returned to the height it had when performing the first push. But then
it it easy to see that the 2DM will loop.

As there by definition of |α| and |τ | exist |α|·|τ | triples of form (ω, σ, π),
we by (6.4) conclude that

CC ≤ 8|α||τ |
The above, together with theorem 6.4.3 and theorem 6.4.4, constitutes

a proof of theorem 6.3.2 (with c = 8).

Further remarks

• Unlike many other applications of an ultimate sharing machine,
CC in this case certainly is a “realistic” cost measure: the 2DM is

completely deterministic; the rules can be conveniently stored in a
three-dimensional array such that they can be retrieved in constant

time; and the “size” of the rules is bounded – cf. the “pseudo-
speedup” encountered in the Towers of Hanoi example from section

4.7.4.

• From the above we see that the halting problem is solvable for

2DPDAs: if the 2DM does not stop4 before CC exceeds 8|α||τ |, we
(from theorem 6.3.2 where we know c = 8 can be used) can deduce

that α loops on τ .

Another way to detect loops would be to keep track of whether the

2DM twice performs a PUSH step pushing the same expression.

6.5 Previous work

The original technique for linear time simulation of a 2DPDA, used in

[Coo71] and restated as [AHU74, algorithm 9.4], is a bottom-up approach
(cf. page 20). We will now hint at how to translate this method into our

4As no infinite sequence of PUSH steps is possible, fact 5.1.2 tells us that the 2DM loops iff
CC can become arbitrarily big.

157

framework: given an expression e of type STACK-1, the terminator of e
is the unique (but possibly non-existent) expression e′ of type STACK-1

such that there is a level 1 transition from e to e′, and such that e′ in one
step reduces to an expression of type STACK-0 or of type FINAL.

The purpose of the algorithm is to build up the level i rules, each rule
associating an expression with its terminator – initially, R1 will contain

those e which are their own terminators, i.e. those e which in one step
reduce to an expression of type STACK-0 or of type FINAL. The set

of rules is now extended during the main loop, where one for instance
exploits that if e in one step reduces to e′, and the terminator of e′ is

e′′, then also e has e′′ as terminator. When all (existing) terminators
have been computed, the “answer” of the simulation can be looked up

immediately.

The above algorithm typically generates a lot of rules which are never
needed for computing the final answer, cf. the discussion page 20. Moti-

vated by this observation [Jon77] presents what amounts to a top-down
version of the algorithm, which gives rise to essentially the same “flow-

of-control” as the 2DM.
In [Wat80] it is shown how something similar to [AHU74, algorithm

9.4] can be derived by means of general tabulation techniques.
Even though Cook’s insight gives a linear time algorithm for many

problems where such an algorithm is not in any way obvious, the con-
stant factor may be prohibitively large. [ANTJ89] aims at decreasing this

constant factor by partially evaluating a modified version of the top-down
simulator from [Jon77] wrt. known automata.

158

Chapter 7

Deriving efficient substring
matchers by partial evaluation

In this chapter we show that the well-known Knuth-Morris-Pratt (KMP)

and Boyer-Moore (BM) algorithms for substring matching can be seen as
instances of a common substring matching algorithm, parametrized wrt.

search strategy. The purpose of this is twofold:

1. to formalize the intuition that KMP and BM are “dual”;

2. to show how – by a sequence of small steps, none of which requires
much ingenuity – it is possible to (re)invent ingenious constructions,

thus making us learn something about how to devise efficient algo-

rithms. One may argue that this is of limited practical use, as it
seems unlikely that one by means of general constructions can come

up with something undiscovered by the advanced art of algorith-
mics – on the other hand, recall from p. 145 that Knuth actually got

the inspiration to the KMP algorithm from Cook’s general 2DPDA
simulation algorithm.

7.1 Introduction

Substring matching (in our formulation) amounts to determining the po-
sition of the first occurrence of a string p (called the pattern string) in

another string s (called the subject string). Wlog. we can assume that
p occurs in s (e.g. by appending p to the end of s). We refer to p and

s as arrays, so e.g. p[i] (i ∈ {0 . . . |p| − 1}) denotes the i’th element of p
(this is termed a reference to p). A naive algorithm to solve the problem

159

is given below1:

subs0(p,s) = loop(p,0,s,0)

loop(p,i,s,j) = j, if i = | p |
loop(p,i,s,j) = loop(p,i+1,s,j), if p[i] = s[j+i]

loop(p,i,s,j) = loop(p,0,s,j+1), if p[i] �= s[j+i]

The worst case complexity of this algorithm is Θ(|p| · |s|) (to see this, let
e.g. s as well as p consist of a’s only except for the last element).

Rather than using the above one-stage algorithm, we shall be inter-
ested in two-stage algorithms2. That is, given p and s

1. (the preprocessing phase:) a program Mp is constructed such that

Mp run on (any) s gives the same result as subs0 run on p and s
(but is hopefully quicker!)

2. Mp is run on s.

We will demand that Mp makes no references to p; the complexity of Mp

will be measured as the number of references to s.
There are several ways to come up with such Mp:

• to use the KMP method (with some abuse of notation we identify

the KMP algorithm with the behavior of Mp thus obtained);

• to use (some variant of) the BM method (we identify the BM algo-
rithm with the behavior of Mp thus obtained);

• to apply the technique of partial evaluation to (a modified version

of) subs0.

In the rest of this chapter, we proceed as follows: in section 7.2 we sketch

how the KMP method works and in section 7.3 we sketch how the BM

method(s) work, by means of examples. In section 7.4 we rewrite subs0
into a program subs2, parametrized wrt. search strategy. In section 7.5

we discuss various kinds of search strategies; by means of examples we will
show that by doing PE on subs2 wrt. certain “natural” search strategies

(and wrt. fixed p) one achieves target programs implementing the KMP
algorithm/BM algorithms. Finally, section 7.6 compares with related

work.
Some remarks concerning our treatment:

1It is easy to see how it can be coded as level 0 rules.
2For a survey of pattern matching algorithms, see [Aho90].

160

• we will not formally prove that the target programs indeed im-
plement the KMP/BM algorithms, as this would require a rather

heavy machinery;

• no attention will be paid to the complexity of the preprocessing

phase;

• as it is a rather common exercise to achieve the KMP algorithm by

PE (see e.g. [Smi91] for a survey), we primarily focus upon the BM
algorithm.

7.2 The KMP method

This is the method described in [KMP77]. As made explicit in [AHU74,

Algorithm 9.3], it amounts to constructing from p a DFA which given s as
input enters its accepting state exactly at the end of the first occurrence

of p in s. Thus at most |s| references to s are made.
The DFA has a state for each position in p; the behavior is best clar-

ified by an example: let p =aabaaa, then there will exist states S0 . . . S6

with S0 the initial state and S6 the accepting state. The interpretation

of the DFA being in state S6 is that the previous 6 symbols of s have
been aabaaa, the interpretation of the DFA being in state S5 is that the

previous 5 symbols of s have been aabaa,. . . , the interpretation of the
DFA being in state S3 is that the previous 3 symbols of s have been aab,

. . . , the interpretation of the DFA being in state S1 is that the previous
symbol has been a (and the preceding symbols have been such that the

criteria for being in a higher state are not satisfied); and the interpreta-
tion of the DFA being in state S0 is that the criteria for being in a higher

state are not satisfied.
Let us now discuss the behavior of the DFA when in state S5 (thus

the last 5 symbols are aabaa):

• If the next symbol is an a, the accepting state S6 can be entered.

• If the next symbol is a b, the situation is now that the previous 6

symbols have been aabaab. Thus we are not allowed to enter S6,
S5 or S4; but S3 can be entered.

• If the next symbol is neither a nor b, none of the S1 . . . S6 fit –
hence S0 is entered.

161

7.3 The BM methods

Originally devised by Boyer and Moore [BM77], numerous variants have

emerged – some of which are described in e.g. [KMP77] and [PS88]. The
basic idea is to do the matching backwards wrt. p: with p = tree (which

will be our working example), the initial configuration will be

...x.........

^

TREE

If x is an e, we move the pointer one to the left and attempt to match
the first e of tree, etc. The various algorithms differ in the way they

treat mismatches; the original approach [BM77] is to maintain two tables,
δ1 and δ2. δ1 has an entry for each symbol in the alphabet (the size of

which will be denoted Σ) which contains the rightmost occurrence (if
any) of the symbol in p. δ2 has an entry for each position in p containing

information about the rightmost occurrence of the corresponding suffix3

(if any) elsewhere in p (δ2 is thus roughly of size |p|).
We shall consider the following 4 variants of the BM method, ordered

after increasing degree of sophistication (the naming used is in no way

conventional):

1. The naive Boyer-Moore, to be called BMna. This is a simplification

of the one given in [BM77], exploiting δ1 only.

2. The original Boyer-Moore, to be called BMor. This is the one

presented in

[BM77], i.e. δ1 as well as δ2 is exploited.

3. The standard Boyer-Moore, to be called BMst. This is the algo-

rithm hinted at
[BM77, p. 771, below] and the one derived in [PS88]; it works by

“combining” δ1 and δ2 into a single two-dimensional table.

4. The optimal Boyer-Moore, to be called BMop. This is the algorithm

suggested by Knuth
[p. 346][KMP77]; here no information is discarded (hence a larger

data structure than δ1/δ2 is needed).

3Moreover, this occurrence must be preceded by a different symbol.

162

We will illustrate the behavior of these algorithms by giving examples
where one algorithm behaves in a suboptimal fashion, whereas the “next

one” in the ordering behaves optimally.

7.3.1 BMna vs. BMor

Let the situation be

.TEE...

^

TREE

i.e. the two e’s have been found to match, but then a mismatch is de-
tected. As the symbol currently scanned in the subject string is a t,

and as δ1 records that t occurs in position 0 in p (but not elsewhere),
BMna will shift the pattern string one position to the right yielding the

configuration

.TEE...

^

TREE

However, the fact that the symbols to the right of the mismatch in the

subject string are known to be ee actually justifies shifting the pattern
string four positions to the right, as done by BMor.

7.3.2 BMor vs. BMst

Let the situation be

..TE..

^

TREE

i.e. the last e has been successfully matched.

1. From δ1 we can infer that it is sound to shift the pattern string two

to the right, as t (the symbol scanned in the subject string) occurs
in position 0 in p (but not elsewhere).

2. From δ2, which only exploits that the next symbol in the subject
string is an e and the current symbol is not an e (but does not

exploit that the current symbol is a t), we can infer nothing more
than it is sound to shift the pattern string one to the right.

163

Hence BMor will move the pattern string max(2, 1) = 2 positions to the

right. This is very conservative, since from knowing that the symbol
scanned is a t and the symbol to its right is an e it is possible to shift

the pattern string four positions to the right, as done by BMst.

7.3.3 BMst vs. BMop

Let the situation be

MOORRE....

^

TREE

By exploiting δ1 (alone) we can shift the pattern string two to the right,
and after e has been successfully matched the situation is

MOORRE....

^

TREE

Now BMst is able to move the pattern string one to the right only, since
it knows that then r and the first e will match. BMop does better than

that, since it remembers that the fourth symbol of the subject string is
an r – hence it is possible to shift the pattern string four to the right.

[BM77, p. 764] illustrates the behavior of BMor by means of an ex-

ample, the pattern string being at-that and the subject string s being

WHICH-FINALLY-HALTS.--AT-THAT-POINT

BMor on that example makes 14 references to s. It will be a useful

exercise to verify that BMop makes 11 references only, BMst makes 12
and BMna 16.

7.3.4 Discussion

Several remarks can be made about the merits of the various Boyer-Moore

algorithms:

• It will not always be the case that a “more powerful” method is
faster, since it may be useful to make a small shift initially in order

to make larger shifts later on. As an example of this, consider (as
in [KMP77, p. 343]) the following situation:

164

ABABABABABABABABABABABA...

^

AAAAAAACB

δ1 enables a double shift, whereas δ2 enables a single shift only.

However, after this single shift the situation will soon be

ABABABABABABABABABABABA...

^

AAAAAAACB

and now δ2 enables a maximal shift.

• In [KMP77, p. 343] it is shown that BMor makes at most 6|s| ref-

erences to s (the constant 6 probably being much too large). The

linearity is solely [BM77, p. 767] due to the use4 of δ2. If only δ1

is used (i.e. BMna is considered), Θ(|p||s|) references to s may be

made (if e.g. p is of form abbbbbb. . . and a large initial segment of
s contains b’s only). However, BMna will suffice for most practical

purposes, especially if the alphabet is large.

• In [BM77] a theoretical analysis of BMor is given, and the theo-
retical performance is compared with the actual performance. For

large alphabets the theoretical analysis is completely accurate, but
for the binary alphabet actual performance is significantly worse

than the one predicted by the theoretical model. As explained by
the authors [BM77, p. 770], this is because the model does not ac-

count for the fact that some matches are guaranteed to occur. For
instance, when we from the configuration

......BAA...

^

AAABAAAAA

shift the pattern string three to the right the possibility that a
mismatch occurs in position 3,4 or 5 is zero – as aaabaaaaa has

been aligned in such a way that its substring baa matches the
subject string – whereas it in the simplified theoretical model is

4As pointed out in [BM77, p. 771] it is necessary in order to get linearity that δ2 also records
the preceding symbol, cf. footnote 3.

165

non-zero. For small alphabets, the length of such aligned substrings
can be considerable.

• BMst is typically only slightly faster than BMor, but uses somewhat
more space: for each position in the pattern string, a table with

potentially Σ entries has to be created. However, in practice the
space required will be O(|p|), since only a few of these entries will

differ from the default action, allowing a compact representation of
the tables.

• The merits of BMop (versus BMst) are briefly discussed in [KMP77,
p. 346]. It is trivial that BMop makes at most |s| references to

s (it never looks at the same position twice, as no information is
forgotten). However, only for small alphabets we may expect BMop

to be significantly faster than BMst. On the other hand, as the
alphabet grows smaller the table of BMop may grow really large,

even though it is doubtful whether 2|p| really is the tightest upper

bound (for a further discussion of this issue, see [Cho90]). If the
alphabet is large, we may expect BMop to use space O(|p|2).

7.4 Rewriting subs0

We now rewrite the naive substring matcher subs0 from section 7.1 into
a substring matcher subs1 which exploits previously gained information

and further into a substring matcher subs2 which is parametrized wrt.
search strategy. We hope the reader will agree that the development is

quite “natural” and does not require much ingenuity.

Making previously gained information explicit

The reason why subs0 is potentially inefficient is that the same element
of s may be referenced several times, since the content is “forgotten”

immediately after. To repair on this we introduce the notion of an infor-
mation array, the elements of which are either of form Pos-info(x) (with

x belonging to the alphabet); of form Neg-info(X) (with X being a subset
of the alphabet) or of form No-info.

We say that an information array inf is sound wrt. s and j if it for all
i in the domain of inf holds that

166

• if inf[i] = Pos-info(x), then s[j + i] = x;

• if inf[i] = Neg-info(X), then s[j + i] �∈ X.

If e.g. inf[0] = Pos-info(a), inf[1] = No-info and inf[2] = Neg-info({a,b}),
we shall write inf = [a, ∅, {a,b}].

We next introduce some operations on information arrays:

• Empty(k) returns an information array of size k (indexed from 0 to
k − 1), where all elements are No-info.

• Shift(inf), inf having size k, returns an information array inf’ of
size k where inf’[i] = inf[i + 1] for i < k − 1, inf’[k − 1] = No-info.

Hence, if inf is sound wrt. s and j then Shift(inf) is sound wrt. s
and j + 1.

• The predicate Certain?(inf, i, x) returns true iff inf[i] = Pos-info(x).
Thus, if Certain?(inf, i, x) holds and inf is sound wrt. s and j we can

infer that s[j + i] = x.

• The predicate Impossible?(inf, i, x) returns true iff either inf[i] =

Pos-info(x′), x �= x′ or inf[i] = Neg-info(X), x ∈ X. Thus, if
Impossible?(inf, i, x) holds and inf is sound wrt. s and j we can

infer that s[j + i] �= x.

• Addpos(inf, i, x) returns inf’, where inf’[i′] = inf[i′] for i′ �= i, and

where inf’[i] = Pos-info(x).

• Addneg(inf, i, x) returns inf’, where inf’[i′] = inf[i′] for i′ �= i, and

where inf’[i] = Neg-info({x}) if inf[i] = No-info; inf’[i] = Neg-info(x∪
X) if inf[i] = Neg-info(X).

We are now in position to rewrite subs0 into subs1 – it should be straight-

forward to verify that subs1 is “correct”, in particular that inf always is
sound wrt. s and j:

subs1(p,s) = loop(p,0,s,0,Empty(| p |))
loop(p,i,s,j,inf) = j, if i = | p |
loop(p,i,s,j,inf) = loop(p,i+1,s,j,inf), if Certain?(inf,i,p[i])

loop(p,i,s,j,inf) = loop(p,0,s,j+1,Shift(inf)), if Impossible?(inf,i,p[i])

loop(p,i,s,j,inf) = loop(p,i+1,s,j,Addpos(inf,i,p[i])), if p[i] = s[j+i]

loop(p,i,s,j,inf) = loop(p,0,s,j+1,Shift(Addneg(inf,i,p[i]))), if p[i] �= s[j+i]

167

Of course, subs1 is no more efficient than subs0 – but the point is that
the operations Certain? and Impossible? can be carried out at PE time.

Generalizing the search strategy

For each value of j in the program above, the variable i sequentially as-

sumes the value 0, 1, 2, . . . until either a mismatch is detected or until the
value |p| is reached. Alternative search strategies might be useful; there-

fore we now introduce an extra parameter stra representing the search
strategy in question. Given an information array inf of size k, stra must

return a sequence where each element either is an integer belonging to
the interval {0 . . . k − 1} or is a special element FORGET. Of course, we

must require each i ∈ {0 . . . k− 1} to occur at least once in the sequence.

Some noteworthy points (to be explained further in section 7.5.1 and in
section 7.5.5):

• The search strategy depends on the current information array. In-

tuitively, it will be useful to search the “known” elements first as
these tests may be eliminated at PE time.

• The element FORGET tells us to forget the current information.
This may be useful in order to prevent the information array from

growing too large. . .

• An element of {0 . . . k−1}may occur more than once in the sequence

– this may seem stupid, but correctness is of course not affected.

Now it is straight-forward to write subs2:

subs2(p,s,stra) = loop(p,stra(initinf),s,0,initinf,stra)
where initinf = Empty(| p |)

loop(p,[],s,j,inf,stra) = j

loop(p,[FORGET|iseq],s,j,inf,stra) = loop(p,iseq,s,j,Empty(| p |),stra)
loop(p,[i|iseq],s,j,inf,stra) = loop(p,iseq,s,j,inf,stra),

if Certain?(inf,i,p[i])

loop(p,[i|],s,j,inf,stra) = loop(p,stra(newinf),s,j+1,newinf,stra),

if Impossible?(inf,i,p[i])
where newinf = Shift(inf)

loop(p,[i|iseq],s,j,inf,stra) = loop(p,iseq,s,j,Addpos(inf,i,p[i]),stra),

168

if p[i] = s[j+i]

loop(p,[i|],s,j,inf,stra) = loop(p,stra(newinf),s,j+1,newinf,stra),

if p[i] �= s[j+i]
where newinf = Shift(Addneg(inf,i,p[i]))

7.5 PE wrt. various search strategies

In this section we investigate various search strategies, and sketch the

result of doing PE on subs2 wrt. these strategies (and wrt. fixed p). We
will proceed as follows: in section 7.5.1 we argue that there are two

“natural” choices for an “optimal” search strategy, to be denoted KMP

and BMop. In section 7.5.2 and section 7.5.3 we will give examples of the

behavior of KMP and BMop, hopefully convincing the reader that KMP

(after PE) gives rise to the KMP algorithm and that BMop (after PE)

gives rise the BMop algorithm. In section 7.5.4 we present a (not quite
natural) search strategy BMst which gives rise to the BMst algorithm.

Section 7.5.5 contains a brief discussion of the approach.

7.5.1 “Natural” search strategies

First some notation:

• Pos(inf) denotes the ascending sequence of indices i such that inf[i]

is of form Pos-info(x).

• Neg(inf) denotes the ascending sequence of indices i such that inf[i]

is of form Neg-info(X).

• Nothing(inf) denotes the ascending sequence of indices i such that

inf[i] = No-info.

• All(inf) denotes the sequence 0, 1, 2 . . . k − 1, where k is the size of

inf.

So if e.g. inf = [a, ∅,b, {ab}, ∅] we have Pos(inf) = [0,2], Neg(inf) = [3],
Nothing(inf) = [1,4] and All(inf) = [0,1,2,3,4].

Let us now embark on deducing what constitutes an “optimal” and
“natural” search strategy: it seems clear that it should start by examining

the positions in Pos, since these positions can be completely tested for
match without examination of s. Also it seems clear that the positions in

169

Neg should be tested before the positions in Nothing, since we then may
be able to discover a mismatch without examination of s. We have thus

argued that an “optimal” search strategy takes the form

p1(Pos) ++ p2(Neg) ++ p3(Nothing)

where p1, p2 and p3 are permutations. It is easily seen that as long as Neg

is processed before the elements in Nothing, there cannot be more than
one position in Neg. With the strategy above, Neg is thus assured to be

either empty or a singleton. The performance of the target program will
not be affected by the choice of p1 (the choice might affect the complexity

of the preprocessing phase).
So the only interesting issue is the choice of p3. Two possibilities

can be considered “natural”: the identity permutation and the reversing
permutation. The corresponding search strategies will be christened KMP

and BMop:

KMP = Pos ++ Neg ++ Nothing,

BMop = PosR ++ Neg ++ NothingR

It is easily seen that KMP can be simply reexpressed as

KMP = All

i.e. subs2 equipped with search strategy KMP is “isomorphic” to subs1.

7.5.2 Obtaining KMP via KMP

We now, by means of an example, sketch the algorithm resulting from

doing PE on subs2 wrt. fixed p and the search strategy KMP.
It is helpful, for i ∈ {0 . . . |p| − 1}, to introduce Si(s,j) as an abbrevi-

ation for

loop(p, [i,i + 1,. . . ,|p| − 1], s, j, [p[0], . . . , p[i− 1], ∅, . . . , ∅],KMP)

Now all functions in the target program will be of form

Si(s,j) →ε, if s[j+i] = . . .

where either ε = j (denoting accept) or ε is of the form Si′(s,j’), with i’+j’
= i+j+1 – i.e. the “subject string pointer” has been advanced by one.

To make the discussion concrete, let p = aabaaa and let us find the
code for S5(s,j) – cf. section 7.2.

170

First assume s[j+5] = a. Then we have the derivation

S5(s, j)

= loop(aabaaa, [5], s, j, [a,a,b,a,a, ∅],KMP)

→ loop(aabaaa, [], s, j, [a,a,b,a,a,a],KMP)

→ j

enabling us to store the rule

S5(s, j)→j, if s[j+5] = a. (7.1)

Next assume s[j+5] �= a. Then we have the derivation

S5(s, j)

= loop(aabaaa, [5], s, j, [a,a,b,a,a, ∅],KMP)

→ loop(aabaaa, [0,1,2,3,4,5], s, j+1, [a,b,a,a,{a}, ∅],KMP)

→ loop(aabaaa, [1,2,3,4,5], s, j+1, [a,b,a,a,{a}, ∅],KMP)

→ loop(aabaaa, [0,1,2,3,4,5], s, j+2, [b,a,a,{a}, ∅, ∅],KMP)

→ loop(aabaaa, [0,1,2,3,4,5], s, j+3, [a,a, {a}, ∅, ∅, ∅],KMP)

→ loop(aabaaa, [1,2,3,4,5], s, j+3, [a,a, {a}, ∅, ∅, ∅],KMP)

→ loop(aabaaa, [2,3,4,5], s, j+3, [a,a, {a}, ∅, ∅, ∅],KMP)

which can be continued in two ways, depending on whether s[j+5] = b

or not. In the former case the derivation

loop(aabaaa, [2,3,4,5], s, j+3, [a,a, {a}, ∅, ∅, ∅],KMP)

→ loop(aabaaa, [3,4,5], s, j+3, [a,a,b, ∅, ∅, ∅],KMP)

= S3(s, j+3)

enables us to store the rule

S5(s, j)→S3(s, j+3), if s[j+5] = b. (7.2)

In the latter case the derivation

loop(aabaaa, [2,3,4,5], s, j+3, [a,a, {a}, ∅, ∅, ∅],KMP)

→ loop(aabaaa, [0,1,2,3,4,5], s, j+4, [a, {a,b}, ∅, ∅, ∅, ∅],KMP)

→ loop(aabaaa, [1,2,3,4,5], s, j+4, [a, {a,b}, ∅, ∅, ∅, ∅],KMP)

→ loop(aabaaa, [0,1,2,3,4,5], s, j+5, [{a,b}, ∅, ∅, ∅, ∅, ∅],KMP)

→ loop(aabaaa, [0,1,2,3,4,5], s, j+6, [∅, ∅, ∅, ∅, ∅, ∅],KMP)

= S0(s, j+6)

171

enables us to store the rule

S5(s, j)→S0(s, j+6), if s[j+5] �∈ {a,b}. (7.3)

Referring back to section 7.2, we see that the actions of the DFA when
in state S5 are closely mirrored by the rules (7.1), (7.2) and (7.3) just

derived.
We may be tempted to conclude that the KMP strategy gives rise to

the KMP algorithm . . .

7.5.3 Obtaining BMop via BMop

We now investigate the algorithm resulting from doing PE on subs2 wrt.
p = tree and the search strategy BMop; our aim will be to show that it

exhibits the same behavior in the example from section 7.3.3 as BMop.
This will be the case provided the target program contains the following

rules, with S the “main function”:

S(s,j) →S1(s,j+2), if s[j+3] = r

S1(s,j) →S1,3(s,j), if s[j+3] = e

S1,3(s,j) →S(s,j+4), if s[j+2] �= e

In order to show this, first let S, S1 and S1,3 be abbreviations as defined

below:

S(s,j) = loop(tree,[3,2,1,0],s,j, [∅, ∅, ∅, ∅],BMop)

S1(s,j) = loop(tree,[3,2,0],s,j, [∅,r, ∅, ∅],BMop)

S1,3(s,j) = loop(tree,[2,0],s,j, [∅,r, ∅,e],BMop)

Then the claim follows from the calculations below:

1. if s[j+3] = r,

S(s, j)

= loop(tree, [3,2,1,0], s, j, [∅, ∅, ∅, ∅],BMop)

→ loop(tree, [2,3,1,0], s, j+1, [∅, ∅, {e}, ∅],BMop)

→ loop(tree, [1,3,2,0], s, j+2, [∅, {e}, ∅, ∅],BMop)

→ loop(tree, [3,2,0], s, j+2, [∅,r, ∅, ∅],BMop)

= S1(s, j + 2)

172

2. if s[j+3] = e,

S1(s, j)

= loop(tree, [3,2,0], s, j, [∅,r, ∅, ∅],BMop)

→ loop(tree, [2,0], s, j, [∅,r, ∅,e],BMop)

= S1,3(s, j)

3. if s[j+2] �= e,

S1,3(s, j)

= loop(tree, [2,0], s, j, [∅,r, ∅,e],BMop)

→ loop(tree, [2,0,1,3], s, j+1, [r, {e},e, ∅],BMop)

→ loop(tree, [0,1,3], s, j+1, [r, {e},e, ∅],BMop)

→ loop(tree, [1,0,3,2], s, j+2, [{e},e, ∅, ∅],BMop)

→ loop(tree, [0,3,2,1], s, j+3, [e, ∅, ∅, ∅],BMop)

→ loop(tree, [3,2,1,0], s, j+4, [∅, ∅, ∅, ∅],BMop)

= S(s, j + 4)

We may be tempted to conclude that the BMop strategy gives rise to the

BMop algorithm . . .

7.5.4 A strategy BMst to obtain BMst

We now look for a search strategy BMst such that subs2 when partially
evaluated wrt. fixed p and BMst implements the BMst algorithm.

First some notation: we say that an information array is well-formed
if it either does not contain any information at all (i.e. all elements are

No-info) or the last element is not No-info.
Then we can define BMst as follows:

• if inf is well-formed, then BMst behaves as BMop:

BMst(inf) = PosR ++ Neg ++ NothingR

• if inf is not well-formed, then

BMst(inf) = PosR ++ Neg ++ [FORGET] ++ AllR

173

Explained in words, what happens is: when a mismatch has been found
inf will cease to be well-formed, as a Shift operation is made. After

checking that the information in Pos and Neg does not make it possible
to detect new mismatches, everything is forgotten about this information

so the pattern string has to matched in its entirety against the subject
string.

In order to argue that BMst indeed implements the BMst algorithm,
we (as usual) consider the pattern string tree and will show that subs2,

when PE’d wrt. tree and BMst, behaves as BMst in the examples from
section 7.3.2 and section 7.3.3. It is not hard to see that this will be

the case provided the target program contains the following rules, with
S being the main function:

S(s,j) →S3(s,j), if s[j+3] = e

S(s,j) →S(s,j+2), if s[j+3] = r

S3(s,j) →S(s,j+4), if s[j+2] = t

S3(s,j) →S(s,j+1), if s[j+2] = r

In order to show this, first let S and S3 be abbreviations as defined below:

S(s,j) = loop(tree,[3,2,1,0],s,j, [∅, ∅, ∅, ∅],BMst)

S3(s,j) = loop(tree,[2,1,0],s,j, [∅, ∅, ∅,e],BMst)

Then the claim follows from the calculations below:

1. if s[j+3] = e,

S(s, j)

= loop(tree, [3,2,1,0], s, j, [∅, ∅, ∅, ∅],BMst)

→ loop(tree, [2,1,0], s, j, [∅, ∅, ∅,e],BMst)

= S3(s, j)

2. if s[j+3] = r,

S(s, j)

= loop(tree, [3,2,1,0], s, j, [∅, ∅, ∅, ∅],BMst)

→ loop(tree, [2,FORGET,3,2,1,0], s, j + 1, [∅, ∅, {e}, ∅],BMst)

→ loop(tree, [1,FORGET,3,2,1,0], s, j + 2, [∅, {e}, ∅, ∅],BMst)

→ loop(tree, [FORGET,3,2,1,0], s, j + 2, [∅,r, ∅, ∅],BMst)

→ loop(tree, [3,2,1,0], s, j + 2, [∅, ∅, ∅, ∅],BMst)

= S(s, j + 2)

174

3. if s[j+2] = t,

S3(s, j)

= loop(tree, [2,1,0], s, j, [∅, ∅, ∅,e],BMst)

→ loop(tree, [2,1,FORGET,3,2,1,0], s, j + 1, [∅, {e},e, ∅],BMst)

→ loop(tree, [1,FORGET,3,2,1,0], s, j + 1, [∅, {e},e, ∅],BMst)

→ loop(tree, [1,0,FORGET,3,2,1,0], s, j + 2, [{e,r},e, ∅, ∅],BMst)

→ loop(tree, [0,FORGET,3,2,1,0], s, j + 3, [e, ∅, ∅, ∅],BMst)

→ loop(tree, [3,2,1,0], s, j + 4, [∅, ∅, ∅, ∅],BMst)

= S(s, j + 4)

4. if s[j+2] = r,

S3(s, j)

= loop(tree, [2,1,0], s, j, [∅, ∅, ∅,e],BMst)

→ loop(tree, [2,1,FORGET,3,2,1,0], s, j + 1, [∅, {e},e, ∅],BMst)

→ loop(tree, [1,FORGET,3,2,1,0], s, j + 1, [∅, {e},e, ∅],BMst)

→ loop(tree, [FORGET,3,2,1,0], s, j + 1, [∅,r,e, ∅],BMst)

→ loop(tree, [3,2,1,0], s, j + 1, [∅, ∅, ∅, ∅],BMst)

= S(s, j + 1)

We may be tempted to conclude that the BMst strategy gives rise to the

BMst algorithm . . .

7.5.5 Discussion

• The observant reader will notice that no search strategies corre-

sponding to the BMor/BMna algorithms were given – as those al-

gorithms exploit their information in a rather unsystematic way, it
is hard to see how to obtain them by PE of subs2. An analogous

observation is made in [PS88], where BMst is derived by formal
methods from a naive substring matcher. The authors explain that

the reason why they have arrived at (what we have called) BMst
instead of BMor is that their derivation employs purely formal rea-

soning.

• The definition of the search strategy BMst may seem contrived,
requiring a substantial amount of insight (or rather hindsight. . .).

175

On the other hand, the definition can be viewed in the light of the
desire to prevent the number of specialized functions to explode:

hence the information array has to be “cleaned” from time to time
(motivating the FORGET element); and in order to avoid a lot of

specialized versions of loop with identical values of inf but different
values of iseq one has to start “from scratch” afterwards (motivating

why the same element may occur more than once).

• A historical remark: by investigating the natural strategy BMop

I discovered BMop before learning that Knuth had been 14 years

ahead. . .

7.6 Related work

In [Dyb85] it is investigated how to specialize Earley’s general context free

parser wrt. a fixed grammar; the conclusion is that a lot of handwork is

necessary.
In [CD89] (this paper being the starting point of the work reported in

this chapter) the KMP algorithm is derived by PE, after a naive substring
matcher has been transformed into one more suitable for PE purposes.

Contrary to the claims of the paper, this transformation cannot (in my
opinion!) be considered automatic; neither is it obvious that it preserves

semantics.
In [Sun90] some very efficient variations of the Boyer-Moore idea are

presented (but not within the context of program derivation). The ap-
proach is characterized by two features:

• After a mismatch has been found in e.g. the situation

..TEX...

^

TREE

it is the symbol in the subject string immediate to the right of the

right end of the pattern string, i.e. the x, which (partly) determines
how far to shift (while e.g. in BMor it is the t that would (partly)

determine the shift). It should be clear that in this way shifts will
be longer in average, and hence the matcher faster. It is not clear

whether it will be possible to express this idea within the framework
of partially evaluating a (one-stage) substring matcher.

176

• Most interestingly, the paper employs the idea of a parametrized
search strategy. It is shown how other choices than the left-to-

right and the right-to-left may be (statistically) better, the search
sequence being dependent on the actual value of the pattern string:

for instance, the pattern character occurring less frequently in the
alphabet could be tested first.

The idea of maintaining a description of what is known about the
input is employed in [Jør90], where an interpreter for a language with

pattern matching is rewritten into one suitable for PE (thus a compiler
can be generated).

The development in [QG91] is rather similar to ours: first a pattern
language is defined, where patterns can be built up using constructors

like cons, quote, or, any (with the obvious meanings) etc. – also recur-
sive patterns are allowed. A pattern matcher is presented, which carries

around a description of what is known about the input. This matcher can

be partially evaluated wrt. known pattern, yielding the KMP algorithm
– and if the arguments to cons are processed in reversed order, BMop is

obtained.
Last, but certainly not least, one must acknowledge the work done by

Olivier Danvy within the field – unfortunately mostly unpublished, but
being a great inspiration and covering a wide range of topics, e.g. how to

get the effect of Weiner trees (cf. [AHU74, section 9.5]).

177

Chapter 8

A model for a logic language

In this chapter we will formalize the idea of multilevel transition systems
in a logic programming setting. The main purpose this time will be to give

sufficient conditions for total correctness of unfold/fold transformations,
such that (most of) the results from the literature emerge as special cases

(after the frameworks in question have been encoded into our framework).
Compared with chapter 4, the major differences (besides shifting from a

functional view into a logic view) will be that

• we only consider 2-level systems;

• we model folding explicitly (instead of viewing foldings as abbrevi-
ations);

• we do not formulate speedup theorems.

Giving conditions for total correctness of unfold/fold transformations

is a rather hot topic in the logic programming community, see e.g. [TS84],
[KK90], [Sek91], [GS91], [PP91a], [BCE92]. This is unlike the situation

in the functional community where Kott’s work (cf. section 4.9) seems
rather isolated. It is tempting to explain this difference by observing

that

• operational semantics traditionally enjoy a more respectable status

in the former community than in the latter1;

• operational semantics better capture the essence of unfolding and

folding: unfolding corresponds to a transition being made in the
“right” direction, folding corresponds to a transition being made

1Recently, for instance the attempts to integrate functional programming and concurrency
(see e.g. [LG88], [Nie89], [BMT92]) have renewed the interest in operational semantics for func-
tional languages.

178

in the “wrong” direction. By using a denotational approach, this
cannot be expressed directly (cf. the claims p. 12 and p. 123).

Not only total correctness, but also the existence of speedup bounds

and the concept of ultimate sharing were crucial facets of our functional
model, as developed in the previous chapters. Accordingly, let us now

briefly (before giving an overview of this chapter) digress on how those
two issues are carried over to the logic world:

8.0.1 Speedup bounds in the logic world

We certainly can expect something similar to theorem 4.6.3 and theorem

4.6.4 to hold – in fact, these two theorems were originally stated for
a model of a logic language (without explicit folding) [Amt91]. Also we

can, similar to what is done in section 4.8, factor out some features whose

presence enables more than a constant speedup. Of special interest is the
feature discussed in section 4.8.1 (i.e. the level 1 evaluation order being

non-optimal), since

1. it is common in logic languages (as e.g. in PROLOG) to employ the
strategy always to unfold the leftmost goal (this strategy will be

denoted LR);

2. the LR strategy is not optimal;

3. hence a large speedup may be possible if “some non-LR steps are

made during transformation”.

The technique of letting the transformation “simulate” an (optimal) eval-
uation strategy is presented in [BDSK89] (and further elaborated in e.g.

[DSMSB90]) where it is called compiling control. The scope of this tech-

nique is quite wide, an important special case being when the source pro-
gram has been designed by means of the “generate and test” paradigm

(first all candidate solutions are generated; then it is tested whether they
really are solutions). As stated e.g. [SS86, p. 207] the key to improve

efficiency in such cases is to “push” the tester inside the generator as
“deep” as possible, making it possible to discard failed candidates before

they are fully generated.
As a simple example of this, consider the task of producing a list of

length N containing b’s only. If the alphabet in question is {a, b}, a naive
(and silly!) way to proceed is expressed by the program below, where N

179

is coded as a unary number (in the following we assume that sol is called

with N instantiated and with L uninstantiated):

sol(N,L) ←gen(N,L), test(L)
gen(0,[]) ←✷; gen(s(N),[a|L]) ←gen(N,L); gen(s(N),[b|L]) ←gen(N,L)
test([]) ←✷; test([b|L]) ←test(L)
This is clearly exponential in N when evaluated using the LR strategy.
On the other hand, linear complexity is obtained if one uses a strat-

egy where test(L) is unfolded as soon as the first element of L becomes
instantiated. It is possible to produce a target program which “simu-

lates” this strategy; first consider the goal sol(0,L). This is unfolded to
gen(0,L),test(L); then gen is unfolded binding L to [] giving test([]), and

finally test([]) is unfolded – we thus have produced the clause

sol(0,[]) ←✷

Next consider the goal sol(s(N),L), which we initially can unfold into

gen(s(N),L),test(L). As two clauses for gen match, we split into two

cases:

• by unfolding using the second clause for gen, L is bound to [a|L’]
giving the goal sequence gen(N,L’),test([a|L’]). Now we unfold test;

as no clauses match this branch fails.

• by unfolding using the third clause for gen, L is bound to [b|L’]
giving the goal sequence gen(N,L’),test([b|L’]). Now unfold test;
this gives the goal sequence gen(N,L’),test(L’) which can be folded

back into sol(N,L’). We thus have produced the clause

sol(s(N),[b|L’]) ←sol(N,L’)

For a more realistic example consider the following program, which sorts

a list by generating all permutations and then all but the sorted one

are discarded (we assume that sort is called with X instantiated and Y
uninstantiated):

sort(X,Y) ←perm(X,Y),ord(Y)
perm([],[]) ←✷; perm([A|X],[B|Y]) ←del(B,[A|X],Z), perm(Z,Y)
del(A,[A|X],X) ←✷; del(A,[B|X],[B|Y]) ←del(A,X,Y)
ord([]) ←✷; ord([A]) ←✷; ord([A,B|X]) ←A < B, ord([B|X])

180

This program is clearly exponential in the length of X. Now, by perform-
ing some steps which are not LR steps we arrive at the following program

(isomorphic to the one given [BDSK89, p. 140]) where permord(A,X,Y)
is “an abbreviation” of perm(X,Y),ord([A|Y]):

sort([],[]) ←✷

sort([A|X],[B|Y]) ←del(B,[A|X],Z), permord(B,Z,Y)
permord(A,[],[]) ←✷

permord(A,[B|X],[C|Y]) ←del(C,[B|X],Z),A < C,permord(C,Z,Y)

Even though efficiency has been improved, complexity is still exponential.

In order to get a polynomial algorithm one has to do as in [TS84, p. 135]:

1. (re)define perm as follows:

perm([],[]) ←✷; perm([A|X],Y) ←perm(X,Z), ins(A,Z,Y)
ins(A,X,[A|X]) ←✷; ins(A,[B|X],[B|Y]) ←ins(A,X,Y)

2. exploit the “law” (cf. section 4.8.3) that

ins(A,Z,Y),ord(Y) is “equivalent” to ord(Z),ins(A,Z,Y),ord(Y).

Then we can unfold sort([A|X],Y) (via perm(X,Z),ins(A,Z,Y),ord(Y))
into

perm(X,Z),ord(Z),ins(A,Z,Y),ord(Y)

hence we are justified in storing the clause

sort([A|X],Y) ←sort(X,Z),ins(A,Z,Y),ord(Y)

giving rise to a cubic target program.

Note that exploiting laws is not a subcase of compiling control, cf. the
observation [BDSK89, p. 136]: “no computation rule provides lemma

generation”.

181

8.0.2 Ultimate sharing in the logic world

In the functional world it is always “safe” to look at a more general

expression and unfold it “as far as possible” (theorem 5.1.7 provides the
formal justification for this claim). Intuitively, this is due to a functional

program returning one and only one answer. On the other hand, consider
the logic program

p(b) ←p(b)
and the goal p(a) which of course should fail. However, if one considers

the “more general” goal p(X) and unfolds it as far as possible, evaluation
never terminates.

Of course one may exhibit some conditions under which it is safe to do
“ultimate sharing” – we can expect that these conditions to a large degree

amount to saying that the logic program in question is a “translation” of
a functional program . . .

8.0.3 A two-level transition system

After the digression above we return to the issue of setting up a two-

level system for a logic language, with the purpose of reasoning about
total correctness. As we want to model folding explicitly, it is helpful to

impose some extra structure on the set of level 1 transitions (for formal
definitions in the form of inference rules, see section 8.4):

• that t is a level 1 unfolding step from B to B′ intuitively means

that B′ can be derived by unfolding one of the atoms in B, using a
rule in R0;

• that t is a level 1 unfolding from B to B′ means that B′ can be
derived from B by a sequence of level 1 unfoldings steps;

• that t is a level 1 folding step from B to B′ intuitively means that
B′ can be derived from B by applying a rule in R0 “backwards”;

• that t is a level 1 folding from B to B′ means that B′ can be derived

from B by a sequence of level 1 foldings steps;

• that t is a level 1 transition from B to B′ means that B′ can be

derived from B by a sequence of level 1 unfolding steps and level 1
folding steps.

182

The interpretation is that level 1 unfoldings model standard evaluation of
the source program; whereas level 1 transitions model transformation of

the source program. Accordingly, the level 1 rules (constituting the target
program) are chosen among the set of level 1 transitions. Moreover, we

have:

• that t is a level 2 unfolding step from B to B′ intuitively means

that B′ can be derived from B by unfolding one of the atoms in B,
using a rule in R1;

• that t is a level 2 unfolding from B to B′ means that B′ can be
derived from B by a sequence of level 2 unfolding steps.

8.0.4 An overview of this chapter

The aim of section 8.1 will be to give the reader a flavor of the main

features of our model. In particular,

• in section 8.1.1 we present the basic intuition of our approach and

introduce the concept of U-mirrors, a representation of (the control
part of) an unfold/fold transformation which facilitates reasoning

about preservation of termination properties;

• in section 8.1.2 we discuss how to ensure total correctness, wrt.

various evaluation strategies;

• in section 8.1.3 we focus upon the data aspect, which is usually

modeled by means of substitutions – we will propose an alternative
approach;

• in section 8.1.4 we discuss when it is permissible to fold against a
given clause – not wrt. total correctness, but wrt. partial correct-

ness;

• in section 8.1.5 we discuss how to extend the model such that it is

able to represent the whole search tree and not only a single branch.

Section 8.1 will be rather informal, based on examples and intuition. All

concepts introduced will be formally defined and all theorems will be
proved in the subsequent sections. Section 8.2 compares with related

work.

183

In section 8.3, the basic machinery is set up, e.g. concerning configu-
rations, transitions and U-mirrors. In section 8.4, a two-level transition

system is defined. In section 8.5, we state and prove various theorems
concerning sufficient conditions for total correctness. In section 8.6 the

whole story is repeated, transitions now representing search trees instead
of single branches – here some proofs will appeal rather heavily to intu-

ition, but of course these may be formalized at the expense of decreased
clarity.

First, however, we give a “realistic” example of the unfold/fold tech-
nique:

Example 8.0.1 Consider the source program

f([],[]) ←✷

f([N|U],[s(N)|V]) ←f(U,V)
g(X,Z) ←f(X,Y),f(Y,Z)
Operationally, f adds one to each element in a list of unary numbers.
Thus g will traverse its input list X twice. Our aim will be to make a

target program where g only traverses its input list once: first consider
the configuration g([],Z). This can be unfolded into the configuration

f([],Y),f(Y,Z). By unfolding the first f, Y gets bound to [] and we arrive
at the configuration f([],Z). Now this f can be unfolded, binding Z to [].

We are thus able to let the target program contain the rule

g([],[]) ←✷ (8.1)

Next consider the configuration g([N|X],Z). This can be unfolded into

f([N|X],Y),f(Y,Z). By unfolding the first f, Y gets bound to [s(N)|Y1]
and we get the configuration f(X,Y1),f([s(N)|Y1],Z). By unfolding the

second f, Z gets bound to [s(s(N))|Z1] and we arrive at the configuration
f(X,Y1),f(Y1,Z1). As Y1 is a new unbound variable, this can now be

folded back into the configuration g(X,Z1). We are thus able to let the
target program contain the rule

g([N|X],[s(s(N))|Z1]) ←g(X,Z1) (8.2)

Now consider the “query” g([0,0],Z). If the target program is used
to “solve” this query, it is first rewritten into g([0],Z1) binding Z to

[s(s(0))|Z1]; then rewritten into g([],Z2) binding Z1 to [s(s(0))|Z2] and
finally rewritten into the empty configuration, binding Z2 to []. Thus

184

the query is solved using three inference steps, and Z has been bound to
[s(s(0)), s(s(0))].

It is easily seen that the same query, g([0,0],Z), also can be solved
with the same binding to Z by using the source program – but then seven

inference steps are needed. ✷

8.1 An outline of the theory

8.1.1 Modeling control

It should be quite obvious that the transformation in example 8.0.1 pre-

serves termination properties. One way of arguing for this is to observe
that the first argument to g gets “smaller”2 for each inference step (as-

suming that g is called with a first argument which is fully instantiated).
However, we would rather like a way of reasoning which only depends

on the syntactic structure of the transformation process. As promised
p. 125, our approach will be to generalize Kott’s insight: that the num-

ber of unfoldings should exceed the number of foldings. Below we give
the basic intuition why this works, only focusing on the control part and

abstracting away the data part.
Our aim is to show that if the target program loops, then the source

program loops as well. So suppose the target program loops. This means
that there is a level 2 unfolding sequence of form

g→ g→ g→ . . . (8.3)

Since each level 1 rule of form g → g corresponds of a level 1 transition
of form

g→ f f→ f f← g

(that is one unfolding, two “parallel” unfoldings and one folding) the level

2 unfolding sequence in (8.3) corresponds to a level 1 transition sequence

g→ f f→ f f← g→ f f→ f f← g→ f f→ f f . . . (8.4)

A key point now is that a folding is “canceled” by a subsequent unfolding,

that is f f← g→ f f is “equivalent” to the empty sequence. By applying
this canceling process to (8.4), we end up with a level 1 unfolding sequence

g→ f f→ f f→ f f→ f f . . .

2cf. the discussion p. 124.

185

✡
✡
✡
✡
✡✡✢

❏
❏
❏
❏
❏❏

�
�
��✠

❅
❅
❅❅❘

❅
❅
❅❅■

�
�
��✒

❄ ❄

g,1

f,1 f,1

g,1

f,2 f,2

f f

g,1

Figure 8.1: Two U-mirrors

which shows that the source program loops, as desired.
The notation employed above is rather ambiguous. For instance, we

said that f f → f f denoted that a parallel unfolding of the two f’s took
place, but how to denote that only one of the f’s is unfolded? To this

end we introduce a device, to be called an U-mirror. An U-mirror is
composed by two trees (or rather two collection of trees, such a collection

to be termed an U-forest), the first representing the “unfolding part” of
the transformation and the second representing the “folding part” of the

transformation. Accordingly, the leaves of the first tree must equal the

leaves of the second tree.
Let us use figure 8.1 as an illustrating example; here the U-mirrors

corresponding to the level 1 rules (8.1) and (8.2) from example 8.0.1 are
depicted. First consider the first U-mirror, which consists of the unfolding

part only. The root of this tree is labeled “g,1” because initially g was
unfolded using the first (and only) rule for g. Next the two occurrences

of f were unfolded using the first rule for f – accordingly the two nodes
labeled f are labeled with a 1 as well. It may appear as if the tree has

leaves f and f, but since both of these are unfolded into the empty goal
sequence the tree really has no leaves.

Next consider the second U-mirror, where the unfolding part as well
as the folding part has two leaves: f and f. That two internal nodes are

labeled “f,2” is because the two occurrences of f were unfolded (into f)
when deriving the rule, in both cases using the second level 0 rule for f.

U-mirrors will be treated in depth in section 8.3.2. The use of U-
mirrors (in my opinion!) facilitates reasoning about transitions, enabling

e.g. the Church-Rosser completion to be expressed as a pushout in a

186

suitable category (cf. lemma 8.4.3).

8.1.2 Conditions for total correctness

We have seen how to represent transformations by U-mirrors. Our goal

will be to give conditions on these U-mirrors which guarantee total cor-
rectness.

Weights

Our starting point was the intuition: if there are “more unfoldings than

foldings”, transformation is safe. In order to get more widely applicable
conditions this has to be generalized, taking into account that “some

unfoldings are more important than others”. To see this, consider the
program

E(a) ←A
E(b) ←B
E(X:Y) ←E(X),E(Y)
A ←B,B
. . .

Starting with E(a), we can unfold this into A and further into B,B. This

can be folded back into B,E(b) into E(b),E(b) and finally folded back
into E(b:b), yielding a target program clause

E(a) ←E(b:b)

As two unfolding steps and three folding steps have been made, the rea-

soning technique from section 8.1.1 cannot be used to show total correct-
ness of the transformation. However, we can argue that the clause above

represents some progress in the computation process, as A is unfolded
into B,B but never folded back. This can be formalized by assigning

weights (non-negative numbers) to the arcs in the U-mirrors representing
a transition, such that the weight of an arc is a function of the predicate

symbol being unfolded.3 We can now define the weight of a path in a
U-mirror as the sum of the weights encountered when walking along the

3Actually, the weight may also depend on which rule is used and which conjunct the arc
represents.

187

❄
�
�

��✠

❅
❅
❅❅❘

✻ ✻

❅
❅
❅❅■

�
�
��✒

E,1

A,1

B B

E,2 E,2

E,3

0

1 1

0 0

0 0

Figure 8.2: A U-mirror with weights

path, where the weights of arcs in the folding part are negated before
contributing to the summation.

By assigning arcs from E weight 0 and arcs from A weight 1, the
target program clause above is represented by the U-mirror depicted in

figure 8.2. We see that all paths have weights 1 – but if we had assigned
E weight 2 all paths would have weight −1.

Conditions wrt. various semantics

Whether a given transformation preserves termination properties depends

on which semantics is chosen, that is which evaluation strategy is em-
ployed at level 1 (and level 2). We shall concentrate upon two kind of

strategies:

• a fair strategy, which loosely speaking is one which sooner or later

unfolds any goal;

• the LR strategy.

Concerning total correctness wrt. a fair strategy, we have the following

Condition 8.1.1 Suppose weights can be assigned in a way such that it

for all level 1 rules holds that all the paths in the corresponding U-mirror
have weight ≥ 1. Suppose B loops at level 2 by a fair strategy. Then B

loops at level 1 by a fair strategy too. (This is theorem 8.5.2.) ✷

Concerning total correctness wrt. the LR strategy, we have

188

Condition 8.1.2 Suppose weights can be assigned in a way such that
it for all level 1 rules holds that the leftmost path in the corresponding

U-mirror has weight ≥ 1. Suppose B loops at level 2 by the LR strategy.
Then B loops at level 1 by the LR strategy too. (This is theorem 8.5.3.)

✷

On the other hand, if the transformation does some non-LR steps it may

happen that the domain of termination is increased. To see this, consider
the source program

p(X) ←q(X),r(X); q(a) ←q(a); r(b) ←✷

Starting with the configuration p(X), this can be unfolded into q(X),r(X)

and then by a non-LR unfolding into q(b), yielding the target program

p(b) ←q(b)
Now p(X) terminates (and fails) at level 2 by any strategy, while p(X)

loops at level 1 by the LR strategy.

The same source program shows that it may happen that a transfor-
mation is total correct wrt. the LR strategy but not wrt. a fair strategy:

again starting with the configuration p(X) we unfold this into q(X),r(X)
and then we unfold the leftmost atom yielding q(a),r(a). This can be

folded back into p(a), yielding the target program

p(a) ←p(a)
It is easily seen that this transformation is total correct wrt. the LR
strategy – p(t) loops at level 2 (by the LR strategy) iff t can be unified

with a iff p(t) loops at level 1 by the LR strategy. This is as predicted
by condition 8.1.2, since it is possible to assign weights in a way (e.g. 1 to

q and 0 to p) such that the leftmost path of the U-mirror corresponding
to this transformation has weight ≥ 1.

On the other hand, p(X) loops at level 2 (by any strategy) but termi-
nates at level 1 by a fair strategy. Thus the transformation is not total

correct wrt. a fair strategy.
Having defined the weight of a U-mirror as the sum of the weights

occurring in it, the weights occurring in the folding part negated, we can
formulate a – less useful – condition:

Condition 8.1.3 Suppose weights can be assigned in a way such that
it for all level 1 rules holds that the corresponding U-mirror has weight

189

≥ 1. Suppose B loops at level 2 by some strategy. Then B also loops at
level 1, by some strategy. (This is theorem 8.5.1.) ✷

This condition is not enough to guarantee total correctness (neither wrt.

fair nor LR semantics): consider the source program p(X) ←r(X),q(X);
q(a) ←q(a); r(b) ←✷. By unfolding p; unfolding q and finally folding

into p we get the level 1 rule p(a) ←p(a). If q is assigned weight ≥ 1,
the corresponding U-mirror will have weight ≥ 1. Now e.g. p(a) loops at

level 2 by any strategy, but fails at level 1 by a fair strategy as well as by
the LR strategy.

8.1.3 Modeling data

We have to settle on the form of the configurations. It seems clear that

a configuration should be a sequence of predicate symbols, together with
some information about which values the arguments to those predicates

can assume. One usually represents this information as a substitution, as
e.g. in [Llo84], but below we shall argue for choosing another representa-

tion.
A key point in the reasoning in section 8.1.1 is that a folding followed

by an unfolding (of the same predicate symbol) should cancel each other,
i.e. be equivalent to the identity. Let us see if this can be achieved by

means of the substitution model. Consider a clause p(X) ←q(X) and let
the initial configuration be (q(X),ε) where ε is the identity substitution.

We want to do a folding step; to this end we have to rename the clause
yielding say p(X1) ←q(X1). As a result of the folding we get the configu-

ration (p(X1),{X1 → X}). We want to do an unfolding step; to this end
we have to rename the clause yielding say p(X2) ←q(X2). As a result of

the unfolding we get the configuration (q(X2),{X1 → X, X2 → X}). The

substitution on the right hand side is “equivalent” to the identity substi-
tution, in the sense that X2 can assume any value, but some superfluous

items have crept in. Of course it will be possible to repair on that, but
this almost inevitably gets rather messy (as witnessed by various papers

in the literature!), since substitutions are hard to reason about from an
algebraic point of view (even though e.g. [Søn89] and [Pal89] show that

certain sets of substitutions carry some structure), in particular one has
to be very careful about renaming.

We therefore (as a first attempt!) shall prefer to represent data as
sets of ground values. It is useful to suppose the existence of a univer-

190

sal data domain D. We will impose no requirements on the structure
of this set; in our examples, however, we shall assume the elements of

D to be PROLOG ground terms, i.e. terms built inductively from some
set of functors (constants just being zero-arity functors). For instance,

the configuration (p(X),ε) will be represented by the predicate symbol
p together with the set of ground values {d|d ∈ D} (that is, all values

are allowed). The configuration (p(X),{ X → a }) will be represented by
p together with the singleton set of ground values {a}. And the config-

uration (p(X,Y), { X → Y }) is represented by p together with the set
{(d, d)|d ∈ D} (that is, only pairs where the components are equal are

allowed). It turns out that this way of representation is not quite enough,
but let us stay with it for a moment.

Next consider how to represent clauses. As a first example, we shall

look at the clause

p(X,X) ←q(X)

The idea will be to represent this clause as a mapping φ from ground

values into sets of ground values: as the call to p fails if the first argument

does not equal the second argument, φ(d1, d2) = ∅ if d1 �= d2. Otherwise,
we have φ(d, d) = {d}.

From what is said it should be clear that we want to find a function φ−1

such that φ−1⋆φ is the identity. And this is quite easy: choose φ−1(d) =

{(d, d)}.
As a second example, consider a clause where a new variable occurs

on the right hand side:

p(X) ←q(X,Y)

This clause is represented as a mapping ψ, where ψ(d) = {(d, d′)|d′ ∈ D}.
In this case, however, it is impossible to find a mapping ψ−1 such that

ψ−1⋆ψ yields the identity. On the other hand, one can define ψ−1 on
certain subsets Z such that ψ(ψ−1(Z)) = Z – these subsets are those

with the property that if they contain an element (d1, d2) then they con-
tain any other element of form (d1, d

′
2). It is worth noticing that this

phenomenon explains why one has to be careful when folding against
a clause containing variables not occurring in the head; these variables

must be “uninstantiated”. This is a problem to which some incorrect
solutions have been proposed in the literature (and yet proved correct!),

for a survey see [GS91].

191

We want to ensure that all mappings to be defined by program clauses
are reversible. Of course, there are many technically equivalent ways to

proceed, but the one we shall adopt is to represent data as a family of
sets of ground values, to be called an information family. As an example

of this, consider again the rule p(X) ←q(X,Y). Here the left hand side
will be represented as a D-indexed family Q where the d’th element is

the singleton set {d}, whereas the right hand side will be represented as
a D-indexed family Q′ where the d’th element is the set {(d, d′)|d′ ∈ D}.
The mapping ψ defined by the program clause now simply for each d ∈ D
maps the d’th element in Q into the d’th element in Q′, and is thus clearly

reversible.
One will notice that the representation of a substitution is no longer

unambiguous. For instance, p(X) equipped with the identity substitution

may be represented by the D-indexed family Q where for each d ∈ D it
holds that Q(d) is the singleton set {d}; but may also be represented by

the singleton family Q′ consisting of the set {d|d ∈ D}. The difference is
that the latter representation (as we saw above) is needed to cope with

variables occurring on the right hand side only; but on the other hand
cannot be “instantiated”.

This leads to our next point: when is the a configuration B an in-
stance of another configuration B′? The “predicate part” of B and B′

must be equal, so we only focus upon information families – assume B
contains K-indexed information family Q and assume B′ contains K ′-
indexed information family Q′. The answer turns out to be that there
must exists a mapping s from K into P(K ′) such that for all k ∈ K,

Q(k) =
⋃

k′∈s(k) Q
′(k′). As an example of this take K = K ′ = D,

Q(a) = {a}, Q(d) = ∅ for d �= a, Q′(d) = {d} for all d ∈ D. As Q

corresponds to the substitution {X→ a} and Q′ corresponds to the iden-
tity substitution, it seems clear that Q is to be considered an instance of

Q′. And so it is according to our definition, as we can choose s as follows:
s(a) = {a}, s(d) = ∅ otherwise. We say that B = Is(B′).

Configurations are not unfolded arbitrarily far, but only until either

the sequence of predicate symbols is empty or the data part is failure.
That a K-indexed information family Q is failure naturally means that

Q(k) = ∅ for all k ∈ K.
We are now finished with our sketch of how configurations look. For

a full account of configurations and operations on these, see section 8.3.1.
Of course, one might ask about the precise relationship between our model

192

and the “standard” model. Such an “equivalence result” would undoubt-
ful be rather cumbersome to state and to prove, so we hope the reader

is convinced that our model is a faithful representation of what is going
on when a logic program is executed. Below we shall try to support this

claim by working on a relatively (!) large example – this material might
be skipped.

Our model in action

We shall use example 8.0.1 as our starting point. The level 0 rule

f([],[]) ←✷ is represented as a transition from B1 = ([f], Q1) to B′1 =
([], Q′1), where Q1 and Q′1 are D × D-indexed families with Q1(d1, d2) =

{(d1, d2)}, Q′1([], []) = {()}, Q′1(d1, d2) = ∅ if d1 �= [] or d2 �= [].
The level 0 rule f([N|U],[s(N)|V]) ←f(U,V) is represented as a tran-

sition from B2 = ([f], Q2) to B′2 = ([f], Q′2) where the D × D-indexed
information families Q2 and Q′2 are given by Q2(d1, d2) = {(d1, d2)},
Q′2([dn|du], [s(dn)|dv]) = {(du, dv)} and Q′2(d1, d2) = ∅ if (d1, d2) is not
of the form above.

In the standard framework, the query f([0],Z) is solved yielding an
answer substitution where Z is bound to [s(0)]. Now consider how this

works in our framework. There the query f([0],Z) is represented as the
configuration B = ([f], Q) where the D-indexed information family Q

is given by Q(d) = {([0], d)}. Now consider the mapping s from D to
P(D ×D) given by s(d) = Q(d). Then for all d it will trivially hold that

Q(d) =
⋃

(d1,d2)∈s(d)

Q2(d1, d2)

The existence of this s shows that B is an instance of B2, in our notation

written B = Is(B2). Then there will be a level 1 unfolding step from
B to Is(B′2), to be denoted B′. B′ = ([f], Q′) where Q′ is a D-indexed

family given by

Q′(d) =
⋃

(d1,d2)∈s(d)

Q′2(d1, d2)

That is, Q′([s(0)|dv]) = {([], dv)} and Q′(d) = ∅ otherwise.
Next consider the mapping s′ from D to P(D ×D) given by s′(d) =

Q′(d). Then for all d it will trivially hold that

Q′(d) =
⋃

(d1,d2)∈s′(d)

Q1(d1, d2)

193

This means that B′ = Is′(B1). Then there will be a level 1 unfolding

step from B′ to Is′(B′1), to be denoted B′′. B′′ = ([], Q′′) where Q′′ is a
D-indexed family given by

Q′′(d) =
⋃

(d1,d2)∈s′(d)

Q′1(d1, d2)

That is, Q′′([s(0)|dv]) = Q′1([], dv) and Q′′(d) = ∅ otherwise, i.e. Q′′([s(0)]) =

{()} and Q′′(d) = ∅ otherwise. As Q′′(d) �= ∅ iff d = [s(0)], this corre-
sponds to Z being bound to [s(0)] in the standard model.

Of course, also B′ = Is′(B2). So there also is a level 1 unfolding from
B′ to Is′(B′2) = B′′′, where B′′′ = ([f], Q′′′). However, it is easily seen

that Q′′′(d) = ∅ for all d – hence B′′′ is a failure configuration. Thus the
transition from B′ to B′′′ represents a failure branch.

In our examples we will, for ease of exposition, often switch back and
forth between the standard model and our model when it is the control

aspect which has our primary interest.

8.1.4 Modeling folding

Let some predicate symbol G be given, and let the level 0 rules for G
be of form {ti|i ∈ I}, each ti going from B to Bi. Here B contains goal

sequence [G] and K-indexed information family Q, and each Bi contains
K-indexed information family Qi.

Given i ∈ I. Now (cf. the definition in section 8.4.4) it will be possible
to make a level 1 folding step from Is(Bi) to Is(B) – where s is a mapping

from K ′ to P(K), where Is(Bi) contains K ′-indexed information family

Q′i and where Is(B) contains K ′-indexed information family Q′ – provided

1. for all k′ ∈ K ′, Q′i(k
′) = ∅ iff Q′(k′) = ∅;

2. Is(Bi′) is failure for i′ �= i;

3. Bi consists of a non-empty goal sequence.

The rationales for the above requirements are as follows:

1. It must not be possible to make a folding step from a failure config-
uration into a non-failure configuration. To see why, consider the

two program clauses:

p(a) ←q(a); q(X) ←q(X)

194

Starting with the configuration p(X), one may consider unfolding

it into q(a), then unfold it once more into q(a), and finally (erro-
neously!) fold back into p(X) – thus deriving the target program

p(X) ←p(X). As two unfoldings and only one folding is made, the
reasoning in section 8.1.1 may tempt us to believe that this trans-

formation preserves termination properties. However, e.g. the goal
p(b) loops at level 2 while it fails at level 1. This is because the

infinite sequence of level 2 unfolding steps p(b) ⇒ p(b) ⇒ . . . cor-
responds to the sequence of level 1 unfold/fold steps where p(b) is

unfolded into failure which then is unfolded into failure which then
is folded back to p(b) etc.

Due to requirement 1, in our model it is not possible to make a

folding step from a configuration whose information family contains
one non-empty element only (as q(a)) into a configuration whose

information family contains many non-empty elements (as p(X)).

2. This in the standard framework is modeled by the requirement that
only one clause defining the predicate folded against should unify:

if we have two program clauses

p ←q; p ←r

it must not be possible to fold r into p and then unfold into q – this
would destroy semantics.

3. If there is a source program clause p ←✷, it should not be possible
to fold e.g. q into q,p. Such foldings never occur in practice, and

it is convenient to exclude them: otherwise we above could derive
the target program p ←p, and then p would loop at level 2 but as

the corresponding level 1 transition unfolds p into [] which then is

folded back into p etc, p does not loop at level 1.

8.1.5 Modeling the full search tree

So far a transition – for ease of exposition – only represents a single
branch of the search tree, the transition system thus being non-confluent.

In order to model the full search tree, configurations have to be multisets
of “old” configurations (now to be called basic configurations). There are

two reasons for working with multisets and not with sequences (i.e. not
to order the branches), a pragmatic and a mathematical one:

195

• it is rather easy to implement or-parallelism [Gre87], as no commu-

nication has to occur between the branches. On the other hand,
and-parallelism [Gre87] is much harder to implement due to the

need for sharing of data, hence most implementations employ the
LR strategy.

• If we use sequences, the Church-Rosser property will be lost. To
see this, consider the program

a ←b; a ←c; d ←e; d ←f

Now consider the goal [a,d]. By first unfolding a and then unfolding

d we first get [b,d]; [c,d] and then B1 = [b,e]; [b,f]; [c,e]; [c,f]. By
first unfolding d and then unfolding a we first get [a,e]; [a,f] and then

B2 = [b,e]; [c,e]; [b,f]; [c,f]. In [PP91a] one wants to distinguish
between B1 and B2, and therefore unfolding of the leftmost atom

only is allowed (unless extra conditions are satisfied.)

It is important to make the following observation: as configurations are

multisets, backtracking is automatically accounted for in the model. On
the other hand, when several (level 1) rules are applicable the choice

between those is made without backtracking!

A configuration is said to be in normal form if all the basic configu-
rations belonging to it are non-failure and with an empty goal sequence.

Due to the Church-Rosser property, it then for a (basic) configuration B
makes sense to define [[B]]1 as follows:4 if there exists a C in normal form

and a level 1 unfolding from B to C, [[B]]1 = C. Otherwise, [[B]]1 =⊥. In
a similar vein, one can define [[B]]2. By restricting the level 1 (2) unfold-

ings in question to be LR, one can define [[B]]L1 ([[B]]L2). Now condition
8.1.1 and 8.1.2 can be restated (a rule may now be represented by several

U-mirrors):

Condition 8.1.4 Suppose that for all level 1 rules, represented by U-

mirrors m1 . . .mk, it holds for all mi that all paths in mi have weight
≥ 1. Then for all B, [[B]]2 = [[B]]1. (This is theorem 8.6.28.) ✷

Condition 8.1.5 Suppose that for all level 1 rules, represented by U-
mirrors m1 . . .mk, it holds for all mi that the leftmost path in mi has

4Notice that we identify a program which returns some answers and then loops with one
which loops without producing any answers.

196

weight ≥ 1. Then for all B, [[B]]L2 ≥ [[B]]L1 – notice that the domain of
termination may be increased, as shown in section 8.1.2. (This is theorem

8.6.29.) ✷

For a more detailed treatment and for proofs, see section 8.6.

In one way, the expressive power is enhanced by working with the full
search tree: we can fold a configuration containing several basic config-

urations back into a single basic configuration – resembling the process
of converting a NFA into a DFA. As an example of this, consider the

program

ab([]) ←✷; ab([a|X]) ←ab(X); ab([b|X]) ←ab(X)
bc([]) ←✷; bc([b|X]) ←bc(X); bc([c|X]) ←bc(X)
abc(X) ←ab(X); abc(X) ←bc(X)

Now consider the configuration abc([]). This is unfolded into ab([]);bc([])

which by two unfoldings yield ✷;✷. The configuration abc([a|X]) is un-
folded into ab([a|X]);bc([a|X]) which by two unfoldings yield ab(X) (as

the second basic configuration is unfolded into failure). In a similar vein,
the configuration abc([c|X]) is unfolded into bc(X).

The interesting case is where we start with the configuration abc([b|X]).
Then we unfold into ab([b|X]); bc([b|X]), two more unfoldings yield

ab(X); bc(X) and now this can be folded back into abc(X). We have
thus derived five new rules for abc:

abc([]) ←✷; abc([]) ←✷

abc([a|X]) ←ab(X); abc([c|X]) ←bc(X)
abc([b|X]) ←abc(X)

To the latter rule correspond two U-mirrors, depicted in figure 8.3.

8.2 Related work

In the literature on unfold/fold transformations in logic languages trans-

formation typically proceeds in a “step by step fashion”; after a goal in
the body of a clause has been unfolded the clause is deleted from the

program and replaced by the clause resulting from the unfolding – this is
the approach taken in e.g. [GS91], [KK90], [PP91a], [Sek91], [TS84]. As

197

❄

❄

✻

❄

✻

❄

abc,1

ab,3

ab

abc,1

abc,2

bc,2

abc,2

bc

Figure 8.3: The two U-mirrors for abc([b|X]) ←abc(X)

pointed out in [GS91], one by applying this method loses some power –
to see this, consider the clause C = p(f(X)) ← p(X). By our or similar

techniques one is able to derive the clause C ′ : p(f(f(f(X)))) ← p(X) but
this is impossible by the step-by-step method, since one – after having un-

folded C against itself obtaining p(f(f(X))) ← p(X) – has lost C. Aside

from being less powerful, we also think that the step-by-step strategy
conceptually is less clean than our approach – cf. the discussion p. 14.

In the literature, one is typically (contrary to our framework) not
allowed to fold against a (direct or indirect) recursive predicate [KK90],

[PP91a], [Sek91], [TS84]. This mirrors the view that folding corresponds
to abbreviation, a view also held in [Amt91].

[TS84] and [KK90] divide the predicates into two classes: the new
(corresponding to “eureka-definitions”) and old, where folding is allowed

against new predicates only. In the body of new predicates as well as in
the body of old predicates, only old predicates can occur. Folding is valid

in two cases:

• Starting with the definition of an old predicate, O ←O1 . . .On, one

can do zero or more unfoldings of some of the Oi’s and then fold
some of these back into a new predicate.

• Starting with the definition of a new predicate, N ←O1 . . .On, one
has to do at least one unfolding of some of the Oi’s before folding

back into a new predicate. 5

5Actually, in [TS84] one is allowed to fold even if no unfolding of an Oi is made, provided not
all the Oi’s disappear by the folding. By assigning new predicates a weight equal the number
of goals on the right hand side of their definition, and by assigning old predicates a “very large
integer” as weight, this translates into our condition 8.1.3.

198

If new predicates are assigned weight 0 and old predicates are assigned
weight 1, this translates into our condition 8.1.3. As we have seen in sec-

tion 8.1.2 this condition is (too) weak, since failing branches may convert
to loops.

[Sek91] improves on the above, essentially by coming up with condi-
tion 8.1.1 (still when new predicates have been assigned weight 0 and old

predicates weight 1). As now not only the success set but also the failure
set is preserved, negation can be handled as well.

[GS91] allows folding against existing clauses (recall clauses are deleted
after having been unfolded) only (not allowing a clause to be folded

against itself). This greatly limits the applications, since it seems im-
possible to arrive at recursive definitions of eureka-predicates. On the

other hand, it becomes possible to give a relatively simple proof of ter-

mination preservation.
In contrast to the authors mentioned so far, [PP91a] impose an order

on a sequence of goals, i.e. consider PROLOG’s LR strategy. The crucial
condition on folding is that the leftmost atom has been unfolded. Again

by assigning the predicates folded against weight 0 and the others 1, the
essence of this translates into our condition 8.1.2. A version of condition

8.1.2 is also stated in [Amt91].
[BCE92] gives sufficient conditions for replacement (folding being a

special case) to be safe. The underlying intuition is perhaps best pre-
sented by means of their example 4: let the source program

c1: m(X) ←n(X)
c2: n(0) ←✷

c3: n(s(X)) ←n(X)

be given and consider the following two ways of transforming the clause
c3:

1. exploiting that we have the “equivalence”

m(X) ≡ n(X) (8.5)

we can replace n(X) by m(X), yielding the new clause

c′3: n(s(X)) ←m(X)

199

2. exploiting that we have the “equivalence”

m(s(X)) ≡ n(X) (8.6)

we can replace n(X) by m(s(X)), yielding the new clause

c′′3: n(s(X)) ←m(s(X))

It is easily seen that transformation 1 preserves termination properties,

while transformation 2 introduces an infinite loop.

• In the framework of [BCE92] this behavior is explained as follows:
the “dependency degree” of m wrt. c3 is 1, as m in one step unfolds

to something matching n(s(X)). The equivalence (8.5) represents a
“semantic delay” of 1, as m(X) in one step unfolds to n(X); whereas

the equivalence (8.6) represents a semantic delay of 2, as it takes
two steps for m(s(X)) to unfold to n(X). Now [BCE92, theorem 13]

states that a sufficient condition for safeness is that the dependency
degree is greater than or equal to the semantic delay.

• In our framework, the behavior is explained as follows: by e.g.

assigning6 m weight 1 and n weight 2 condition 8.1.1 tells us that
it is safe7 to fold c3 against c1, i.e. to do the replacement indicated

by (8.5). On the other hand, the equivalence (8.6) represents two
unfolding steps (first m is unfolded and then n), and now it is not

possible to assign weights in a way such that condition 8.1.1 is
satisfied.

Actually, example 5 in [BCE92] shows that often their condition amounts

to the condition given in [Sek91] (and thus to our condition 8.1.1).

8.3 Fundamental concepts

We now embark on exhibiting the theory, an outline of which was pre-
sented in section 8.1. The material is highly technical, but contains no

“deep” or surprising results. Some proofs (especially at the end of this
chapter) are rather sketchy, if full proofs were to be given many more

pages would be needed. . .
6It would not suffice to assign m weight 0 and n weight 1, as then the (unique path in the)

U-mirror corresponding to the unchanged clause c1 will have weight 0.
7Now the (unique paths in the) U-mirrors corresponding to c1 and c′3 will have weight 1; as

c3 has weight 2 this reflects that evaluation has been “slowed down”.

200

8.3.1 Basic configurations

The intuition behind the main definitions in this section was presented

in section 8.1.3.
Assume a finite universe of predicate symbols U .

Definition 8.3.1 A goal sequence is a pair (J,H), where J is a totally

ordered set and where H is a mapping from J into U . ✷

Often we drop J and just write H. j < j′ models that H(j) is “to the

left” of H(j′).

Definition 8.3.2 A basic configuration (over a set K) is a quadruple
(J,H,K,Q) where (J,H) is a goal sequence and where Q is a mapping

which to each k ∈ K assigns a member of P(
∏

j∈J D) (for simplicity, we

assume that all predicates have arity 1).
A basic configuration is failure if Q(k) = ∅ for all k ∈ K; and is empty

if J = ∅. ✷

Definition 8.3.3 Given goal sequence (J,H), we define the canonical

basic configuration over (J,H) as follows: Ca(J,H) = (J,H,
∏

j∈J D, , Q)

where Q(Cd) = {Cd}. ✷

Specializations

Definition 8.3.4 Given basic configurations B and B′, with
B = (J,H,K,Q) and B′ = (J,H,K ′, Q′). A specialization from B to B′
8 is a mapping s from K to P(K ′) such that for all k ∈ K

Q(k) =
⋃

k′∈s(k)

Q′(k′)

We say that B = Is(B′). ✷

Fact 8.3.5 Given basic configuration B = (J,H,K,Q). Now there exists
one and only one specialization s from B to Ca(J,H). ✷

Proof: s will be a specialization iff

Q(k) =
⋃

Cd∈s(k)

{Cd} = s(k)

✷

8In contrast to the functional model, this now is to be interpreted as saying that it is B′

which is “more general” than B.

201

Operators on configurations and specializations

Definition 8.3.6 If J1 and J2 are two ordered sets (ordered by <1 and

<2), we define J = J1&J2 (ordered by <) by letting J be the disjoint union
of J1 and J2; by letting in1(j) < in1(j

′) iff j <1 j′ and in2(j) < in2(j
′) iff

j <2 j
′; and by letting in1(j) < in2(j

′) for all j ∈ J1, j
′ ∈ J2. ✷

Definition 8.3.7 Let (J1, H1) and (J2, H2) be two goal sequences. We

define (J1, H1)&(J2, H2) (= (J,H)) as follows: J = J1&J2; H(in1(j)) =
H1(j1) and H(in2(j)) = H2(j). ✷

Definition 8.3.8 Let B1 = (J1, H1,K1, Q1) and B2 = (J2, H2,K2, Q2) be

basic configurations. Then we define B1&B2 = (J,H,K,Q) as follows:

• (J,H) = (J1, H1)&(J2, H2).

• K = K1 ×K2

• Q(k1, k2) = {Cd1 × Cd2|Cd1 ∈ Q1(k1), Cd2 ∈ Q2(k2)} where

(Cd1 × Cd2)(in1(j)) = Cd1(j), (Cd1 × Cd2)(in2(j)) = Cd2(j)

✷

Fact 8.3.9 B1&B2 is failure iff B1 is failure or B2 is failure. ✷

Definition 8.3.10 Given specializations s1 from B1 to B′1 and s2 from B2

to B′2. Let B1 = (J1, H1,K1, Q1), B2 = (J2, H2,K2, Q2), B
′
1 = (J1, H1,K

′
1, Q

′
1)

and B′2 = (J2, H2,K
′
2, Q

′
2). Then define s = s1&s2, a specialization from

B1&B2 to B′1&B′2, by

(s1&s2)(k1, k2) = {(k′1, k′2)|k′1 ∈ s1(k1), k
′
2 ∈ s2(k2)}

✷

We have to check that this actually is a specialization: but with B1&B2

= (J,H,K,Q) and B′1&B′2 = (J,H,K ′, Q′) we have

Q(k1, k2) = {Cd1 × Cd2|Cd1 ∈ Q1(k1), Cd2 ∈ Q2(k2)}
= {Cd1 × Cd2|∃k′1 ∈ s1(k1), ∃k′2 ∈ s2(k2) : Cd1 ∈ Q′1(k

′
1),

Cd2 ∈ Q′2(k
′
2)}

= {Cd|∃k′1 ∈ s1(k1), ∃k′2 ∈ s2(k2) : Cd ∈ Q′(k′1, k
′
2)}

= {Cd|∃k′ ∈ s(k1, k2) : Cd ∈ Q′(k′)}
=

⋃

k′∈s(k1,k2)

Q′(k′)

202

Definition 8.3.11 Given specialization s from B to B′, and specializa-

tion s′ from B′ to B′′, we define s⋆s′, a specialization from B to B′′, by
(here B = (J,H,K,Q), B′ = (J,H,K ′, Q′), B′′ = (J,H,K ′′, Q′′))

(s⋆s′)(k) =
⋃

k′∈s(k)

s′(k′)

We have to check that this actually is a specialization:

Q(k) =
⋃

k′∈s(k)

Q′(k′) =
⋃

k′∈s(k)

⋃

k′′∈s′(k′)
Q′′(k′′) =

⋃

k′′∈(s⋆s′)(k)

Q′′(k′′)

✷

Definition 8.3.12 Given basic configuration B = (J,H,K,Q) we define

idB, a specialization from B to B, by

idB(k) = {k}
✷

Algebraic identities

When writing “=”, we always mean “modulo isomorphism”. It should

be obvious what it means for two basic configurations to be isomorphic.

Fact 8.3.13 By letting the objects be basic configurations and by letting
the morphisms be specializations, we obtain a category. That is, ⋆ is

associative and idB is a neutral element for all B.
Moreover, & is a functor in this category – i.e. idB1

&idB2
= id

B1&B2

,

and (s1⋆s
′
1)&(s2⋆s

′
2) = (s1&s2)⋆(s′1&s′2).

Finally, & is associative and CaH1
&CaH2

= Ca
H1&H2

. ✷

Proof: The only nontrivial part is the relation between & and ⋆:

(k′′1 , k
′′
2) ∈ ((s1⋆s

′
1)&(s2⋆s

′
2))(k1, k2)

⇔ k′′1 ∈ (s1⋆s
′
1)(k1), k

′′
2 ∈ (s2⋆s

′
2)(k2)

⇔ ∃k′1, k′2 : k′1 ∈ s1(k1), k
′′
1 ∈ s′1(k

′
1), k

′
2 ∈ s2(k2), k

′′
2 ∈ s′2(k

′
2)

⇔ ∃(k′1, k′2) : (k′1, k
′
2) ∈ (s1&s2)(k1, k2), (k

′′
1 , k

′′
2) ∈ (s′1&s′2)(k

′
1, k
′
2)

⇔ (k′′1 , k
′′
2) ∈ ((s1&s2)⋆(s′1&s′2))(k1, k2)

✷

203

8.3.2 U-mirrors

The intuition behind U-mirrors was presented in section 8.1.1. For a

formal definition, we need some assumptions:

• let a function OI which for each G ∈ U returns a non-empty and
finite index set OI(G) be given;

• let a function AI which for each G ∈ U and each i ∈ OI(G) returns

a finite index set AI(G), equipped with a total order <, be given;

• let a function P which for each G ∈ U , i ∈ OI(G) and j ∈ AI(G, i)
returns P (G, i, j) ∈ U be given;

• let a function W be given, which for each G ∈ U , i ∈ OI(G) and

j ∈ AI(G, i) returns a non-negative integer W (G, i, j), and for each
G ∈ U , i ∈ OI(G) with AI(G, i) = ∅ returns a non-negative integer

W (G, i).

A source program will in a natural way give rise to functions OI, AI and P
– returning to example 8.0.1, there e.g. OI(f) = {1, 2} (or any two-element

set); OI(g) = {1} (or any one-element set), AI(f, 1) = ∅, AI(g) = {1, 2}
with 1 < 2, P (g, 1, 1) = P (g, 1, 2) = f. On the other hand, the weight
function W (cf. section 8.1.2) can be chosen arbitrarily (but with some

care, if one wants to prove total correctness of a given transformation –
however, if AI(G, i) = ∅ the value of W (G, i) can be chosen arbitrarily

large without risk).

U-forests

Definition 8.3.14 A U-forest from goal sequence (J,H) to goal sequence

(J ′, H ′) is a J-indexed family of trees where

1. Nodes are labeled by a goal label G, G ∈ U . Some nodes are also
equipped with an or-direction label i with i ∈ OI(G), meaning that

they have been unfolded. Accordingly all nodes not being leaves,
and possibly also some leaves, have an or-direction label. Leaves

having an or-direction label (corresponding to nodes being unfolded
into ✷) also have a weight label w, with w = W (G, i).

2. Arcs are labeled by an and-direction label j and a weight label w.

Distinct arcs going from the same node are labeled by distinct and-
direction labels.

204

3. For all j ∈ J , the root of the j’th tree has goal label H(j).

4. Let N be a node which has an or-direction label i, and which has
goal label G. Then j will be the and-direction label of an arc going

from N iff j ∈ AI(G, i). The arcs from N inherit the ordering of
AI(G, i).

5. Let a be an arc from a node N , with goal label G and or-direction

label i, to N ′. With j the and-direction label and w the weight
label of a, the goal label of N ′ is P (G, i, j) and w = W (G, i, j).

6. There is a total ordering among the leaves – and thus also among the
paths, where a path starts at a root and ends at a leaf – determined

in the “natural way” by the ordering on J and the ordering on the
arcs leaving each node.

7. The sequence of leaves not having an or-direction label, together

with their goal labels, is isomorphic to (J ′, H ′).

• A path ending in a leaf not having an or-direction label is termed
working.

• A U-forest is working iff all paths are working.

• The weight of a path p, W (p), is the sum of the weight labels
encountered when walking along p.

• The weight of a U-forest f , W (f), is the sum of the weight labels
in f .

✷

A path being working just means that it does not represent an unfolding

into ✷.
Written more formally, a working path p in a U-forest from (J,H) to

(J ′, H ′) is a sequence of the form

jG0(i1, j1, w1)G1 . . . (in, jn, wn)j′Gn(n ≥ 0)

where j ∈ J , G0 = H(j), j′ ∈ J ′, Gn = H ′(j′), Gk = P (Gk−1, ik, jk) and
wk = W (Gk−1, ik, jk) for k = 1 . . . n.

A non-working path in a U-forest from (J,H) to (J ′, H ′) is a sequence
of the form

jG0(i1, j1, w1)G1 . . . (in, jn, wn)Gniw(n ≥ 0)

205

where j ∈ J , G0 = H(j), AI(Gn, i) = ∅, w = W (Gn, i), Gk = P (Gk−1, ik, jk)

and wk = W (Gk−1, ik, jk) for k = 1 . . . n.
In the first case W (p) =

∑n
k=1 wk; in the second case W (p) =

∑n
k=1 wk+

w.

Definition 8.3.15 If p is a working path in a U-forest from (J,H) to

(J ′, H ′) of form jGqj′G′, and p′ is a path in a U-forest from (J ′, H ′) to
(J ′′, H ′′) of form j′G′q′, then we define p⋆p′ = jGqG′q′. ✷

Definition 8.3.16 Given U-forest f from (J,H) to (J ′, H ′) and U-forest

f ′ from (J ′, H ′) to (J ′′, H ′′). We can now define f⋆f ′, a U-forest from
(J,H) to (J ′′, H ′′), by “gluing” the two forests together in the obvious

way. ✷

Observation 8.3.17 Given a path p′′ in f⋆f ′. Two possibilities:

• p′′ is a non-working path in f . Then p′′ will be non-working in f⋆f ′

as well.

• There exists working path p in f and path p′ in f ′ such that p′′ =

p⋆p′. p′′ will be working iff p′ is. These p and p′ are unique.

Conversely, if p′ is a path in f ′ there exists exactly one (working) path
p in f such that p⋆p′ forms a path in f⋆f ′. If p is a working path in f ,

there exists at least one path p′ in f ′ such that p⋆p′ forms a path in f⋆f ′.
✷

Definition 8.3.18 Given goal sequence (J,H). id(J,H) is now defined as
the U-forest from (J,H) to (J,H), where all paths are of the form jG.

✷

Definition 8.3.19 Given U-forest f1 from H1 to H ′1 and U-forest f2 from
H2 to H ′2. Now define f1&f2, a U-forest from H1&H2 to H ′1&H ′2, in the

obvious way – i.e. the paths in f1&f2 will be the “disjoint union” of the
paths in f1 and the paths in f2. ✷

Fact 8.3.20 By letting the objects be goal sequences and the morphisms

be U-forests, one gets a category (with ⋆ as composition and id as iden-
tities). & is a functor in this category, and & is associative. ✷

Definition 8.3.21 Given a U-forest f1 from H to H1, and a U-forest f2

from H to H2. We say that (f ′1, f
′
2, H

′) is a completion of (f1, f2) if f ′1 is a

U-forest from H1 to H ′, f ′2 is a U-forest from H2 to H ′, and f1⋆f
′
1 = f2⋆f

′
2.

✷

206

Pushouts

Observation 8.3.22 Given a U-forest f1 from H to H1, and a U-forest

f2 from H to H2. Suppose (f1, f2) has a completion. Then there exists
a completion (f ′1, f

′
2, H

′) such that for all completions (f ′′1 , f
′′
2 , H

′′) there

exists a U-forest f from H ′ to H ′′ with f ′1⋆f = f ′′1 , f ′2⋆f = f ′′2 . Conse-
quently, this completion is unique – we term (f ′1, f

′
2, H

′) the pushout of

(f1, f2).
Moreover, if f1 is working then f ′2 will be working. ✷

Fact 8.3.23 Taking pushouts is commutative in the following sense: given

(f1, f
′
1) and (f2, f

′
2), such that f ′1 and f2 are U-forests to the same goal

sequence. Suppose (f1, f
′
1) has pushout (f3, f

′
3), and suppose (f2⋆f

′
3, f

′
2)

has pushout (f4, f
′
4). Now the situation is as in the left part of figure 8.4.

Then (f2, f
′
2) will have a pushout, to be written (f5, f

′
5); and also

(f1, f
′
1⋆f5) will have a pushout, to be written (f6, f

′
6) – as depicted in the

right part of figure 8.4. Moreover,

f3⋆f4 = f6, f
′
5⋆f

′
6 = f ′4

✷

Proof: Standard categorical reasoning is applied: As f2⋆f
′
3⋆f4 = f ′2⋆f

′
4

we see that (f2, f
′
2) in fact has a pushout (f5, f

′
5), and there exists unique

f such that f5⋆f = f ′3⋆f4, f
′
5⋆f = f ′4. Now

f1⋆f3⋆f4 = f ′1⋆f
′
3⋆f4 = f ′1⋆f5⋆f

which shows that (f1, f
′
1⋆f5) has a pushout (f6, f

′
6), and there exists f ′

such that f6⋆f
′ = f3⋆f4, f

′
6⋆f

′ = f .
Also we have f ′5⋆f

′
6⋆f

′ = f ′5⋆f = f ′4. For reasons of symmetry (f6

plays the same role as f ′4, f
′
5 plays the same role as f3 and f ′6 plays the

same role as f4) we can find f ′′ such that f ′4⋆f
′′ = f ′5⋆f

′
6, f3⋆f4⋆f

′′ = f6.

From f6 = f3⋆f4⋆f
′′ = f6⋆f

′⋆f ′′ we conclude f ′ = id – hence the
claim. ✷

U-mirrors

Definition 8.3.24 A U-mirrorm from goal sequence H to goal sequence

H ′ is a triple (f, f ′, H ′′)9 where f is a U-forest from H to H ′′; and where

9We often just write (f, f ′) and omit H ′′.

207

�
�

��

❅
❅
❅❅

�
�
��

❅
❅
❅❅

❅
❅
❅❅

�
�
��
❅
❅
❅❅

�
�
�
�

�
�
��

�
�
��

❅
❅
❅❅

�
�

��

❅
❅
❅❅

❅
❅
❅❅

�
�

��

❅
❅
❅
❅
❅
❅
❅❅

�
�
��

f1
f ′1 f2

f ′2

f3
f ′3

f4

f ′4

f1

f ′1 f2

f ′2

f5 f ′5
f6

f ′6

Figure 8.4: Pushout commutes

f ′ is a U-forest from H ′ to H ′′. We require f ′ to be working (as we do
not allow folding using a rule of form g ←✷).

• One can in the natural way define the paths of a U-mirror. A path
p′′ is either a non-working path in f or of the form (p, p′) where p

is a working path in f of form qj′′G′′ and p′ a (working) path in f ′

of form q′j′′G′′ – we say p and p′ are connected. Paths of the former

kind are termed non-working; paths of the latter kind are termed
working.

• We say that m is working iff all paths are working – i.e. iff f is
working.

• The weight of a non-working path p, W (p), is the weight of p in
f ; the weight of a working path (p, p′), W (p, p′), is the difference

between the weight of p in f and the weight of p′ in f ′.

• The weight of the U-mirror, W (m), is W (f)−W (f ′).

✷

Observe that given working path p in f there exists exactly one path p′ in
f ′ connected to p; and given (working) path p′ in f ′ there exists exactly
one path p in f connected to p′. Also, there will exist a working path in

m iff H ′ is not empty.
We will not distinguish between a U-forest f from H to H ′ and the

U-mirror (f, idH ′, H ′).

Definition 8.3.25 Let m = (f, f ′, H ′′) be a U-mirror from H to H ′, and
suppose m is working (i.e. f is working). Then we can define R(m), a

(working) U-mirror from H ′ to H, by R(m) = (f ′, f,H ′′). ✷

208

Definition 8.3.26 Let m1 = (f1, f
′
1, H

′′
1) be a U-mirror from H1 to H ′1,

and let m2 = (f2, f
′
2, H

′′
2) be a U-mirror from H2 to H ′2. Now we can

define m1&m2, a U-mirror from H1&H2 to H ′1&H ′2, by letting

m1&m2 = (f1&f2, f
′
1&f ′2, H

′′
1 &H ′′2)

✷

Definition 8.3.27 Given goal sequence H. Then we can define idH as

(idH , idH , H). ✷

Definition 8.3.28 Given a U-mirror m1 = (f11, f21, H
′
1) from H1 to H2,

and given a U-mirror m2 = (f22, f32, H
′
2) from H2 to H3.

First suppose the pushout of (f21, f22) exists. Let it be (f ′1, f
′
2, H

′′).
Then

m1⋆m2 = (f11⋆f
′
1, f32⋆f

′
2, H

′′)

(This is a well-defined U-mirror: m1 is a U-mirror, so f21 is working. By

observation 8.3.22, f ′2 is working. As m2 is a U-mirror, f32 is working.
Hence, f32⋆f

′
2 is working.)

If the pushout does not exist, m1⋆m2 =⊥ (i.e. undefined). ✷

Lemma 8.3.29 Suppose m1⋆m2 �=⊥. Suppose (p, p′) is a path in m1⋆m2.
Then there exists paths (p1, p

′
1) in m1, (p2, p

′
2) in m2, and paths p′′, p′′′

such that p = p1⋆p
′′, p′ = p′2⋆p

′′′, and p′1⋆p
′′ = p2⋆p

′′′. ✷

Proof: Let m1 = (f1, f
′
1, (J

′
1, H

′
1)) be a U-mirror from (J1, H1) to

(J2, H2), and let m2 = (f2, f
′
2, (J

′
2, H

′
2)) be a U-mirror from (J2, H2) to

(J3, H3). Let (f ′′, f ′′′, (J ′′, H ′′)) be the pushout of (f ′1, f2). Then

m1⋆m2 = (f1⋆f
′′, f ′2⋆f

′′′)

We have that p is a working path in f1⋆f
′′, and p′ is a (working) path in

f ′2⋆f
′′′. There thus exist working paths p1 in f1, p′′ in f ′′, p′2 in f ′2 and

p′′′ in f ′′′ such that p = p1⋆p
′′, p′ = p′2⋆p

′′′. Now let p2 in f2 and p′1 in f ′1
be the unique paths connected to p′2 and p1 respectively. As there exists
j′1 ∈ J ′1 such that p1 and p′1 both end with j′1H

′
1(j
′
1), p

′
1⋆p
′′ will be a path in

f ′1⋆f
′′. Similarly, p2⋆p

′′′ will be a path in f2⋆f
′′′. Since f ′1⋆f

′′ = f2⋆f
′′′, and

since p2⋆p
′′′ ends with the same element in J ′′ as p′′′ does as p′ does as p

does as p′′ does as p′1⋆p
′′ does, we conclude that actually p′1⋆p

′′ = p2⋆p
′′′. ✷

209

Fact 8.3.30 1. Operating on U-mirrors, ⋆ is associative 10 with id as
neutral element.

2. & is a functor; i.e. (m1⋆m
′
1)&(m2⋆m

′
2) = (m1&m2)⋆(m′1&m′2); and

idH&idH ′ = id
H&H ′

. Also, & is associative.

3. The property of being working is closed under all operations in

question.

4. Given working f from H to H ′. Considered as a U-mirror,R(f)⋆f =

idH ′.
✷

Proof: First for the last claim: we must show that (idH ′, f)⋆(f, idH ′) =

idH ′. Now the pushout of (f, f) is (idH ′, idH ′), hence the claim follows.
That id is neutral element can be seen as follows: Let m = (f, f ′, H ′′)

be a U-mirror from H to H ′. The pushout of (f ′, idH ′) clearly is (idH ′′, f ′, H ′′).
So

m⋆idH ′ = (f⋆idH ′′, idH ′⋆f ′, H ′′) = (f, f ′, H ′′) = m

That id is left neutral element is seen similarly.

Next for the associativity: let m1 = (f1, f
′
1), m2 = (f2, f

′
2), m3 =

(f3, f
′
3). Consider figure 8.5, where the relevant pushouts have been drawn

(assuming they exist). Then

(m1⋆m2)⋆m3 = (f1⋆f4⋆f5, f
′
3⋆f

′
6)

m1⋆(m2⋆m3) = (f1⋆f6, f
′
3⋆f

′
4⋆f

′
5)

Now we can apply fact 8.3.23 to see that (m1⋆m2)⋆m3 will be defined iff

m1⋆(m2⋆m3) is, and then they will be equal.
The remaining claims are trivial. ✷

8.3.3 Properties of U-mirrors

Definition 8.3.31 Given n, we say that a U-mirror m satisfies F(n) iff
for all working paths p we have W (p) ≥ n. ✷

Lemma 8.3.32 If m1 satisfies F(n1), and m2 satisfies F(n2), then m1⋆m2

– if defined – satisfies F(n1 + n2). ✷

10Equality, in the presence of ⊥, means that either both sides are ⊥ or both sides are �=⊥ and
equal.

210

❅
❅
❅❅

�
�

��

❅
❅
❅❅

�
�
��

❅
❅
❅❅

�
�
��

❅
❅
❅❅

�
�
��
❅
❅
❅❅

�
�

�
�
�
�

��

❅
❅
❅❅

�
�
��

❅
❅
❅❅

�
�

��

❅
❅
❅❅

�
�
��

❅
❅
❅❅

�
�
��

❅
❅
❅
❅
❅
❅
❅❅

�
�
��

f1
f ′1 f2

f ′2
f3

f ′3
f1

f ′1
f2

f ′2
f3

f ′3

f4

f5

f ′6
f6

f ′4

f ′5

Figure 8.5: Associativity of ⋆ on U-mirrors

Proof: Let m1 = (f1, f
′
1, H

′
1) from H1 to H2; and let m2 = (f2, f

′
2, H

′
2)

from H2 to H3.

Let (p, p′) be a working path in m1⋆m2. By lemma 8.3.29, there
exists (p1, p

′
1) in m1, (p2, p

′
2) in m2 and paths p′′, p′′′ such that p = p1⋆p

′′,
p′ = p′2⋆p

′′′, and p′1⋆p
′′ = p2⋆p

′′′. Now, by applying the assumption, we
have

W (p, p′) = W (p)−W (p′) = W (p1) + W (p′′)−W (p′2)−W (p′′′)

≥ W (p′1) + n1 + W (p′′)−W (p2) + n2 −W (p′′′)

= W (p′1⋆p
′′)−W (p2⋆p

′′′) + n1 + n2

= n1 + n2

✷

Definition 8.3.33 Given n, we say that a U-mirror m satisfies A(n) iff
W (m) ≥ n. ✷

Lemma 8.3.34 If m1 satisfiesA(n1), and m2 satisfiesA(n2), then m1⋆m2

– if defined – satisfies A(n1 + n2). ✷

Proof: Let m1 = (f1, f
′
1, H

′
1) from H1 to H2; and let m2 = (f2, f

′
2, H

′
2)

from H2 to H3. Let (f ′′, f ′′′) be the pushout of (f ′1, f2). Now

W (m1⋆m2) = W (f1⋆f
′′)−W (f ′2⋆f

′′′)

= W (f1) + W (f ′′)−W (f ′2)−W (f ′′′)

≥ W (f ′1) + n1 + W (f ′′)−W (f2) + n2 −W (f ′′′)

= W (f ′1⋆f
′′)−W (f2⋆f

′′′) + n1 + n2

= n1 + n2

✷

211

Definition 8.3.35 Given n, we say that a U-mirror m satisfies L(n) iff

there exists a path in m, and the leftmost path has weight ≥ n. ✷

Definition 8.3.36 Given a U-mirror m, we let

• E(m) denote the number of non-working paths to the left, i.e.
E(m) ≥ n iff the n leftmost paths in m are non-working.

• L(m) denote the weight of the leftmost working path (if no such
exists, 0).

Then we can define an ordering ≺ on the set of U-mirrors by letting
m1 ≺ m2 iff E(m1) < E(m2) or E(m1) = E(m2) and L(m1) < L(m2). ✷

Lemma 8.3.37 Suppose m2 satisfies L(1), and m = m1⋆m2 is defined.
Then m1 ≺ m. ✷

Proof: First some notation: we say that a path is left-directed if the

following holds for all its arcs: let the arc have and-direction label j and
go from a node with goal label G and or-direction label i. Then j is the

least element in AI(G, i).
Let m1 = (f1, f

′
1), m2 = (f2, f

′
2). Let (f ′′, f ′′′) be the pushout of

(f ′1, f2). Now m = (f1⋆f
′′, f ′2⋆f

′′′). The E(m1) leftmost paths of m1 will
be non-working; so the E(m1) leftmost paths of f1 will be non-working;

so the E(m1) leftmost paths of f1⋆f
′′ will be non-working; so the E(m1)

leftmost paths of m will be non-working. This shows that E(m1) ≤ E(m).

Now consider the leftmost path in m2. Two possibilities:

• It is of form p2 with p2 non-working in f2. As f2⋆f
′′′ = f ′1⋆f

′′, there

will exist p′1 in f ′1 and left-directed p′′ in f ′′ such that p2 = p′1⋆p
′′,

and such that p′1 is the leftmost path in f ′1. Let p′1 be connected

to p1; p1 will be the leftmost working path in f1. Now p1⋆p
′′ will

be non-working in f1⋆f
′′ and hence also in m. This shows that

E(m1) < E(m) and hence m1 ≺ m.

• It is of form (p2, p
′
2) with p2 working in f2. As f2⋆f

′′′ = f ′1⋆f
′′, there

will exist p′1 in f ′1, left-directed p′′ in f ′′ and left-directed p′′′ in f ′′′

such that p2⋆p
′′′ = p′1⋆p

′′, and such that p′1 is the leftmost path in

f ′1. Let p′1 be connected to p1; p1 will be the leftmost working path

212

in f1. Now (p1⋆p
′′, p′2⋆p

′′′) will belong to m, and be the leftmost

working path in m. Moreover,

L(m) = W (p1⋆p
′′)−W (p′2⋆p

′′′)

= W (p1) + W (p′′)−W (p′2)−W (p′′′)

> W (p1) + W (p′′)−W (p2)−W (p′′′)

= W (p1) + W (p′′)−W (p2⋆p
′′′)

= W (p1) + W (p′′)−W (p′1⋆p
′′)

= W (p1)−W (p′1)

= L(m1)

This shows m1 ≺ m.

✷

8.3.4 Transitions

Definition 8.3.38 A transition t from basic configuration B = (J,H,K,Q)
to B′ = (J ′, H ′,K,Q′) (notice the K-sets are identical) is a set of U-

mirrors from (J,H) to (J ′, H ′) which is either empty or a singleton.11 We
will demand that (Q,Q′) is a non-increasing pair, i.e. that for all k ∈ K,

Q(k) = ∅ ⇒ Q′(k) = ∅ (so it will not be possible to make a transition
from a failure basic configuration into a non-failure, cf. the discussion in

section 8.1.4, (1)).
We say that t is stable iff also (Q′, Q) is a non-increasing pair, i.e.

Q(k) = ∅ ⇔ Q′(k) = ∅. ✷

Definition 8.3.39 Let t be a transition from B to B′, and let t′ be a

transition from B′ to B′′. Now define t⋆t′, a transition from B to B′′, by

m′′ ∈ t⋆t′ ⇔ ∃m ∈ t,m′ ∈ t′ : m′′ = m⋆m′

Clearly (B,B′′) is a non-increasing pair, and t⋆t′ will be stable if t and t′

are stable. ✷

Definition 8.3.40 Let t1 be a transition from B1 to B′1, and let t2 be a

transition from B2 to B′2. Now define t1&t2, a transition from B1&B2 to
B′1&B′2, by

m ∈ t1&t2 ⇔ ∃m1 ∈ t1,m2 ∈ t2 : m = m1&m2

11We will often identify t with its element.

213

Clearly non-increasingness will be preserved, and t1&t2 will be stable if
t1 and t2 are stable. ✷

Definition 8.3.41 Given B = (J,H,K,Q), define idB, a transition from
B to B, by letting idB be the singleton set containing id(J,H). This is

clearly stable. ✷

Definition 8.3.42 Given a transition t from B to B′. Let s be a spe-

cialization from Is(B) to B. Now we define Is(t), a transition from Is(B)
to Is(B′), by letting m be in Is(t) iff m is in t. Clearly (Is(B), Is(B′)) is

a non-increasing pair, and Is(t) will be stable if t is. ✷

Definition 8.3.43 Given a transition t from B to B′. Suppose t is stable,
and suppose it for all m ∈ t holds that m is working. Then we say that

t is reversible and we can define R(t), a transition from B′ to B, by
stipulating that m is in R(t) iff R(m) is in t. Clearly R(t) is reversible.

✷

Fact 8.3.44 By letting the objects be basic configurations and by letting

the morphisms be transitions, we obtain a category. & is a functor in this
category. ✷

8.4 Two level transition system

This section formalizes the concepts from section 8.0.3. Further, we prove

• that unfolding at level 1 satisfies a restricted form of the Church-

Rosser property (lemma 8.4.3); restricted since it (due to only one
branch of the search tree being present) may happen that two un-

foldings choose different branches, in which case we cannot hope

for confluence –

• that an arbitrary sequence of unfolding/foldings may be replaced by

a sequence of unfoldings followed by a sequence of foldings (lemma
8.4.15).

214

8.4.1 The level 0 rules

We now indicate how a source program gives rise to a set of level 0 rules:

assume that for all G ∈ U and i ∈ OI(G) there exists a transition t(G, i)
from CaG to c(G, i), where c(G, i) takes the form

(AI(G, i), λj.P (G, i, j),D, Q)

and where t(G, i) contains the U-mirror (U-forest) determined by the

paths

{G(i, j,)G′|j ∈ AI(G, i)}
where G′ = P (G, i, j). However, if AI(G, i) = ∅ the U-mirror will be
determined by the singleton path Gi. Clearly, this in non-increasing.

Now

R0 = {t(G, i)|G ∈ U, i ∈ OI(G)} (8.7)

In example 8.0.1, e.g. c(g, 1) = ([f,f],D ×D, Q) with

Q(d1, d2) = {{((d1, d), (d, d2))}|d ∈ D}

8.4.2 Unfolding at level 1

We now define what it means for a transition t from B to B′ to be a

level 1 unfolding step, to be written 1 ⊢u t: B ⇒ B′12 (here H1 and H2

are goal sequences, and s is a specialization):

t(G, i) ∈ R0

1 ⊢u Is(idCaH1

&t(G, i)&idCaH2

)
(8.8)

Next we define what it means for a transition t from B to B′ to be a level

1 unfolding, to be written 1 ⊢∗u t: B ⇒ B′ 13:

1 ⊢u t: B ⇒ B′

1 ⊢∗u t: B ⇒ B′
(8.9)

1 ⊢∗u idB: B ⇒ B
(8.10)

1 ⊢∗u t: B ⇒ B′, 1 ⊢∗u t′: B′ ⇒ B′′

1 ⊢∗u t⋆t′: B ⇒ B′′
(8.11)

If 1 ⊢∗u t, we can write t = t1⋆ . . . ⋆tn (n ≥ 0) with 1 ⊢u ti for i ∈ {1 . . . n}.
The least n which can be used is called the length of t.

12When we are not interested in the configurations, we may simply write 1 ⊢u t.
13When we are not interested in the configurations, we may simply write 1 ⊢∗u t.

215

Fact 8.4.1 1. If 1 ⊢u t, then 1 ⊢u t&idB and 1 ⊢u idB&t for basic con-
figuration B.

2. If 1 ⊢u t, then 1 ⊢u Is(t) for specialization s.

3. If 1 ⊢∗u t, then 1 ⊢∗u t&idB and 1 ⊢∗u idB&t for basic configuration

B.

4. If 1 ⊢∗u t1 and 1 ⊢∗u t2, then 1 ⊢∗u t1&t2.

5. If 1 ⊢∗u t, then 1 ⊢∗u Is(t) for specialization s.

6. If 1 ⊢∗u t, then t is a singleton – i.e. of form {m}.
✷

Proof: For (1), notice that fact 8.3.5 tells us that we can write B =

Is′(CaH). Then

Is(idCaH1

&t(G, i)&idCaH2

)&idB

= Is(idCaH1

&t(G, i)&idCaH2

)&Is′(idCaH)

= I
s&s′

(idCaH1

&t(G, i)&idCaH2

&idCaH)

= I
s&s′

(idCaH1

&t(G, i)&idCa
H2&H

)

(2) is trivial. (3) follows by induction in the derivation tree for 1 ⊢∗u t:

the case where rule (8.9) has been applied follows from what has just
been shown; the case where rule (8.10) has been applied is trivial; and

the case where rule (8.11) has been applied follows from the calculation

(cf. fact 8.3.44)

(t&idB)⋆(t′&idB) = (t⋆t′)&(idB⋆idB) = (t⋆t′)&idB

(4) follows from what has been just shown and fact 8.3.44:

t1&t2 = (t1⋆id)&(id ⋆t2) = (t1&id)⋆(id &t2)

(5) is a trivial induction in the derivation tree. (6) follows from the fact

that all U-mirrors involved in fact are U-forests, thus ⋆ can never be un-

defined. ✷

216

The diamond lemma

Lemma 8.4.2 Suppose 1 ⊢u t1: B ⇒ B1 and 1 ⊢u t2: B ⇒ B2. Sup-

pose t1 and t2 have a completion (viewed as U-forests). Then there exists
B′, transition t′1 from B1 to B′1 and transition t′2 from B2 to B′2 such that

(t′1, t
′
2) (viewed as a U-forest) is the pushout of (t1, t2). Moreover, one of

two holds:

• B1 = B2 = B′, t1 = t2, t
′
1 = t′2 = idB′.

• 1 ⊢u t′1: B1 ⇒ B′ and 1 ⊢u t′2: B2 ⇒ B′.

✷

Proof: We can assume that the transitions involved are of the following
form:

t1 = Is1
(idCaH11

&t(G1, i1)&idCaH12

)

t2 = Is2
(idCaH21

&t(G2, i2)&idCaH22

)

As t1 and t2 both are transitions from B, we get

Is1
(Ca

H11&G1&H12

) = B = Is2
(Ca

H21&G2&H22

)

From this we infer H11&G1&H12 = H21&G2&H22 and (by fact 8.3.5) that

s1 = s2. Now two possibilities:

• H11 = H21. Then G1 = G2, and H12 = H22. As (t1, t2) has a
completion, i1 = i2. This shows t1 = t2 and B1 = B2. Thus we can

choose t′1 = t′2 = idB1
, and clearly (t′1, t

′
2) is the pushout.

• H11 �= H21. We can wlog. assume that H11 is shorter than H21. Then
there exists H such that H12 = H&G2&H22, H21 = H11&G1&H.

Now define

t′1 = Is1
(idCaH11

&idc(G1,i1)&idCaH&t(G2, i2)&idCaH22

)

t′2 = Is1
(idCaH11

&t(G1, i1)&idCaH&idc(G2,i2)&idCaH22

)

We can easily calculate

t1⋆t
′
1 = Is1

(idCaH11

&t(G1, i1)&idCaH&t(G2, i2)&idCaH22

)

= t2⋆t
′
2

To show that 1 ⊢u t′1, notice that we can write c(G1, i1) on the form

Is′(CaH ′) for some s′,H ′ – similarly we have 1 ⊢u t′2.

Again, viewed as U-forests (t′1, t
′
2) is clearly the pushout.

217

�
�

��
�
�

��

❅
❅
❅❅

❅
❅
❅❅

�
�
��

❅
❅
❅❅

�
�

��

t11

t12

t2

t′2
t′11

t′′2 t′12

Figure 8.6: The Church-Rosser property

✷

The Church-Rosser lemma

Lemma 8.4.3 Suppose 1 ⊢∗u t1: B ⇒ B1 and 1 ⊢∗u t2: B ⇒ B2. Sup-

pose t1 and t2 have a completion, viewed as U-forests. Then there exists
B′ and transitions t′1, t

′
2 such that 1 ⊢∗u t′1: B1 ⇒ B′, 1 ⊢∗u t′2: B2 ⇒ B′,

and such that (t′1, t
′
2) – viewed as U-forests – is the pushout of (t1, t2).

Moreover, the length of t′1 is less than or equal the length of t2, and
the length of t′2 is less than or equal the length of t1. ✷

Proof: Induction in the length of t1 plus the length of t2. If t1 or t2
is the identity the claim is clear. If 1 ⊢u t1 and 1 ⊢u t2, the claim follows

from lemma 8.4.2.
Otherwise, we can wlog. assume that t1 = t11⋆t12 with 1 ⊢∗u t11, 1 ⊢∗u t12.

The situation is as depicted in figure 8.6. By induction, there exists t′2,
t′11 such that 1 ⊢∗u t′11, 1 ⊢∗u t′2 and such that (t′2, t

′
11) is the pushout of

(t11, t2). Moreover, the length of t′2 is less than or equal the length of t2 –
this enables us to use the induction hypothesis once more and arrive at

t′′2, t′12 such that 1 ⊢∗u t′12, 1 ⊢∗u t′′2.
Now we can choose (t′′2, t

′
11⋆t

′
12) as the desired transition pair. That it

actually is the pushout of (t1, t2) follows from fact 8.3.23. ✷

Lemma 8.4.3 shows that given a basic configuration B = (J,H,K,Q)
and an U-forest f from (J,H), it makes sense to define Uf(B) as the basic

configuration B′ such that 1 ⊢∗u f : B ⇒ B′.

218

8.4.3 Evaluation strategies and Looping at level 1

Definition 8.4.4 We say that B loops at level 1 by some strategy if for all

n ≥ 1 there exists a tn and a Bn not failure such that 1 ⊢u tn: Bn−1 ⇒ Bn

(here B0 = B). ✷

Lemma 8.4.5 The following are sufficient conditions for B to loop at
level 1 by some strategy:

1. For all N ≥ 0, there for all n with 1 ≤ n ≤ N exists tn and Bn not
failure such that 1 ⊢u tn: Bn−1 ⇒ Bn (again, B0 = B).

2. For all n ≥ 0, there exists Bn not failure and tn s.t. 1 ⊢∗u tn: B ⇒ Bn,
where tn viewed as a U-forest has n nodes with an or-direction label.

3. For all n ≥ 0, there exists Bn not failure and tn s.t. 1 ⊢∗u tn: B ⇒ Bn,
where tn viewed as a U-forest has weight ≥ n – i.e. satisfies A(n).

✷

Proof: That (1) implies that B loops at level 1 by some strategy is a

consequence of Königs lemma (as there from a given B is a finite number
of level 1 unfolding steps, since OI(G) is finite). That (2) implies (1) is

obvious. That (3) implies (2) is a consequence of the weights being upper
bounded (as U , OI(G) and AI(G, i) are finite sets). ✷

Fair strategy

Definition 8.4.6 We say that t is a fair level 1 unfolding step if t is of
form Is(r1& . . .&rk), k ≥ 1, where r1 . . . rk are level 0 rules.

For a fair level 1 unfolding step t, we clearly have 1 ⊢∗u t. ✷

Definition 8.4.7 We say that B loops at level 1 by a fair strategy if for

all n ≥ 1 there exists a fair level 1 unfolding step tn and a Bn not failure
such that 1 ⊢∗u tn: Bn−1 ⇒ Bn (here B0 = B). ✷

Similar to lemma 8.4.5, we may prove

Lemma 8.4.8 The following are sufficient conditions for B to loop at
level 1 by a fair strategy:

219

1. For all N ≥ 0, there for all n with 1 ≤ n ≤ N exists a fair
level 1 unfolding step tn and Bn not failure nor empty such that

1 ⊢∗u tn: Bn−1 ⇒ Bn (again, B0 = B).

2. For all n ≥ 0, there exists Bn not failure nor empty and tn such

that 1 ⊢∗u tn: B ⇒ Bn, where each working path in tn (viewed as a
U-forest) has length ≥ n.

3. For all n ≥ 0, there exists Bn not failure nor empty and tn such
that 1 ⊢∗u tn: B ⇒ Bn, where tn satisfies F(n).

✷

LR strategy

Definition 8.4.9 We say that t is a LR level 1 unfolding step if t is of
form Is(r&id) with r a level 0 rule.

We say that t is a LR level 1 unfolding if t is of form t1⋆ . . . ⋆tn with
each ti being a LR level 1 unfolding step.

The U-forest corresponding to a LR level 1 unfolding is termed a LR
U-forest. ✷

Definition 8.4.10 We say that B loops at level 1 by a LR strategy if for
all n ≥ 1 there exists a LR level 1 unfolding step tn and a Bn not failure

such that 1 ⊢∗u tn: Bn−1 ⇒ Bn (here B0 = B). ✷

Recall the functions E(m) and L(m) introduced in section 8.3.3.

Lemma 8.4.11 The following are sufficient conditions for B to loop at
level 1 by a LR strategy:

1. For all N ≥ 0, there for all n with 1 ≤ n ≤ N exists a LR level 1

unfolding step tn and Bn not failure such that 1 ⊢u tn: Bn−1 ⇒ Bn

(again, B0 = B).

2. For all n ≥ 0, there exists a transition tn and Bn not failure, with
1 ⊢∗u tn: B ⇒ Bn, such that E(tn) ≥ n.

3. For all n ≥ 0, there exists a transition tn and Bn not failure, with
1 ⊢∗u tn: B ⇒ Bn, such that the length of the leftmost working path

≥ n.

220

4. For all n ≥ 0, there exists a transition tn and Bn not failure, with
1 ⊢∗u tn: B ⇒ Bn, such that L(tn) ≥ n.

✷

Proof: First consider (1); then (2) ⇒ (1); then (3) ⇒ (1) and finally

(4) ⇒ (3). ✷

8.4.4 Folding at level 1

We now define what it means for a transition t from B to B′ to be a level
1 folding step, to be written 1 ⊢f t: B ⇒ B′.

We will assume the existence of a partial function s(G, i) such that
Is(G,i)(t(G, i)) is reversible, and such that Is(G,i)(c(G, i′)) is failure for all

i′ �= i.

t(G, i) ∈ R0, s(G, i) defined

1 ⊢f Is(idCaH1

&R(Is(G,i)(t(G, i)))&idCaH2

)
(8.12)

Next we define what it means for a transition t from B to B′ to be a level

1 folding, to be written 1 ⊢∗f t: B ⇒ B′:

1 ⊢f t: B ⇒ B′

1 ⊢∗f t: B ⇒ B′
(8.13)

1 ⊢∗f idB: B ⇒ B
(8.14)

1 ⊢∗f t: B ⇒ B′, 1 ⊢∗f t′: B′ ⇒ B′′

1 ⊢∗f t⋆t′: B ⇒ B′′
(8.15)

Fact 8.4.12 1. If 1 ⊢f t, then 1 ⊢f t&idB and 1 ⊢f idB&t for basic

configuration B.

2. If 1 ⊢∗f t1 and 1 ⊢∗f t2, then 1 ⊢∗f t1&t2.

3. If 1 ⊢f t (1 ⊢∗f t), then 1 ⊢f Is(t) (1 ⊢∗f Is(t)) for specialization s.

4. If 1 ⊢f t: B ⇒ B′ (or 1 ⊢∗f t: B ⇒ B′), then t is reversible.

5. If 1 ⊢f t: B ⇒ B′ then 1 ⊢u R(t): B′ ⇒ B. If 1 ⊢∗f t: B ⇒ B′)
then 1 ⊢∗u R(t): B′ ⇒ B.

✷

221

Proof: Mostly as in the proof of fact 8.4.1. The last point follows from

R(Is(idCaH1

&R(Is(G,i)(t(G, i)))&idCaH2

))

= Is(idCaH1

&Is(G,i)(t(G, i))&idCaH2

)

= Is(Iid (idCaH1

)&Is(G,i)(t(G, i))&Iid (idCaH2

))

= Is(Iid &s(G,i)&id (idCaH1

&t(G, i)&idCaH2

))

= I
s⋆(id &s(G,i)&id)

(idCaH1

&t(G, i)&idCaH2

)

✷

8.4.5 Unfold/fold at level 1

We now define what it means for a transition t from B to B′ to be a level
1 transition, to be written 1 ⊢∗ t: B ⇒ B′.

1 ⊢u t: B ⇒ B′

1 ⊢∗ t: B ⇒ B′
(8.16)

1 ⊢f t: B ⇒ B′

1 ⊢∗ t: B ⇒ B′
(8.17)

1 ⊢∗ idB: B ⇒ B
(8.18)

1 ⊢∗ t: B ⇒ B′, 1 ⊢∗ t′: B′ ⇒ B′′

1 ⊢∗ t⋆t′: B ⇒ B′′
(8.19)

Fact 8.4.13 1. If 1 ⊢∗ t1 and 1 ⊢∗ t2, then 1 ⊢∗ t1&t2.

2. If 1 ⊢∗ t, then 1 ⊢∗ Is(t) for specialization s.
✷

8.4.6 Fundamental properties of level 1 transitions

The switching lemma

Lemma 8.4.14 Suppose 1 ⊢f t1: B1 ⇒ B, 1 ⊢u t2: B ⇒ B2, with B2

not failure. Then one of two holds:

• B1 = B2, t1⋆t2 = idB1
.

222

• There exists B′, t′1, t
′
2 with 1 ⊢u t′1: B1 ⇒ B′, 1 ⊢f t′2: B′ ⇒ B2 such

that

t1⋆t2 = t′1⋆t
′
2

✷

Proof: This lemma, as well as its proof, is very similar to lemma 8.4.2.

We can assume that the transitions involved are of the following form:

t1 = Is1
(idCaH11

&R(Is(G1,i1)(t(G1, i1)))&idCaH12

)

t2 = Is2
(idCaH21

&t(G2, i2)&idCaH22

)

With s = s1⋆(id &s(G1, i1)&id), we from the fact that t1 is a transition
to B and t2 is a transition from B get

Is(CaH11&G1&H12

) = B = Is2
(Ca

H21&G2&H22

)

From this we infer H11&G1&H12 = H21&G2&H22 and that s = s2. Now

two possibilities:

• H11 = H21. Then G1 = G2, and H12 = H22. Again two possibilities:

– i1 �= i2. Then we have

B2 = Is1
(CaH21

&Is(G1,i1)(c(G1, i2))&CaH22
)

but Is(G1,i1)(c(G1, i2)) is failure by the definition of s(G, i),
hence B2 is failure contradicting our assumption.

– i1 = i2. Then it is obvious that B1 = B2. And

t1⋆t2 = Is(idCaH11

&(R(t(G1, i1))⋆t(G1, i1))&idCaH12

)

= Is(idCaH11

&idc(G1,i1)&idCaH12

)

= idIs(CaH11
&c(G1, i1)&CaH12

) = idB1

where we have used fact 8.3.30,(4).

• H11 �= H21. We can wlog. assume that H11 is shorter than H21. Then

there exists H such that H12 = H&G2&H22, H21 = H11&G1&H.
Now define

t′1 = Is(idCaH11

&idc(G1,i1)&idCaH&t(G2, i2)&idCaH22

)

t′2 = Is1
(idCaH11

&R(Is(G1,i1)(t(G1, i1)))&idCaH&idc(G2,i2)&idCaH22

)

223

We can easily calculate

t′1⋆t
′
2

= Is1
(idCaH11

&R(Is(G1,i1)(t(G1, i1)))&idCaH&t(G2, i2)&idCaH22

)

= t1⋆t2

To show that 1 ⊢u t′1, notice that we can write c(G1, i1) on the form
Is′(CaH ′) for some s′,H ′. To show that 1 ⊢f t′2, apply the same

observation to c(G2, i2).

✷

The normalization lemma

Lemma 8.4.15 Suppose 1 ⊢∗ t: B ⇒ B′, with B′ not failure. Then
there exists B′′, t1 and t2 such that 1 ⊢∗u t1: B ⇒ B′′, 1 ⊢∗f t2: B′′ ⇒ B′,
t1⋆t2 = t.

From transitions being non-increasing we conclude that B′′ is not
failure, and from t1, t2 and t1⋆t2 trivially being �=⊥ we conclude t �=⊥.

Moreover, if B′ is not empty neither is B′′. ✷

Proof: There exists t1,. . . , tn such that t = t1⋆ . . . ⋆tn and such that for
each i ∈ {1 . . . n} either 1 ⊢u ti or 1 ⊢f ti. We will use induction in the

number of times an application of the fold-rule precedes (not necessarily
immediately) an application of the unfold-rule. If this number is zero,

we are through. Otherwise there exists i, 1 ≤ i < n, such that 1 ⊢f ti,
1 ⊢u ti+1. Now apply lemma 8.4.14. Two possibilities:

• ti⋆ti+1 = id . Then

t = t1⋆ . . . ⋆ti−1⋆ti+2⋆ . . . ⋆tn

with a strictly smaller number of “inversions”.

• There exists t′i, t
′
i+1 such that t′i⋆t

′
i+1 = ti⋆ti+1, and such that 1 ⊢u t′i,

1 ⊢f t′i+1. Now

t = t1⋆ . . . ⋆ti−1⋆t
′
i⋆t
′
i+1⋆ti+2⋆ . . . ⋆tn

and again the number of inversions has decreased.

✷

224

8.4.7 Unfolding at level 2

Now assume that we have defined R1, a finite set of rules at level 1, such

that t ∈ R1 implies that 1 ⊢∗ t.
We now define what it means for a transition t from B to B′ to be a

level 2 unfolding step, to be written 2 ⊢ t: B ⇒ B′:

t ∈ R1

2 ⊢ Is(idCaH1

&t&idCaH2

)
(8.20)

Next we define what it means for a transition t from B to B′ to be a level
2 unfolding, to be written 2 ⊢∗ t: B ⇒ B′:

2 ⊢ t: B ⇒ B′

2 ⊢∗ t: B ⇒ B′
(8.21)

2 ⊢∗ idB: B ⇒ B
(8.22)

2 ⊢∗ t: B ⇒ B′, 2 ⊢∗ t′: B′ ⇒ B′′

2 ⊢∗ t⋆t′: B ⇒ B′′
(8.23)

Fact 8.4.16 Suppose 2 ⊢ t or 2 ⊢∗ t. Then 1 ⊢∗ t. ✷

Proof: For 2 ⊢ t, exploit e.g. fact 8.4.13. For 2 ⊢∗ t, a straight forward
induction in the derivation tree. ✷

Definition 8.4.17 We say that B loops at level 2 by some strategy if for
all n ≥ 1 there exists a tn and a Bn not failure such that 2 ⊢ tn: Bn−1 ⇒ Bn

(here B0 = B). ✷

Definition 8.4.18 We say that t is a fair level 2 step if t is of form
Is(r1& . . .&rk), k ≥ 1, where r1 . . . rk are level 1 rules.

For a fair level 2 step t, we clearly have 2 ⊢∗ t. ✷

Definition 8.4.19 We say that B loops at level 2 by a fair strategy if
for all n ≥ 1 there exists a fair level 2 step tn and a Bn not failure such

that 2 ⊢∗ tn: Bn−1 ⇒ Bn (here B0 = B). ✷

Definition 8.4.20 We say that t is a LR level 2 step if t is of form

Is(r&id) with r a level 1 rule. ✷

Definition 8.4.21 We say that B loops at level 2 by a LR strategy if
for all n ≥ 1 there exists a LR level 2 step tn and a Bn not failure such

that 2 ⊢ tn: Bn−1 ⇒ Bn (here B0 = B). ✷

225

8.5 Conditions for termination preservation

We are now in position to prove that condition 8.1.3, condition 8.1.1 and

condition 8.1.2 indeed are sufficient for ensuring total correctness (wrt.
the corresponding evaluation strategy).

Theorem 8.5.1 Assume all rules in R1 satisfy A(1). Then if B loops at
level 2 by some strategy, it also loops at level 1 by some strategy. ✷

Proof: Let, for all n ≥ 1, be given tn and Bn not failure such that
2 ⊢ tn: Bn−1 ⇒ Bn. Define t′n = t1⋆ . . . ⋆tn. Now 2 ⊢∗ t′n: B ⇒ Bn, and

by fact 8.4.16 also 1 ⊢∗ t′n: B ⇒ Bn. By lemma 8.4.15, there exists t′′n, t′′′n
and B′n such that 1 ⊢∗u t′′n: B ⇒ B′n, 1 ⊢∗f t′′′n : B′n ⇒ Bn, t′n = t′′n⋆t

′′′
n and

B′n not failure.
Due to the assumption of the theorem, each ti will satisfy A(1). Then,

by lemma 8.3.34, each t′n will satisfy A(n). But then also t′′n will satisfy
A(n). By lemma 8.4.5, this shows that B loops at level 1 by some strat-

egy. ✷

Theorem 8.5.2 Assume all rules in R1 satisfy F(1). Then if B loops at
level 2 by a fair strategy, it also loops at level 1 by a fair strategy. ✷

Proof: Let, for all n ≥ 1, be given fair level 2 step tn and Bn not fail-
ure nor empty such that 2 ⊢∗ tn: Bn−1 ⇒ Bn. Define t′n = t1⋆ . . . ⋆tn.

Now 2 ⊢∗ t′n: B ⇒ Bn, and by fact 8.4.16 also 1 ⊢∗ t′n: B ⇒ Bn. By
lemma 8.4.15, there exists t′′n, t′′′n and B′n such that 1 ⊢∗u t′′n: B ⇒ B′n,

1 ⊢∗f t′′′n : B′n ⇒ Bn, t′n = t′′n⋆t
′′′
n and B′n not failure nor empty.

Due to the assumption of the theorem, each ti will satisfy F(1). Then,
by lemma 8.3.32, each t′n will satisfy F(n). But then also t′′n will satisfy

F(n). By lemma 8.4.8, this shows that B loops at level 1 by a fair strat-
egy. ✷

Theorem 8.5.3 Assume all rules in R1 satisfy L(1). Then if B loops at

level 2 by a LR strategy, it also loops at level 1 by a LR strategy. ✷

Proof: Let, for all n ≥ 1, be given LR level 2 step tn and Bn

not failure such that 2 ⊢ tn: Bn−1 ⇒ Bn. Define t′n = t1⋆ . . . ⋆tn. Now
2 ⊢∗ t′n: B ⇒ Bn, and by fact 8.4.16 also 1 ⊢∗ t′n: B ⇒ Bn. By lemma

226

8.4.15, there exists t′′n, t′′′n and B′n such that 1 ⊢∗u t′′n: B ⇒ B′n,

1 ⊢∗f t′′′n : B′n ⇒ Bn, t′n = t′′n⋆t
′′′
n and B′n not failure.

Due to the assumption of the theorem, each ti will satisfy L(1). Then,

by lemma 8.3.37, we will have an increasing sequence

t′1 ≺ t′2 ≺ t′3 ≺ . . .

Now two possibilities:

• E(t′n) is not bounded. Then neither E(t′′n) is bounded, so by lemma

8.4.11 B loops at level 1 by a LR strategy.

• E(t′n) is bounded. Then L(t′n) is unbounded, so also L(t′′n) is un-

bounded. Then again lemma 8.4.11 tells us that B loops at level 1
by a LR strategy.

✷

8.6 Working with the full search tree

The development in this section has been motivated in section 8.1.5.

Definition 8.6.1 A configuration C (over K) is a family of basic config-

urations over K, i.e. consists of an index set I and a mapping B which
to each i ∈ I assigns a basic configuration over K. ✷

Two new operators will be defined, + and P():

Definition 8.6.2 Given configurations C1 = (I1, B1) and C2 = (I2, B2),

over the same K. Now we define C1+C2 = (I,B) by letting I = I1+I2

(where + denotes disjoint union); and by letting B(in1(i)) = B1(i),

B(in2(i)) = B2(i). ✷

Definition 8.6.3 Given configuration C = (I,B). Let

I ′ = {i ∈ I|B(i) is not failure}

Now we define P(C) = (I ′, B′) where B′(i′) = B(i′). We say that C is

pruned if C = P(C). ✷

227

& will be extended to configurations such that & distributes over +.
That is, if C = (I,B) and C ′ = (I ′, B′) then C&C ′ = (I × I ′, B′′) where

B′′(i, i′) = B(i)&B′(i′). Notice that this is possible only because con-
figurations are multisets with + as multiset union; if configurations had

been sequences with + as concatenation it would be impossible to make
& left-distributive as well as right-distributive.

I () will be extended to configurations such that

Is(C1+C2) = Is(C1)+Is(C2)

A lot of new identities hold, not to be stated explicitly here – most are
very trivial.

8.6.1 Transitions

Definition 8.6.4 A transition t from C = (I,B) to C ′ = (I ′, B′) now to

each (i, i′) ∈ I × I ′ assigns a set t(i, i′) of U-mirrors from B(i) to B′(i′).
Moreover, we will demand t to be non-increasing: if t(i, i′) is non-empty,

(B(i), B′(i′)) must be a non-increasing pair. ✷

Definition 8.6.5 Given transition t from C = (I,B) to C ′ = (I ′, B′)
and transition t′ from C ′ to C ′′ = (I ′′, B′′). t⋆t′, a transition from C to
C ′′, is now defined as follows:

(t⋆t′)(i, i′′) = {m⋆m′|∃i′ ∈ I ′ : m ∈ t(i, i′),m′ ∈ t(i′, i′′)}
✷

& on transitions is defined in a similar vein:

Definition 8.6.6 Given transition t1 from C1 = (I1, B1) to C ′1 = (I ′1, B
′
1),

and given transition t2 from C2 = (I2, B2) to C ′2 = (I ′2, B
′
2). Then t1&t2,

a transition from C1&C2 to C ′1&C ′2, is defined by

(t1&t2)((i1, i2), (i
′
1, i
′
2)) = {m1&m2|m1 ∈ t1(i1, i

′
1),m2 ∈ t2(i2, i

′
2)}

✷

Definition 8.6.7 Given transition t from C = (I,B) to C ′ = (I ′, B′).
Then Is(t), a transition from Is(C) to Is(C ′), is given by

Is(t)(i, i′) = t(i, i′)

✷

228

Definition 8.6.8 Given configuration C = (I,B), we define idC by

idC(i, i) = {idB(i)}, idC(i, i′) = ∅ for i �= i′

✷

Definition 8.6.9 Given transition t1 from C1 = (I1, B1) to C ′1 = (I ′1, B
′
1),

and given transition t2 from C2 = (I2, B2) to C ′2 = (I ′2, B
′
2) (suppose C1

and C2 configurations over the same K). Then t1+t2, a transition from

C1+C2 to C ′1+C ′2, is defined by

(t1+t2)(in1(i1), in1(i
′
1)) = t1(i1, i

′
1)

(t1+t2)(in2(i2), in2(i
′
2)) = t2(i2, i

′
2)

(t1+t2)(in1(i1), in2(i
′
2)) = ∅

(t1+t2)(in2(i2), in1(i
′
1)) = ∅

✷

Definition 8.6.10 Given transition t from C1 = (I1, B1) to C2 = (I2, B2).
Let P(C1) = (I ′1, B

′
1), P(C2) = (I ′2, B

′
2). Now define P(t), a transition from

P(C1) to P(C2), by

P(t)(i′1, i
′
2) = t(i′1, i

′
2)

✷

Definition 8.6.11 Given transition t from C = (I,B) to C ′ = (I ′, B′),
we say that t is reversible iff the following holds for all (i, i′) with t(i, i′) �=
∅: (B′(i′), B(i)) is a non-increasing pair, and for all m ∈ t(i, i′) m is a
working U-mirror.

If t is reversible we can define R(t), a transition from C ′ to C, by
stipulating

R(t)(i′, i) = {R(m)|m ∈ t(i, i′)}
✷

Again, a lot of algebraic identities hold – most are quite trivial. Let us

just show that

(t1&t2)⋆(t′1&t′2) = (t1⋆t
′
1)&(t2⋆t

′
2) (8.24)

where t1 is a transition from C1 = (I1, B1) to C ′1 = (I ′1, B
′
1), t′1 is a

transition from C ′1 to C ′′1 = (I ′′1 , B
′′
1), t2 is a transition from C2 = (I2, B2)

229

to C ′2 = (I ′2, B
′
2) and t′2 is a transition from C ′2 to C ′′2 = (I ′′2 , B

′′
2). Now the

left hand side of (8.24) as well as the right hand side will be a transition
from C1&C2 to C ′′1 &C ′′2 . And for i1 ∈ I1, i2 ∈ I2, i

′′
1 ∈ I ′′1 and i′′2 ∈ I ′′2 we

have

((t1&t2)⋆(t′1&t′2))((i1, i2), (i
′′
1, i
′′
2))

= {m′′|∃(i′1, i′2), ∃m ∈ (t1&t2)((i1, i2), (i
′
1, i
′
2)),

∃m′ ∈ (t′1&t′2)((i
′
1, i
′
2), (i

′′
1, i
′′
2)) : m′′ = m⋆m′}

= {m′′|∃(i′1, i′2), ∃m1 ∈ t1(i1, i
′
1), ∃m2 ∈ t2(i2, i

′
2),

∃m′1 ∈ t′1(i
′
1, i
′′
1), ∃m′2 ∈ t′2(i

′
2, i
′′
2) : m′′ = (m1&m2)⋆(m′1&m′2)}

= {m′′|∃(i′1, i′2), ∃m1 ∈ t1(i1, i
′
1), ∃m2 ∈ t2(i2, i

′
2),

∃m′1 ∈ t′1(i
′
1, i
′′
1), ∃m′2 ∈ t′2(i

′
2, i
′′
2) : m′′ = (m1⋆m

′
1)&(m2⋆m

′
2)}

= ((t1⋆t
′
1)&(t2⋆t

′
2))((i1, i2), (i

′′
1, i
′′
2))

where we have used fact 8.3.30, (2).

Also we have that

P(t1⋆t2) = P(t1)⋆P(t2)

This holds only because we demand transitions to be non-increasing.

8.6.2 The level 0 rules

For each G ∈ U , there exists a rule t(G) ∈ R0 from CaG to c(G), where

c(G) = {c(G, i)|i ∈ OI(G)}. Here m ∈ t(G)(i) iff m ∈ t(G, i).

8.6.3 Unfolding at level 1

We now define what it means for a transition t from C to C ′ to be a level
1c unfolding step 14, to be written 1 c⊢u t: C ⇒ C ′.

t(G) ∈ R0

1 c⊢u Is(idCaH1

&t(G)&idCaH2

)
(8.25)

1 c⊢u idC
(8.26)

1 c⊢u t1, 1 c⊢u t2
1 c⊢u t1+t2

(8.27)

14The “c” to denote that the complete search tree is modeled.

230

Fact 8.6.12 If 1 c⊢u t, then 1 c⊢u t&id and 1 c⊢u id &t. Also, 1 c⊢u Is(t).
✷

Next we define what it means for a transition t from C to C ′ to be a level

1c unfolding, to be written 1 c⊢∗u t: C ⇒ C ′:

1 c⊢u t: C ⇒ C ′

1 c⊢∗u P(t): P(C) ⇒ P(C ′)
(8.28)

1 c⊢∗u t: C ⇒ C ′, 1 c⊢∗u t′: C ′ ⇒ C ′′

1 c⊢∗u t⋆t′: C ⇒ C ′′
(8.29)

Observe that if 1 c⊢∗u t: C ⇒ C ′, then t = P(t), C = P(C) and C ′ =
P(C ′).

Fact 8.6.13 If 1 c⊢∗u t1 and 1 c⊢∗u t2, then 1 c⊢∗u t1&t2, 1 c⊢∗u t1+t2 and

1 c⊢∗u P(Is(t1)). ✷

Proof: Inductions in the derivation tree:

• Concerning &, it will be enough to show that

1 c⊢∗u t implies 1 c⊢∗u t&idC (and 1 c⊢∗u idC&t) for C with P(C) =
C, as

t1&t2 = (t1⋆id)&(id ⋆t2) = (t1&id)⋆(id &t2)

If t = t1⋆t2 with 1 c⊢∗u t1, 1 c⊢∗u t2 this follows from

t&id = (t1&id)⋆(t2&id)

If t = P(t′) with 1 c⊢u t′, first note that by fact 8.6.12 1 c⊢u t′&id .

Thus 1 c⊢∗u P(t′&id), i.e. 1 c⊢∗u t&id .

• Concerning +, it will be enough to show that 1 c⊢∗u t implies

1 c⊢∗u t+idC with C such that C = P(C) – as

t1+t2 = (t1+id)⋆(id +t2)

If t = t1⋆t2, this follows from

t+id = (t1+id)⋆(t2+id)

If t = P(t′) with 1 c⊢u t′, first note that 1 c⊢u t′+id .
Thus 1 c⊢∗u P(t′+id), i.e. 1 c⊢∗u t+id .

231

• Concerning I (), first suppose 1 c⊢∗u t because t = P(t′), 1 c⊢u t′.
Now also 1 c⊢u Is(t′), and thus 1 c⊢∗u P(Is(t′)), i.e. also 1 c⊢∗u P(Is(t)).
Next suppose t = t1⋆t2. By induction, 1 c⊢∗u P(Is(t1)) and
1 c⊢∗u P(Is(t2)). The claim now follows from

P(Is(t1))⋆P(Is(t2)) = P(Is(t1⋆t2))

✷

If 1 c⊢∗u t, there exists t1 . . . tn such that t = P(t1)⋆ . . . ⋆P(tn), with
1 c⊢u ti for i = 1 . . . n. Again, we can define the length of a transition t

as the minimal n which can be used (n ≥ 1).

Observation 8.6.14 Suppose 1 c⊢∗u t: B ⇒ C, with C = (I,B). Then

for all i ∈ I there exists ti such that 1 ⊢∗u ti: B ⇒ B(i). We say that
ti = πi(t). ✷

The diamond lemma, revisited

Lemma 8.6.15 Suppose 1 c⊢u t1: C ⇒ C1 and 1 c⊢u t2: C ⇒ C2. Then

there exists C ′, transition t′1 with 1 c⊢u t′1: C1 ⇒ C ′ and transition t′2 with
1 c⊢u t′2: C2 ⇒ C ′ such that t1⋆t

′
1 = t2⋆t

′
2. ✷

Proof: Much as the proof of lemma 8.4.2. A brief sketch: we can

assume C to consist of a single basic configuration (if C is the union of
several basic configurations each of these can be “treated” separately).

If t1 = idC , choose t′1 = t2, t′2 = idC2
. Similarly if t2 = idC . So in

the following we can assume that t1 as well as t2 are derived by means of

(8.25). If “the same G” is unfolded, we take t′1 = t′2 = idC1
. Otherwise,

we can – dispensing with the idCaH -parts – write t1 = Is(idCaG1

&t(G2)),

t2 = Is(t(G1)&idCaG2

). Then C1 and C2 take the form

C1 = {Is(CaG1
&c(G2, i))|i ∈ OI(G2)}

C2 = {Is(c(G1, i)&CaG2
)|i ∈ OI(G1)}

Now define t′1, t
′
2 as follows:

t′1 = Is(t(G1)&idc(G2))

t′2 = Is(idc(G1)&t(G2))

That e.g. 1 c⊢u t′1 follows from the fact that t′1 can be written on the form

t′1 =
∑

i∈OI(G2)

Is(t(G1)&idc(G2,i))

232

where again c(G2, i) can be written on the form Is′(CaH ′).

That t1⋆t
′
1 = t2⋆t

′
2 follows from the fact that both equal Is(t(G1)&t(G2)).

✷

The Church-Rosser lemma, revisited

Lemma 8.6.16 Suppose 1 c⊢∗u t1: C ⇒ C1 and 1 c⊢∗u t2: C ⇒ C2. Then
there exists C3 and transitions t3, t4 such that 1 c⊢∗u t3: C1 ⇒ C3,

1 c⊢∗u t4: C2 ⇒ C3, and such that t1⋆t3 = t2⋆t4.
Moreover, the length of t3 is less than or equal the length of t2, and

the length of t4 is less than or equal the length of t1. ✷

Proof: We use induction in the length of t1 plus the length of t2. For
the induction step, proceed as in the proof of lemma 8.4.3. So assume

that both transitions have length 1. The situation is as follows: we have
1 c⊢u t′1: C ′ ⇒ C ′1 and 1 c⊢u t′2: C ′′ ⇒ C ′2, with t1 = P(t′1), t2 = P(t′2),
and C = P(C ′) = P(C ′′). We can assume that C ′ = C ′′, as we can
“expand” t′1 and t′2. Now apply lemma 8.6.15, to find t′3, t′4 and C ′3
with 1 c⊢u t′3: C ′1 ⇒ C ′3, 1 c⊢u t′4: C ′2 ⇒ C ′3, t′1⋆t

′
3 = t′2⋆t

′
4. Then define

C3 = P(C ′3), t3 = P(t′3), t4 = P(t′4). Then 1 c⊢∗u t3, 1 c⊢∗u t4, and

t1⋆t3 = P(t′1)⋆P(t′3) = P(t′1⋆t
′
3) = P(t′2⋆t

′
4) = t2⋆t4

✷

8.6.4 Level 1 semantics

We say that a configuration C = (I,B) is in normal form iff C is pruned
and for all i ∈ I B(i) is empty.

Lemma 8.6.16, together with the observation that if C is in normal

form and 1 c⊢∗u t: C ⇒ C ′ then C = C ′, shows that the following is well-
defined:

Definition 8.6.17 Given basic configuration B (not failure). Suppose

1 c⊢∗u t: B ⇒ C with C in normal form. Then [[B]]1 = C.
If no such t and C exists, [[B]]1 =⊥. ✷

Fact 8.6.18 [[B]]1 =⊥ iff B loops at level 1 by a fair strategy (as defined
in definition 8.4.7) ✷

233

Proof: Suppose [[B]]1 =⊥. Given n ≥ 0. It is easily seen that there will

exist tn and C ′ = (I ′, B′) such that 1 c⊢∗u tn: B ⇒ C ′, and such that for
all i ∈ I ′ we have 1 ⊢∗u πi(tn): B ⇒ B′(i) where either B′(i) is empty or

πi(tn) is composed of n fair level 1 unfolding steps. Now, there exists at
least one i ∈ I ′ where B′(i) is not empty (otherwise C ′ would be in normal

form). Hence we conclude that B loops at level 1 by a fair strategy.
Conversely, suppose there exists C in normal form such that

1 c⊢∗u t: B ⇒ C. Then there exists U-forests f1 . . . fk such that Ufi
(B) is

either empty or failure for all i. Moreover, there exists a n such that for

all U-forests f where the shortest working path is longer than n, there
exists an i such that f can be written as fi⋆f

′ for some f ′. Hence for

such f also Uf(B) is empty or failure, showing that B does not loop at

level 1 by a fair strategy. ✷

LR semantics

We say that t is a LR level 1c single step if t takes the form t =

Is(t(G)&idB), with t(G) ∈ R0. We say that t is a LR level 1c step
if t takes the form t = t1+ . . .+tk, at least one ti being a LR level 1c

single step and the rest being of form idB, B empty. We say that t is
a LR level 1c unfolding if t takes the form t = P(t1)⋆ . . . ⋆P(ti), each ti
being a LR level 1c step.

Definition 8.6.19 Given basic configuration B. Suppose 1 c⊢∗u t: B ⇒ C

with C in normal form, where t is a LR level 1c unfolding. Then
[[B]]L1 = C.

If no such t and C exists, [[B]]L1 =⊥. ✷

Fact 8.6.20 [[B]]L1 =⊥ iff B loops at level 1 by a LR strategy (as defined

in definition 8.4.10). ✷

Proof: Suppose [[B]]L1 =⊥. Given n ≥ 0. It is easily seen that there

will exist tn and C ′ = (I ′, B′) such that 1 c⊢∗u tn: B ⇒ C ′, and such that

for all i ∈ I ′ we have 1 ⊢∗u πi(tn): B ⇒ B′(i) where either B′i is empty or
πi(tn) is composed of n LR level 1 unfolding steps. Now, there exists at

least one i ∈ I ′ where B′(i) is not empty (otherwise C ′ would be in normal
form). Hence we conclude that B loops at level 1 by a LR strategy.

234

Conversely, suppose there exists C in normal form such that
1 c⊢∗u t: B ⇒ C, with t a LR level 1c unfolding. Then there exists U-

forests f1 . . . fk such that Ufi
(B) is either empty or failure for all i. More-

over, there exists a n such that for all LR U-forests f of size greater than

n, there exists an i such that f can be written as fi⋆f
′ for some f ′. Hence

for such f also Uf(B) is empty or failure, showing that B does not loop

at level 1 by a LR strategy. ✷

8.6.5 Folding at level 1

We now define what it means for a transition t from C to C ′ to be a level

1c folding step, to be written 1 c⊢f t: C ⇒ C ′.
We will assume the existence of a partial (perhaps multivalued) func-

tion s(G) such that P(Is(G)(t(G))) is reversible.

t(G) ∈ R0

1 c⊢f Is(idCaH1

&R(P(Is(G)(t(G))))&idCaH2

)
(8.30)

1 c⊢f idC
(8.31)

1 c⊢f t1, 1 c⊢f t2
1 c⊢f t1+t2

(8.32)

Next we define what it means for a transition t from C to C ′ to be a level

1c folding, to be written 1 c⊢∗f t: C ⇒ C ′:

1 c⊢f t: C ⇒ C ′

1 c⊢∗f P(t): P(C) ⇒ P(C ′)
(8.33)

1 c⊢∗f t: C ⇒ C ′, 1 c⊢∗f t′: C ′ ⇒ C ′′

1 c⊢∗f t⋆t′: C ⇒ C ′′
(8.34)

8.6.6 Unfold/fold at level 1

We now define what it means for a transition t from C to C ′ to be a level
1c transition, to be written 1 c⊢∗ t: C ⇒ C ′.

1 c⊢u t: C ⇒ C ′

1 c⊢∗ P(t): P(C) ⇒ P(C ′)
(8.35)

235

1 c⊢f t: C ⇒ C ′

1 c⊢∗ P(t): P(C) ⇒ P(C ′)
(8.36)

1 c⊢∗ t: C ⇒ C ′, 1 c⊢∗ t′: C ′ ⇒ C ′′

1 c⊢∗ t⋆t′: C ⇒ C ′′
(8.37)

Fact 8.6.21 If 1 c⊢∗ t1 and 1 c⊢∗ t2, then also 1 c⊢∗ t1&t2 and 1 c⊢∗ P(Is(t1)).
✷

The switching lemma, revisited

Lemma 8.6.22 Suppose 1 c⊢∗ t1: C1 ⇒ C is a folding step, i.e. is de-

rived by means of rule (8.36), and suppose 1 c⊢∗ t2: C ⇒ C2 is an unfold-
ing step, i.e. is derived by means of rule (8.35). Then there exists t3, t4 and

C3 such that 1 c⊢∗ t3: C1 ⇒ C3 by an unfolding step; 1 c⊢∗ t4: C3 ⇒ C2

by a folding step; and t1⋆t2 = t3⋆t4. ✷

Proof: (A sketch only) There exists t′1, t′2, C ′1, C ′2, C ′ and C ′′ such
that 1 c⊢f t′1: C ′1 ⇒ C ′, 1 c⊢u t′2: C ′′ ⇒ C ′2, t1 = P(t′1), t2 = P(t′2) and

C = P(C ′) = P(C ′′). It is not hard to see that we can assume that t′1
and t′2 are derived by means of (8.30) and (8.25) respectively, and that

we can assume C to be a singleton (i.e. not ∅).
There are two cases (where we dispense with writing the idCaH -parts):

1. t′1, t
′
2 takes the form

t′1 = Is1
(R(P(Is(G)(t(G)))))

t′2 = Is2
(t(G))

Thus t1 = R(P(Is1⋆s(G)(t(G)))), t2 = P(Is2
(t(G))). Then

Is1⋆s(G)(CaG) = C = Is2
(CaG)

enabling us to conclude that s1⋆s(G) = s2 and hence also C1 = C2.
Now we can use t3 = t4 = idC1

. That t1⋆t2 = idC1
is an easy

consequence of fact 8.3.30,(4).

2. t′1, t
′
2 takes the form

t′1 = Is1
(R(P(Is(G1)(t(G1))))&idCaG2

)

t′2 = Is2
(idCaG1

&t(G2))

236

Now apply the usual technique: we infer that s1⋆(s(G1)&id) = s2,

and define

t′4 = Is1
(R(P(Is(G1)(t(G1))))&idc(G2))

t′3 = Is2
(idc(G1)&t(G2))

We now define t3 = P(t′3), t4 = P(t′4). Clearly 1 c⊢u t′3, 1 c⊢f t′4,
and

t3⋆t4 = P(t′3⋆t
′
4) = P(t′1⋆t

′
2) = t1⋆t2

✷

The normalization lemma, revisited

Lemma 8.6.23 Suppose 1 c⊢∗ t: C ⇒ C ′. Then there exists t1, t2, C
′′

such that 1 c⊢∗u t1: C ⇒ C ′′, 1 c⊢∗f t2: C ′′ ⇒ C ′, t = t1⋆t2. ✷

Proof: As the proof of lemma 8.4.15, now exploiting lemma 8.6.22. ✷

8.6.7 Unfolding at level 2

Now assume that we have defined R1, a finite set of rules at level 1.
Assume that there is a bijective correspondence between R1 and U , such

that the rule corresponding to G is a transition from CaG. Then there is
no risk of a configuration being stuck (i.e. not in normal form but cannot

be unfolded further).
We now define what it means for a transition t from C to C ′ to be a

level 2c unfolding step, to be written 2 c⊢ t: C ⇒ C ′.

t ∈ R1

2 c⊢ Is(idCaH1

&t&idCaH2

)
(8.38)

2 c⊢ idC
(8.39)

2 c⊢ t1, 2 c⊢ t2
2 c⊢ t1+t2

(8.40)

237

Next we define what it means for a transition t from C to C ′ to be a level

2c unfolding, to be written 2 c⊢∗ t: C ⇒ C ′:

2 c⊢ t: C ⇒ C ′

2 c⊢∗ P(t): P(C) ⇒ P(C ′)
(8.41)

2 c⊢∗ t: C ⇒ C ′, 2 c⊢∗ t′: C ′ ⇒ C ′′

2 c⊢∗ t⋆t′: C ⇒ C ′′
(8.42)

Fact 8.6.24 If 2 c⊢∗ t: C ⇒ C ′, also 1 c⊢∗ t: C ⇒ C ′.
If 2 c⊢ t: C ⇒ C ′, also 1 c⊢∗ P(t): P(C) ⇒ P(C ′). ✷

Proof: Induction in the derivation tree: the only interesting case is

where (8.38) has been applied. We must show that

1 c⊢∗ P(Is(idCaH1

&t&idCaH2

))

But this is a consequence of fact 8.6.21. ✷

By combining lemma 8.6.23 and fact 8.6.24 we get

Fact 8.6.25 If 2 c⊢∗ t: C ⇒ C ′, there exists t1, t2, C
′′ such that

1 c⊢∗u t1: C ⇒ C ′′, 1 c⊢∗f t2: C ′′ ⇒ C ′, t = t1⋆t2.

If C ′ is in normal form, C ′ = C ′′. ✷

8.6.8 Level 2 semantics

Definition 8.6.26 Given basic configuration B (not failure). Suppose

2 c⊢∗ t: B ⇒ C with C in normal form. Then [[B]]2 = C.
If no such t and C exists, [[B]]2 =⊥. ✷

By fact 8.6.25, this is well-defined.

We say that t is a fair level 2c single step if t takes the form t =
Is(t1& . . .&tn), n ≥ 1, each ti ∈ R1. We say that t is a fair level 2c step if

t takes the form t = t1+ . . .+tk, at least one ti being a fair level 2c single
step and the rest of form idB with B empty. We say that t is a fair level

2c unfolding if t takes the form t = P(t1)⋆ . . . ⋆P(tk), each ti being a fair
level 2c step. We say that B loops at level 2c by a fair strategy if for all

i > 0 there exists Ci not in normal form and fair level 2c step ti from
Ci−1 to Ci (here C0 = B).

We say that t is a LR level 2c single step if t takes the form t =
Is(t1&idB), with t1 ∈ R1. We say that t is a LR level 2c step if t takes

238

the form t = t1+ . . .+tk, at least one ti being a LR level 2 single step
and the rest of form idB with B empty. We say that t is a LR level 2c

unfolding if t takes the form t = P(t1)⋆ . . . ⋆P(tk), each ti being a LR
level 2c step. We say that B loops at level 2c by the LR strategy if for

all i > 0 there exists Ci not in normal form and LR level 2c step ti from
Ci−1 to Ci (here C0 = B).

Definition 8.6.27 Given basic configuration B (not failure). Suppose

2 c⊢∗ t: B ⇒ C with C in normal form, where t is a LR level 2c unfold-
ing. Then [[B]]L2 = C.

If no such t and C exists, [[B]]L2 =⊥. ✷

Clearly, [[B]]L2 =⊥ iff B loops at level 2c by the LR strategy.

8.6.9 Total correctness

Theorem 8.6.28 Assume all U-mirrors occurring in rules in R1 satisfy
F(1). Then for all B, [[B]]2 = [[B]]1. ✷

Proof: First suppose [[B]]2 = C �=⊥. By fact 8.6.25, also [[B]]1 = C.
Now suppose [[B]]2 =⊥. Then for all n ≥ 1 there will exist fair level

2c step tn and Cn not in normal form such that 2 c⊢∗ P(tn): Cn−1 ⇒ Cn

(C0 = B). Let t′n = P(t1)⋆ . . . ⋆P(tn). 2 c⊢∗ t′n: B ⇒ Cn, and by fact

8.6.25 there exists t′′n, t′′′n and C ′n such that 1 c⊢∗u t′′n: B ⇒ C ′n,
1 c⊢∗f t′′′n : C ′n ⇒ Cn and t′n = t′′n⋆t

′′′
n .

As Cn contains a non-empty basic configuration, this shows that t′n for
all n contains at least one mirror from B to a non-empty basic configura-

tion. Then it will be possible (by Königs lemma) for all n to find mn ∈ tn
such that m′n = m1⋆ . . . ⋆mn is a mirror in t′n from B to a non-empty basic
configuration. Also there will exist mirrors m′′n ∈ t′′n and m′′′n ∈ t′′′n such

that m′n = m′′n⋆m
′′′
n . It is easily seen that 1 ⊢∗u m′′n: B ⇒ B′n, with B′n not

failure nor empty.

Due to the assumption of the theorem, each mi will satisfy F(1).
Then, by lemma 8.3.32, each m′n will satisfy F(n). But then also m′′n will

satisfy F(n). By lemma 8.4.8, this shows that B loops at level 1 by a fair
strategy, and by fact 8.6.18 [[B]]1 =⊥. ✷

Theorem 8.6.29 Assume all U-mirrors occurring in rules in R1 satisfy
L(1). Then for all B, [[B]]L2 ≥ [[B]]L1 . ✷

239

Proof: First suppose [[B]]L2 = C �=⊥. Then also [[B]]2 = C, so by fact
8.6.25 [[B]]1 = C. Now either [[B]]L1 = C or [[B]]L1 =⊥.

Now suppose [[B]]L2 =⊥. Then for all n ≥ 1 there will exist LR level
2c step tn and Cn not in normal form such that 2 c⊢∗ P(tn): Cn−1 ⇒ Cn

(C0 = B). Let t′n = P(t1)⋆ . . . ⋆P(tn). 2 c⊢∗ t′n: B ⇒ Cn, and by fact
8.6.25 there exists t′′n, t′′′n and C ′n such that 1 c⊢∗u t′′n: B ⇒ C ′n,

1 c⊢∗f t′′′n : C ′n ⇒ Cn and t′n = t′′n⋆t
′′′
n .

As Cn contains a non-empty basic configuration, this shows that t′n
for all n contains at least one mirror from B to a non-empty basic con-
figuration. Then it will be possible for all n to find mn ∈ tn such that

m′n = m1⋆ . . . ⋆mn is a mirror in t′n from B to a non-empty basic config-
uration. Also there will exist mirrors m′′n ∈ t′′n and m′′′n ∈ t′′′n such that

m′n = m′′n⋆m
′′′
n . It is easily seen that 1 ⊢∗u m′′n: B ⇒ B′n, with B′n not

failure.

Due to the assumption of the theorem, each mi satisfies L(1). By
lemma 8.3.37, there exists an increasing sequence

m′1 ≺ m′2 ≺ m′3 ≺ . . .

Now two possibilities:

• E(m′n) is not bounded. Then neither E(m′′n) is bounded, so by
lemma 8.4.11 B loops at level 1 by a LR strategy.

• E(m′n) is bounded. Then L(m′n) is unbounded, so also L(m′′n) is

unbounded. Then again lemma 8.4.11 tells us that B loops at level
1 by a LR strategy.

In both cases, fact 8.6.20 tells us that [[B]]L1 =⊥. ✷

This completes the technical development of the theory sketched in sec-

tion 8.1.

240

Chapter 9

Concluding remarks

My hope is that the work reported in this thesis has been a contribution to
the development of a more unified theory for program optimization, and

that it has provided a better understanding of a wide range of phenomena
– at least it has done so to me, of course it it not for me to judge whether

it has been helpful for others too. In two respects, however, the treatment
seems rather unsatisfactory:

• Only a descriptive point of view has been adopted; no tools for anal-
ysis have been presented. For instance such tools may be helpful in

order to instantiate the USM properly (cf. chapter 5) or in order to
assign weights in a suitable way (cf. chapter 8).

• It certainly seems waste of efforts (and space!) to have two models,
one for a functional language (chapter 4) and one for a logic lan-

guage (chapter 8). One should aim at a more unified treatment, i.e.
to set up a core model which then can be instantiated appropriately.

These issues will be briefly addressed in the subsequent sections.

9.1 An analysis aiding the PEM

Concerning the development of analysis tools, we shall restrict ourselves

to considering the following rather restricted problem:

Given a source program p to be run by the PEM (cf. sec-

tion 5.2). For each of the functions fi occurring in p, suggest1

1As all choices are “safe”, we shall prefer to use the term “heuristic” instead of “analysis”.

241

which of the arguments to fi should be static and which should
be dynamic2.

It is rather obvious that it will only pay off to make a certain subset of the
arguments to fi static provided the following two (rather loose) criteria

are met:

1. these arguments assume the same value in several invocations of fi;

2. it is possible to do “much” computation (i.e. unfoldings) without
knowing the values of the remaining arguments.

There is a certain conflict between those two aspects, as 1 will become
more likely if few arguments are static while 2 will become more likely if

many arguments are static – what is “the best” choice is clearly undecid-
able in general.

Concerning 1, it seems rather hard to come up with heuristics giving
a reasonable approximation in the general case. The most sensible thing

to do is probably to “keep track of history” during run-time, similar to
the well-known hack in the compiler industry: initially generate cheap

but rather inefficient code; then observe in which part of the code most
time is spent and recompile this piece of code using a more expensive

method.

We shall now elaborate on 2, where a relatively useful heuristic seems
feasible. The method will be sketched below, using the example from

section 5.2.1 where two functions were present: Int taking arguments e,
p and d; and Branch taking arguments b, e2, e3, p and d. The following

reasoning can be performed:

1. As e is a needed argument (in the sense of section 4.3) of Int and b

is a needed argument of Branch, these clearly have to be declared
static.

2. In order for any interesting computation to be done by Branch,
either e2 or e3 has to be static – otherwise only one unfolding is

possible.

2Being a one-stage method, all arguments are present so in principle any choice is possible.
On the other hand, in “classical” two-stage partial evaluation some parameters are simply not
available “at PE-time” and therefore in principle have to be declared dynamic – nevertheless,
using the fine art of binding-time engineering it might still be possible to declare such arguments
static. . . .

242

3. As we cannot hope to predict the outcome of tests, the previous
point suggests that e2 as well as e3 have to be made static.

4. With the static arguments introduced so far, two rules may inhibit
further unfolding: the rule for If and the rule for Rec. In order

to enable further unfolding after the rule for Rec has been used,
we have to declare p as a static argument to Int (and hence also to

Branch). By the way, since the value of p does not change at all this
will not diminish the chance of reusing computation, cf. criterion 1.

5. At the current stage, all arguments except d have been declared
static. Still, after an application of the rule for If no further unfold-

ing may take place, but in order to repair on this we have to declare
all arguments static – and then it is doubtful whether computation

can be reused at all.

We have thus argued that the choice of static arguments actually made

in section 5.2.1 was not completely arbitrary. . . – in fact, the above line
of reasoning should not be impossible to formalize and implement. That

would certainly be an interesting area for further research.

Related approaches/remarks from the literature include

• a noteworthy part of the discussion following a talk by A.P. Ershov,

reported in [Ers78, p. 420]:3

Karel Culik: In your program that computes X to

the power n you assumed an input value for n equal to 5.
Why didn’t you assume that X was given an input value

and n remained unspecified as 5 to the power n instead
of X to the power 5?

Ershov: I would like to stress that the reasons for
arbitrary suspension are not formalized decisions like the

one you would wish to be made on a formal basis. In this
particular case one can see that X isn’t an essential part

of the computation, on the other hand n is processed bit
by bit and so the program uses n “more intensively”. But

you would agree with me that it is not a mathematical
consideration.

3The point is of course that it is possible to reduce X5 to X ·X ·X ·X ·X, while 5X cannot
be reduced in a similar way.

243

• In [Lau91, Sect. 6], considering a first order functional language

with parametric polymorphism, the observation is made that one
does not gain anything by declaring arguments of polymorphic type

static, since computation does not depend on such arguments.

• In the system described in [RW91], to each specialized function is

associated information indicating how much of the static part which
was actually used to produce the function – this enables specializa-

tions to be reused even though the (non-used) static arguments
differ.

9.2 Integrating the functional and logical
model

The functional and logic paradigms are not too far apart, as witnessed

by several successful attempts at bridging the gap – e.g. [Red85] and
[Han92].

So is there any excuse for my not coming up with a core model, cap-
turing the abstract properties needed to formulate correctness/speedup

theorems etc? Well, since “flow” of control and data differ in a substan-

tial way some rather severe difficulties arise, cf. the discussion initially in
chapter 8:

• ultimate sharing has no real counterpart in the logic world, due
to the fact that a logic program can return many answers and a

functional program only one;

• in the functional model an optimal evaluation strategy (cf. theorem

4.4.14) can be expressed syntactically without putting too tight
restrictions on the form of the program. This is not the case in the

logic world, where data flows around in a less controlled manner.

On the other hand, e.g. the speedup theorems are on a very abstract

level; their essence is applicable to general theorem proving (therefore it
seems highly plausible that they have appeared in other contexts).

The most promising path to bring the models closer together would
probably be to transfer the idea of U-mirrors (cf. section 8.1.1) to the

functional world, thus making it possible to express folding explicitly.

244

9.3 Miscellaneous

A major shortcoming of the work presented in this thesis is probably

that it does definitely not pay too much attention to whether the insights
gained are helpful to understand “large-scale” systems for program op-

timization. And even though I e.g. have played a bit with the Flagship

system [DHK+89], still (as admitted at the PLILP’92 conference!) I do

not have any clear intuition about to which extent e.g. the unfold/fold
methodology is useful in practical applications. For instance, the issue of

how severe a restriction it is to only allow foldings which are abbreviations
has been “swept in under the carpet” (like apparently most researchers

in the field do!)

245

Bibliography

[Aho90] Alfred V. Aho. Algorithms for finding patterns in strings. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer

Science, vol. A, chapter 5. Elsevier, 1990.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.

The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[Amt91] Torben Amtoft. Properties of unfolding-based meta-level
systems. In Partial Evaluation and Semantics-Based Pro-

gram Manipulation, New Haven, Connecticut. (Sigplan No-
tices, vol. 26, no. 9), 1991.

[Amt92a] Torben Amtoft. Unfold/fold transformations preserving ter-
mination properties. In M. Bruynooghe and M. Wirsing,

editors, 4th International Symposium on Programming Lan-
guage Implementation and Logic Programming (PLILP 92),

Leuven, Belgium, pages 187–201. Springer Verlag, LNCS no

631, August 1992.

[Amt92b] Torben Amtoft. Unfold/fold transformations preserving ter-

mination properties. Technical Report PB-410, DAIMI, Uni-
versity of Aarhus, Denmark, 1992. 58 pages.

[ANTJ89] Torben Amtoft, Thomas Nikolajsen, Jesper Larsson Träff,
and Neil D. Jones. Experiments with implementations of two

theoretical constructions. In Logic at Botik, USSR (Springer
LNCS no 363), pages 119–133, July 1989.

[AT89] Torben Amtoft and Jesper Larsson Träff. Memoization and
its use in lazy and incremental program generation. Master’s

thesis, DIKU, University of Copenhagen, Denmark, August
1989. No 89-8-1.

246

[AT92] Torben Amtoft and Jesper Larsson Träff. Partial memoiza-

tion for obtaining linear time behavior of a 2DPDA. Theo-
retical Computer Science, 98(2):347–356, May 1992.

[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntax and Se-

mantics. North-Holland, 1984.

[BCD90] A. Bossi, N. Cocco, and S. Dulli. A method for special-

izing logic programs. ACM Transactions on Programming
Languages and Systems, 12(2):253–302, April 1990.

[BCE92] Annalisa Bossi, Nicoletta Cocco, and Sandro Etalle. On

safe folding. In M. Bruynooghe and M. Wirsing, editors,
4th International Symposium on Programming Language Im-

plementation and Logic Programming (PLILP 92), Leuven,
Belgium, pages 172–186. Springer Verlag, LNCS no 631, Au-

gust 1992.

[BD77] R.M. Burstall and John Darlington. A transformation sys-

tem for developing recursive programs. Journal of the ACM,
24(1):44–67, January 1977.

[BD91] Anders Bondorf and Olivier Danvy. Automatic autoprojec-

tion of recursive equations with global variables and abstract
data types. Science of Computer Programming, 16(2):151–

195, 1991.

[BDSK89] Maurice Bruynooghe, Danny De Schreye, and Bruno

Krekels. Compiling control. Journal of Logic Programming,
6:135–162, 1989.

[Bel91] Francoise Bellegarde. Program transformation and rewrit-

ing. In 4th International Conference on Rewriting Tech-
niques and Applications, pages 226–239. Lecture Notes in

Computer Science 488, 1991.

[Bir80] Richard S. Bird. Tabulation techniques for recursive pro-

grams. ACM Computing Surveys, 12(4):403–417, December

1980.

[BKKS87] H.P. Barendregt, J.R. Kennaway, J.W. Klop, and M.R.

Sleep. Needed reduction and spine strategies for the lambda
calculus. Information and Computation, 75:191–231, 1987.

247

[BM77] Robert S. Boyer and J. Strother Moore. A fast string search-

ing algorithm. Communications of the ACM, 20(10):762–
772, October 1977.

[BMT92] Dave Berry, Robin Milner, and David N. Turner. A seman-
tics for ML concurrency primitives. In ACM Symposium on

Principles of Programming Languages, pages 119–129, 1992.

[BvEG+87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert,

J.R. Kennaway, M.J. Plasmeijer, and M.R. Sleep. Term
graph rewriting. In PARLE, Eindhoven, The Netherlands.

LNCS 259, pages 141–158, 1987.

[CD89] Charles Consel and Olivier Danvy. Partial evalution of pat-

tern matching in strings. Information Processing Letters,
30:79–86, January 1989.

[Cho90] Christian Choffrut. An optimal algorithm for building the

Boyer-Moore automaton. EATCS Bulletin no. 40, pages
217–225, 1990.

[Coh83] Norman H. Cohen. Eliminating redundant recursive calls.
ACM Transactions on Programming Languages and Sys-

tems, 5(3):265–299, July 1983.

[Coo71] Stephen A. Cook. Linear time simulation of deterministic

two-way pushdown automata. In Information Processing
71. Proceedings of IFIP Congress 1971, pages 75–80. North-

Holland, 1971.

[DHK+89] John Darlington, Peter Harrison, Hessam Khoshnevisan, Lee

McLoughlin, Nigel Perry, Helen Pull, Mike Reeve, Keith
Sephton, Lyndon While, and Sue Wright. A functional pro-

gramming environment supporting execution, partial execu-
tion and transformation. In PARLE ’89 (LNCS 365), pages

286–305, 1989.

[DP88] John Darlington and Helen Pull. A program development

methodology based on a unified approach to execution and
transformation. In D. Bjørner, A.P. Ershov, and N.D. Jones,

editors, Partial Evaluation and Mixed Computation, pages
117–131. North-Holland, 1988.

248

[DSMSB90] Danny De Schreye, Bern Martens, Gunther Sablon, and

Maurice Bruynooghe. Compiling bottom-up and mixed
derivations into top-down executable logic programs. In Sec-

ond Workshop on Meta-Programming in Logic, April 4-6,
1990, Leuven, Belgium. Ed.: M. Bruynooghe, pages 37–56,

1990.

[Dyb85] Hans Dybkjær. Parsers and partial evaluation: An experi-

ment. Student Project 85-7-15, DIKU, University of Copen-
hagen, Denmark, July 1985. 128 pages.

[ENRR87] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, edi-
tors. Graph-Grammars and Their Application to Computer

Science. Lecture Notes in Computer Science 291, 1987.

[Ers78] A.P. Ershov. On the essence of compilation. In E.J. Neuhold,

editor, Formal Description of Programming Concepts, pages
391–420. North-Holland, 1978.

[FS91] Gudmund S. Frandsen and Carl Sturtivant. What is an
efficient implementation of the lambda-calculus? In John

Hughes, editor, International Conference on Functional

Programming Languages and Computer Architecture, pages
289–312. Springer Verlag, LNCS no 523, August 1991.

[GAL92] Georges Gonthier, Mart́in Abadi, and Jean-Jacques Lévy.
The geometry of optimal lambda reduction. In ACM Sympo-

sium on Principles of Programming Languages, pages 15–26,
1992.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and
Types. Cambridge University Press, 1989.

[Gre87] Steve Gregory. Parallel Logic Programming in PARLOG -
the language and its implementation. Addison-Wesley, 1987.

[Gru] Klaus Grue. Call-by-mix: A reduction strategy for pure
lambda-calculus. Circulated at DIKU, University of Copen-

hagen, Denmark.

[Gru87] Klaus Grue. An efficient formal theory. Technical Report

87/14, DIKU, University of Copenhagen, Denmark, 1987.

249

[GS91] P. A. Gardner and J. C. Shepherdson. Unfold/fold transfor-

mations of logic programs. In J.L. Lassez and G. Plotkin,
editors, Computational Proofs: Essays in honour of Alan

Robinson. 1991.

[Han92] Michael Hanus. Improving control of logic programs by using

functional logic languages. In M. Bruynooghe and M. Wirs-
ing, editors, 4th International Symposium on Programming

Language Implementation and Logic Programming (PLILP
92), Leuven, Belgium, pages 1–23. Springer Verlag, LNCS

no 631, August 1992.

[Har87] David Harel. Algorithmics - The Spirit of Computing.

Addison-Wesley, 1987.

[Hen87] Martin C. Henson. Elements of Functional Languages.

Blackwell Scientific Publications, 1987.

[HG91] Carsten Kehler Holst and Carsten K. Gomard. Partial

evaluation is fuller laziness. In Partial Evaluation and
Semantics-Based Program Manipulation, New Haven, Con-

necticut. (Sigplan Notices, vol. 26, no. 9), 1991.

[Hof92] Berthold Hoffmann. Term rewriting with sharing and mem-
oization. In H. Kirchner and G. Levi, editors, Algebraic and

Logic Programming, Volterra, Italy, pages 128–142. Springer
Verlag, LNCS no 632, September 1992.

[Hol91] Carsten Kehler Holst. Finiteness analysis. In John Hughes,
editor, International Conference on Functional Program-

ming Languages and Computer Architecture, pages 473–495.
Springer Verlag, LNCS no 523, August 1991.

[Hon91] Zhu Hong. How powerful are folding/unfolding transforma-
tions. Technical Report CSTR-91-2, Department of Com-

puter Science, Brunel University, January 1991.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to

Automata Theory, Languages and Computation. Addison-
Wesley, 1979.

250

[Hug82] John Hughes. Super combinators - a new implementation

method for applicative languages. In ACM Symposium on
Lisp and Functional Programming, Pittsburgh, pages 1–10,

1982.

[Hug85] John Hughes. Lazy memo-functions. In International Con-

ference on Functional Programming Languages and Com-
puter Architecture, pages 129–146. Springer Verlag, LNCS

201, 1985.

[Jon77] Neil D. Jones. A note on linear time simulation of determin-

istic two-way pushdown automata. Information Processing
Letters, 6(4):110–112, August 1977.

[Jon87] Simon L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice-Hall, 1987.

[Jør90] Jesper Jørgensen. Generating a pattern matching compiler
by partial evaluation. In Simon L. Peyton Jones, Graham

Hutton, and Carsten Kehler Holst, editors, Functional Pro-
gramming, Glasgow 1990. Workshops in Computing, pages

177–195. Springer-Verlag, August 1990.

[JSS89] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. Mix:
A self-applicable partial evaluator for experiments in com-

piler generation. Lisp and Symbolic Computation, 2(1):9–50,
1989.

[Kah92] Stefan Kahrs. Unlimp, uniqueness as a leitmotiv for im-
plementation. In M. Bruynooghe and M. Wirsing, editors,

4th International Symposium on Programming Language Im-
plementation and Logic Programming (PLILP 92), Leuven,

Belgium, pages 115–129. Springer Verlag, LNCS no 631, Au-
gust 1992.

[Kho90] Hessam Khoshnevisan. Efficient memo-table management
strategies. Acta Informatica, 28:43–81, 1990.

[KK90] Tadashi Kawamura and Tadashi Kanamori. Preservation of
stronger equivalence in unfold/fold logic program transfor-

mation. Theoretical Computer Science, 75:139–156, 1990.

251

[KMP77] Donald E. Knuth, James H. Morris, Jr., and Vaughan R.

Pratt. Fast pattern matching in strings. SIAM Journal on
Computing, 6(2):323–350, June 1977.

[Knu81] Donald E. Knuth. The Art of Computer Programming, vol-
ume 2. Addison-Wesley, second edition, 1981.

[Kot80] Laurent Kott. A system for proving equivalences of recursive
programs. In Proceedings of 5th conference on Automated

Deduction, Springer LNCS 87, pages 63–69, 1980.

[Kot82] Laurent Kott. Unfold/fold program transformations. Tech-

nical Report 155, INRIA, Domaine de Voluceau Rocquen-
court BP105 78153 Le Chesnay Cedex, France, 1982.

[Kot85] Laurent Kott. Unfold/fold program transformations. In
Maurice Nivat and John C. Reynolds, editors, Algebraic

Methods in Semantics, chapter 12. Cambridge University
Press, 1985.

[Lam90] John Lamping. An algorithm for optimal lambda calculus
reduction. In ACM Symposium on Principles of Program-

ming Languages, pages 16–30, 1990.

[Lau91] John Launchbury. Strictness and binding-time analyses:

Two for the price of one. In Proceedings of the ACM SIG-
PLAN ’91 Conference on Programming Language Design

and Implementation, Toronto, Ontario, Canada, June 1991.

[LG88] John M. Lucassen and David K. Gifford. Polymorphic effect

systems. In ACM Symposium on Principles of Programming
Languages, pages 47–57, 1988.

[Llo84] J.W. Lloyd. Foundations of Logic Programming. Springer-
Verlag, 1984.

[Mar91] Luc Maranget. Optimal derivations in weak lambda-calculi
and in orthogonal terms rewriting systems. In ACM Sympo-

sium on Principles of Programming Languages, pages 255–
269, 1991.

[Mic68] Donald Michie. ’Memo’ functions and machine learning. Na-
ture, 218:19–22, April 1968.

252

[Mil78] Robin Milner. A theory of type polymorphism in program-

ming. Journal of Computer and System Sciences, 17:348–
375, 1978.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-
Hall, 1989.

[Nie89] Flemming Nielson. The typed lambda-calculus with first-
class processes. In PARLE ’89 (LNCS 366), pages 357–373,

1989.

[Nie92] Flemming Nielson, editor. Design, Analysis and Reasoning

about Tools: Abstracts from the Second Workshop. DAIMI
PB-417, September 1992.

[NN90] Hanne Riis Nielson and Flemming Nielson. Eureka defini-
tions for free! or disagreement points for fold/unfold trans-

formations. In Neil D. Jones, editor, ESOP 90, Copenhagen,
Denmark. LNCS 432, pages 291–305, May 1990.

[Pal89] Catuscia Palamidessi. Algebraic properties of idempotent
substitutions. Technical Report TR-33/89, University of

Pisa, 1989.

[PB82] Alberto Pettorossi and R.M. Burstall. Deriving very efficient

algorithms for evaluating linear recurrence relations using

the program transformation technique. Acta Informatica,
18:181–206, 1982.

[Pet84] Alberto Pettorossi. Methodologies for Transformations and
Memoing in Applicative Languages. PhD thesis, University

of Edinburgh, Department of Computer Science, October
1984.

[Plo81] Gordon D. Plotkin. A structural approach to operational
semantics. Technical Report FN-19, DAIMI, University of

Aarhus, Denmark, September 1981.

[PP90] Maurizio Proietti and Alberto Pettorossi. Synthesis of eureka

predicates for developing logic programs. In Lecture Notes
in Computer Science 432 (ESOP 90), pages 306–325, May

1990.

253

[PP91a] Maurizio Proietti and Alberto Pettorossi. Semantics preserv-

ing transformation rules for Prolog. In Partial Evaluation
and Semantics-Based Program Manipulation, New Haven,

Connecticut. (Sigplan Notices, vol. 26, no. 9), 1991.

[PP91b] Maurizio Proietti and Alberto Pettorossi. Unfolding - Defi-

nition - Folding, in this order, for avoiding unnecessary vari-
ables in logic programs. In Proceedings of PLILP 91, Passau,

Germany (LNCS 528), pages 347–358, August 1991.

[PP92] Maurizio Proietti and Alberto Pettorossi. Best-first strate-

gies for incremental transformations of logic programs. In
Proceedings of LOPSTR 92, Manchester, 2-3 July 1992,

1992.

[PS88] H. Partsch and F. A. Stomp. A formal derivation of Boyer

and Moore’s pattern matching algorithm. Technical Report
88-12, Department of Informatics, University of Nijmegen,

September 1988.

[QG91] Christian Queinnec and Jean-Marie Geffroy. Symbolic pat-

tern matching with intelligent backtrack. Can be achieved

by email to (queinnec,geffroy)@poly.polytechnique.fr, 1991.

[Rao84] Jean Claude Raoult. On graph rewritings. Theoretical Com-

puter Science, 32:1–24, 1984.

[Red85] Uday S. Reddy. Narrowing as the operational semantics of

functional languages. In IEEE Logic Programming Sympo-
sium, Boston, pages 138–151, 1985.

[Red89] Uday S. Reddy. Rewriting techniques for program synthesis.
In Proceedings of 3rd International Conference on Rewrit-

ing Techniques and Applications, Lecture Notes in Computer
Science 355, pages 388–403, 1989.

[RW91] Erik Ruf and Daniel Weise. Using types to avoid redundant
specialization. In Partial Evaluation and Semantics-Based

Program Manipulation, New Haven, Connecticut. (Sigplan
Notices, vol. 26, no. 9), 1991.

254

[Sah91] Dan Sahlin. An Automatic Partial Evaluator for Full Prolog.

PhD thesis, Kungliga Tekniska Högskolan, Stockholm, SICS,
Swedish Institute of Computer Science, Box 1263, S-164 28

Kista, Sweden, March 1991.

[San90] David Sands. Calculi for Time Analysis of Functional Pro-

grams. PhD thesis, Imperial College, London, September
1990.

[Sch80] William L. Scherlis. Expression Procedures and Program
Derivation. PhD thesis, Stanford University, August 1980.

Report STAN-CS-80-818.

[Sek91] Hirohisa Seki. Unfold/fold transformation of stratified pro-

grams. Theoretical Computer Science, 86(1):107–139, 1991.

[Ses88] Peter Sestoft. Automatic call unfolding in a partial evalu-

ator. In D. Bjørner, A.P. Ershov, and N.D. Jones, editors,
Partial Evaluation and Mixed Computation, pages 485–506.

North-Holland, 1988.

[Smi91] Donald A. Smith. Partial evaluation of pattern matching in

constraint logic programming languages. In Partial Eval-
uation and Semantics-Based Program Manipulation, New

Haven, Connecticut. (Sigplan Notices, vol. 26, no. 9), 1991.

[Søn89] Harald Søndergaard. Semantics-based analysis and transfor-

mation of logic programs. Technical Report 89/22, DIKU,
University of Copenhagen, Denmark, 1989.

[SS86] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT
Press, 1986.

[Sta80] John Staples. Optimal evaluations of graph-like expressions.
Theoretical Computer Science, 10:297–316, 1980.

[Sun90] Daniel M. Sunday. A very fast substring search algorithm.
Communications of the ACM, 33(8):132–142, August 1990.

[Tak91] Akihiko Takano. Generalized partial computation for a lazy
functional language. In Partial Evaluation and Semantics-

Based Program Manipulation, New Haven, Connecticut.
(Sigplan Notices, vol. 26, no. 9), 1991.

255

[TS84] Hisao Tamaki and Taisuke Sato. Unfold/fold transformation

of logic programs. In Proceedings of 2nd International Logic
Programming Conference, Uppsala, pages 127–138, 1984.

[Tur36] Alan Turing. On computable numbers with an application
to the Entscheidungsproblem. Proc. London Math. Soc.,

42:230–265, 1936.

[Tur79] D. A. Turner. A new implementation technique for applica-

tive languages. Software - Practice and Experience, 9:31–49,
1979.

[Tur86] Valentin F. Turchin. The concept of a supercompiler.
ACM Transactions on Programming Languages and Sys-

tems, 8(3):292–325, July 1986.

[Wad71] C.P. Wadsworth. Semantics and Pragmatics of the Lambda

Calculus. PhD thesis, Oxford University, 1971.

[Wad90] Philip Wadler. Deforestation: Transforming programs to

eliminate trees. Theoretical Computer Science, 73:231–248,
1990.

[Wat80] Osamu Watanabe. Another application of recursion in-
troduction. Information Processing Letters, 10(3):116–119,

1980.

[Yos93] Nobuko Yoshida. Optimal reduction in weak lambda calcu-

lus with shared environments. In International Conference

on Functional Programming Languages and Computer Ar-
chitecture, pages 243–252. ACM Press, 1993.

256

Index

+
in functional model, 48, 68

in logic model, 227
++, 118

::, 23, 42

[[B]]L1 , 196, 234
[[B]]L2 , 196, 239

[[B]]1, 196, 233
[[B]]2, 196, 238

&, 202
≪, 43

≺, 43
≺ on U-mirrors, 212

�, 43
∝, 67

[v1, . . . , vn], 106
1c ⊢∗ t : C ⇒ C ′, 235

1c ⊢f t : C ⇒ C ′, 235
1c ⊢∗f t : C ⇒ C ′, 235

1c ⊢u t : C ⇒ C ′, 230
1c ⊢∗u t : C ⇒ C ′, 231

2-level system, 20
2DM, 152

2DPDA, 146

2c ⊢ t : C ⇒ C ′, 237
2c ⊢∗ t : C ⇒ C ′, 238

1 ⊢ (j) r : G⇒a G
′, 83

1 ⊢u t, 215

1 ⊢∗u t, 215
1 ⊢∗ r : G⇒c

Nn G′, 83

1 ⊢∗ t : B ⇒ B′, 222

1 ⊢f t, 221
1 ⊢f t : B ⇒ B′, 221

1 ⊢∗f t : B ⇒ B′, 221
1 ⊢u t : B ⇒ B′, 215

1 ⊢∗u t : B ⇒ B′, 215

2 ⊢ t : B ⇒ B′, 225
2 ⊢∗ t : B ⇒ B′, 225

A(n), 211
Abadi, M, 36

ACCEPT, 147
active nodes, 43

Addneg, 167
Addpos, 167

Aho, A.V, 145–177
AI, 204

All, 169
Amtoft, T, 12–18, 148, 158

and-direction label, 204
Ar, 42

Arg, 72

Barendregt et al, 28, 114, 127

Barendregt, H.P, 28
basic configuration (in logic model),

195, 201
Bellegarde, F, 126

Berry, D, 178

Bird, R.S, 21
BM algorithm, 162

BMna, 162
BMop, 162

BMop, 170

257

BMor, 162
BMst, 162

BMst, 173
Bondorf, A, 26, 115, 143

Bossi, A, 25, 178, 199
bottom-up (rule generation), 20

Boyer, R.S, 159–177
Boyer-Moore algorithm, see BM

algorithm
Bruynooghe, M, 179, 181

Burstall, R.M, 14, 22, 42, 116, 118,
120–122

c(G), 230
c(G, i), 215

Ca(J,H), 201

CC, 134
Certain?, 167

Choffrut, C, 166
Church-Rosser property

in functional model, 88
in logic model, 218, 233

Ci, 98
Clo[G](D), 73

Cocco, N, 25, 178, 199
Cohen, N.H, 21

completion (in logic model), 206
configuration (in logic model), 190,

195, 227
confluence, 88

Consel, C, 176
Cook, S.A, 16, 145–159

correctness, 13

partial, 13, 41, 100
total, 13, 41, 102

current goal of USM-conf, 133

D (a demand function), 73

D (a universal data domain), 191

Dn0, 82
D-graph, 72

Danvy, O, 26, 115, 143, 176, 177
Darlington et al, 245

Darlington, J, 13, 14, 22, 116, 118,
122

demand function, 40, 72
diamond property

in functional model, 87
in logic model, 217, 232

Dulli, S, 25
Dybkjær, H, 176

dynamic arguments, 25

E(m), 212

Ehrig et al, ed., 39

Empty, 167
empty basic configuration, 201

En, 72
enabled node, 72

EQ, 74
Ershov, A.P, 243

Etalle, S, 178, 199
eureka definition, 23

F(n), 210
failure basic configuration, 192, 201

fair strategy, 188
Far, 42

fibonacci program, 22
FINAL, 152

fold/unfold transformations, see un-
fold/fold

folding
as abbreviation, 24

explicit, 24

FORGET, 168
Frandsen, G, 15, 31, 32

fully lazy evaluation, 29

258

garbage collection, 44
Gardner, P.A, 178, 191, 197–199

Geffroy, J-M, 177
genuine partial application, 43

Gifford, D.K, 178
Girard, J.Y, 12

goal label, 204
goal sequence, 201

Gomard, C.K, 30, 36
Gonthier, G, 36

graph, 43
with demand function, 71

with multiple labels, 67

Gregory, S, 196
Grue, K, 13, 36

Hanus, M, 244
Harel, D, 36, 112

hashing apply, 37
hashing cons, 37

head normal form of λ-expression,
28

height of USM-conf, 133
Henson, M.C, 124

Hoffman, B, 127
Holst, C.K, 27, 30, 36

homomorphism
in functional model, 46, 68, 78

Hopcroft, J.E, 145–177
Hughes, J, 21, 30

I, 134
i ⊢ r : G⇒Nn G′, 94

i ⊢∗ r : G⇒c
Nn G′, 95

id , 44, 203, 206, 209, 214

implicit garbage collection, 44

Impossible?, 167
in1, 48

in2, 48

INC, 74
INC1, 74

information family, 192
INIT, 152

Is(B), 192, 201
isomorphism

in functional model, 46, 68, 78

Jones, N.D, 12, 26, 35, 111, 113,

125, 148, 158
Jørgensen, J, 177

Kahrs, S, 37, 128, 143, 144
Kanamori, T, 178, 197, 198

Kawamura, T, 178, 197, 198
Khoshnevisan, H, 12, 21

Kleene, S.C, 26
KMP, 170

KMP algorithm, 161

Knuth, D.E, 112, 145, 159–177
Knuth-Morris-Pratt algorithm, see

KMP algorithm
Kott, L, 25, 124, 125, 178, 185

Krekels, B, 179, 181

L, 43, 66

L(m), 212
L(n), 211

labeling function, 43, 66
Lafont, Y, 12

lambda-lifting, 29
Lamping, J, 15, 36

Launchbury, J, 244
lazy evaluation, 28

LEAVE, 147
level 1 folding, 182, 221

level 1 folding step, 182, 194, 221
level 1 transition, 182, 222

level 1 unfolding, 182, 215

259

level 1 unfolding step, 182, 215
level 1c folding, 235

level 1c folding step, 235
level 1c transition, 235

level 1c unfolding, 231
level 1c unfolding step, 230

level 2 unfolding, 183, 225
level 2 unfolding step, 183, 225

level 2c unfolding, 238
level 2c unfolding step, 237

Lévy, J.J, 36
Lloyd, J.W, 190

looping at level 1

by a fair strategy, 219
by normal order strategy, 94

by some strategy, 219
by the LR strategy, 220

looping at level 2
by a fair strategy, 225

by some strategy, 225
by the LR strategy, 225

LR level 1 unfolding step, 220
LR strategy, 179

LR U-forest, 220
Lucassen, J.M, 178

Maranget, L, 126
memoization, 21, 104

Michie, D, 21
Milner, R, 43, 127, 178

Moore, J.S, 159–177
morphism in functional model, 44

Morris, J.H, 159–177

multilabeled node, 67
multilevel transition systems, 12

N , 136
n-level system, 20

Nd, 71

Ndarg, 72
needed arguments, 71

Neg, 169
Neg-info, 166

Nielson, F, 22, 178
Nielson, H.R, 22

Nikolajsen, T, 148, 158
No-info, 166

node in normal form, 71
node in weak head normal form,

71
non-increasing transition, 213

normal form

in functional model, 40, 90
uniqueness, 92

in logic model, 196, 233
normal order reduction

in functional model, 40, 83
in λ-calculus, 28

normal order steps, 83
Nothing, 169

OI, 204
one-stage method, 21

or-direction label, 204

P(C), 227

P (G, i, j), 204
Palamidessi, C, 190

partial application, 44
genuine, 43

partial evaluation, see PE
Partial Evaluation Machine, see

PEM
Partsch, H, 162, 175

passive nodes, 43

PE, 25, 110
non-termination, 26

PEM, 138

260

Pettorossi, A, 12, 22, 23, 42, 116,
120–122, 178, 196–199

Peyton Jones, S, 12, 29, 31, 37, 42
π(t), 232

Plotkin, G, 12, 122
POP, 147

POP, 134
Pos, 169

Pos-info, 166
Pratt, V.R, 159–177

PRES, 74
progressing

POP step, 134

UNFOLD step, 134
USM-sequence, 136

Proietti, M, 12, 22, 23, 178, 196–
199

PROLOG, 14
pruned configuration, 227

Pull, H, 13
PUSH, 147

PUSH, 133
pushout, 50

pushout in logic model, 207

Queinnec, C, 177

R(m), 208
R(t), 214

R0, 83
Raoult, J.C, 40, 45, 47

Rdx, 72
Reddy, U.S, 126, 244

redex in functional model, 72
reduction

in functional model, 45, 46, 68,

78
REJECT, 147

respects (a node), 45, 67

result node, 82
reversible transition, 214

Ri, 19, 95
Rs(r), 52

Ruf, E, 244
rules

at level 0, 13
in functional model, 84

in logic model, 215, 230
at level 1, 13

S, 43
S, 42

s(G, i), 221
Sahlin, D, 27

SAME, 67

Sands, D, 123, 127
Sato, T, 178, 181, 197, 198

SC, 133
Scherlis, W.L, 125

Schreye, D. de, 179, 181
Schreye, D. de et al, 179

Seki, H, 178, 197–200
SEQ, 74

Sestoft, P, 12, 26, 35, 111, 125
Shapiro, E, 113, 179

Shepherdson, J.C, 178, 191, 197–
199

Shift, 167
σ0, 147

sim, 147
SIMILIX, 26, 115, 143

singlelabeled graph, 67

smash, 49
Smith, D.A, 161

Søndergaard, H, 12, 26, 35, 111,
125, 190

source program, 12

261

Sp, 43
SPEC, 67

specialization
in functional model, 44, 46, 68,

78
in logic model, 201

specialize wrt., 25
specialized function, 25

speedup, 13
bounds, 41, 100, 101, 179

spine redex of λ-expression, 28
Ss(r), 52

stable transition, 213

STACK-0, 152
STACK-1, 152

STACK-2, 152
STACK-EMPTY, 152

Staples, J, 127
static arguments, 25

STEP, 74
Sterling, L, 113, 179

Stomp, F.A, 162, 175
stuck configuration, 102

Sturtivant, C, 15, 31, 32
subs0, 160

subs1, 167
subs2, 168

successor function, 43
Sunday, D.M, 176

supercombinators, 29

T (α, τ), 148

T (e), 118

t(G, i), 215
tabulation, 21

Takano, A, 25
Tamaki, H, 178, 181, 197, 198

target program, 13

Taylor, P, 12
terminal USM-conf, 133

Ti, 98
top-down (rule generation), 20

Träff, J.L, 15, 16, 35, 36, 143–145,
148, 158

transitions
at level 1, 13

at level 2, 13
T T i, 98

Turchin, V.F, 14, 22
Turing, A, 113

Turner, D.A, 37

Turner, D.N, 178
two-level system, 20

two-stage method, 20

U , 201

U-forest, 186, 204
working, 205

U-mirror, 186, 207
working, 208

Uf(B), 218
Ullman, J.D, 145–177

ultimate sharing, 33
Ultimate Sharing Machine, see USM

UNFOLD, 133
unfold/fold transformations, 22, 106

uniqueness of normal forms, 92
USM, 132

ValG(n), 91
virtual nodes, 43

W (G, i), 204
W (G, i, j), 204

W (p), 205
Wadler, P, 23

Wadsworth, C.P, 29

262

Watanabe, O, 158
weight, 187, 204

of U-forest, 205
of U-mirror, 208

weight label, 204
Weise, D, 244

well-typed normal form, 90
where abstractions, 114

working
path, 205, 208

U-forest, 205
U-mirror, 208

Yoshida, N, 126

Z0, 147

Zhu Hong, 126, 128

263

