
This paper is included in the Proceedings of the

13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).

October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the

13th USENIX Symposium on Operating Systems

Design and Implementation

is sponsored by USENIX.

Sharing, Protection and Compatibility for
Reconfigurable Fabric with AMORPHOS

Ahmed Khawaja, Joshua Landgraf, and Rohith Prakash, UT Austin;

Michael Wei and Eric Schkufza, VMware Research Group;

Christopher J. Rossbach, UT Austin and VMware Research Group

https://www.usenix.org/conference/osdi18/presentation/khawaja

Sharing, Protection, and Compatibility for Reconfigurable Fabric with

AMORPHOS

Ahmed Khawaja1, Joshua Landgraf1, Rohith Prakash1,

Michael Wei2, Eric Schkufza2, Christopher J. Rossbach3

1The University of Texas at Austin 2VMware Research Group
3The University of Texas at Austin and VMware Research Group

Abstract

Cloud providers such as Amazon and Microsoft have

begun to support on-demand FPGA acceleration in the

cloud, and hardware vendors will support FPGAs in future

processors. At the same time, technology advancements

such as 3D stacking, through-silicon vias (TSVs), and

FinFETs have greatly increased FPGA density. The mas-

sive parallelism of current FPGAs can support not only

extremely large applications, but multiple applications

simultaneously as well.

System support for FPGAs, however, is in its infancy.

Unlike software, where resource configurations are lim-

ited to simple dimensions of compute, memory, and I/O,

FPGAs provide a multi-dimensional sea of resources

known as the FPGA fabric: logic cells, floating point

units, memories, and I/O can all be wired together, lead-

ing to spatial constraints on FPGA resources. Current

stacks either support only a single application or statically

partition the FPGA fabric into fixed-size slots. These de-

signs cannot efficiently support diverse workloads: the

size of the largest slot places an artificial limit on appli-

cation size, and oversized slots result in wasted FPGA

resources and reduced concurrency.

This paper presents AMORPHOS, which encapsulates

user FPGA logic in morphable tasks, or Morphlets. Mor-

phlets provide isolation and protection across mutually

distrustful protection domains, extending the guarantees

of software processes. Morphlets can morph, dynamically

altering their deployed form based on resource require-

ments and availability. To build Morphlets, developers

provide a parameterized hardware design that interfaces

with AMORPHOS, along with a mesh, which specifies

external resource requirements. AMORPHOS explores

the parameter space, generating deployable Morphlets

of varying size and resource requirements. AMORPHOS

multiplexes Morphlets on the FPGA in both space and

1

10

100

1000

10000

1

10

100

1000

2
5

0
n

m

1
8

0
n

m

1
3

0
n

m

9
0

n
m

6
0

n
m

4
5

n
m

2
8

n
m

2
0

n
m

1
4

-1
6

n
m

7
-1

0
n

m
*

1998 1999 2001 2005 2006 2009 2010 2014 2016 2018

Logic Cells IOs Memory

3.36¢

3.55¢

2.74¢

1.28¢
1.01¢

¢/LC

Figure 1: Cost per logic cell and relative density of memory and logic

cells over time for FPGAs at each process node. Left and right axes

show logic cells and memory density in log-scale relative to 250nm. The

dotted line shows the cost per logic cell for the highest density FPGA at

that node (in cents) where historical pricing was available [84]. The 14-

16nm node introduced FinFETs, which greatly increase performance/W,

so that the same application may use fewer logic cells. * Data for 7-10nm

projected from [22].

time to maximize FPGA utilization.

We implement AMORPHOS on Amazon F1 [1] and

Microsoft Catapult [92]. We show that protected sharing

and dynamic scalability support on workloads such as

DNN inference and blockchain mining improves aggre-

gate throughput up to 4× and 23× on Catapult and F1

respectively.

1 Introduction

FPGAs offer compelling hardware acceleration in appli-

cation domains ranging from databases [28, 59, 74], fi-

nance [54, 70], neural networks [115, 104], graph pro-

cessing [36, 85], communication [57, 107, 27], and net-

working [53, 92, 27]. Over the last few decades, FPGA

compute density has grown dramatically, cost per logic

cell has dropped precipitously (Figure 1), and higher-

level programming abstractions [60, 19, 32, 20, 65, 90]

have emerged to improve programmer productivity. Cloud

providers such as Amazon [1] are offering compute re-

sources with FPGAs. However, system software has not

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 107

kept up. The body of research effort on FPGA OS sup-

port [77, 100, 99, 86, 45, 52, 29] and sharing [30] has

yielded no first-class commodity OS support, and on-

demand FPGAs from AWS and Microsoft support a

single-application model.

Current proposals for FPGA sharing [30, 26, 42, 110,

63] partition a physical FPGA into a small number of

fixed-size slots and demand-share them across user logic

using hardware support for partial reconfiguration (PR).

PR changes the configuration of FPGA fabric within a

slot without perturbing the state of the rest of the FPGA.

User logic is pre-compiled to a bitstream that targets the

pre-defined slots, enabling a system to deploy user logic

with low latency. A reserved partition of the fabric, or

shell, implements library support. Fixed-slot designs have

significant drawbacks in practice. Forcing applications

to target fixed partitions unnecessarily constrains them:

the size of the largest partition places an artificial limit on

application size, and oversized partitions result in wasted

FPGA resources and reduced concurrency.

We present a design and prototype of protected shar-

ing and cross-platform compatibility for FPGAs called

AMORPHOS. AMORPHOS enables applications to scale

dynamically in response to load and availability, and en-

ables the system to transparently change mappings be-

tween user logic and physical fabric to increase utiliza-

tion. AMORPHOS avoids fixed-size slots and manages

physical fabric in dynamically sized zones. Zones are

demand-shared across morphable tasks, or Morphlets. A

Morphlet is a new abstraction which forms a protection

boundary and encapsulates user FPGA logic in a way

that enables it to be dynamically scaled and remapped to

the physical fabric. Morphlets express scalability dimen-

sions and resource constraints using a mesh. A mesh is

a map from feasible resource combinations to abstract

descriptions of the logic. Meshes act as an intermediate

representation (IR) that can be re-targeted at runtime to

different hardware allocations, allowing the AMORPHOS

scheduler to re-target Morphlets to available FPGA fabric.

AMORPHOS caches dynamically generated bitstreams

in a shared registry to hide the latency of re-targeting.

AMORPHOS mediates Morphlet access to OS-managed

resources through a hull, which hardens and extends a

traditional shell design with access control and support

for isolation. The hull also forms a canonical interface

that enables Morphlets to be portable.

We prototype AMORPHOS on both Amazon F1 and Mi-

crosoft Catapult. Measurements show that AMORPHOS’s

abstractions provide both compatibility and protected shar-

ing while dramatically improving utilization and through-

put. We make the following contributions:

• A minimal set of OS-level abstractions and interfaces

to enable mutually distrustful FPGA sharing and

protected access to OS-managed resources.

• A compatibility layer that enables portability of

FPGA code across Amazon F1 and Microsoft Cata-

pult FPGA systems.

• Techniques that transparently transition between

scheduling modes based on fixed and variable zones

to increase utilization and throughput.

• Evaluation of a prototype showing AMORPHOS shar-

ing support increases fabric utilization and system

throughput up to 4× (Catapult) and 23× (F1) rela-

tive to fixed-slot sharing and non-sharing designs.

2 Background

Field Programmable Gate Arrays (FPGAs) are circuits

that can be configured post-manufacture to implement

custom logic. FPGAs may be deployed in a system in

several ways:

Discrete. A FPGA can be used on its own without a

processor. Network switches, for example [17], can be

implemented this way to provide a programmable data

plane.

System-on-chip. FPGAs may include one or more hard

(in-silicon) processors [35, 16] tightly integrated with the

FPGA. Logic in the FPGA can manipulate the processor

and vice versa (e.g. FPGA logic may directly write into

processor caches or manipulate memory controllers).

Bump-in-the-wire. FPGAs can be placed on an I/O

pipeline to “transparently” manipulate data. For exam-

ple, an FPGA may be integrated into a network card or

memory and storage controller to provide line-rate en-

cryption [8].

Co-processor/Offload. FPGAs can be I/O-attached (e.g.

via PCIe) to offload compute. An application configures

the FPGA to implement a hardware accelerator and sends

data and requests to it like a co-processor. Many work-

loads targeting on-demand cloud FPGAs [1, 79], such as

DNNs [83, 116], media transcoding [9], genomics [6],

real-time risk modeling [87], and blockchain [105, 49]

fall in this category. AMORPHOS is designed for FPGAs

deployed in the co-processor/offload configuration.

2.1 Software versus Hardware

Writing Hardware. Hardware description languages

(HDLs), such as Verilog [106] and VHDL [21], enable de-

velopers to configure the various resources on the FPGA

fabric: interconnect, look-up-tables (LUTs), flip-flops, on-

chip memory (block RAM), and “hard resources” (adders,

DSPs, memory controllers, etc.). Unlike software, where

108 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

resource arrangement is abstracted away by the ISA, hard-

ware gives developers explicit control over arranging and

connecting resources in a flexible manner.

Building and deploying hardware. To be deployed on

an FPGA, a design must be converted into a bitstream, a

binary which configures the FPGA fabric. The bitstream

is built from the HDL in two stages: First, synthesis con-

verts and maps the HDL into a netlist, which describes

how resources on the FPGA should be connected to im-

plement design logic. Synthesis is similar to software

compilation and usually takes on the order of minutes.

Second, the place-and-route (PAR) step takes the netlist

and attempts to route the design on the FPGA fabric. PAR

is a constraint-solving problem which can take hours for

a complex design. A bitstream takes 10s-100s of millisec-

onds to be loaded.

Sharing and reconfiguring hardware. Unlike software,

which can be context switched by saving and restoring

architectural state, context switching FPGA hardware at

arbitrary points requires capturing the current state of

the logic, as loading a new bitstream will reset that state.

While mechanisms do exist, they are not universally sup-

ported [47] or are in their early stages [23], and are not sup-

ported in all AMORPHOS’s target environments. There-

fore, time-sharing must either be non-preemptive, or must

forcibly revoke access to the FPGA, potentially at the cost

of losing application state.

Partial Reconfiguration. Hardware support for partial

reconfiguration [76] (PR) enables parts of an FPGA to be

reconfigured in situ without impacting the live configura-

tion or circuit state of other parts of the FPGA fabric. Use

of the feature necessitates including partial reconfigura-

tion logic along with the netlist during the place-and-route

build phase, but does not otherwise impact the process in

a fundamental way: the output is a bitstream that targets a

specific set of physical FPGA resources. Partial reconfigu-

ration can be faster because partial bitstreams are smaller.

Because PR can allow an application to change without

impacting the state of other applications, it is an attractive

primitive for implementing context switching.

Scaling Hardware. Unlike software, which is scaled

by increasing the number of cores or the number of op-

erations executed per instruction (SIMD), hardware can

scale by implementing what can be thought of as entirely

new specialized instructions or algorithms. This enables

FPGAs to provide energy-efficiency and evolvability that

are difficult to achieve with fixed-function hardware like

GPUs or TPUs [117, 46, 11]. For example, a deep neural

network (DNN) can be implemented as thousands of inde-

pendent 2-bit bitwise processors, rather than consuming

the pipeline of a general purpose 64-bit processor.

2.2 FPGA OS and Sharing Support

On-demand FPGAs in the cloud, such as Amazon F1 [1],

only enable coarse-grain sharing of a FPGA. F1 provides

developers with SDKs for developing, simulating, debug-

ging, and compiling hardware accelerators on-demand.

FPGA designs are saved as Amazon FPGA Images (AFIs)

and deployed to an F1 instance. The AWS Marketplace

functions as a library of pre-built common AFIs. At de-

ployment, an AFI is assigned the fabric of the entire

FPGA: there is no support for sharing across protection

domains. The lack of fine-grained sharing means that

both the cloud provider and the user are locked out of the

flexibility of the FPGA: once a user loads an AFI, Ama-

zon must assume that the entire FPGA is being used by

that AFI, even though the FPGA may be idle. Other than

decommissioning the instance, the user has no way to

release FPGA resources back to the cloud provider. As a

result, workloads which need to conditionally or occasion-

ally offload compute [97], or which cannot fully utilize

the FPGA, may be unable to cost-effectively use cloud

FPGAs.

Previous proposals have touched on OS-level concerns

such as cross-application sharing [31, 109, 52], hardware

abstraction layers [111, 61, 78, 62, 50, 80], and shared

runtime support [45, 103, 37], or access from a virtual

machine [88]. Theoretical aspects of spatial scheduling

on FPGAs [43, 102, 108, 31], task scheduling in hetero-

geneous CPU-FPGA platforms [25, 102, 108, 44, 18],

mechanisms for preemption [73], relocation [55], and con-

text switch [72, 93] are well-explored. Access from an

FPGA to OS-managed resources such as virtual mem-

ory [33, 15, 114, 77], file systems [100], and system

calls [77, 100] has enjoyed the research community’s

attention as well. However, no first class OS support for

FPGAs is present in modern commodity OSes and cloud

FPGA platforms support a single application model.

Recent designs for FPGA sharing in datacenters [30, 26,

42, 110, 63] leverage partial reconfiguration to demand

share fixed pre-reserved partitions of FPGA fabric among

applications with bitstreams pre-compiled to target those

partitions. AMORPHOS begins with a design of this form,

extends it to enable cross-domain protection, and replaces

the fixed slot restriction with elastic resource management

to increase utilization and throughput.

3 Goals

AMORPHOS supports demand-sharing of FPGAs by mu-

tually distrustful processes. AMORPHOS multiplexes fab-

ric spatially by default, co-scheduling user logic from

different processes, and falling back to time-sharing when

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 109

FPGA Fabric

Host

bus

DRAM

FPGA Fabric

Morphlet AApp A

Morphlet A

Host

bus

DRAM

FPGA Fabric

Morphlet A

App A

App B

Morphlet A

Morphlet B

Host

bus

DRAM

FPGA FabricMorphlet A’

App A

App B

Morphlet A

Morphlet B

Host

bus

DRAM
App A

Morphlet A

App B

Morphlet B

App C

Morphlet C

App D

Morphlet D

Morphlet A''

Morphlet B'

Morphlet C

Morphlet D

T0 T1 T2 T3

Low-Latency Mode High-Throughput Mode Low-Latency Mode High-Throughput Mode

Figure 2: AMORPHOS managing a number of DNNWeaver (see §6) Morphlets. The top row depicts the host and FPGA state while the bottom

row shows the corresponding chip layout on Catapult. At T0, a single DNNWeaver Morphlet is placed on the FPGA. At T1, AMORPHOS detects

underutilization and transitions to high-throughput mode, giving the Morphlet more area. At T2, another Morphlet is instantiated and AMORPHOS

returns to low-latency mode. Finally, at T3, 2 more DNNWeavers have been scheduled and AMORPHOS transitions to high-throughput mode to fit

them all on the FPGA.

space-sharing is infeasible due to resource constraints. A

critical design objective for AMORPHOS is avoiding the

artificial constraints on inter- and intra-Morphlet scalabil-

ity induced by a fixed-slot design. AMORPHOS enables

individual applications to utilize additional fabric if avail-

able, and enables multiple applications to share the fabric

to achieve higher aggregate utilization.

3.1 Programming Model

We target a programming model of HDL (hardware de-

scription language) over an abstract FPGA fabric. The

primary tangible change from current HDL-FPGA pro-

gramming models is the requirement for the developer to

use virtual interfaces for communication with the host and

access to on-board resources such as DRAM, network I/O,

etc. Collectively, these interfaces form a mediation and

compatibility layer called the hull, which encapsulates,

hardens, and extends current vendor-specific shells [92, 1]

3.2 Isolation

AMORPHOS provides protection guarantees similar to

those provided to processes in a software OS. Memory

and I/O protection is enforced between Morphlets. Best ef-

fort performance isolation is provided based on resource

allocation policy and scheduler hints. When FPGA re-

sources are constrained, AMORPHOS dedicates an even

share of I/O and memory bandwidth to each Morphlet, en-

forced by a hardware arbiter. AMORPHOS makes a best ef-

fort to allocate fabric fairly under contention by preferring

spatial assignments that balance the resources allocated to

each application, and time-slicing fairly when spatial shar-

ing is unfeasible (see §4.2 for details). Extending these

mechanisms to provide priority-proportional fairness is

straightforward, but our prototype currently does not pro-

vide flexible software-exposed policies, which we leave

as future work. Our current design avoids co-scheduling

Morphlets which will interfere with each other through

contention on the hardware based on scheduler hints.

AMORPHOS does not provide explicit protection

against side channels. Side channels exist and are an active

area of research where some mitigations now exist [94].

However, the attack surface for Morphlets is considerably

smaller, as Morphlets enjoy exclusive access to all the

FPGA hardware resources they use except interfaces to

AMORPHOS itself, which are implemented with cross-

domain isolation in mind. For example, special care is

taken to zero out all signals on a Morphlet’s interface

if it is not the intended recipient of a transaction, which

ensures the Morphlet can not monitor the address/data

signals of other Morphlets.

3.3 Dynamic Scalability

A key goal of AMORPHOS is increasing utilization. When

only a single application is on the FPGA, it should enjoy

exclusive access to all resources it can actually use. When

multiple Morphlets contend, if a feasible partitioning of

the fabric accommodating them all exists, applications are

mapped to shares of the fabric concurrently. If no feasible

partitioning exists, the system falls back to time-sharing

at coarse granularity. A key challenge to realizing this

vision is very high latency (potentially hours or more) of

place-and-route (PAR), which maps user-logic to physical

fabric. Using partial reconfiguration (PR) to deploy appli-

110 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cations avoids that latency, but constrains applications to

fixed slots, giving up elasticity. Avoiding or hiding PAR la-

tency without constraining logic to fixed slots is a primary

design goal for Morphlets and the AMORPHOS scheduler.

Furthermore, for Morphlets to take advantage of different

size partitions, the programming model must provide a

way for the developer to express scalability dimensions,

valid configurations, and hints to the system to inform the

scheduler.

While AMORPHOS’s primary sharing strategy is spa-

tial sharing, support for time-sharing is a de facto re-

quirement to avoid starvation when the FPGA is con-

tended. Preemptive time-slicing requires mechanisms for

capturing, evacuating, and restoring state on the FPGA,

and while some applicable mechanisms do exist (e.g.

ICAP [47]) they are not universally supported, and state-

capture remains an active research area [55, 72, 93, 73].

We opt for a non-preemptive context switch based on ex-

tensions to the programming that include a quiescence

interface.

3.4 Motivating Example

Figure 2 shows a series of scheduling decisions taken by

our system in response to applications requesting use of

the FPGA. The top row depicts the state of the host and

FPGA while the bottom row shows the corresponding

chip layout on Catapult V1 FPGAs [92] (Altera Stratix V

5SGSMD5H2F35I3L). At time T0, process A instantiates

a Morphlet on the FPGA. To provide on-demand access

at the lowest latency, it initially deploys A on fixed-size

zone 1 using partial reconfiguration. At time T1, AMOR-

PHOS notices the resulting under-utilization and morphs.

A’s mesh is used to select a more performant netlist that

uses as much of the FPGA as it can profitably consume,

and full reconfiguration is used to give A all the resources

not consumed by AMORPHOS itself. At time T2, process

B requests FPGA fabric. To serve that demand quickly,

AMORPHOS morphs again, reinstating A in zone 1, and

mapping B to zone 2. At some future time T3, which

represents the state after potentially many intervening

events, four processes have requested FPGA access, and

AMORPHOS has morphed by selecting netlists from each

Morphlet’s mesh to produce a single combined bitstream

that co-schedules all. Utilization and throughput are im-

proved by 2× compared to a fixed slot design.

4 Design

AMORPHOS introduces a number of new abstractions

and interconnected components. A system overview is

shown in Figure 3. User logic is encapsulated in Mor-

phlets, a zone manager tracks allocatable area of physical

FPGA fabric, and a scheduler manages the mapping be-

tween Morphlets and zones. To enable flexible mapping

of Morphlets to zones, Morphlets encapsulate informa-

tion to enable the scheduler to generate new bitstreams

on demand, in the form of meshes. To hide the latency of

PAR for dynamic re-targeting of Morphlets, the scheduler

maintains a registry that caches (potentially combined)

bitstreams that can be instantiated on a zone with low la-

tency. AMORPHOS mediates Morphlet access to memory

and I/O with a compatibility and protection layer called

the hull.

4.1 Hull

The primary job of the hull is to provide cross-domain

protection by mediating access to memory and I/O, and to

enable compatibility by presenting Morphlets with canon-

ical interfaces to interact with the rest of the platform. The

hull coordinates with the scheduler by sending and moni-

toring quiescence signals (§4.3), disabling connections to

zones of the FPGA currently being reprogrammed (§4.2),

and connecting and initializing Morphlets after reprogram-

ming is complete. The hull provides memory protection

for on-board DRAM using segment-based address transla-

tion and manages peripheral I/O devices by implementing

shared logic to interface with them, along with simple

access mediation logic (e.g. rate-limiting for contended

I/O). Finally, the hull exports interfaces to the host OS to

configure access control and protection mechanisms, e.g.

base and bounds registers for segments.

We expect that future FPGA platforms will provide

some of this functionality, address translation in particu-

lar, in “hard IP,” meaning it will be supported directly in

silicon. Our current prototypes are forced to synthesize

these functions from FPGA fabric.

4.2 Zones and Scheduling

The zone manager allocates physical FPGA fabric to Mor-

phlets. Fabric not consumed by the hull forms a global

zone, which can be recursively subdivided into smaller

reconfigurable zones that can be allocated to different

Morphlets. Our Catapult prototype supports two smaller

zones within the global zone, each of which can be further

subdivided into two. F1 hardware has considerably more

resources, and could support a considerably larger num-

ber of zones with more levels of subdivision. However,

F1 does not expose the partial reconfiguration feature, so

our F1 prototype is forced to manage only a single global

zone. Zones may be allocated to individual Morphlets

or may accommodate multiple Morphlets simultaneously.

When it is time to schedule a Morphlet, the job of the zone

manager is to find (or create) a free reconfigurable zone

matching the Morphlet’s default bitstream. If a match

is found, the Morphlet can be deployed on that zone di-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 111

Figure 3: AMORPHOS design overview. FPGA Morphlets (applications) are synthesized by the user and given to AMORPHOS to be converted

into bitstreams capable of being placed on the FPGA. The FPGA is split into a hull and multiple zones, in which Morphlets can be scheduled from

cocoons. Access to memory and I/O from Morphlets is virtualized by the hull, which implements the logic to interface with the resources directly and

to ensure proper access control. On the host side, communication to the Morphlet is virtualized through the lib-AMORPHOS interface.

Design

Parameters

RVector Synthesis
App 1

Netlist

Place &

Route

Place &

Route

PR

Logic

Amorph

OS

Zone

Bitstream

Full Chip

BitstreamFPGA

Shell

App 2

Netlist

App N

Netlist
…

Low Latency

Scheduling Mode

High Throughput

Scheduling Mode

HDL

Figure 4: AMORPHOS Morphlet life cycle.

rectly. If one is not found, the zone manager must coalesce

free (or reclaimed) zones to form a larger one, and inform

AMORPHOS that it must re-target the Morphlet along with

any other currently-running Morphlets to be deployed on

the coalesced zone. In the limit, all Morphlets are de-

ployed together on the global zone, maximizing aggregate

utilization and individual application performance.

Zones play a key role in balancing scheduling latency

against aggregate throughput because fixed zones and PR

is better for fast deployment, while a larger zones with

multiple Morphlets is better for utilization and throughput.

AMORPHOS’s scheduler supports two modes reflecting

this tradeoff, low-latency mode and high-throughput mode,

and transitions between those modes transparently based

on demand.

In low-latency mode, reconfigurable zones enable Mor-

phlet to be deployed almost instantly through partial re-

configuration with the Morphlet’s default bitstream. The

Morphlet’s default bitstream targets one or more of the

smaller zones and includes the partial reconfiguration

logic required to enable it to use PR. PR-based schedul-

ing also allows other Morphlets to continue uninterrupted.

However, reconfigurable zones incur significant area over-

head for the additional PR logic required and increase

fragmentation of the FPGA fabric.

When the reconfigurable regions cannot accommodate

the Morphlets of all applications concurrently, a morph op-

eration occurs. The zone manager coalesces zones to form

RVector Cocoon

s t r u c t {
boo l o p t L a t e n c y ;
s i z e t minMem ;
s i z e t optMem ;

s t r u c t {
b i t s t r e a m d e f a u l t b i t s t r e a m ;
map<RVector , n e t l i s t > mesh ;

} Cocoon ;

s i z e t memBw;
s i z e t PCIeBw ;

} RVector ;

Figure 5: Object model for Cocoons.

larger ones, eventually converging to the single global

zone, and the scheduler enters high-throughput mode. To

do so, it re-targets running Morphlets by running place-

and-route to create a bitstream that includes logic for all

of them and subsequently maps that bitstream to the tar-

get zone. When the global zone is the target, this requires

reconfiguring the whole FPGA. However, the global zone

can accommodate significantly more Morphlets because

PR support fabric is freed, and fragmentation is elimi-

nated by not restricting Morphlets to exclusive partitions

of the FPGA. AMORPHOS hides the latency of place-and-

route for morph operations by caching or pre-computing

combined bitstreams targeting the global zone in a Mor-

phlet registry. The registry’s entries are bitstreams for

“co-Morphlets” representing co-compiled combinations

of Morphlets.

AMORPHOS also uses the morph operation for single

Morphlets when the FPGA fabric is underutilized. Mov-

ing a Morphlet to a larger zone or the global zone puts sig-

nificantly more resources at its disposal. The application

can then use these resources to run faster. AMORPHOS

targets applications in which Morphlets will likely run

for an extended time, so the overhead of moving Mor-

phlets to larger zones is amortized by the gains in ag-

gregate throughput. The ability of a Morphlet to benefit

from increasing resource shares is visible to AMORPHOS

through the Morphlet’s mesh, enabling AMORPHOS to

avoid morphing when it is not performance profitable to

do so.

112 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.3 Morphlets and Cocoons

While Morphlets are analogous to and extend the process

abstraction, the AMORPHOS build toolchain produces Co-

coons from HDL specifications targeting AMORPHOS,

which are analogous to an application binary. In addi-

tion to the deployable bitstream produced by current

FPGA build tools, Cocoons encapsulate abstract infor-

mation about the Morphlet to enable stages of the build

toolchain to be re-invoked dynamically to produce differ-

ent bitstreams on demand. Dynamic re-targeting enables

co-scheduling of multiple Morphlets on a zone or dynamic

scaling of the fabric resources allocated to an individual

Morphlet.

Figure 5 shows the contents of a Cocoon, and Figure 4

shows how the various stages in the build and deployment

process interact with Cocoons to enable dynamic target-

ing. A cocoon’s default bitstream targets a default zone

on the device and can be deployed using PR. Its mesh en-

capsulates a constrained set of strategies for re-targeting

the Morphlet’s user logic. Concretely, a mesh is a map

of abstract descriptions of the logic, or netlists, keyed by

RVectors. An RVector describes a feasible combination

of resources and scheduler hints for the corresponding

netlist. The netlist acts as an intermediate representation

(IR) which can, potentially in combination with netlists

from other Morphlets, be used as input to place-and-route

tools to produce new deployable bitstreams. The default

bitstream is always used when the scheduler is in low-

latency mode. When the scheduler is in high-throughput

mode it may compare current system state against RVec-

tors in the mesh to select an appropriate netlist. To deploy

the dynamically chosen configuration, the scheduler can

then produce the required bitstream or look it up in in the

Morphlet registry (§4.5) to hide place-and-route latency.

RVectors. A RVector (Resource Vector) describes Mor-

phlet resource constraints and utilization hints that cannot

be derived from the netlist in the mesh. Important entries

include Boolean valued hints for memory and PCIe usage

which simplify connection to AMORPHOS FPGA-side in-

terfaces, as well as optimal and minimal memory footprint

and bandwidth estimates. Our experience implementing

AMORPHOS is that hints regarding an application’s bottle-

neck resources and access patterns are essential to guide

co-scheduling. For example, this allows the hull to be

optimized for lower memory access latency with some

bandwidth trade-off. Note that low level FPGA-specific

resources (e.g. number of LUTs, BRAMs, etc.) can be

derived from a netlist and are not included in a RVector.

Quiescence Interface. Evacuating Morphlets from the

FPGA is necessary when the enclosing process terminates

System call interface

Scheduler
Morphlet
Manager

Zone
Manager

Transport

Driver

FPGA

Userspace

int mph_fork(Cocoon_t);
void mph_exit(int fd);
void* mph_rcntrl(int, addr_t);
void mph_wcntrl(int, addr_t, void*);
size_t mph_read(int, addr_t, void*);
void mph_write(int, addr_t, void*,
size_t);

// Control
void* peek(addr_t);
void poke(addr_t, void*);
// Data transfer
size_t read(addr_t, void*);
void write(addr_t, void*, size_t);

System calls

Transport functions

R
e
g

is
tr

y

 System calls

Bus

N
e
tw

o
rk

Figure 6: AMORPHOS host stack interfaces between user space and

FPGA Morphlets.

or when the scheduler needs to reallocate a zone to an-

other Morphlet. Rather than immediately removing the

Morphlet (at risk of losing work) or attempting to capture

and save a Morphlet’s state (difficult with current hard-

ware [98, 56]), the hull provides a quiescence interface

to inform the Morphlet of the impending context switch.

The Morphlet is then given an opportunity to enter a sta-

ble state and/or save its progress. A Morphlet informs

AMORPHOS that it can be safety switched by asserting

a quiescence signal through the hull. Unresponsive Mor-

phlets are forcibly evacuated after a configurable time-out

to avoid DoS. Our current design allows Morphlets to

leave data in on-board memory in the absence of mem-

ory pressure from incoming Morphlets. Transparent swap

in/out of a Morphlet’s FPGA DRAM state is a straightfor-

ward operation; our current prototypes do not yet support

it.

4.4 Host Stack/OS interface

AMORPHOS integrates with the OS in the Catapult stack

and acts as a user-mode library for F1. The entire host

stack is depicted in Figure 6. AMORPHOS’s OS interface

exposes system calls to manage Morphlets and enables

communication between host processes and Morphlets.

The interface provides APIs to load and evacuate Mor-

phlets as well as to read and write data over the transport

layer to FPGA-resident Morphlets.

4.5 Morphlet Registry

AMORPHOS dynamically transitions between low-

latency and high-throughput scheduling mode, reflecting a

fundamental latency/density tradeoff. To hide the latency

of dynamic bitstream generation, AMORPHOS maintains

a registry, a cache of precomputed bitstreams that contain

deployable spatial sharing combinations of multiple Mor-

phlets. For a large number of Morphlets, precomputing

bitstreams for all possible combinations is impractical,

particularly when combinations include duplicate Mor-

phlets. We argue that a number of factors enable us to

reduce the search space to a practical level. First, building

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 113

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

10 apps 20 apps 30 apps 10 apps 20 apps 30 apps

current projected

C
o

st
($

)

1 morphlet 2 morphlets 4 morphlets 8 morphlets

1 week

1 day

Figure 7: Cost of pre-compiling all possible combinations of Mor-

phlets given varying numbers of deployable Morphlets and varying

levels of concurrency. Cost is in dollars and reflects the cost of renting

demand infrastructure from Amazon AWS to run the build toolchains.

“Current” data are based on measurements with our present toolchain,

while projected are scaled to assume a (conservative) 20× improvement

in place-and-route performance based on [40, 39, 38].

combined Morphlets can occur in parallel. Second, reduc-

ing the latency of place-and-route is an active area, and

recent research has produced order of magnitude reduc-

tions (20-70×), e.g based on GPUs [40] or other parallel

resources [39, 38]. Third, Morphlets can be grouped by

popularity or according to hints encoded in RVectors to

bound the the number of choices, and sharing densities

need not be maximized to achieve multiplicative improve-

ments in throughput and utilization.

Figure 7 shows the cost in dollars for AWS infrastruc-

ture to pre-compile all possible combinations of Mor-

phlets for varying numbers of Morphlets and concurrency

levels using current tools and using future tools whose

performance is projected based on [40, 38, 39]. Compile

times are derived from our own benchmark builds. 1 The

dotted lines correspond to a day and a week of compute

time on 20 VMs. The AWS marketplace, at the time of

this writing, offers only 18 FPGA applications [4]. From

this pool, all possible co-schedules of 4 Morphlets can be

computed in under a day for $100 in computation time.

Faster future build tools and careful grouping to reduce

the search space can increase utilization further. For ex-

ample, if co-locatable Morphlets are partitioned in groups

of 20, all densities of up to 8 can be precomputed in a

handful of days for $1,000. The registry need not elimi-

nate lookups or maximize density to significantly improve

utilization.

5 Implementation

We implement AMORPHOS on Amazon F1 FPGA cloud

instances[1, 2] and the Microsoft Catapult open research

platform [92], available at TACC [5].

1 Concretely, a single instance of DNNWeaver can be compiled for

F1 in 103 minutes. The second and third instances bring that to 118

minutes, while 8 instances can be co-compiled in 157.

Catapult and F1 both support shells to provide three

basic forms of platform library support: 1) a bulk host-

FPGA data transfer interface, 2) a control interface to

manage FPGA applications, and 3) interfaces to on-board

DRAM. Catapult and F1 expose these functions with dif-

ferent levels of abstraction. Catapult supports packetized

bulk data transfers, a register interface for control signals,

and a simple FPGA-side memory read/write interface

with independent ports. F1’s shell exports AXI4 [3] inter-

faces to encapsulate these three functional areas. AMOR-

PHOS’s interface must encapsulate both Catapult and F1

interfaces, as well as implement address translation for

memory protection and I/O access mediation.

The AMORPHOS hull exposes 1) Control Register (Cn-

trlReg) for Morphlet management, 2) Simple PCIe for

bulk data transfer, and 3) a AMORPHOS Memory Inter-

face (AMI) supporting 64-byte read/write transactions.

Morphlets written to these interfaces are portable across

Catapult and F1. AMORPHOS transparently manipulates

address bits so Morphlets believe they have full control

of memory. OS-programmable BARs (base-address reg-

isters) are used to control and protect what regions of

memory are accessible to different Morphlets. In addition

to memory protection, AMORPHOS provides each Mor-

phlet with a virtual address space and abstracts away the

1-to-1 port-to-channel mappings imposed by F1 and Cat-

apult shells. Virtual address spaces are striped across all

memory channels. The number of co-resident Morphlets,

memory access ports per Morphlet, and number of mem-

ory channels are parameters for the hull. Furthermore,

the hull is modular and incurs no overhead for unused

interfaces on a target FPGA platform.

Logic structures, such as FIFOs, are fundamental build-

ing blocks for FPGA application designers. AMORPHOS

provides an FPGA-agnostic wrapper, HullFIFO, that ex-

poses a high level interface to efficiently map to low-level

primitives on both F1 and Catapult.

5.1 Catapult

Catapult divides FPGA fabric into a shell and user-logic

called a role. The Catapult shell interface to memory is

two 64-byte wide read/write ports over disjoint address

spaces. AMORPHOS adopts the 64-byte transaction size

but virtualizes the interfaces for multiple co-resident Mor-

phlets using segment-based address translation and buffer-

ing to support application-level read-modify-write opera-

tions.

To enable AMORPHOS to use partial reconfiguration

to manage zones we add a PR controller and PR wrapper.

The PR controller streams in PR bitstream data from the

PCIe bus and transfers it to a PR IP module (vendor-

provided Intellectual Property logic block) which uses it

114 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to reconfigure the zone fabric. I/O to each Morphlet is

routed through the PR wrapper, which handles driving the

Morphlet inputs and disconnecting the Morphlet outputs

during PR. This safeguards the application and prevents

spurious I/O during the programming process.

5.2 F1

F1 features a shell and a user application as Custom Logic

(CL). F1 features twice as many memory channels as Cat-

apult and requires the CL to instantiate additional memory

controllers if more than one memory channel is needed.

AMORPHOS handles instantiating the memory controllers

and is parameterized to scale itself to handle additional

memory channels. The F1 shell features many different

PCIe interfaces, some for DMA type transfers between

the host and some lower throughput for management/-

control of the CL. PCIe and Memory on F1 are exposed

over AXI4 interfaces, which are more complex than the

interfaces on Catapult. This complexity is abstracted away

from the Morphlet and implemented in our hull. The hull

sits on top of an unmodified F1 shell.

5.3 Multiplexing AMORPHOS Interfaces

Large numbers of concurrent Morphlets can stress AMOR-

PHOS’s internal FPGA-side subsystems. Each Morphlet

requires the same set of interfaces (CntrlReg, Memory,

and PCIe). Routing and connections to all of them is com-

plicated by the fact that I/O pads for each can be (and are

on F1/Catapult hardware) on different edges of the physi-

cal FPGA, which stresses place and route tools by com-

plicating the routing problem and increasing congestion.

Designing AMORPHOS’s multiplexing logic to anticipate

scale can mitigate some, but not all, of the problem. An

initial design used multiple flat multiplexers to distribute

interface signals to each Morphlet, but we found that, de-

spite plenty of available fabric, they could not scale past

4 concurrent Morphlets in most cases.

Our current design implements a pipelined binary tree

to route the CntrlReg signals. The tree-distribution net-

work enables us to add pipeline stages, making it easier

to meet timing while reducing the fanout of large data

buses. The benefit is a substantial improvement to the

scale at which AMORPHOS can route interfaces to con-

current Morphlets. The trade-off is minimal additional

latency: 1 additional cycle for each layer, easily tolerable

for CntrlReg, which is a low-bandwidth control interface.

Our current implementation takes a different approach

with memory. Rather than scale the memory subsystem to

provide N Morphlets with access to M memory channels

for an arbitrary number of Morphlets, AMORPHOS uses

flat multiplexing with up to 8 Morphlets and statically par-

titions the memory channels across groups of Morphlets

at sharing densities above 8. This policy enables us to use

a single-level of multiplexing and provide access to all

channels for all Morphlets at lower densities but avoids

the complexity and latency of an additional tree network at

high densities. The tradeoff is that Morphlets are restricted

to using a subset of DRAM channels, which does not alter

the capacity of their memory share but does reduce the

bandwidth available to them. Memory systems perform

better when they manage fewer access streams (assum-

ing sequential access) because back-to-back operations

from a single stream enable optimizations that are not

feasible between operations from different streams. The

design decision enables much higher densities as it im-

proves routability: a group of Morphlets only need to route

to a subset of the memory channels. Our experience is

that memory bandwidth contention determines the upper

bound on scalability for Morphlets which share DRAM.

Contention occurs at lower levels of concurrency than the

levels that require strict group-based DRAM channel par-

titioning, so optimizing DRAM access for high sharing

density is unlikely to provide substantial benefits.

5.4 Host Stack

AMORPHOS provides a host stack which interfaces with

userspace applications, implemented as an OS extension

in our Catapult prototype, and as a user-mode library

for F1. The host stack comprises a system call interface,

FPGA Morphlet manager and scheduler, zone manager,

and transport layer that encapsulates the control and bulk

transfer interfaces described above (§5). The interface

and stack structure are illustrated in Figure 6. Control

signals and reading/writing data are passed through the

syscall interface to the transport layer. Morphlet alloca-

tion, scheduling hints, and tear down are redirected to the

Morphlet scheduler and zone manager.

The host system call interface for Catapult is imple-

mented as a service which supports the transport layer

by wrapping the Catapult driver and library stack. The

service associates Morphlets with file descriptors, export-

ing read and write operations on them, and communicates

with the scheduler to monitor the active state of executing

Morphlets or request quiescence.

6 Evaluation

AMORPHOS runs on both a Mt Granite FPGA board in

the Catapult V1 cloud platform [92], containing an Altera

Stratix V GS running at 125 MHz with two 4 GB DDR3

channels, and an Amazon F1 cloud instance [1], using a

Xilinx UltraScale+ VU9P running at 125 MHz with four

16 GB DDR4 channels. Both platforms are connected

over a PCIe bus and support build tools we adapt to build

AMORPHOS and our benchmarks, summarized in Table 1.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 115

Program Description

DNNWeaver Convolutional neural network

MemDrive Memory streaming

Bitcoin Bitcoin hashing accelerator

DFADD Double-precision addition

DFMUL Double-precision multiplication

DFSIN Double-precision Sine function

MIPS Simplified MIPS processor

ADPCM Adaptive differential pulse codec

GSM Linear predictive coding analysis

JPEG JPEG image decompression

MOTION Motion vector decoding

AES Advanced encryption standard

BLOWFISH Data encryption standard

SHA Secure hash algorithm

Table 1: Benchmarks used to evaluate AMORPHOS

Benchmarks. We evaluate benchmarks that cover three

important categories for FPGA applications, defined by

whether they are memory-bound, compute-bound, or dy-

namic resource bound. Morphlets are compute-bound

when low-level FPGA resources such as LUTs, BRAMs,

etc. are limited. Morphlets are memory-bound when off-

chip memory bandwidth or latency constrains their per-

formance. Morphlets are dynamic resource bound when

they can be mapped to the fabric in ways that represent

different points along their roofline model [82], mean-

ing they can be memory- or compute-bound. Our Bitcoin

Morphlet (based on [12]) is compute-bound. It is parame-

terized to replicate hashing units and can scale to consume

most of the on-board FPGA fabric. Additional instances

of functional units increase logic utilization limiting the

maximum size/throughput of the Morphlet. Applications

that are memory-bound usually have a low compute-to-

memory ratio and directly benefit from additional off-

chip memory bandwidth. Streaming applications (e.g. in

database [75] or search [112]) access large amounts of

data, often discarding much of it or doing minimal com-

pute per datum. To represent a range of such applications,

we wrote a custom Morphlet called MemDrive (MemD)

that can be configured on the host side post-synthesis to

generate different memory traffic patterns and read/write

ratios, along with operations such as fills, reductions, and

ECC checks.

Many applications can be configured to take advantage

of either additional logic or additional memory bandwidth,

corresponding to different points along their roofline

model. To represent this class, we evaluate DNNWeaver

[96], an open source DNN design framework that can be

used to synthesize models from a description of a specific

network topology. The user controls the number of func-

tional units and data buffer sizes, translating to variable

Catapult Benchmark Logic Cells Registers BRAM Bits

DNNWeaver 39,994 108,640 387,840
MemDrive 2,449 1,488 570,496

Bitcoin 42,171 60,257 21,408
blowfish 20,581 24,082 810,850

gsm 20,910 24,716 5,552
mips 17,672 19,981 657,574

dfmul 17,759 20,586 0
aes 23,900 28,366 689,630

motion 25,178 26,734 687,366
dfadd 18,043 21,014 662,694

sha 17,772 21,380 788,806
adpcm 22,840 29,837 663,654

jpeg 42,243 40,327 1,116,312
dfsin 26,742 32,572 663,805

F1 Benchmark LUTs Flip Flops BRAM Bits

DNNWeaver 4,924 4,773 339,968
MemDrive 1,136 930 0

Bitcoin 40,106 46,191 0

Table 2: FPGA resource utilization by Morphlet type broken down by

resource type as reported by each platform.

demand for on- and off-chip resources. We instantiate

DNNWeaver with an 8-layer LeNet [71] topology.

To increase benchmark diversity, we include a num-

ber of benchmarks that perform many useful non-trivial

functions that do not fully utilize the fabric or memory

bandwidth. We use the LegUp [7] high level synthesis

(HLS) environment to generate 11 Morphlets (a subset of

CHStone[48]). LegUp applications use memory by com-

posing it from BRAMs when needed, rather than off-chip

DRAM, so they do not contend for DRAM bandwidth.

However, as many FPGA applications (DNNs included)

are optimized to ensure their working set fits in on-chip

BRAMs to minimize off-chip memory access, we believe

they are representative.

Metrics. We report resource utilization and performance

measured by throughput. The build tools for each platform

break down resource utilization into logic, registers/flip-

flops, and BlockRAMs. Morphlets are instrumented with

cycle counters to measure the runtime on the FPGA when

each is running. End-to-end execution time is measured

from the host side. Performance for MemDrive is reported

as memory throughput (bytes/cycle). Bitcoin performance

is reported as normalized hash throughput with the base-

line being a fully unrolled and pipelined instance of the

application (to the maximum the open source code permit-

ted), producing a full block hash per cycle. DNNWeaver

performance is reported as normalized throughput, where

the baseline is the number of cycles required for input data

to run through all network layers and complete inference.

We evaluate AMORPHOS with 14 different bench-

marks, listed in Table 1. The logic, register, and memory

utilization of these benchmarks is listed for both Catapult

and (partially for) F1 in Table 2.

Table 3 shows increases in utilization and system

116 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Catapult Configuration # ALMs Utilization Sys. Throughput

1 Bitcoin 63,973 1.00x 1.00x
2 Bitcoin 93,908 1.47x 2.00x
4 Bitcoin 141,139 2.21x 4.00x
1 DNNWeaver 92,619 1.45x 1.00x
2 DNNWeaver 134,972 2.11x 2.00x
4 DNNWeaver 154,956 2.42x 3.31x
1 DNN, 1 MemD 92,135 1.44x 1.41x
2 DNN, 2 MemD 148,249 2.32x 0.80x
1 DNN, 1 BTC 112,010 1.75x 2.00x
2 DNN, 2 BTC 140,635 2.20x 3.68x
1 DNN, 1 BTC, 2 MemD 96,994 1.52x 1.86x
2 BTC, 2 MemD 95,936 1.50x 2.77x

F1 Configuration # LUTs Utilization Sys. Throughput

1 MemD 68,885 1.00x 1.00x
2 MemD 89,161 1.29x 1.67x
4 MemD 100,773 1.46x 1.37x
8 MemD 127,530 1.85x 0.78x
1 Bitcoin 104,851 1.52x 1.00x
4 Bitcoin 229,482 3.33x 4.00x
8 Bitcoin 484,879 7.03x 8.00x
1 DNNWeaver 90,118 1.31x 1.00x
4 DNNWeaver 129,925 1.89x 3.94x
8 DNNWeaver 187,839 2.73x 7.80x
16 DNNWeaver 294,290 4.28x 14.80x
32 DNNWeaver 397,580 5.78x 23.22x

Table 3: Morphlet configurations run in AMORPHOS with correspond-

ing ALM/LUT (logic) usage, relative system utilization improvement,

and relative system throughput.

throughput that are made possible by co-scheduling Mor-

phlets using AMORPHOS. Utilization is measured as

ALM (adaptive logic module) or LUT (lookup table) us-

age relative to the smallest configuration on each platform,

1 Bitcoin for Catapult and 1 MemDrive for F1. System

throughput is reported as the sum of each Morphlet’s nor-

malized throughput, relative to a single instance of that

Morphlet. In only two cases does co-scheduling Mor-

phlets result in reduced system throughput, both of which

involve multiple MemDrive Morphlets, which interfere

significantly with other memory-dependant Morphlets. In

the best cases, co-scheduling Morphlets results in 7.03x

increased utilization and 23.22x increased throughput.

6.1 CHStone

We evaluate CHStone benchmarks to illustrate generality

and to demonstrate that useful accelerators can be co-

scheduled at high density with AMORPHOS to increase

throughput. We find that the upper bound on density for

all is determined by AMORPHOS’s ability to route control

interfaces to them, which translates to an upper bound of

8 on our Catapult prototype. Because the LegUp com-

piler implements memory with BRAM, rather than by

connecting to on-board DRAM, the CHStone workloads

only shared resource is the CntrlReg interface. Absent

any source of contention, they scale linearly to the upper

bound when co-scheduled as Morphlets on AMORPHOS.

0

30

60

90

120

1 2 4 8

B
a

n
d

w
id

th
 (

b
y

te
s

/
c

y
cl

e
)

Number of MemDrives

MemDrive Memory Bandwidth

Total Read BW Total Write BW Read BW / App Write BW / App

Figure 8: Total and per-MemDrive memory bandwidth for different

numbers of Morphlets running in AMORPHOS on Catapult.

We do not report measurements on our F1 prototype as

they illustrate the same phenomenon.

6.2 MemDrive

We study contention between memory-bound Morphlets

using MemDrive, which stresses memory bandwidth.

AMORPHOS’s 64-byte read/write interface maps well

to Catapult, but does not support burst transactions (one

transaction returning multiple data payloads), which is

necessary to achieve high read throughput on F1’s AXI

interface to memory. While we were able to achieve peak

write-bandwidth on F1 and observe contention due to mul-

tiple applications running concurrently, we were unable

to saturate read-bandwidth. In future work, our intention

is to introduce burst detection and dynamically coalesce

memory requests.

Catapult’s memory system has a theoretical bandwidth

of of 128 bytes/cycle. Experiments on our Catapult pro-

totype show that the total achievable memory bandwidth

is roughly 100 bytes/cycle for writes and 90 bytes/cycle

for reads. We ran MemDrive in AMORPHOS and directly

on the Catapult system to confirm that our virtualization

layer incurs no bandwidth loss. Figure 8 shows the per-

Morphlet and total system read/write bandwidth when run-

ning 1–8 Morphlets of MemDrive in AMORPHOS. Total

system bandwidth decreases as the number of co-resident

Morphlets rises from 1 up to 4, and saturates from 4 to 8.

On F1, we observed similar contention when scaling from

1 to 8 MemDrive Morphlets. The RVector of each Mor-

phlet provides hints to AMORPHOS’s on-FPGA memory

scheduler, enabling it to manage contention fairly, and

improve effective memory bandwidth (e.g. by batching

memory requests) or minimize latency for Morphlets that

are latency sensitive. MemDrive is not latency sensitive,

but its ability to saturate memory has implications for the

memory scheduler, which must take care to ensure that

latency sensitive Morphlets such as DNNWeaver are not

impacted by that saturation.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 117

6.3 DNNWeaver

Table 3 shows how DNNWeaver scales when instantiat-

ing multiple Morphlets. We see that aggregate throughput

increases with more Morphlets, but contention causes the

deviation from perfect linear-scaling to increase with in-

creasing co-resident Morphlets. Both Catapult and F1 the-

oretically have enough bandwidth to support up to 4 and

32 DNNWeaver Morphlets, respectively. Contention for

the memory system manifests as an increase in memory

latency for DNNWeaver. We further show this contention

in Table 3 by pairing DNNWeaver with MemDrive. Since

DNNWeaver performance can suffer if it is paired with a

memory-bound Morphlet, encoding a Morphlet’s sensitiv-

ity to memory bandwidth/latency in the RVector is useful

for the AMORPHOS scheduler.

6.4 Bitcoin

Up to 4 and 8 Bitcoin Morphlets can be co-resident on

Catapult and F1 respectively. Table 3 shows that scaling

is linear as Bitcoin only contends for on-chip resources,

which are assigned during bitstream generation. The RVec-

tor for a Bitcoin-type application specifies that there is

no runtime overhead except fabric resources. This would

enable AMORPHOS to intelligently co-schedule Bitcoin

with other Morphlets that make heavy use of memory but

require much less fabric resources, such as MemDrive.

Compute-bound Morphlets would be great for utilizing un-

used fabric as they can scale with available logic resources

without hurting the performance of memory-bound Mor-

phlets. We show this in Table 3 by pairing Bitcoin with

DNNWeaver and MemDrive.

6.5 Density Limits

To determine the limits on sharing density we co-schedule

as many concurrent Morphlets as possible, manually ma-

nipulating the build process where necessary to achieve

higher density. While AMORPHOS can achieve high lev-

els of concurrency this way, practically attainable and

performance profitable levels are lower. High density co-

scheduling of Morphlets stresses build tools because inter-

faces must be routed to each Morphlet. Avoiding routing

congestion at higher densities require manipulation of

the build tools. For example, configuring the build tools

to focus on congestion rather than logic minimization

spreads out the design and replicates logic, increasing

area overheads. Routing is heuristic, so successfully meet-

ing timing can depend on trying multiple random seeds.

Such interventions are impractical to automate in an OS

scheduler, and a production deployment of AMORPHOS

would necessarily tolerate sharing densities below the

maximum possible.

Morphlet MaxPerf MaxTools Max

DNNWeaver 32 8 32

Bitcoin 8 4 8

MemDrive 2 8 32

Table 4: Limits on AMORPHOS F1 sharing density for DNNWeaver,

MemDrive, and Bitcoin. The MaxPerf column indicates the level of

Morphlet concurrency at which throughput is maximal. The MaxTools

column indicates the maximum concurrency achievable without manual

intervention in the build process. The Max column indicates the max-

imum level we attained with manual intervention in the build process.

For example, DNNWeaver’s maximal performance is achieved at 32

Morphlets, which is only achievable with manual effort; the build tool

chain defaults achieve a maximum density of 8.

Limits on sharing density differ across workloads. Ta-

ble 4 shows maximum densities on F1 when the up-

per bound is determined by best throughput, build trans-

parency, or physical limits of the FPGA.

6.6 End-to-End Performance

To compare AMORPHOS against other FPGA sharing

designs, we measure the time required to run 1-8 Bit-

coin instances on Catapult using AMORPHOS in high-

throughput mode, several slot-based approaches, and a

no-sharing baseline. The performance of slot-based ap-

proaches is emulated by running AMORPHOS in low-

latency mode, which uses PR to switch between zones of

equal size. The performance of not sharing is emulated by

running AMORPHOS with a single Morphlet. Since pro-

gramming the whole FPGA using the Catapult tools takes

a significant portion of time, we also emulate optimal full

FPGA reconfiguration by adding a delay of 200ms, which

is comparable to programming the whole FPGA via PR.

The overhead of using AMORPHOS to emulate these ap-

proaches is negligible compared to application runtime,

so we expect our results to be accurate for all approaches.

In high-throughput mode, AMORPHOS can fit 4 full-

sized Bitcoin Morphlets on the FPGA: we assume that the

registry is pre-populated with the required bitstream (see

§4.5). When using fixed slots, only two Bitcoin instances

can be co-resident. Since slots may not always be able

to fit the largest version of Bitcoin, we emulate three

different sizes of slots, which we refer to as small, medium,

and large. The small slot can fit a quarter-speed variant

of Bitcoin, the medium slot can fit a half-speed variant,

and the large slot can fit the full-speed variant. In the no-

sharing approach, a single full-sized Bitcoin Morphlet is

instantiated.

Figure 9 reports the full system runtime of each ap-

proach. When running only a single Bitcoin Morphlet,

AMORPHOS is comparable to both the no sharing and two

large slot approaches. The smaller slot-based approaches

limit the size of the application and already perform worse

than AMORPHOS. With two Bitcoin Morphlets, only

118 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

16

32

64

128

256

512

1 2 3 4 5 6 7 8

R
u

n
 T

im
e

 (
s)

Number of Morphlets

End-to-End Bitcoin Run Time

No Sharing Two Small Slots Two Medium Slots Two Large Slots AmorphOS (HT)

Figure 9: End-to-end runtime of Bitcoin executing under several

different sharing schemes. Runtime is plotted logarithmically with lower

runtimes being better.

AMORPHOS and two large slots are comparable. Finally,

with 3 or more Bitcoin Morphlets, AMORPHOS is consis-

tently able to attain higher logic densities and therefore

better throughput than all other competing approaches.

While AMORPHOS cannot always run in high-throughput

mode as shown here, we expect AMORPHOS to main-

tain the same comparative advantage in the long run as

it will only have to operate in low-latency mode until a

high-throughput bitstream has been generated.

6.7 Hierarchical Zone Management

AMORPHOS can manage a zone in three ways. It can

allocate the zone for exclusive use by a single Morphlet,

co-schedule multiple Morphlets on it, or recursively subdi-

vide it into two smaller zones. Subdividing top-level zones

may be attractive if Morphlets do not fully utilize those

zones or if Morphlet response time is more important than

end-to-end run time. This flexibility gives rise to a policy

space that trades off between density, performance, and

registry overhead.

To characterize these trade-offs, we run three Bitcoin

Morphlets on our Catapult prototype, in which AMOR-

PHOS uses a single global zone or two top-level reconfig-

urable zones, each of which may be subdivided in two. We

measure end-to-end execution time to completion for all

three Morphlets, using a lower-bound baseline that does

not share (non-sharing) and an upper-bound baseline that

co-schedules all Morphlets on the global zone (global).

We evaluate three different policies for managing the top-

level zones. The first implements only a single-level of

zone partitioning (single-level) with no co-scheduling

within the zones. The second policy schedules combined

Morphlets on zones without subdividing the zones (co-

schedule). The third policy (subdivide) can subdivides

the top-level zones. Registry entries for all combined bit-

streams are pre-populated. For the co-schedule and sub-

divide cases, we morph the second two Morphlets by

scaling them down to fit concurrently in a top-level recon-

figurable zone, which reduces their throughput by a factor

0

0.5

1

1.5

2

2.5

3

Non-sharing Global Single-Level Co-schedule Subdivide

R
e

la
ti

ve
 S

p
e

e
d

u
p

Zone Scheme

Performance of Zone-Sharing Schemes

Figure 10: End-to-end performance of various zone-sharing schemes

when executing 3 Bitcoin Morphlets.

of 4, but allows us to run all three Morphlets in parallel.

Figure 10 shows end-to-end speedup relative to the

non-sharing case for all policies. In this scenario, a sin-

gle level of zone partitioning is the best option when co-

scheduling on the global zone is not possible. This enables

the first two Morphlets to run concurrently, providing ad-

ditional concurrency that results in a performance gain

relative to the no-sharing strategy. Both strategies for sub-

dividing a top-level reconfigurable zone perform worse

than the sequential case, for two reasons. First, perfor-

mance is reduced by scaling them to fit a subdivided zone.

Second, subdividing zones does not make all the under-

lying resources available to each subdivision. Additional

PR logic is required for each, which consumes additional

area and reduces routability.

Measurements of overhead for PR on Catapult FPGAs

show that it grows linearly with density. Interconnect is

the bottleneck resource, with 4% of global interconnect

and 2% of global logic consumed by PR per Morphlet.

While the 4% interconnect overhead can become a signifi-

cant fraction of the allocatable fabric, density is primarily

limited by fragmentation (we observe an average utiliza-

tion loss of 16% in our workloads), which makes multiple

levels of subdivision unprofitable for all but very small

Morphlets on Catapult.

However, multiple levels of subdivision may be useful

on F1 FPGAs, where the fraction of resources allocatable

through PR zones is larger. F1 does not expose PR, so to

predict sharing densities for PR-based subdivision on F1,

we extrapolate assuming the same average 16% fragmen-

tation per PR zone and 2% per-Morphlet overhead for PR

logic. We assume that all fabric not consumed by AMOR-

PHOS and PR logic can be divided evenly and allocated

to Morphlets, but we impose a 90% upper bound on uti-

lization per resource type, which is suggested by Xilinx to

be the likely upper bound on UltraScale FPGAs [14]. This

over-estimates utilizable fabric: other vendor guidance is

more conservative [10] and our measured utilization does

not exceed 70% for any workload.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 119

Derived upper bounds on density for F1 hardware show

that CLBs (Configurable Logic Blocks, which encapsu-

late multiple LUTs) are the limiting resource. We predict

maximum sharing density with PR to be 16 and 4 for

DNNWeaver and Bitcoin, respectively.2 This suggests

that zone subdivision will likely be possible and effective

on F1. Our experience building AMORPHOS, however, is

that subdividing zones increases the design complexity of

hardware components and limits density unnecessarily by

increasing fragmentation. In contrast, increasing density

by co-scheduling Morphlets on a global zone can provide

much higher densities with potentially higher effective

deployment latency, but shifts much of the complexity to

a software registry.

7 Related Work

FPGA programmability. Improving FPGA programma-

bility is an active area largely characterized by efforts to

enable programming with higher level languages, includ-

ing C/C++ and other imperative languages [60, 19, 34, 69,

13, 18, 51, 68, 67], DSLs [32, 69, 95, 20, 81, 101, 66, 91],

and even managed sequential languages such as C# [32]

and map-reduce [95]. Progress in this area motivates our

work, but is also orthogonal to it.

FPGA access to OS-managed resources. Prior work

has explored exposing file systems [100] and the syscall

interface [77, 100] to FPGAs. Much of this work has

similar goals to our own, but we decided to focus on the

exploration of cross-domain sharing and basic memory

virtualization. A more mature AMORPHOS could clearly

benefit from the rich body of work on memory virtualiza-

tion for FPGAs [33, 15, 114, 77].

FPGA OSes. Previous work on FPGA OSes has fo-

cused on theoretical foundations for spatial sharing [43,

102, 108, 31], mechanisms for task preemption [73], re-

location [55], context switch [72, 93], and scheduling of

hardware and software tasks [25, 102, 108, 44]. While

these explore ideas pertinent to OS primitives, end-to-end

OS system-building was not their goal.

Extending current OS abstractions to FPGAs is another

area of active research. ReconOS [77] extends a multi-

threaded programming model to configurable SoCs that

enables programmers to use “hardware threads” to trans-

parently access OS-managed objects in the eCos [41]

embedded OS. Hthreads [86] implements a similar hard-

ware thread abstraction. Borph [100, 99] uses a hard-

ware process abstraction to encapsulate FPGA logic in a

process-like protection domain. Multi-application sharing

for FPGAs is explored in [31, 109, 52], but some works

2We do not predict density for MemDrive as it is bottlenecked by

memory bandwidth at low densities.

restrict the programming model or design space [111], or

do not tackle isolation and protection [31]. AMORPHOS

differs by proposing new OS abstractions that differ from

the existing CPU-oriented programming models.

MURAC [45] is the most closely related work to

AMORPHOS. In MURAC, a process’ logical address

space encompasses all on-device resources that logically

“belong to it”, enabling the scheduler to support context

switch using an ICAP (Internal Configuration Access

Port). AMORPHOS takes a similar position on protec-

tion domains, but focuses on spatial scheduling and does

not rely on hardware support for state capture.

FPGA Virtualization. Systems have been proposed that

virtualize FPGAs with regions [88], tasks [89], processing

elements [37], IPC-like communication primitives [80],

and abstraction layers/overlays over diverse FPGA hard-

ware [62, 50, 24, 61, 103]. Works virtualizing FPGAs in

the cloud [30, 1, 79] share many of our core goals and

tackle similar challenges. While these platforms use sim-

ilar primitives to those of AMORPHOS, they typically

restrict the programming and/or deployment model and

do not support cross-domain sharing of FPGA fabric.

Overlays. FPGA overlays provide a virtualization layer

to make a design independent of specific FPGA hard-

ware [24, 113], enabling fast compilation times and low

deployment latency [58, 64], at the cost of reduced hard-

ware utilization and throughput. Like AMORPHOS, many

overlays support some time-sharing and or spatial shar-

ing. Overlays implement the same virtual architecture on

different devices, they form a compatibility layer at the

hardware interface. In contrast, AMORPHOS provides

compatibility at the application-OS interface. Unlike Mor-

phlets, overlays run on a virtual architecture, introducing

overheads that limit utilization and performance.

8 Conclusion

This paper has described AMORPHOS, a design for FPGA

protected sharing and compatibility based on abstractions

that preserve existing programming models. AMORPHOS

modulates between space- and time-sharing policies and

isolates logic from different applications, enabling cross-

cloud compatibility and dramatically improved through-

put and utilization.

9 Acknowledgements

We thank the anonymous reviewers and our shepherd

Miguel Castro for their insights and comments. We

acknowledge funding from NSF grant CNS-1618563.

120 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Amazon EC2 F1 Instances. https:

//aws.amazon.com/ec2/instance-

types/f1/. (Accessed on 09/27/2018).

[2] Amazon Web Services (AWS) - Cloud Computing

Services. https://aws.amazon.com/. (Ac-

cessed on 04/30/2018).

[3] AMBA Specifications Arm. https:

//www.arm.com/products/system-

ip/amba-specifications. (Accessed on

05/03/2018).

[4] AWS FPGA Marketplace. https:

//aws.amazon.com/marketplace/

search/results?searchTerms=fpga.

(Accessed on 09/14/2018).

[5] Catapult - Texas Advanced Computing Cen-

ter. https://www.tacc.utexas.edu/

systems/catapult/. (Accessed on

9/27/2018).

[6] Edico Genomes DRAGEN Platform.

http://edicogenome.com/dragen-

bioit-platform/. (Accessed on 5/2/2018).

[7] High-Level Synthesis with LegUp. http://

legup.eecg.utoronto.ca/. (Accessed on

10/24/2017).

[8] Innova-2 Flex Programmable Network Adapter.

http://www.mellanox.com/related-

docs/prod adapter cards/PB Innova-

2 Flex.pdf. (Accessed on 5/2/2018).

[9] Live Video Encoding Using New AWS

F1 Acceleration NGCodec. https:

//ngcodec.com/news/2017/3/31/live-

video-encoding-using-new-aws-f1-

acceleration. (Accessed on 09/27/2018).

[10] Measuring Device Performance and Utiliza-

tion: A Competitive Overview (WP496).

https://www.xilinx.com/support/

documentation/white papers/wp496-

comp-perf-util.pdf. (Accessed on

09/27/2018).

[11] Microsoft unveils Project Brainwave

for real-time AI - Microsoft Research.

https://www.microsoft.com/en-us/

research/blog/microsoft-unveils-

project-brainwave/. (Accessed on

10/21/2017).

[12] progranism/Open-Source-FPGA-Bitcoin-Miner.

https://github.com/progranism/

Open-Source-FPGA-Bitcoin-Miner.

(Accessed on 10/24/2017).

[13] SDAccel Development Environment. https:

//www.xilinx.com/products/design-

tools/software-zone/sdaccel.html.

(Accessed on 09/27/2018).

[14] UltraScale Architecture: Highest Device Uti-

lization, Performance, and Scalability (WP455).

https://www.xilinx.com/support/

documentation/white papers/wp455-

utilization.pdf. (Accessed on 09/27/2018).

[15] ADLER, M., FLEMING, K. E., PARASHAR, A.,

PELLAUER, M., AND EMER, J. Leap scratchpads:

Automatic memory and cache management for re-

configurable logic. In Proceedings of the 19th

ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (New York, NY, USA,

2011), FPGA ’11, ACM, pp. 25–28.

[16] ALTERA. Cyclone V SoC Development Board Ref-

erence Manual. https://www.altera.com/

content/dam/altera-www/global/

en US/pdfs/literature/manual/

rm cv soc dev board.pdf. (Accessed on

5/2/2018).

[17] ALTERA. Integrating 100-GbE Switch-

ing Solutions on 28nm FPGAs. https:

//www.altera.com/en US/pdfs/

literature/wp/wp-01127-stxv-

100gbe-switching.pdf. (Accessed on

5/2/2018).

[18] ANDERSON, E., AGRON, J., PECK, W., STEVENS,

J., BAIJOT, F., SASS, R., AND ANDREWS, D. En-

abling a uniform programming model across the

software/hardware boundary. fccm’06, 2006.

[19] AUERBACH, J., BACON, D. F., CHENG, P., AND

RABBAH, R. Lime: A java-compatible and synthe-

sizable language for heterogeneous architectures.

In Proceedings of the ACM International Confer-

ence on Object Oriented Programming Systems

Languages and Applications (New York, NY, USA,

2010), OOPSLA ’10, ACM, pp. 89–108.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 121

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
https://aws.amazon.com/marketplace/search/results?searchTerms=fpga
https://aws.amazon.com/marketplace/search/results?searchTerms=fpga
https://aws.amazon.com/marketplace/search/results?searchTerms=fpga
https://www.tacc.utexas.edu/systems/catapult/
https://www.tacc.utexas.edu/systems/catapult/
http://edicogenome.com/dragen-bioit-platform/
http://edicogenome.com/dragen-bioit-platform/
http://legup.eecg.utoronto.ca/
http://legup.eecg.utoronto.ca/
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
https://ngcodec.com/news/2017/3/31/live-video-encoding-using-new-aws-f1-acceleration
https://ngcodec.com/news/2017/3/31/live-video-encoding-using-new-aws-f1-acceleration
https://ngcodec.com/news/2017/3/31/live-video-encoding-using-new-aws-f1-acceleration
https://ngcodec.com/news/2017/3/31/live-video-encoding-using-new-aws-f1-acceleration
https://www.xilinx.com/support/documentation/white_papers/wp496-comp-perf-util.pdf
https://www.xilinx.com/support/documentation/white_papers/wp496-comp-perf-util.pdf
https://www.xilinx.com/support/documentation/white_papers/wp496-comp-perf-util.pdf
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/support/documentation/white_papers/wp455-utilization.pdf
https://www.xilinx.com/support/documentation/white_papers/wp455-utilization.pdf
https://www.xilinx.com/support/documentation/white_papers/wp455-utilization.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cv_soc_dev_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cv_soc_dev_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cv_soc_dev_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cv_soc_dev_board.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01127-stxv-100gbe-switching.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01127-stxv-100gbe-switching.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01127-stxv-100gbe-switching.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01127-stxv-100gbe-switching.pdf

[20] BACHRACH, J., VO, H., RICHARDS, B. C.,

LEE, Y., WATERMAN, A., AVIZIENIS, R.,

WAWRZYNEK, J., AND ASANOVIC, K. Chisel:

constructing hardware in a scala embedded

language. In The 49th Annual Design Automation

Conference 2012, DAC ’12, San Francisco, CA,

USA, June 3-7, 2012 (2012), pp. 1216–1225.

[21] BHASKER, J. A Vhdl primer. Prentice-Hall, 1999.

[22] BOHR, M. Moores Law Leadership. https:

//newsroom.intel.com/newsroom/wp-

content/uploads/sites/11/2017/

03/Mark-Bohr-2017-Moores-Law.pdf.

(Accessed on 09/27/2018).

[23] BOURGE, A., MULLER, O., AND ROUSSEAU,

F. Automatic high-level hardware checkpoint

selection for reconfigurable systems. In Field-

Programmable Custom Computing Machines

(FCCM), 2015 IEEE 23rd Annual International

Symposium on (2015), IEEE, pp. 155–158.

[24] BRANT, A., AND LEMIEUX, G. G. Zuma:

An open fpga overlay architecture. In Field-

Programmable Custom Computing Machines

(FCCM), 2012 IEEE 20th Annual International

Symposium on (2012), IEEE, pp. 93–96.

[25] BREBNER, G. J. A virtual hardware operating sys-

tem for the xilinx xc6200. In Proceedings of the 6th

International Workshop on Field-Programmable

Logic, Smart Applications, New Paradigms and

Compilers (London, UK, UK, 1996), FPL ’96,

Springer-Verlag, pp. 327–336.

[26] BYMA, S., STEFFAN, J. G., BANNAZADEH, H.,

GARCIA, A. L., AND CHOW, P. Fpgas in the cloud:

Booting virtualized hardware accelerators with

openstack. In Proceedings of the 2014 IEEE 22Nd

International Symposium on Field-Programmable

Custom Computing Machines (Washington, DC,

USA, 2014), FCCM ’14, IEEE Computer Society,

pp. 109–116.

[27] BYMA, S., TARAFDAR, N., XU, T., BAN-

NAZADEH, H., LEON-GARCIA, A., AND CHOW,

P. Expanding openflow capabilities with virtual-

ized reconfigurable hardware. In Proceedings of

the 2015 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (New York,

NY, USA, 2015), FPGA ’15, ACM, pp. 94–97.

[28] CASPER, J., AND OLUKOTUN, K. Hardware ac-

celeration of database operations. In Proceedings

of the 2014 ACM/SIGDA International Symposium

on Field-programmable Gate Arrays (New York,

NY, USA, 2014), FPGA ’14, ACM, pp. 151–160.

[29] CHAI, Z., YU, J., WANG, Z., ZHANG, J., AND

ZHOU, H. An embedded fpga operating system

optimized for vision computing (abstract only).

In Proceedings of the 2015 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate

Arrays (New York, NY, USA, 2015), FPGA ’15,

ACM, pp. 271–271.

[30] CHEN, F., SHAN, Y., ZHANG, Y., WANG, Y.,

FRANKE, H., CHANG, X., AND WANG, K. En-

abling fpgas in the cloud. In Proceedings of

the 11th ACM Conference on Computing Fron-

tiers (New York, NY, USA, 2014), CF ’14, ACM,

pp. 3:1–3:10.

[31] CHEN, L., MARCONI, T., AND MITRA, T. Online

scheduling for multi-core shared reconfigurable

fabric. In Proceedings of the Conference on De-

sign, Automation and Test in Europe (San Jose, CA,

USA, 2012), DATE ’12, EDA Consortium, pp. 582–

585.

[32] CHUNG, E. S., DAVIS, J. D., AND LEE, J. Linqits:

Big data on little clients. In 40th International

Symposium on Computer Architecture (June 2013),

ACM.

[33] CHUNG, E. S., HOE, J. C., AND MAI, K.

Coram: An in-fabric memory architecture for fpga-

based computing. In Proceedings of the 19th

ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (New York, NY, USA,

2011), FPGA ’11, ACM, pp. 97–106.

[34] COUSSY, P., AND MORAWIEC, A. High-level syn-

thesis: from algorithm to digital circuit. Springer

Science & Business Media, 2008.

[35] CROCKETT, L. H., ELLIOT, R. A., ENDERWITZ,

M. A., AND STEWART, R. W. The Zynq Book: Em-

bedded Processing with the Arm Cortex-A9 on the

Xilinx Zynq-7000 All Programmable Soc. Strath-

clyde Academic Media, 2014.

[36] DAI, G., CHI, Y., WANG, Y., AND YANG, H.

Fpgp: Graph processing framework on fpga a case

study of breadth-first search. In Proceedings of

the 2016 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (New York,

NY, USA, 2016), FPGA ’16, ACM, pp. 105–110.

122 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf

[37] DEHON, A., MARKOVSKY, Y., CASPI, E., CHU,

M., HUANG, R., PERISSAKIS, S., POZZI, L.,

YEH, J., AND WAWRZYNEK, J. Stream computa-

tions organized for reconfigurable execution. Mi-

croprocessors and Microsystems 30, 6 (2006), 334–

354.

[38] DHAR, S., ADYA, S. N., SINGHAL, L., IYER,

M. A., AND PAN, D. Z. Detailed placement for

modern fpgas using 2d dynamic programming. In

Proceedings of the 35th International Conference

on Computer-Aided Design, ICCAD 2016, Austin,

TX, USA, November 7-10, 2016 (2016), p. 9.

[39] DHAR, S., IYER, M. A., ADYA, S. N., SINGHAL,

L., RUBANOV, N., AND PAN, D. Z. An effective

timing-driven detailed placement algorithm for fp-

gas. In Proceedings of the 2017 ACM on Interna-

tional Symposium on Physical Design, ISDP 2017,

Portland, OR, USA, March 19-22, 2017 (2017),

pp. 151–157.

[40] DHAR, S., AND PAN, D. Z. Gdp: Gpu accelerated

detailed placement. In HPEC (2018).

[41] DOMAHIDI, A., CHU, E., AND BOYD, S. Ecos:

An socp solver for embedded systems. In Control

Conference (ECC), 2013 European (2013), IEEE,

pp. 3071–3076.

[42] FAHMY, S. A., VIPIN, K., AND SHREEJITH, S.

Virtualized fpga accelerators for efficient cloud

computing. In Proceedings of the 2015 IEEE

7th International Conference on Cloud Comput-

ing Technology and Science (CloudCom) (Wash-

ington, DC, USA, 2015), CLOUDCOM ’15, IEEE

Computer Society, pp. 430–435.

[43] FU, W., AND COMPTON, K. Scheduling in-

tervals for reconfigurable computing. In Field-

Programmable Custom Computing Machines,

2008. FCCM ’08. 16th International Symposium

on (April 2008), pp. 87–96.

[44] GONZALEZ, I., LOPEZ-BUEDO, S., SUTTER, G.,

SANCHEZ-ROMAN, D., GOMEZ-ARRIBAS, F. J.,

AND ARACIL, J. Virtualization of reconfigurable

coprocessors in hprc systems with multicore ar-

chitecture. J. Syst. Archit. 58, 6-7 (June 2012),

247–256.

[45] HAMILTON, B. K., INGGS, M., AND SO, H. K. H.

Scheduling mixed-architecture processes in tightly

coupled fpga-cpu reconfigurable computers. In
Field-Programmable Custom Computing Machines

(FCCM), 2014 IEEE 22nd Annual International

Symposium on (May 2014), pp. 240–240.

[46] HAN, S., MAO, H., AND DALLY, W. J. Deep com-

pression: Compressing deep neural networks with

pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).

[47] HANSEN, S. G., KOCH, D., AND TORRESEN, J.

High speed partial run-time reconfiguration using

enhanced icap hard macro. In Parallel and Dis-

tributed Processing Workshops and Phd Forum

(IPDPSW), 2011 IEEE International Symposium

on (2011), IEEE, pp. 174–180.

[48] HARA, Y., TOMIYAMA, H., HONDA, S., TAKADA,

H., AND ISHII, K. Chstone: A benchmark program

suite for practical c-based high-level synthesis. In

Circuits and Systems, 2008. ISCAS 2008. IEEE In-

ternational Symposium on (2008), IEEE, pp. 1192–

1195.

[49] HARI KRISHNAN, R., AND SAI SAKETH, Y. Cryp-

tocurrency mining–transition to cloud.

[50] HUANG, C.-H., AND HSIUNG, P.-A. Hardware

resource virtualization for dynamically partially

reconfigurable systems. IEEE Embed. Syst. Lett. 1,

1 (May 2009), 19–23.

[51] INC, S. C. Carte programming environment, 2006.

[52] ISMAIL, A., AND SHANNON, L. Fuse: Front-

end user framework for o/s abstraction of hard-

ware accelerators. In Proceedings of the 2011

IEEE 19th Annual International Symposium on

Field-Programmable Custom Computing Machines

(Washington, DC, USA, 2011), FCCM ’11, IEEE

Computer Society, pp. 170–177.

[53] ISTVÁN, Z., SIDLER, D., ALONSO, G., AND

VUKOLIC, M. Consensus in a box: Inexpensive co-

ordination in hardware. In Proceedings of the 13th

Usenix Conference on Networked Systems Design

and Implementation (Berkeley, CA, USA, 2016),

NSDI’16, USENIX Association, pp. 425–438.

[54] KAGANOV, A., LAKHANY, A., AND CHOW, P.

Fpga acceleration of multifactor cdo pricing. ACM

Trans. Reconfigurable Technol. Syst. 4, 2 (May

2011), 20:1–20:17.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 123

[55] KALTE, H., AND PORRMANN, M. Context sav-

ing and restoring for multitasking in reconfigurable

systems. In Field Programmable Logic and Appli-

cations, 2005. International Conference on (Aug

2005), pp. 223–228.

[56] KALTE, H., AND PORRMANN, M. Context sav-

ing and restoring for multitasking in reconfigurable

systems. In Field Programmable Logic and Appli-

cations, 2005. International Conference on (2005),

IEEE, pp. 223–228.

[57] KAPITZA, R., BEHL, J., CACHIN, C., DIS-

TLER, T., KUHNLE, S., MOHAMMADI, S. V.,

SCHRÖDER-PREIKSCHAT, W., AND STENGEL, K.

Cheapbft: Resource-efficient byzantine fault toler-

ance. In Proceedings of the 7th ACM European

Conference on Computer Systems (New York, NY,

USA, 2012), EuroSys ’12, ACM, pp. 295–308.

[58] KAPRE, N., AND GRAY, J. Hoplite: Building aus-

tere overlay nocs for fpgas. In FPL (2015), IEEE,

pp. 1–8.

[59] KARA, K., AND ALONSO, G. Fast and robust

hashing for database operators. In 26th Interna-

tional Conference on Field Programmable Logic

and Applications, FPL 2016, Lausanne, Switzer-

land, August 29 - September 2, 2016 (2016), pp. 1–

4.

[60] KHRONOS GROUP. The OpenCL Specification,

Version 1.0, 2009.

[61] KIRCHGESSNER, R., GEORGE, A. D., AND

STITT, G. Low-overhead fpga middleware for ap-

plication portability and productivity. ACM Trans.

Reconfigurable Technol. Syst. 8, 4 (Sept. 2015),

21:1–21:22.

[62] KIRCHGESSNER, R., STITT, G., GEORGE, A.,

AND LAM, H. Virtualrc: A virtual fpga platform

for applications and tools portability. In Proceed-

ings of the ACM/SIGDA International Symposium

on Field Programmable Gate Arrays (New York,

NY, USA, 2012), FPGA ’12, ACM, pp. 205–208.

[63] KNODEL, O., AND SPALLEK, R. G. RC3E: pro-

vision and management of reconfigurable hard-

ware accelerators in a cloud environment. CoRR

abs/1508.06843 (2015).

[64] KOCH, D., BECKHOFF, C., AND LEMIEUX, G.

G. F. An efficient FPGA overlay for portable cus-

tom instruction set extensions. In FPL (2013),

IEEE, pp. 1–8.

[65] KOEPLINGER, D., DELIMITROU, C., PRAB-

HAKAR, R., KOZYRAKIS, C., ZHANG, Y., AND

OLUKOTUN, K. Automatic generation of efficient

accelerators for reconfigurable hardware. In

Proceedings of the 43rd International Symposium

on Computer Architecture (Piscataway, NJ, USA,

2016), ISCA ’16, IEEE Press, pp. 115–127.

[66] KOEPLINGER, D., DELIMITROU, C., PRAB-

HAKAR, R., KOZYRAKIS, C., ZHANG, Y., AND

OLUKOTUN, K. Automatic generation of efficient

accelerators for reconfigurable hardware. In

Proceedings of the 43rd International Symposium

on Computer Architecture (Piscataway, NJ, USA,

2016), ISCA ’16, IEEE Press, pp. 115–127.

[67] KOEPLINGER, D., FELDMAN, M., PRABHAKAR,

R., ZHANG, Y., HADJIS, S., FISZEL, R., ZHAO,

T., NARDI, L., PEDRAM, A., KOZYRAKIS, C.,

AND OLUKOTUN, K. Spatial: A language and com-

piler for application accelerators. In Proceedings

of the 39th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation

(New York, NY, USA, 2018), PLDI 2018, ACM,

pp. 296–311.

[68] LEBAK, J., KEPNER, J., HOFFMANN, H., AND

RUTLEDGE, E. Parallel vsipl++: An open stan-

dard software library for high-performance parallel

signal processing. Proceedings of the IEEE 93, 2

(2005), 313–330.

[69] LEBEDEV, I. A., FLETCHER, C. W., CHENG, S.,

MARTIN, J., DOUPNIK, A., BURKE, D., LIN, M.,

AND WAWRZYNEK, J. Exploring many-core de-

sign templates for fpgas and asics. Int. J. Reconfig.

Comp. 2012 (2012), 439141:1–439141:15.

[70] LEBER, C., GEIB, B., AND LITZ, H. High fre-

quency trading acceleration using fpgas. In Pro-

ceedings of the 2011 21st International Confer-

ence on Field Programmable Logic and Appli-

cations (Washington, DC, USA, 2011), FPL ’11,

IEEE Computer Society, pp. 317–322.

[71] LECUN, Y., BOTTOU, L., BENGIO, Y., AND

HAFFNER, P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE

86, 11 (1998), 2278–2324.

[72] LEE, T.-Y., HU, C.-C., LAI, L.-W., AND TSAI,

C.-C. Hardware context-switch methodology for

dynamically partially reconfigurable systems. J.

Inf. Sci. Eng. 26 (2010), 1289–1305.

124 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[73] LEVINSON, L., MANNER, R., SESSLER, M., AND

SIMMLER, H. Preemptive multitasking on fpgas.

In Field-Programmable Custom Computing Ma-

chines, 2000 IEEE Symposium on (2000), pp. 301–

302.

[74] LI, S., LIM, H., LEE, V. W., AHN, J. H.,

KALIA, A., KAMINSKY, M., ANDERSEN, D. G.,

SEONGIL, O., LEE, S., AND DUBEY, P. Architect-

ing to achieve a billion requests per second through-

put on a single key-value store server platform. In

Proceedings of the 42Nd Annual International Sym-

posium on Computer Architecture (New York, NY,

USA, 2015), ISCA ’15, ACM, pp. 476–488.

[75] LIN, E. C., AND RUTENBAR, R. A. A multi-fpga

10x-real-time high-speed search engine for a 5000-

word vocabulary speech recognizer. In Proceed-

ings of the ACM/SIGDA international symposium

on Field programmable gate arrays (2009), ACM,

pp. 83–92.

[76] LIU, M., KUEHN, W., LU, Z., AND JANTSCH, A.

Run-time partial reconfiguration speed investiga-

tion and architectural design space exploration. In

Field Programmable Logic and Applications, 2009.

FPL 2009. International Conference on (2009),

IEEE, pp. 498–502.

[77] LÜBBERS, E., AND PLATZNER, M. Reconos: Mul-

tithreaded programming for reconfigurable comput-

ers. ACM Trans. Embed. Comput. Syst. 9, 1 (Oct.

2009), 8:1–8:33.

[78] LYSECKY, R., MILLER, K., VAHID, F., AND VIS-

SERS, K. Firm-core virtual fpga for just-in-time

fpga compilation (abstract only). In Proceedings

of the 2005 ACM/SIGDA 13th International Sym-

posium on Field-programmable Gate Arrays (New

York, NY, USA, 2005), FPGA ’05, ACM, pp. 271–

271.

[79] MICROSOFT. Microsoft azure goes back to rack

servers with project olympus, 2017.

[80] MISHRA, M., CALLAHAN, T. J., CHELCEA, T.,

VENKATARAMANI, G., GOLDSTEIN, S. C., AND

BUDIU, M. Tartan: Evaluating spatial computation

for whole program execution. SIGOPS Oper. Syst.

Rev. 40, 5 (Oct. 2006), 163–174.

[81] MOORE, N., CONTI, A., LEESER, M., CORDES,

B., AND KING, L. S. An extensible framework

for application portability between reconfigurable

supercomputing architectures, 2007.

[82] MURALIDHARAN, S., O’BRIEN, K., AND

LALANNE, C. A semi-automated tool flow for

roofline anaylsis of opencl kernels on accelerators.

In First International Workshop on Heterogeneous

High-performance Reconfigurable Computing

(H2RC’15) (2015).

[83] NURVITADHI, E., VENKATESH, G., SIM, J.,

MARR, D., HUANG, R., HOCK, J. O. G., LIEW,

Y. T., SRIVATSAN, K., MOSS, D., SUBHASCHAN-

DRA, S., ET AL. Can fpgas beat gpus in acceler-

ating next-generation deep neural networks? In

FPGA (2017), pp. 5–14.

[84] OCTOPART. Octopart historical pricing, 2017.

[85] OGUNTEBI, T., AND OLUKOTUN, K. Graphops:

A dataflow library for graph analytics acceleration.

In Proceedings of the 2016 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate

Arrays (New York, NY, USA, 2016), FPGA ’16,

ACM, pp. 111–117.

[86] PECK, W., ANDERSON, E. K., AGRON, J.,

STEVENS, J., BAIJOT, F., AND ANDREWS, D. L.

Hthreads: A computational model for reconfig-

urable devices. In FPL (2006), IEEE, pp. 1–4.

[87] PELLERIN, D. Accelerated Computing on

AWS. http://asapconference.org/

slides/amazon.pdf, July 2017. (Accessed on

5/2/2018).

[88] PHAM, K. D., JAIN, A. K., CUI, J., FAHMY, S. A.,

AND MASKELL, D. L. Microkernel hypervisor

for a hybrid arm-fpga platform. In Application-

Specific Systems, Architectures and Processors

(ASAP), 2013 IEEE 24th International Conference

on (June 2013), pp. 219–226.

[89] PLESSL, C., AND PLATZNER, M. Zippy-a coarse-

grained reconfigurable array with support for hard-

ware virtualization. In Application-Specific Sys-

tems, Architecture Processors, 2005. ASAP 2005.

16th IEEE International Conference on (2005),

IEEE, pp. 213–218.

[90] PRABHAKAR, R., KOEPLINGER, D., BROWN,

K. J., LEE, H., DE SA, C., KOZYRAKIS, C., AND

OLUKOTUN, K. Generating configurable hardware

from parallel patterns. SIGOPS Oper. Syst. Rev. 50,

2 (Mar. 2016), 651–665.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 125

http://asapconference.org/slides/amazon.pdf
http://asapconference.org/slides/amazon.pdf

[91] PRABHAKAR, R., ZHANG, Y., KOEPLINGER, D.,

FELDMAN, M., ZHAO, T., HADJIS, S., PEDRAM,

A., KOZYRAKIS, C., AND OLUKOTUN, K. Plas-

ticine: A reconfigurable architecture for parallel

paterns. In Proceedings of the 44th Annual Interna-

tional Symposium on Computer Architecture (New

York, NY, USA, 2017), ISCA ’17, ACM, pp. 389–

402.

[92] PUTNAM, A., CAULFIELD, A., CHUNG, E.,

CHIOU, D., CONSTANTINIDES, K., DEMME,

J., ESMAEILZADEH, H., FOWERS, J., GOPAL,

G. P., GRAY, J., HASELMAN, M., HAUCK, S.,

HEIL, S., HORMATI, A., KIM, J.-Y., LANKA, S.,

LARUS, J., PETERSON, E., POPE, S., SMITH, A.,

THONG, J., XIAO, P. Y., AND BURGER, D. A

reconfigurable fabric for accelerating large-scale

datacenter services. In 41st Annual International

Symposium on Computer Architecture (ISCA)

(June 2014).

[93] RUPNOW, K., FU, W., AND COMPTON, K. Block,

drop or roll(back): Alternative preemption meth-

ods for RH multi-tasking. In FCCM 2009, 17th

IEEE Symposium on Field Programmable Custom

Computing Machines, Napa, California, USA, 5-7

April 2009, Proceedings (2009), pp. 63–70.

[94] SHAFIEE, A., GUNDU, A., SHEVGOOR, M., BAL-

ASUBRAMONIAN, R., AND TIWARI, M. Avoiding

information leakage in the memory controller with

fixed service policies. In Proceedings of the 48th In-

ternational Symposium on Microarchitecture (New

York, NY, USA, 2015), MICRO-48, ACM, pp. 89–

101.

[95] SHAN, Y., WANG, B., YAN, J., WANG, Y., XU,

N.-Y., AND YANG, H. Fpmr: Mapreduce frame-

work on fpga. In FPGA (2010), P. Y. K. Cheung

and J. Wawrzynek, Eds., ACM, pp. 93–102.

[96] SHARMA, H., PARK, J., AMARO, E., THWAITES,

B., KOTHA, P., GUPTA, A., KIM, J. K., MISHRA,

A., AND ESMAEILZADEH, H. Dnnweaver: From

high-level deep network models to fpga accelera-

tion. In the Workshop on Cognitive Architectures

(2016).

[97] SIDLER, D., ISTVÁN, Z., OWAIDA, M., AND

ALONSO, G. Accelerating pattern matching

queries in hybrid cpu-fpga architectures. In Pro-

ceedings of the 2017 ACM International Con-

ference on Management of Data (2017), ACM,

pp. 403–415.

[98] SIMMLER, H., LEVINSON, L., AND MÄNNER,

R. Multitasking on fpga coprocessors. Field-

Programmable Logic and Applications: The

Roadmap to Reconfigurable Computing (2000),

121–130.

[99] SO, H. K.-H., AND BRODERSEN, R. A unified

hardware/software runtime environment for fpga-

based reconfigurable computers using borph. ACM

Trans. Embed. Comput. Syst. 7, 2 (Jan. 2008), 14:1–

14:28.

[100] SO, H. K.-H., AND BRODERSEN, R. W. BORPH:

An Operating System for FPGA-Based Reconfig-

urable Computers. PhD thesis, EECS Department,

University of California, Berkeley, Jul 2007.

[101] SO, H. K.-H., AND WAWRZYNEK, J. Olaf’16:

Second international workshop on overlay archi-

tectures for fpgas. In Proceedings of the 2016

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (New York, NY, USA,

2016), FPGA ’16, ACM, pp. 1–1.

[102] STEIGER, C., WALDER, H., AND PLATZNER, M.

Operating systems for reconfigurable embedded

platforms: online scheduling of real-time tasks.

IEEE Transactions on Computers 53, 11 (Nov

2004), 1393–1407.

[103] STITT, G., AND COOLE, J. Intermediate fabrics:

Virtual architectures for near-instant fpga compila-

tion. IEEE Embedded Systems Letters 3, 3 (Sept

2011), 81–84.

[104] SUDA, N., CHANDRA, V., DASIKA, G., MO-

HANTY, A., MA, Y., VRUDHULA, S., SEO, J.-

S., AND CAO, Y. Throughput-optimized opencl-

based fpga accelerator for large-scale convolutional

neural networks. In Proceedings of the 2016

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (New York, NY, USA,

2016), FPGA ’16, ACM, pp. 16–25.

[105] TAYLOR, M. B. Bitcoin and the age of bespoke

silicon. In Proceedings of the 2013 International

Conference on Compilers, Architectures and Syn-

thesis for Embedded Systems (2013), IEEE Press,

p. 16.

[106] THOMAS, D., AND MOORBY, P. The Verilog R©

Hardware Description Language. Springer Science

& Business Media, 2008.

126 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[107] TSUTSUI, A., MIYAZAKI, T., YAMADA, K., AND

OHTA, N. Special purpose fpga for high-speed

digital telecommunication systems. In Proceed-

ings of the 1995 International Conference on Com-

puter Design: VLSI in Computers and Processors

(Washington, DC, USA, 1995), ICCD ’95, IEEE

Computer Society, pp. 486–491.

[108] WASSI, G., BENKHELIFA, M. E. A., LAWDAY,

G., VERDIER, F., AND GARCIA, S. Multi-shape

tasks scheduling for online multitasking on fpgas.

In Reconfigurable and Communication-Centric

Systems-on-Chip (ReCoSoC), 2014 9th Interna-

tional Symposium on (May 2014), pp. 1–7.

[109] WATKINS, M. A., AND ALBONESI, D. H. Remap:

A reconfigurable heterogeneous multicore archi-

tecture. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microar-

chitecture (Washington, DC, USA, 2010), MICRO

’43, IEEE Computer Society, pp. 497–508.

[110] WEERASINGHE, J., ABEL, F., HAGLEITNER, C.,

AND HERKERSDORF, A. Enabling fpgas in hyper-

scale data centers. In 2015 IEEE 12th Intl Conf on

Ubiquitous Intelligence and Computing and 2015

IEEE 12th Intl Conf on Autonomic and Trusted

Computing and 2015 IEEE 15th Intl Conf on Scal-

able Computing and Communications and Its As-

sociated Workshops (UIC-ATC-ScalCom), Beijing,

China, August 10-14, 2015 (2015), pp. 1078–1086.

[111] WERNER, S., OEY, O., GÖHRINGER, D.,

HÜBNER, M., AND BECKER, J. Virtualized

on-chip distributed computing for heterogeneous

reconfigurable multi-core systems. In Proceedings

of the Conference on Design, Automation and Test

in Europe (San Jose, CA, USA, 2012), DATE ’12,

EDA Consortium, pp. 280–283.

[112] WEST, B., CHAMBERLAIN, R. D., INDECK, R. S.,

AND ZHANG, Q. An fpga-based search engine for

unstructured database. In Proc. of 2nd Workshop

on Application Specific Processors (2003), vol. 12,

pp. 25–32.

[113] WIERSEMA, T., BOCKHORN, A., AND

PLATZNER, M. Embedding FPGA over-

lays into configurable systems-on-chip: Reconos

meets ZUMA. In ReConFig (2014), IEEE, pp. 1–6.

[114] WINTERSTEIN, F., FLEMING, K., YANG, H.-

J., BAYLISS, S., AND CONSTANTINIDES, G.
Matchup: Memory abstractions for heap manip-

ulating programs. In Proceedings of the 2015

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (New York, NY, USA,

2015), FPGA ’15, ACM, pp. 136–145.

[115] ZHANG, C., LI, P., SUN, G., GUAN, Y., XIAO,

B., AND CONG, J. Optimizing fpga-based acceler-

ator design for deep convolutional neural networks.

In Proceedings of the 2015 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate

Arrays (New York, NY, USA, 2015), FPGA ’15,

ACM, pp. 161–170.

[116] ZHANG, C., LI, P., SUN, G., GUAN, Y., XIAO,

B., AND CONG, J. Optimizing fpga-based acceler-

ator design for deep convolutional neural networks.

In Proceedings of the 2015 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate

Arrays (2015), ACM, pp. 161–170.

[117] ZHAO, R., SONG, W., ZHANG, W., XING, T.,

LIN, J.-H., SRIVASTAVA, M. B., GUPTA, R., AND

ZHANG, Z. Accelerating binarized convolutional

neural networks with software-programmable fp-

gas. In FPGA (2017), pp. 15–24.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 127

	Introduction
	Background
	Software versus Hardware
	FPGA OS and Sharing Support

	Goals
	Programming Model
	Isolation
	Dynamic Scalability
	Motivating Example

	Design
	Hull
	Zones and Scheduling
	Morphlets and Cocoons
	Host Stack/OS interface
	Morphlet Registry

	Implementation
	Catapult
	F1
	Multiplexing AmorphOS Interfaces
	Host Stack

	Evaluation
	CHStone
	MemDrive
	DNNWeaver
	Bitcoin
	Density Limits
	End-to-End Performance
	Hierarchical Zone Management

	Related Work
	Conclusion
	Acknowledgements

