
Proceedings of the Third European Conference on Computer-Supported Cooperative Work
13-17 September, 1993, Milan, Italy
G. De Michelis, C. Simone and K. Schmidt (Editors)

^Sharing To-Do Lists with a Distributed
Task Manager

Thomas Kreifelts, Elke Hinrichs, Gerd Woetzel
Gesellschaft fur Mathematik und Datenverarbeitung, Germany

Abstract: We describe a simple and powerful tool for the management of distributed
work: the Task Manager. Common tasks may be shared and manipulated independently
by a number of people. They are represented as shared to-do lists at the user interface.
With the help of the tool, users may organize cooperative tasks, monitor their progress,
share documents and services, and exchange messages during task performance. The
paper gives the motivation for the development of the Task Manager, implementation
details, and a first assessment of its usefulness.

1 Introduction, or: Why do we need tools for the
management of distributed work

Working in large and geographically distributed business organizations and gov­
ernment agencies requires that individuals and groups at different sites engage in
intensive cooperative activity. Business teams are formed from different parts of an
organization, and agencies in non-centralized government settings have to cooperate
over large distances. There is a trend towards formation of joint ventures and con­
sortia to carry out large projects across organizational and national boundaries. All
this leads to an increasing need for computer tools to support distributed task man­
agement in order to provide better overview and to avoid expensive inefficiency,
errors, and delay.

Another incentive for the development of support tools for distributed task man­
agement is the emergence of alternative forms of the organization of labour: on the
one hand we have an increasing number of people working "on the move", e.g. at a
customer or on a construction site. On the other hand we observe a tendency to-

ECSCW '93 31

wards people working at|home in order to avoid commuter traffic and enable more
effective part-time working.

The EuroCoOp project set out: to provide the required support by developing
facilities for distributed work management, including tools for the scheduling and
coordination of cooperative activities, progress monitoring, formal reporting, and
joint authoring of documents. Within this project, over the period of the past two
years, we have developed die Task Manager as a tool to share and manage common
tasks in a community of distributed users1.

The Task Manager is a prototype software system for specifying and managing
cooperative activity. With its help, users may organize (create, refine, and modify)
cooperative tasks, monitor their progress, share documents and services, and ex­
change messages during task performance. The Task Manager distributes task
specifications, attached documents, and messages to the involved users in a con­
sistent way. It is meant to support the management of work distributed in time
and/or space by providing ' ' ': ,
• support of organization and planning of collaborative work (who does what,

with whom, until when, using what?),

• up-to-date overview of collaborative activity and work progress,
• dynamic modification of work plans during performance,
• availability and exchange of documents and messages widiin groups of people

involved in task performance.
The Task Manager organizes distributed work in tasks which have a person re­
sponsible, a deadline, other participants, the material necessary for task per­
formance, and possibly subtasks. The primary user interface of the Task Manager
is a hierarchically structured to-do1 list which displays all tasks a user is involved in
and which allows direct access to me relevant information attached to a task.

2 Motivation, or: Why deVelop coordination tools

There has been considerable research,on coordination tools; recently also a number
of commercial products has appeared claiming to support coordination.

Commercially available products come in different flavours: some cover certain
aspects of the problem like personal productivity tools, group calendars for local
networks, project management systems (which are single user applications for
project managers). Others represent closed "groupware" solutions widi no clear
concept of, and not particularly tuned to, coordination. The integration of, or inter­
operability with, existing computer support (like word processors, data base sys-

1 Research reported in this paper has partly been funded by the Commission of the European
Communities within the project no. 5303 "EuroCoOp - IT Support for Distributed
Cooperative Work" of the ESPRIT Programme in 1991 and 1992. Project partners were TA
Triumph-Adler, Arhus Universitet, BNR Europe, empirica, GMD, Jydsic Telefon, NeXor, and
Slorebaeltsforbindelsen.

I ' •

32 ; | ECSCW'93

tems, spreadsheets etc.) usually presents a serious problem. Consequently, there is
not much support available on the market that provides the comprehensive
coordination functionality and the necessary amount of "openness" to third-party
software that we consider essential.

Within academic research, quite a number of models, prototypes, and systems
have been developed with the explicit goal of coordination. Not many of these ap­
proaches have ever been implemented or even put to use; so there is not much ex­
perience with coordination tools in spite of the obvious need for such tools. The
few experiences reported on computer support for coordination exhibited a number
of difficulties with those systems, particularly die lack of flexibility and inter­
operability. This has also turned out to be true for the office procedure system
DOMINO (Kreifelts et al. 1991) that we had implemented and assessed. Con­
sequently, we focused on two problems:
• the rigidity of pre-defined procedures and imposed structures which lead to a

limited application domain and non-adequate exception handling in a number of
situations

• the isolation from informal communication, information sharing, and other
forms of computer support.

To avoid the implications of rigidity, it has been argued in (Hennessy, Kreifelts and
Ehrlich 1992) that future coordination support'systems should focus on Schmidt's
proposal (1991) of treating models of cooperative work as resources to be defined,
modified, and referred to for information purposes instead of as prescriptions to be
adhered to. To overcome the relative isolation future coordination support systems
have to be able to interface to existing computer systems that support the actual
work — coordination is never an end in itself.

Another aspect that so far seems to have been largely neglected is the effort
needed to make use of coordination systems: most systems require pre-organization
of the cooperative work by some sort of systems administrator before a system may
be put to use by an ordinary user. Instead, one would like to have coordination
systems that encourage self-organization of cooperative work by the end-users
themselves. In order to overcome this initial barrier of using coordination systems,
the genericity and simplicity of the underlying coordination model are of primary
concern.

3 Description, or: What are the basic concepts of the
Task Manager

We now describe the framework on which the Task Manager is based: its compo­
nents and their attributes, and the operations to create and modify task structures.
We then give a picture of how all of this is presented at the user interface.

ECSCW '93 33

3.1 Components

The central notion of the Task Manager is that of a task. In order to perform a task,
people use shared documents and/or services and communicate by sending mes­
sages to each other.
• Tasks

The Task Manager's notion of a task has various aspects: one could think of a
task as of a project, i.e. a common goal of a set of people (result-oriented). A
task may be broken up into several sub-tasks and dependencies may be defined
between them and their documents. The more detailed specifications are given,
the more a task resembles an office procedure with causal dependencies be­
tween subtasks and documents of a task (procedure-oriented). A task may also
be used as a simple folder with little or no structure defined: in that case a task
is simply a shared container of subtasks, documents and/or services, and mes­
sages that people exchange about in a common task (information-sharing-
oriented).

• Documents/services \
In everyday office life, there are generally resources of some sort needed in
order to achieve the goal of a task; therefore, each task may have resources
attached to it. Resources are "pointers" to various kinds of computerized ob­
jects: the first kind of resource one could think of would of course be docu­
ments mat are shared between the participants of a task. But there are also other
resources like rooms, budgets, machinery, etc. that may be crucial to the per­
formance of a common task. In our system diose resources are handled by ser­
vices that are implemented outside of the actual Task Manager, but may be
referred to and shared by the participants of a task.

• People/users
The most important "resource" are the people involved in a common task. We
distinguish between various levels of participation and of competence. There is
a set of people involved in a task, the participants, that all have equal access
rights to the attributes of a task, its documents and services and its messages.
Participants may invite other people to take part in the task, i.e. to become new
participants or observers. Observers are people interested in the completion of
the task with read access only to any information and the right to participate in
the informal message exchange associated with the task.
One of the persons involved in a task is "more equal" than the others: the per­
son responsible for the performance and the outcome of the task. S/he has ex­
clusive write access to some of the tasks attributes, e.g. state, start date and
deadline, and only s/he may reassign the responsibility of the task to another
person.

• Messaging
Participants and observers may freely exchange informal electronic mail mes­
sages within the context of a task. By integrating and facilitating extensive mes-

34 ECSCW'93

sage exchange we give more room to flexible social protocols in contrast to
regulations dictated by the system.

3.2 Attributes

Tasks, participants, documents, and services are specified in more detail by a set of
attributes each. The title of a task both identifies a task to its participants and gives a
short and concise description of its goal. The title of a task is the only mandatory
attribute — thus, the user is not forced to fill out long forms before s/he can
actually start working on a task. All other attributes are either optional or set to a
default value by the system. E.g., when a user initially creates a task s/he auto­
matically is the person responsible for it.

As mentioned above, the person responsible for a task has special rights; in par­
ticular s/he may set the state of a task. We only distinguish between me completion
state of not finished and finished. This state is set by the user. Apart from the
completion state, a task can be pending, i.e. there is a causal dependence on another
task not yet finished, or not pending. This state is set by the system automatically,
and should help the user decide when best to start with the actual work on a task.
As a third kind of state information, a task can be acknowledged by the responsible
actor. This is to inform the co-workers of the responsible person's awareness and
acceptance of the task s/he has been assigned to.

Another important attribute is the envisioned deadline of a task. The system re­
minds the user of approaching deadlines, but does not enforce any actions with re­
spect to overdue tasks.

Besides those most important attributes there are a number of other attributes that
allow the user to specify in more detail how a task should be performed: time-
related data, such as start date, data that describes causal dependencies between
tasks and between tasks and documents, and personal data attached to a task, such
as notes etc. The latter attributes are purely local and are not distributed to and
shared by the other participants.

Documents and/or services may be attached to any task in which the user partici­
pates at any time. They consist of a name, a history of who did what and when, me
owner of the document and other data. After discussions with prospective users we
added the abstract attribute of a document: it contains an informal text description of
the document and it frees the user of having to transfer, open and read the entire
document when s/he is only interested in a resume. For reasons of simplicity, we
decided to implement a semi-transparent file transfer service (cf. section 5). Other
resources as mentioned above are handled by separately implemented services; the
system keeps an account of so-called service requests, but leaves other details to the
respective service.

Participants are people that work together on a common task. They are world­
wide and uniquely determined by a pair of ids or by an X.500 distinguished name.

ECSCW '93 35

We also support more user friendly names, individual address books, and access to
the X.500 directory service.

3.3 Operations

Users can create tasks and subtasks, dependencies between tasks and between
tasks and documents, they may set and modify attributes, add, modify, and remove
documents and service requests.'Persons responsible for a task may refuse re­
sponsibility and they may reassign it to another user. Any participant can introduce
new participants or observers to a task. Tasks may be copied and pasted or moved
around freely. All of this may be done at any time, thus allowing dynamic modi­
fication of the work situation at run-time.

Basically, the system distributes information on tasks, makes available resources
across the (world-wide) network, keeps the data up-to-date, and resolves conflicts
of synchronization. Each user has instant access to the shared tasks s/he is involved
in. The system guarantees a consistent: view on tasks for each participant.
Additionally, the system keeps track of the actions the users take. Thereby monitor­
ing and task tracking at execution time as well as report generation after completion
of a task is rendered possible. , |' ' ;:

Figure 1. Task List user interface
! 1

36

3.4 User interface

The set of tasks a user participates in is presented at user interface level as a Task
List, very similar to conventional outliner programs (Figure 1). The Task List gives
an overview of the hierarchically ordered tasks along with a condensed view of the
most important attributes: title, person responsible, deadline, documents/services,
participants, state, and a list of messages that have been exchanged within that task.
Operations are invoked by selecting menu commands and/or by directly typing in
the attribute fields. In most cases, the Task List will suffice to display the informa­
tion and to perform the necessary operations.

| " | ~~~ TaskList: Laust-M Ladefoged I • fa)

Figure 2. Task Editor user interface

For more detailed information, we provide a form-oriented Task Editor; it may
be used to view and edit in detail all of the attributes (Figure 2). The Task Editor
also provides access to a local address book as well as to external addressing infor­
mation such as the X.500 directory.

The Dependency Editor represents groups of sub-tasks and documents in a net­
like way; it mainly serves the purpose of graphically displaying and editing depen­
dencies between tasks and resources. The dependency structures are similar to
those used in workflow systems, but are interpreted differently: instead of driving a
workflow with a strict sequencing of steps, dependencies in the Task Manager
represent recommendations which may be changed or overridden by the users at
any time. ! r

ECSCW '93 37

The Logging Tool gives a complete history of events with respect to all or to
selected tasks, and lets the user acknowledge new events (Figure 3). Thereby, s/he
may find out what's new,since "last Tuesday".

Figure 3. Logging Tool user interface

Other views are possible and desirable, but are not yet implemented: filters on
the Task List on the basis of selection criteria, sorting according to other criteria,
Gantt or milestone charts for a group of sub-tasks in order to facilitate time man­
agement, etc.

4 Usage, or: What can you do with the Task Manager

In the following, we describe in more detail how we envisage the usage of the Task
Manager — this will also include other forms of system usage not generally asso­
ciated with the term "task coordination".

4.1 Different Kinds of Usage

We have chosen some typical forms of usage which will demonstrate the versatility
of the Task Manager tool; like with ordinary paper to-do lists, such different types
of usage may be mixed with one another.

38 ECSCW "93

• Personal To-Do List
This is the simplest form of use: tasks in the Task Manager's task list are not
shared with other users, but serve as reminders for actions to be taken; that may
range from trivial tasks simply represented by their title to specifications of
complex projects. Entries in the task list may also simply represent "folders" for
a set of tasks.

• Brainstorming, Conferencing
A task may be thought of as an environment for off-line brainstorming. Pro­
spective contributors are added as participants to the task and offered a short
description as to the purpose of this activity. They may add their ideas as text
messages or documents of any kind. The person responsible acts as a modera­
tor and may form subconferences if necessary. A passive observer status is
possible.

• Meeting Preparation
The preparation of a meeting can be made a task: the invitation and other impor­
tant documents will be distributed to the participants as documents attached to
such a "meeting task", the participants can give their feedback via the task con­
ference, the organization of the meeting, the writing of the minutes or other
follow-up activities can be made subtasks of the meeting task.

• • Project Planning and Monitoring
The support of this activity is a natural for the Task Manager: it supports a
gradually and dynamically refinable and restructurable structure of tasks and
subtasks, the responsibility may be assigned and reassigned, the completion
state is reported by the responsible persons as tasks are carried out, and dead­
lines can be set and monitored.

• Project Execution
Also the project work itself can be coordinated, because relevant material and
applications may be attached to the respective tasks and subtasks of the project
in order to be shared and worked upon by the project members. The somewhat
primitive document access and version control mechanisms would have to be
complemented for more sophisticated applications by special services.

• Repetitive Tasks
The Task Manager supports the reuse of task specifications which may be first
edited to fit the current situation and then "pasted" into the list of tasks.
Templates for repetitive tasks may be stored privately or copied from organiza­
tional databases.

• Bulletin Board
This again is a very "simple" use of the Task Manager: a task represents a topic
described by the title, the bulletins are added as messages or documents to the
task and are then available to all participants. Hierarchical structuring of topics
is possible via creating subtasks. New participants may be introduced by exist­
ing ones. Participants no longer interested may leave the topic in question.

ECSCW '93 39

The above is not meant to prove that almost every kind of collaborative (or even
non-collaborative) activity may be supported by the Task Manager; of course we
are aware of collaborative tasks which would require more specialized support, like
e.g., the joint authoring of documents. We want to show that the Task Manager can
be used in various ways not just for the management of clearly defined tasks.

The various kinds of usage are not necessarily to be kept separate from one an­
other but can dynamically develop from one kind to another. For instance, a task in
the personal to-do list ("Should develop a productivity tool for our software pro­
duction") can be turned into a brainstorming item by adding a few more partici­
pants. Documents attached to such a personal to-do list item, e.g. a draft proposal
("A Distributed Task Manager for Software Production") are distributed to the other
participants and may now be commented on. Eventually, a project plan could de­
velop from this activity; some persons involved in the planning activity drop out of
the task, new participants are introduced which have special skills needed for the
project. A senior manager is added as an observer of the top level task so as to be
informed of the essentials of the project, and so on.

4.2 Synchronous and Colocated Usage

Within the well known two-by-two matrix of CSCW systems introduced by R.
Johansen which distinguishes systems along the dimensions of temporal and spatial
distribution, the Task Manager clearly falls into the asynchronous, geographically
distributed category: the Task Manager does not require that its users sit in front of
their workstations at me same time nor in me same room. On the other hand, it does
not forbid this, i.e. the Task Manager may also be used in the colocated or syn­
chronous case. i

For instance, a user may realize that another user is actively manipulating tasks
around the same time s/he does and could react by sending a message or even call
the other participant and discuss rearranging or rescheduling a group of subtasks
while both would look at the task list and do some editing. They could also sit in
front of the same display and work together on some tasks; the results of such a
session would be automatically distributed to each of them (and any other partici­
pants). ' • , : , ' '

Another example is that of a project meeting where the task structure is dis­
cussed by the participants equipped with the Task Manager on mobile computers.
So, while mainly meant for work situations distributed in time and space, the Task
Manager may also be used synchronously or in colocated situations.

4.3 Scalability of Use

The Task Manager may not only be used by a limited number of users over a local
network. Special attention has been paid during its development to its scalability
with regard to the number of users, the number of tasks, and the dimensions of

i ' ,

40 \ ECSCW '93

geographical distribution. The Task Manager is not limited in this respect other than
by the availability of computer storage and store-and-forward communication
facilities. It may be used for the support of large user communities over large geo­
graphical distances without restrictions or deterioration of functionality.

• 'i

5 Implementation, or: How does the Task Manager
work

Starting with the conception of the coordination model, the Task Manager was de­
veloped over a period of two years, with a first prototype after about 15 months.
The subsequent phase of evolutionary development included: stabilization of the
prototype; evaluation in simulated work situations by potential users which brought
valuable feedback to the developers; essential enhancements of functionality and
user interface towards a workable system.

Having had an early working.prototype paid in terms of quality of the present
system. Now that the Task Manager is rather stable it is in use within the de­
velopers' group, among other things for project management and die development
of the next version of the system itself. We plan to gradually extend this system
usage to different types of settings, e.g. with the partners of our present European
project.

Domain 1 Domain 2

fi <w fi fi

B protocol

D2 protocol ' , £>{ jJKHocot B D2 protocol

Message
Handler

Figure 4. Software Architecture of the Task Manager

Figure 4 gives an outline of the software architecture. It shows two domains linked
by standard X.400 store-and-forward message transfer — however, the number of
domains is not restricted. The concept of domains reflects the different speed of

ECSCW '93 41

LAN or WAN communication. Within a domain, a client-server approach is used to
update a shared task structure, while X.400 messages are used to distribute
changes to other domains. Every user of the system is located in a specific domain
and uses his/her own instance of the Task Manager. This tool manages user speci­
fic views of the user's task list. Using remote procedure calls, the Task Manager
talks to the Activity Monitor to get up-to-date data and to request changes to the
domain-wide shared Activity Store. In each domain, there is one instance of the
Activity Monitor that serves multiple Task Manager instances.

When a user modifies a specific task or the task structure, the Task Manager
sends an operation request to the Activity Monitor. The monitor executes the opera­
tion in the Activity Store and broadcasts the request to the remote domains involved
via the Message Handler. When an operation request arrives from a remote domain,
the Message Handler passes it over to the Activity Monitor which then updates the
corresponding task objects in the Activity Store accordingly.

The task objects are actually replicated in different domains. This is needed be­
cause user operations on tasks should be immediately reflected in local changes. A
user will not wait for operation requests or results transported over WAN connec­
tions, but requests a fast response — even if the response is preliminary in some
cases as discussed below. Strictly speaking, tasks have to be replicated not only in
those domains where participants of the task itself are located but also in domains
where participants of supertasks can observe a task (a task can be subtask of more
than one supertask). Therefore, the replication of task objects depends on task par­
ticipants and the hierarchical task structure which both may change dynamically.
Task replication is completely transparent at the user interface. The essential pur­
pose of the Activity Monitors is exactly the distributed control of the replication and
modification of task objects in spite of WAN connection breakdowns between
Activity Monitors and lost or duplicated messages on WAN connections.

Obviously, a concurrency problem has to be solved for this architecture: opera­
tion requests arrive asynchronously at the Activity Monitors from local and remote
domains, while all users in their different domains should eventually have a com­
patible view of the task structure (which needs not necessarily be the same view).
As a solution, we have designed the D protocols between the Activity Monitor and
the Message Handler in such a way that the causal order of operations on task ob­
jects is preserved2. As a main feature, our protocols enable the Activity Monitor to
detect concurrent updates of task attributes, and to resolve conflicting assignments
by assuming a linear order on those events.

Of course, all Activity Monitors must reach the same belief about the linear order
eventually. The effect of this strategy for users is that sometimes local changes be-

2 Our approach is similar to the cbcast method within process groups in the ISIS system (Bir-
man, Schiper and Stephenson 1991). But in contrast to the ISIS system, we only need causal
order to deal with changes of a tasks' participant set, such changes are not atomic (membership
changes of process groups in ISIS are atomic).

42 ECSCW '93

come "overwritten" by changes due to remote participants. Because all changes are
highlighted at the user interface, a user at least gets aware of what has happened.

The asynchronous distribution mechanism for tasks is also used for the distribu­
tion of messages, documents and services. Lists of messages, document
references, and service access points are attached to tasks and technically managed
as task attributes. In order to attach or to change a document, the document or new
version is copied with a new filename to a host in the local domain, and the pair
"host/filename" is distributed. When accessed remotely, the documents are ftp'ed (a
cache can be used on the remote site to avoid multiple remote copies).

While the distribution of new versions of documents admits only an asyn­
chronous, coarse-grain update of documents, the usage of services allow for dis­
tributed editing and synchronous communication. Task Manager and service use a
simple protocol to agree upon what X server the service is to be used when it
eventually contacts the user. All services integrated in our system must obey this
start-up protocol.

The concept of documents and services renders the system "open-ended". We
support documents of any kind as long as their associated tools, like word-proces-"
sors or graphical editors, run on the underlying UNIX operating system.

The Activity Monitor is implemented as an ISO-ROS service (Rose, Onions and
Robbins 1991) supporting two access protocols B and Di. The Message Handler
offers another ROS service: via the D2 protocol the Activity Monitor propagates its
data across domains. The protocols are defined in ASN.l (Steedman 1990). All
clients and services of the system are implemented in C++ using ISODE (Rose,
Onions and Robbins 1991).

6 Evaluation, or: Does the Task Manager live up to
the expectations

Here we report on first assessments of the usability and usefulness of the Task
Manager. First, we take a look at our design goals.
Flexibility : we have already shown that the Task Manager is a versatile tool that

may be useful in a variety of work situations. Tasks may be performed by just
one user or shared by any number of users in the same way, a shared task may
be structured to various degrees of refinement and causal dependency, and all
attributes, including the participating users, may be changed dynamically.
The only restriction to flexibility perceived so far is the rather egalitarian model
of task sharing: all participants share the same view. Extensions to the tool
might be needed in order to adapt to rather different organizational cultures than
we originally had in mind.

Interoperability: the concept of attaching documents and services to tasks opens up
various ways in which existing tools or applications to be created may inter-
operate with the Task Manager. First, arbitrary documents attached to tasks

ECSCW '93 43

may be opened and worked on without leaving the task management context.
Secondly, services offer specific cooperation support not covered by the Task
Manager within the task management context

Self-Organizability: users of the Task Manager may organize their collaboration as
they see fit, the only prerequisite being the installation of the tool in the user
community. There is the possibility of using and adapting task templates from
an organizational database, or reusing old task specifications.

Simplicity, Genericity:ih& Task Manager in its present form is basically a very
simple tool, and is usually very quickly understood by novice users as a dis­
tributed to-do list. It may be applied to any kind of collaborative activity, be­
cause it has not been tuned to any specific application domain.

Early designs and a first prototype of the Task Manager were evaluated in user
workshops conducted in the spirit of the Scandinavian approach of user-centred
design (Kyng and Greenbaum 1991).! Our user organization is a company which
manages a very large technical project, and our users at the workshops were man­
agers, engineers, and support personnel; details on the organization may be found
in (Gr0nbaek, Kyng and Mogensen 1992).

The main goal of the user involvement was to find out whether the Task
Manager addressed the problems of distributed work management found in the user
organization, and what might improve its design. The prospective users regarded
the Task Manager as potentially useful for coordination within their organization,
but thought overview and efficiency of the tool should be improved. This criticism
has led to considerable enhancements of the Task Manager. We are sure that the
planned real-world use will offer further occasions for improvements.

Finally, we found it interesting to compare our Task Manager with the check-list
for a successful CSCW tool which recent analyses of cooperative work — com­
puter-supported or not — came up with. Robinson (1993) claims that a tool should
have a clear functionality to do a job and in addition should support the following
features which we think are also present in the Task Manager.
Peripheral awareness: is offered by the task list interface which at a glance notifies

of events in shared work the user should attend to.
Implicit communication: is supported via sharing documents and services attached

to a task. ' ;• '
"Double level language", i.e. the complementary and mutually supportive use of

implicit and explicit communication: is provided for by the conference of infor­
mal messages attached to a task!

Overview: of distributed work is one of the main features of the shared to-do list.
Multifunctionality: could be claimed as! demonstrated in section 4, but still has to be

proven in real use. ':,••"'
Our first assessments showed that distributed to-do lists can contribute to the

management of distributed work. It also became clear that there still remains a lot to
be done with regard to flexibility and interoperability of the tool. All of this has en­
couraged us to proceed with the further development of the Task Manager.

i

44 ECSCW93

7 Conclusion, and: Where do we go from here
There is a still growing need for tools to manage distributed work. The coordina­
tion models and systems developed over the last years suffered from the rigidity of
predefined procedures and imposed structures, and the isolation from informal
communication and other forms of computer support

With the Task Manager we have presented a simple, powerful, and generic tool
for the management of distributed work that addresses these problems by its flexi­
bility to adapt to a broad variety of collaborative work situations, and by the pos­
sibilities it offers to interoperate with other computer support.

The present prototype of the Task Manager will be the starting point for further
evolutionary development. By putting the prototype to actual use we will further
evaluate the tool and try to gradually add features that improve its usefulness as a
coordination instrument. Additionally, we will address the problems connected
with the mobile use of the Task Manager, i.e. intermittent disconnection from the
base system, and further open it up by creating facilities to interoperate with other
types of CSCW systems like distributed hypermedia and shared window
conferencing.

Acknowledgements

We would like to thank all members of the EuroCoOp project team who participated in the design
and implementation of the Task Manager, Andreas Backer, Ute Ehrlich, Pippa Hennessy, Karl-
Heinz Klein, Ernst Lutz, Peter Seuffert, Alan Shepherd, and those who prepared and evaluated the
user workshops, Kaj Gr0nbaek, Morten Kyng, Preben Mogensen and our users at Great Belt Link
in Knudshoved.

References

Birman, K., Schiper, A., Stephenson, P. (1991): "Light weight causal and atomic group multi­
cast," ACM Transactions on Computer Systems, vol. 9, no. 3, August 1991, pp. 272 - 314.

Gr0nbaek, K., Kyng, M„ Mogensen, P. (1992): "CSCW challenges in large-scale technical pro­
jects: A case study," in J. Turner, R. Kraut (eds.): CSCW '92, Proc. Conf. on Comp.-Supp.
Coop. Work, (Toronto, Oct. 31 - Nov. 4 1992), ACM, New York NY, pp. 338-345.

Hennessy, P., Kreifells, Th., Ehrlich, U. (1992): "Distributed work management: activity coordi­
nation within the EuroCoOp project," Computer Communications vol. 15, no. 8, October
1992, pp. 477-488.

Kreifelts, Th., Hinrichs, E., Klein, K.-H., Seuffert, P., Woetzel, G. (1991): "Experiences with the
DOMINO office procedure system," in L. Bannon, M. Robinson, K. Schmidt (eds.): ECSCW
'91, Proc. 2nd European Conf. on Comp.-Supp. Coop. Work, Kluwer, Dordrecht, pp. 117 -
130.

Kyng, M., Greenbaum, J. (eds.) (1991): Design at Work, Lawrence Erlbaum, London.

ECSCW '93 45

Robinson, M. (1993): "Keyracks and computers: An introduction to 'common artefact' in
Computer Supported Cooperative Work (CSCW)," Wirtschaftsinformatik vol. 35, no. 2, April
1993, pp. 157 - 166.

Rose, M. T., Onions, J. P., Robbins, C. J. (1991): "The ISO Development Environment: User's
Manual," version 6.24, vols. 1-5.

Schmidt, K. (1991): "Riding a tiger, or computer supported cooperative work," in L. Bannon, M.
Robinson, K. Schmidt (eds.): ECSCW '91, Proc. 2nd European Conf. on Comp.-Supp.
Coop. Work, Kluwer, Dordrecht, pp. 1 -16.

Steedman, D. (1990): Abstract Syntax Notation One, The Tutorial Reference, Technology
Appraisals, Isleworth. ,

46 ECSCW '93

