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Sharing the cost of risky projects

Jens Leth Hougaard∗ Hervé Moulin†
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Abstract
Users share the cost of unreliable non rival projects (items). For in-

stance, industry partners pay today for R&D that may or may not deliver
a cure to some viruses, agents pay for the edges of a network that will
cover their connectivity needs, but the edges may fail, etc.. Each user has
a binary inelastic need that is served if and only if certain subsets of items
are actually functioning. We ask how should the cost be divided when in-
dividual needs are heterogenous. We impose three powerful separability
properties:

Independence of Timing ensures that the cost shares computed ex
ante are the expectation, over the random realization of the projects,
of shares computed ex post. Cost Additivity together with Separability
Across Projects ensure that the cost shares of an item depend only upon
the service provided by that item for a given realization of all other items.

Combining these with fair bounds on the liability of agents with more
or less flexible needs, and of agents for whom an item is either indispens-
able or useless, we characterize two rules: the Ex Post Service rule is the
expectation of the equal division of costs between the agents who end up
served; the Needs Priority rule splits the cost first between those agents
for whom an item is critical ex post, or if there are no such agents between
those who end up being served.

Keywords: Cost sharing; Fair allocation; Risk; Public goods; Network relia-
bility

JEL classification: C71, D30, D85, M41

1 Introduction

A group of users share a set A of non rival items a, b, · · · and are jointly liable
to cover their costs; users only differ in the way these items fulfill their objective
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needs (known to the benevolent dictator): all items are not equally useful to
all agents. Just from the description of these needs, we wish to define item per
item liability shares for all the liable users.
For instance each item is an edge in a communication network, and each user

wants to connect a certain pair of nodes of the network: many different paths
achieve this, so an agent’s needs are described by a set of subsets of items. Or
each agent has a machine infected by a certain subset of viruses, and each item
is a software that neutralizes a certain subset of viruses: several combinations of
softwares will be enough to clean a given agent’s machine. Or our agents want
access to some e-database where the provider knows costs of the different parts
(items in the database) and is trying to split costs more fairly based on actual
usage rather than conventional flat fees.
In general we assume that the agents "take over" an exogenous set of items

(e.g., links in a network) with given costs (e.g., for maintenance and exploita-
tion), and this set is not optimally designed to fit their needs (we are not at
the construction stage). Each item has a given cost (e. g.,each link has its own
maintenance cost), and this is relevant to the fairness of the overall division of
costs, for the usual reasons: which links are more helpful to fulfill the needs
of which agents should be a consideration, and justifies deviations from simple
benchmarks like equal split (flat fees).
We allow for an arbitrarily complex pattern of personal needs,1 yet the

axiomatic analysis remains tractable because we eschew all the standard mi-
croeconomic subtleties coming from heterogenous preferences and the interplay
between these and the optimal choice of items to produce. Specifically

• needs are binary: each agent gets “service”or not;

• demand is fully inelastic: each agent has a large willingness to pay for
service, and exactly how large is irrelevant;

• items to be paid for are exogenous: their set is not the result of any decision
process, optimizing or otherwise, to which our agents participated; all costs
must be paid even if some items could be dispensed with;

• costs of items are additive; although it is not possible to pay only for a
subset of items, the liability shares are item specific so the cost distribution
across items matters.

We are effectively taxing our agents according to their benefits, when individual
“benefits”are captured by the probability of receiving service. As documented
in the next Section, this “bare bones”approach to the division of costs is increas-
ingly important in microeconomic distributive justice, because of the practical
impossibility to measure benefits in terms of welfare and the fact that exogenous

1Recall that no closed form expression of the number of inclusion-monotonic subsets of 2A

is known.
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costs, not influenced by individual preferences, are often the norm (see e. g.,
[14] and references there).2

We introduce a new dimension to the original model in [9] by assuming that
items may fail, that they have limited reliability, and we show that this has a
significant impact on the definition of fairness.
If the edges of the network represent trade routes, safe commodity trans-

portation was never perfect for many centuries (piracy on the high sea is still
a factor today). Associations of merchants (e.g., the German Hansa, see [11])
have throughout history shared the cost of keeping routes safe in a probabilistic
sense, taking into account the individual trade patterns of their members. Firms
pooling resources in R&D ventures like the development of drugs or softwares
face a similar random return to their investment: the cost of the research must
be paid upfront, but ex post the needs of only a subset of the partners will be
met.
To stress that the relevant items succeed or fail randomly, we speak of in-

dividual “projects”. Two important observations are: 1) the risk dimension
introduces a tradeoff between the ex ante and ex post viewpoint on fairness;
and 2) the impact of more or less flexible needs becomes ambiguous.

Ex-post versus Ex-ante: Consider a simple example with two projects a, b
each of cost 1, such that each project succeeds with independent and equal
probability p. Ann is served if (and only if) at least one project works, which we
write as DAnn = {a∨ b} while Bob is served only if both projects work, DBob =
{a∧ b}. One approach is to divide cost in proportion to ex ante probabilities of
service, p(2 − p) for Ann and p2 for Bob, which suggests the shares (1 − p

2 ,
p
2 )

for each item. We can focus instead on the ex post realization of the projects,
and share costs equally if both are served or if none is served, whereas only Ann
should pay if she is served but Bob is not. This results in the expected cost
shares

(p2 + (1− p)2)(1

2
,

1

2
) + 2p(1− p)(1, 0) = (

1

2
+ p(1− p), 1

2
− p(1− p)) (1)

so Ann pays more than Bob in both cases, but less so (resp. more so) in the ex
post interpretation if p ≤ 1

2 (resp. p ≥
1
2 ).

In the ex post approach we simply take the expectation of the cost shares in
the deterministic problems generated once successes and failures are realized.
This is the meaning of our axiom Independence of Timing (IT) below.

Interpreting flexible needs: In the example above Ann’s needs are more flex-
ible than Bob’s, because for each realization of the projects such that Bob is
served, she is too. On the one hand she is more likely to be served than Bob
and this suggests she should pay more than him, as in the two divisions above.
On the other hand Ann is less dependent upon any particular project than Bob
hence her liability toward each project should be lower . The former argument
is especially convincing if the common probability p is low, because then Bob

2By contrast, Wicksell’s “benefit principle” is generally abandoned for the taxation of
“macro”public services, because of its pervasive regressivity.
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stands much less of a chance of service than Ann. The latter argument is more
convincing if reliability is high, for instance p = 1, because then they are both
served and paying for two projects instead of one is only useful to Bob: none
of the two divisions above reflects this, but the Needs Priority rule does (see
Section 3).

The inputs to our cost allocation rules are the cost of each project in the set
A, the individual needs of each agent i described by a set Di of subsets of A,
and the random distribution of successes and failures (on which we place no re-
striction). The output are individual cost liabilities for each project. We impose
three powerful separability properties on such rules, none of them conveying a
particular concept of fairness. Together they characterize a simple family of
rules, on which the impact of additional normative properties is transparent.
After Independence of Timing (above) we assume Cost Additivity (CA), one

of the most common requirements in the cost sharing literature of the last three
decades (see e.g. [13]). CA means that we must assign liability shares toward
the cost of an project independently of its actual cost. Say that the two projects
a, b are paid for by Ann and Chris with DAnn = {a∨b} and DChris = {a} (Chris
needs a to succeed and has no use for b). Clearly Ann should be more liable
for b than Chris, while Chris has a bigger stake in a than Ann: we want Ann
to pay more than Chris for b and vice versa for a. CA allows us to implement
these two normative choices irrespective of the actual costs of the two projects.
The third property, Separability Across Projects (SAP), ensures that in a

deterministic problem (where each project either works or fails for sure) the
cost shares of a given project a depend only upon the partition of the agents
into three groups: those who are served if and only if a is available, those who
are served even when a fails, and those who are not served even if a succeeds.

We propose and axiomatize two cost allocation rules, that differ mainly
in their treatment of needs flexibility. The Ex-post Service rule, illustrated
in example (1), divides total cost equally between all agents served ex post
(if no one is served it divides costs equally among everybody). Although it
is cost additive, this rule ignores differences in the costs of different projects.
The Needs Priority rule, defined in Section 3, is more subtle: it computes the
liability project per project and uses the information contained in the 3-partition
mentioned in the previous paragraph.
Both rules meet IT, CA and SAP. To characterize each rule we use four

properties which, unlike the previous three, have a clear fairness content. No
Charge for No Service says that an agent who is never served pays nothing, at
least if there is always at least one other agent who is served. Both rules meet
this mild requirement. Liable for Flexibility insists that if Ann is easier to serve
than Bob, she will not pay less than him: it drives a wedge between our two
benchmark rules, as Needs Priority fails it while Ex-post Service meets it.
Say that agent i needs an project single-mindedly if every other project is

useless to her: Liable for Single-minded Needs requires agent i to pay the largest
individual share of the project. Finally Useless Free says that an agent does
not pay for an project if it is useless to her (never needed to serve her needs),
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while another agent j needs it single-mindedly.
Among the rules meeting Cost Additivity, Separability Across projects, In-

dependence of Timing and No Charge for no Service, the Ex-post Service rule
is captured by the combination of Liable for Flexibility and Liable for Single-
minded Needs, while the Needs Priority rule is captured by Useless Free.

Contents: After reviewing the relevant literature in Section 2, we define our
model in Section 3. Section 4 introduces the three independence properties and
characterizes the resulting family of cost sharing rules: Proposition 1. Within
this family Section 5 characterizes the Ex-post service and the Needs Priority
rules with the help of the additional fairness tests just mentioned, and checks
that the axioms are independent.

2 Relation to the literature

In its formal simplicity our model is a relative of the large literature on the
rationing (aka bankruptcy) problem of fairly dividing (exogenous) costs or ben-
efits with respect to (objective) claims or liabilities: [18], [1], [13], [19]. See also
the literature on the airport problem ([20]) and the more general minimal cost
spanning tree problem (mcst) (e.g., [3], [10], [6]). There as here participants in
the division process are entirely described by objective parameters (legally valid
claims in the bankruptcy problem; verifiable stand-alone costs in the airport
problem; verifiable connection costs in the mcst problem) with no relation to
standard microeconomic characteristics like preferences, risk aversion, etc.. In
such streamlined environment, it is possible to understand the complex interplay
of a handful of normative principles.
Our model extends earlier work by Moulin and Laigret ([14]) and Hougaard

and Moulin ([9]), both in the deterministic case where all projects always work.
In [14] each project is indispensable to at least one agent, so no project is

redundant. One division method stands out, dubbed the Equal Need solution: it
divides the cost of any project equally between all agents needing this project for
service. Our Needs Priority rule applies the “equal need equal share”principle
of fairness in our richer model and coincides with Equal Need on deterministic
problems with no redundant project.
In [9] we allow for redundant projects and axiomatize the family of Counting

rules, of which a typical rule goes as follows. For each project agents pay in
proportion to the fraction of their minimal service sets including the project over
the total number of their minimal service sets.3 In the deterministic case this
not only provides cost shares for redundant projects, but also more compelling
shares for non-redundant problems than the Equal-Need solution. However, the
Expected Counting Liability rule defined in Section 3 (by taking expectations
over deterministic problems) typically violates SAP.

Independence of Timing was introduced by Myerson ([16]) in the context
of risky axiomatic bargaining. Several recent papers discuss similarly a risky

3We call D ∈ Di minimal if D�{a} /∈ Di for all a ∈ D.
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version of the rationing problem: Ertemel and Kumar ([5]) characterize versions
of our Ex-post and Ex-Ante Service rules in a state contingent claims framework;
while Habis and Herings ([7]) and Xue ([21]) consider stochastic versions of the
uniform gains rule.

The Engineering literature discusses at length the optimal and fair allocation
of network resources (see e.g., [12], [17]). It focuses on traffi c optimization when
network capacity is exceeded and communication channels may fail, thus the
thrust is completely different. A recent paper by Bergantinos and Martinez ([4])
has some resemblance with our problem though. They consider cost sharing in
trees where each agent (node) is a source with individual production and demand
and argue that if production is unreliable it creates asymmetric liabilities for
edges which matter for the fair division of costs.
Finally, we do not follow the familiar approach (e.g., [13], or [8]) attaching

a cooperative game to the problem at hand, then applying the Shapley value
or some other solution concept to compute cost shares. As explained in Section
3, in our problem the game in question would come from the family of expected
Stand Alone costs. The first objection to this approach (as already argued in
[14] and [9]) is that it violates both axioms CA and SAP (Stand Alone costs are
not linear in costs). Next it runs counter to the spirit of our model where costs
are not optimized: we must divide the total cost of all projects, even if only a
subset of these would be enough to cover all needs.

3 The model

The finite set A contains the risky projects and each project a ∈ A has a
non-negative cost ca. If successful, the projects are public goods that can be
consumed without rivalry by the agents in N. Nature chooses the set X,∅ ⊆
X ⊆ A, of successful projects. Irrespective of the realization of X, all agents
must share the total cost cA =

∑
a∈A ca.

The needs of agent i ∈ N are described by a non empty set Di ⊆ 2A of service
sets: agent i is served if and only if the subset of projects actually working is
in Di. Each set Di is inclusion monotonic: if D ∈ Di any superset of D is also
in Di. Two extreme service sets that will play a role in the axioms are Di = ∅
for an agent who never gets service, and Di = 2A for an agent who gets service
irrespective of the realized outcome. The service sets of each agent Di allow
for very complex expressions of personal need where, for instance, projects a, b
jointly substitute for project c, etc..

Definition 1: A cost allocation problem under risk is a list (Q, p, c) where Q =
(N,A, {Di}i∈N ) is the profile of needs, p ∈ ∆(2A) is the probability distribution
of the set X of successful projects, and c ∈ RA+ is the vector of project costs.

In the first example of the Introduction, A is the set of edges of an undirected
communication network, each with limited reliability, and agents have different
routing/connectivity needs. These could be: at least one path between two
specific nodes; or a path avoiding certain edges and/or nodes (for privacy con-
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cerns); or two edge-disjoint paths (to allow two independent communications);
etc..
Or V is a set of (biological or digital) viruses and project a is a software that

(if successful) will neutralize the subset V (a) ⊆ V of viruses. Agent i is infected
by the set of viruses Ti ⊆ V , so she is cured if and only if the set X of successful
softwares is such that Ti ⊆ ∪a∈XV (a).4

Definition 2: A cost allocation rule assigns to any problem (Q, p, c) a vector
of cost shares ỹ(Q, p, c) ∈ RN+ satisfying 1. Budget-balance:

∑
i∈N ỹi = cA; 2.

Symmetry in N , i.e., Di = Dj implies ỹi = ỹj; and 3. Symmetry in A, i.e.,
cost shares do not change when exchanging the cost of two projects entering
symmetrically in Q.5

Our first two examples are two simple rules ignoring the differences in cost
across projects. The first one charges the users in proportion to their ex-ante
probability of being served. Hence agent i’s share in the Ex-ante Service rule
ỹxa is:

ỹxai (Q, p, c) =

{
p(X∈Di)∑

j∈N p(X∈Dj)cA if p(∪jDj) > 0
1
|N |cA if p(∪jDj) = 0

(2)

In a network context, the Ex-ante Service rule shares total cost in proportion
to the network reliability index discussed in the Operations Research literature
(e.g., [2]).
The second rule charges equally the agents served ex-post, i.e., those in

S(Q;X) = {i ∈ N |X ∈ Di} and computes the expectation of these shares.
We use the notation e[S] for the vector in the simplex ∆(N) over N such that
e[S]i = 1

|S| if i ∈ S and e[S]i = 0 otherwise. Importantly we set e[∅] = e[N ] =

( 1
|N | )i∈N . Cost shares of the Ex-post Service rule ỹ

xp are:

ỹxp(Q, p, c) = (
∑
X∈2A

p(X)× e[S(Q,X)])cA (3)

Note that an agent i with zero probability of service, p(X ∈ Di) = 0, is
not charged under the Ex-ante rule (provided p(∪jDj) > 0), whereas under the
Ex-post rule she will be charged some positive share if p(∪jDj) < 1 because
S(Q;X) is empty with positive probability.

The next two rules are more subtle and relate to cost shares for individual
projects.
For the Needs Priority rule, if project a fails its cost is shared equally

between all agents served ex-post. If a succeeds, Needs Priority charges only
those agents who are served if and only if a is provided, and if there are no

4 It is easy to see that this model encompasses our model: any cost allocation problem in
Definition 1 can be written as a virus problem for an appropriate choice of V and Ti.

5Two projects a, b enter symmetrically in Q if each service constraint Di is invariant by
the operation in 2A switching a and b (if X contains one and not the other, exchange them
in X; otherwise do nothing).

7



such agents, it charges equally all agents served ex post. Using the notation
e[S1;S2] = e[S1] if S1 6= ∅, and e[∅;S2] = e[S2], we define ỹnp as follows:

ỹnp(Q, p, c) =
∑
a∈A

(
∑

∅⊆X⊆A
p(X)× e[S(Q;X)�S(Q;X�a);S(Q;X)])ca (4)

For comparison with the Ex-Post rule we go back first to the two-project
two-agent example discussed in the introduction where DAnn = {a ∨ b} and
DBob = {a∧ b}. Note that the success of each project is critical to Bob but not
to Ann. Start with the deterministic case where all projects work, p(A) = 1,
where the difference between the two rules is especially stark: Needs Priority
gives Ann a free ride on both projects and Bob pays everything; while Ex-post
Service ignores all differences in needs and split costs equally. Both outcomes
are extremist: the former is too hard to Bob, because Ann still needs some
project to work, and the latter too easy on him since Ann’s flexibility is not
rewarded. Now assume projects a and b have IID probability of success 2/3.
Then Ex-post Service picks cost shares (13/18, 5/18): Ann pays everything
when exactly one project works (probability 4/9) and costs are split equally
otherwise. Interestingly the Needs Priority rule splits costs equally. Consider
project a: if both projects work it is critical to Bob only; if only one project
works it is critical to Ann only; and if no project works they split equally. As
the probability of two projects working, and that of just one working are equal
to 4/9, we end up with equal split. But if the IID probability of success is above
(resp. below) 2/3, then Bob (resp. Ann) pays more.
The second example in the Introduction has DAnn = {a ∨ b} and DChris =

{a}. In the deterministic case the two rules are again very coarse: Needs Prior-
ity charges all of a to Chris and shares b equally; while Ex-post Service splits all
costs equally. But with IID probability of success 2/3, they are much more nu-
anced. Ex-post Service splits costs as (11/18, 7/18): Ann pays more because she
is easier to serve. Needs Priority shares a as (7/18, 11/18) and b as (11/18, 7/18):
it makes sense to view Chris as more liable for project a than Ann, and while
the opposite is true for project b.
The second rule is a risky version of the Counting rule discussed in [9], we call

it the Expected Counting Liability rule. A set D ∈ Di is a minimal service
set of agent i if D�{a} /∈ Di for all a ∈ D. The Counting Index ϕi(a;A,Q)
of agent i for project a is the ratio of the number of i’s minimal service sets
containing a to the total number of i’s minimal service sets; the (deterministic)
Counting rule in [9] divides the cost of each a in proportion to these ratios.
In our probabilistic model we project service needs for any realization X as
Di(X) = {D ⊆ X|D ⊆ Di}, and take expectations over X. Thus agent i’s
share in ỹecl is:

ỹecli (Q, p, c) =
∑
a∈A

(
∑
∅⊆X⊆A

p(X)×
|Di(a,X)|
|Di(X)|∑

j∈N
|Dj(a,X)|
|Dj(X)|

)ca, for all i. (5)
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where Di(a,X) is the set of i’s minimal service sets containing project a given
realizations X, and with the convention 0

0 = 1
n .

Recall the example DAnn = {a ∨ b} and DBob = {a ∧ b} with both projects
having IID probabilities of success 2/3. The Expected Counting Liability rule
gives cost shares (0.54, 0.46) for each project. Consider for instance project a:
if both projects fail or only b works, Ann and Bob share equally; if only a works
Ann pays the full cost; and if both projects work shares are (1/3, 2/3) (Ann has
counting index 1/2 and Bob 1).
In the next example where DAnn = {a∨b} and DChris = {a}, the cost shares

differ for the two projects. Still assuming IID probabilities of success 2/3, Ann
and Chris share equally project a except when both projects work. Then Ann’s
counting index is 1/2 and Chris’is 1, so they share as (1/3, 2/3), hence the final
shares (0.43, 0.57). For project b we get the shares (0.83, 0.17).

Our last cost allocation rule applies the Shapley value to the standard co-
operative game where the stand-alone cost of a coalition S ⊂ N in problem
(Q, p, c) is defined as follows. Set DS = ∩i∈SDi to be the set of subsets of
projects serving every agent i ∈ S, and let DS(X) = {D ⊆ X|D ⊆ DS} be the
projection of DS onto the realization X ⊆ A. Then the Stand Alone cost of S
given realization X is

c(S,X) =

{
min{cD|D ∈ DS(X)} if DS(X) 6= ∅
0 otherwise

and the expected Stand Alone cost of S  N is

c̄(S) =
∑
∅⊆X⊆A

p(X)× c(S,X) (6)

while c̄(N) = cA is the total cost that has to be covered.
Note that the core of (N, c̄) will often be empty due to redundancy.

4 Three Separability properties

4.1 Cost Additivity

Cost differences between projects should influence individual liabilities, as sug-
gested already in the by now familiar two-project two-agent example withDAnn =
{a∨b} and DChris = {a}. Suppose that with probability 0.9 project a works but
b fails, while with probability 0.1 project b works but a fails. The Ex-ante and
Ex-post rules select approximately the same cost shares.6 However if we learn
that b is much more expensive than a, it makes sense to charge significantly
more to Ann (as the Needs Priority rule will do) because she is more liable for
b than Chris, and most of the costs come from b.

6Since Ann’s ex ante probability of being served is 1, and Chris’ is 0.9 we get ỹxa =
(0.53, 0.47)cA. Under the Ex-post rule if a works but b fails Ann and Bob share equally, while
if b works but a fails only Ann is liable: so ỹxp = (0.55, 0.45)cA.

9



Cost Additivity (CA): For all profile of needs Q, probability distribution p,
and cost vectors c1 and c2

ỹ(Q, p, c1 + c2) = ỹ(Q, p, c1) + ỹ(Q, p, c2).

Clearly a cost additive rule takes the form

ỹ(Q, p, c) =
∑
a∈A

y(a;Q, p)ca (7)

where ∆(N) is the N -simplex and y(a;Q, p) ∈ ∆(N) specifies how the liability
shares for project a.

The Ex-ante and the Ex-post rules are both cost additive, but they ignore the
flexibility afforded by the decomposition (7). The Needs Priority and Expected
Counting Liability rules are clearly of the form (7). However, the Shapley value
of the Stand Alone game (6) is not a cost additive rule.

4.2 Independence of Timing

The Ex-ante and Ex-post rules react very differently to the arrival of new in-
formation about the outcome of some projects, leading to an update of the
distribution p. Under the Ex-ante rule, this update typically upsets the distrib-
ution of shares. By contrast under the Ex-post rule computing the cost shares
from the initial distribution p, or from the expectation of its updates, amounts
to the same thing. Mathematically this is the property that cost shares are an
affi ne function of probabilities.
Suppose the uncertainty about success of failure of the projects is described

by a composed distribution r = λp + (1 − λ)q (where r, p, q ∈ ∆(2A) and
λ ∈]0, 1[). We require that settling shares at time 0 given r, or waiting to
compute shares till time 1 when either p or q is realized, yields the same shares
(in expectation at time 0):

Independence of Timing (IT): For p, q ∈ ∆(2A) and λ ∈ [0, 1]

ỹ(Q,λp+ (1− λ)q, c) = λỹ(Q, p, c) + (1− λ)ỹ(Q, q, c)

This implies that payments are additively separable in the set of successful
projects X (as in a classic von Neuman-Morgenstern setting).
Together CA and IT characterize the family of rules (7) with shares of the

form
y(a;Q, p) =

∑
∅⊆X⊆A

p(X)× y∗(a,Q,X) (8)

where y∗(a,Q,X) is the profile of liability shares for a when the deterministic
outcome of the projects is that those in X succeed and only those.
The Ex-ante service rule (2) fails IT. The Ex-post service rule (3) is clearly of

the form (8), so this rule meets IT. So do the Needs Priority, Expected Counting
Liability, and Shapley value rules.
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4.3 Separability Across Projects

Our third separability axiom bears on the impact of project b over the cost
shares of other projects a, evaluated when project b is deterministic (always
works or always fails) and costless. Costs shares should then depend on project
b only through b’s impact on the profile of needs.
Notation: given b ∈ A let Di(b = 1) = {D ⊆ A�b|D ∪ {b} ∈ Di} be the

subsets of A \ b for which adding project b would provide service for i, and let
Di(b = 0) = {D ⊆ A�b|D ∈ Di} be those for which b is not needed, i.e., the
projection of i’s needs on A \ b. Let Q(b = δ) = (N,A�b, (Di(b = δ))i∈N )
for δ = 0, 1, be the corresponding profiles of needs. Next let p(b) = p(X 3 b)
be the probability that b is successful and denote by pb=1,pb=0 ∈ ∆(2A�b) the
distributions pb=1(X) = p(X ∪b) and pb=0(X) = p(X) for all X ∈ A\b. Finally
c(−b) is the projection of c on RA�b+ .

Separability Across Projects (SAP): for all b and δ = 0, 1

{p(b) = δ and cb = 0} =⇒ ỹ(Q, p, c) = ỹ(Q(b = δ), pb=δ, c(−b))

For a cost additive rule the axiom takes a simpler form: for all b and δ = 0, 1

p(b) = δ =⇒ y(a;Q, p) = y(a;Q(b = δ), pb=δ) (9)

When b fails (resp. works) for sure, the shares of project a depend only upon
the projected service profiles Q(b = δ) and probabilities pb=δ.
The Ex-ante, Ex-post Service, and Needs Priority rules satisfy SAP. The

Expected Counting Liability and the Shapley value rules both fail SAP.

4.4 Putting the three properties together

We need additional notation to express the consequences of our three indepen-
dence properties. Let T be the set of ordered 3-partitions τ = (T−, T0, T+)
of N where up to two subsets can be empty, and Θ be the set of triples of
non negative integers θ = (θ−, θ0, θ+) of sum n. The cardinality of τ ∈ T is
|τ | = (|T−|, |T0|, |T+|) ∈ Θ. Let Γ be the set of mappings γ from Θ into R3+ such
that

θ−γ−(θ) + θ0γ0(θ) + θ+γ+(θ) = 1 for all θ ∈ Θ

Each γ in Γ defines a mapping g from T into ∆(N) as follows. For any τ ∈ T

gi(τ) = γε(|τ |) if i ∈ Tε , where ε = −, 0,+ (10)

We write G for the set of such mappings g. Intuitively g assigns individual
shares based only on the cardinality of the partition, and the membership in the
partition. It is fully symmetric: if agents i ∈ Tε1 and j ∈ Tε2 swap membership
(so the new partition has T ′ε1 = Tε1 + j − i etc..), their shares are swapped as
well and other agents are unaffected.
Recall that S(Q;X) = {i ∈ N |X ∈ Di} is the set of agents served if X is

realized. When X contains a, we let Sa(Q;X) = S(Q;X)�S(Q;X�{a}) be
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the set of agents served at X for whom the success of project a is critical: they
would not be served if project a had failed.
Given a profile of needs Q, an project a, and a subset of projects X, we

define the partition τ(a;Q,X) ∈ T as follows:

T− = N�S(Q;X ∪ {a}) ; T+ = S(Q;X�{a})

T0 = Sa(Q;X) if a ∈ X ; T0 = Sa(Q;X ∪ {a}) if a /∈ X

So T− (resp. T+) is the set of agents that are not served (resp. are served),
irrespective of the success or failure of a; and T0 is the set of agents who are
served if and only if a succeeds.

Proposition 1: A cost sharing rule is Cost Additive, Independent of Timing
and Separable Across Projects, if and only if there exist two mappings g−, g+ ∈
G such that

y(a;Q, p) =
∑

X:∅⊆X⊆A�{a}

p(X)×g−(τ(a;Q,X))+
∑

X:a∈X⊆A
p(X)×g+(τ(a;Q,X))

(11)
Proof We already observed that the combination of CA and IT characterizes
the rules of the form (7), (8). It remains to describe the consequences of SAP
and Symmetry in projects and agents.
FixQ,X ⊆ A and a, and recall that in equation (8) y∗(a,Q,X) = y(a;Q, δX)

where δX ∈ ∆(2A) picks X with probability 1. When we apply SAP repeatedly
to all projects b in A�{a}, with b = 0 if b /∈ X ∪ {a} and b = 1 if b ∈ X�{a},
the profile of needs shrinks to

Q = (N, {a},Di) where Di = {D ⊆ {a}|D ∪ (X�{a}) ∈ Di}

the corresponding probability is

p(a) = 1 if a ∈ X ; p(a) = 0 if a /∈ X

and we have
y∗(a;X;Q) = y(a;Q, δX) = y(a;Q, p)

As p is determined by a in or out of X, we can define g− and g+ as follows:

y∗(a;X;Q) = g−(a,Q) if a /∈ X ; y∗(a;X;Q) = g+(a,Q) if a ∈ X

Now each Di is a possibly empty subset of 2{a}, and three of these four
subsets correspond to inclusion monotonic needs: the empty set, the singleton
{a}, and 2{a}. Distinguish these three cases:

Di = ∅ means: {a} ∪ (X�{a}) /∈ Di ⇐⇒ X ∪ {a} /∈ Di ⇐⇒ i ∈ T− : agent
i is not served at X, even if a outside X works;
Di = {a} means: {{a} ∪ (X�{a}) ∈ Di and (X�{a}) /∈ Di} ⇐⇒ i ∈ T0 :

agent i is served at X if a works, but not if a fails;
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Di = 2{a} means: (X�{a}) ∈ Di ⇐⇒ i ∈ T+ : agent i is served at X, even
if we switch a from success to failure.
Thus Q is entirely described by the partition τ(a,Q,X) = (T−, T0, T+) of N ,

and for ε = −,+ we can write gε as gε(a, τ(a;Q,X)). Symmetry in A implies
that the first a does not matter, and symmetry in N implies that gε takes the
form (10) for some γ ∈ Γ, i.e., gε ∈ G. Thus we reach the desired form (11).
In the converse statement we only check that the allocation rule (11) meets

SAP. Fix a problem (Q, p) and two outcomes a, b where p(b) = 1. Then for any
X containing b, it is easy to check that τ(a;Q,X) = τ(a;Q(b = 1), X�{b}),
and pb=1(X�{b}) = p(X): property (9) for ε = 1 follows. The proof for ε = 0
is similar. �
Proposition 1 captures a large family of rules worthy of further axiomatic

investigations: it includes rules that use the flexibility offered by Cost Additivity
and assign individual cost shares to each project, such as the Needs Priority rule,
and is closed by convex combinations.

Proposition 1 is a tight characterization result:

• If we drop IT the Ex-ante Service rule (2) meets all other axioms;

• If we drop SAP the Expected Counting Liability rule (5) meets all other
axioms;

• If we drop CA consider the rule equal to Ex-post Service at all problems
(Q, p, c) such that cA ≤ 1 and equal to Needs Priority if cA > 1. It
meets IT and SAP because both axioms compare cost shares at different
problems with identical total cost shares.

5 Two special rules and their characterization

We now focus on the two rules defined in Section 3 satisfying CA, IT, and SAP.
The Ex-post Service rule (3) takes the form (8) for

yxp(a,Q, p) =
∑
X∈2A

p(X)× e[S(Q,X)]

which is the special case of (11) where

g−(T−, T0, T+) = e[T+]; g+(T−, T0, T+) = e[T0 ∪ T+]

The Needs Priority rule (4) takes the form (8) for

ynp(a,Q, p) =
∑

∅⊆X⊆A
p(X)× e[S(Q;X)�S(Q;X�a);S(Q;X)] (12)

which is the special case of (11) where

g−(T−, T0, T+) = e[T+]; g+(T−, T0, T+) = e[T0] if T0 6= ∅ , g+(T−,∅, T+) = e[T+]
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Remark: The Ex-post Service rule and the Needs Priority rule are Population
Monotonic: yi(N,A,D, p) ≥ yi(N∪{j}, A,D, p) for all j /∈ N . When utilization
of the projects is excludable, this allows strategyproof elicitation of the agents’
ex ante willingness to pay, as in [15].

5.1 Some simple fairness tests

We fix a problem (Q, p, c) throughout the definitions below. In the first two
definitions ỹ ∈ RN+ refers as in Definition 2 to total cost shares over all projects.
No Charge for No Service (NCNS): if p(X ∈ Di) = 0 while p(X ∈
∪j∈NDj) = 1, then ỹi = 0; if p(X ∈ Dj) = 0 for all j then ỹ = e[N ] × cA

If ex post at least one agent is served, then an agent never served pays
nothing. It is compelling, and clearly satisfied for any rule of the form (11)
(including both rules above) when g+, g− does not charge T− provided T0 ∪ T+
is non empty.

Liable for Flexibility (FLEX): if Di ⊇ Dj , then ỹi ≥ ỹj
This property drives a wedge between our two rules: the inclusion means

that i’s needs are more flexible than j’s, in particular i is more likely to be
served, and the axiom assigns a (weakly bigger) liability to i than to j. While
Ex-post Service clearly meets this property, Needs Priority fails it.
In the next two axioms we assume for simplicity that our allocation rule is

Cost Additive, so we write it as in (7) in terms of the cost shares y(a) for a
particular project.7 We call agent i single-minded on project a if X ∈ Di ⇐⇒
a ∈ X : the success of a is all that matters to agent i.

Liable for Single-minded Needs (SMN): if i is single-minded on project a
and p(a ∈ X) = 1, then yi(a) = maxj∈N yj(a)

This property is uncontroversial and clearly true for both our rules.
We call project a useless to agent i if D ∈ Di =⇒ D�{a} ∈ Di.

Useless is Free (UF): if a is useless to i while j is single minded on a, and
p(a ∈ X) = 1, then yi(a) = 0

Needs Priority meets this property: agent j is in T0 for any X containing a,
while agent i is in T− ∪ T+. But Ex-post Service does not: even i for whom a
is useless will contribute to the cost of a if she is served.

5.2 Characterization result

Theorem 2: Among the rules satisfying Cost Additivity, Independence of Tim-
ing, and Separability Across Projects
i) the Ex-post Service rule is characterized by No Charge for No Service,
Liable for Flexibility, and Liable for Single-minded Needs;

7We could of course define the axioms for global cost shares, under the assumption that
all items except a are costless.
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ii) the Needs Priority rule is characterized by No Charge for No Service, and
Useless is Free.

Proof We already checked that Ex-post Service meets NCNS, FLEX, and
SMN; and that Needs Priority meets NCNS and UF. Conversely we fix a rule
in the form (11) and we check the impact of the four fairness tests.
Step 1 NCNS implies that g+ does not charge T− (unless T− = N) and
g−(T−, T0, T+) = e[T+].

Fix τ ∈ T with T− and T0 ∪ T+ both non empty. Fix A, a and X̃ such that
a ∈ X̃ and construct a problem (Q, p) such that p(X̃) = 1, and

• X̃ /∈ Di for i ∈ T−

• X̃ ∈ Di but X̃�{a} /∈ Di for i ∈ T0

• X̃�{a} ∈ Di for i ∈ T+

so that T− = N�S(Q; X̃), T0 = Sa(Q; X̃), and T+ = S(Q; X̃�{a}) and (11)
gives the shares y(a,Q, p) = g+(τ). On the other hand NCNS implies that T−
pays nothing, so we conclude that g+ does not charge T−.
Next we fix τ ∈ T and choose A, a, X̃ (non empty) such that a /∈ X̃. We

choose similarly a problem (Q, p) such that p(X̃) = 1 and

• T− = N�S(Q; X̃ ∪ {a})

• T0 = Sa(Q; X̃ ∪ {a})

• T+ = S(Q; X̃)

so that y(a,Q, p) = g−(τ) while NCNS says that: if T+ 6= ∅ then agents in
T− ∪ T0 pay nothing, while if T+ = ∅ all agents share equally the cost of a.
This is the desired conclusion.

Step 2 UF implies that g+ does not charge T+ if T0 6= ∅.
Fix τ ∈ T with T0 6= ∅ and A, a, X̃ s. t. a ∈ X̃ and X̃�{a} 6= ∅. Similarly

to step 1 we construct (Q, p) s. t. p(X̃) = 1, and

• X̃ /∈ Di for i ∈ T−

• each j ∈ T0 is single minded on a

• for each i ∈ T+ we have X̃�{a} ∈ Di and in fact a is useless to i

so that y(a,Q, p) = g+(τ) and by UF g+ does not charge T+.

Step 3 SMN implies that g+ charges weakly more to agents in T0 than to those
in T+.
Fix τ ∈ T with T0 and T+ both non empty. The same construction as in

step 2 (where for i ∈ T+ we only need X̃�{a} ∈ Di) gives y(a,Q, p) = g+(τ)
and by SMN g+j (τ) ≥ g+i (τ) for j ∈ T0, i ∈ T+.
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Step 4 FLEX implies that g+ charges weakly more to agents in T+ than to those
in T0.
Fix τ ∈ T with T0 and T+ both non empty. We use the same construction

of A, a, X̃, (Q, p) as in step 2 for T− and T0, and for each i ∈ T+ we choose

• Di containing X̃�{a} as well as all supersets of {a}

Then y(a,Q, p) = g+(τ) and by FLEX g+i (τ) ≥ g+j (τ) for j ∈ T0, i ∈ T+.
Step 5 Now statement i) follows by combining Steps 1,3 and 4. while statement
ii) follows from Steps 1 and 2. �

Both statements in Theorem 2 are tight characterization results: Be-
cause Proposition 1 is tight we only need to check that dropping any one of the
additional fairness tests generates new rules in the form (11). For statement i)
Drop NCNS: the rule dividing total cost equally, irrespective of needs, meets
FLEX and SMN.
Drop FLEX: the Needs Priority rule meets NCNS and SMN.
Drop SMN: consider the rule with g−(τ) = e[T+] and

g+(τ) = e[T+] if T+ 6= ∅; = e[T0] if T+ = ∅ 6= T0; = e[N ] if T− = N

It meets NCNS by Step 1 in the above proof, and FLEX because if Di ⊇ Dj
and i, j are not in the same element of τ , then j is below i (in the sense where
T− is below T0 and T0 is below T+). It fails SMN when i is single-minded on
project a and at the deterministic configuration (a,Q,X) with a ∈ X, we have
i ∈ T0 and T+ 6= ∅.
For statement ii)
Drop NCNS: consider the rule

g−(τ) = g+(τ) = e[T0] if T0 6= ∅; = e[N ] if T0 = ∅

It fails NCNS at the deterministic configuration (a,Q,X) when a /∈ X, i ∈ T0
and T+ 6= ∅. UF holds true because if a is useless to i while j is single minded
on a, and X contains a for sure, then T0 contains j but not i so i does not pay
for a.
Drop UF: the Ex-post Service rule meets all other axioms.

6 Compatibility of axioms and rules

IT CA SAP NCNS FLEX SMN UF
Ex-ante Service NO + + + + + NO
Ex-post Service + + + + + + NO
Needs Priority + + + + NO + +
Expected Counting Liability + + NO + NO + +
Shapley value + NO NO NO NO NO NO
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