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C
artilaginous fishes (Chondrichthyes) are divided into two 
subclasses, elasmobranchs (Elasmobranchii, including 
sharks, rays and skates) and chimaeras (Holocephali), and 

their common ancestor diverged from the rest of jawed vertebrates 
around 450 million years ago. More than a decade ago, the elephant 
fish, Callorhinchus milii, a member of the Holocephali that com-
prises approximately 50 species, was chosen for whole-genome 
sequencing because of its small genome size1. Since then, molec-
ular comparative studies on vertebrates have largely relied on the  
C. milii genomic sequences as representative of cartilaginous fishes2, 
but the low fecundity and accessibility of live specimens have been 
a limitation. C. milii is often referred to as elephant ‘shark’ (or ghost 
‘shark’), but true sharks belong to the subclass Elasmobranchii that 
comprises approximately 1,200 species. For elasmobranchs, how-
ever, no reliable genome-wide sequence resource allowing extensive 
molecular analyses has been established to date, in spite of some 
attempts3,4. Thus, there is an important need to obtain genomic 
information of elasmobranchs that will contribute to the elucida-
tion of the molecular mechanisms underlying their unique traits 
of morphology, reproduction, sensing and longevity5, as well as 
thorough demographic analyses for conservation6,7. Here we report 
whole-genome analysis of three elasmobranch species (Fig. 1a–c), 
assisted by phylogenetics-oriented genome informatics. The utility 

of genome, transcriptome and epigenome data of prolific egg-lay-
ing (‘oviparous’) species provided by this study should expand the 
capacity for in-depth molecular investigation on elasmobranchs.

Results
Sequencing the large genomes of sharks. We focused on the 
brownbanded bamboo shark Chiloscyllium punctatum, for which 
we recently tabled embryonic stages8, and the cloudy catshark 
Scyliorhinus torazame. Their whole genomes, measured to be 
approximately 4.7 and 6.7 Gbp, respectively, were sequenced de 
novo to obtain assemblies including megabase-long scaffolds 
(Supplementary Note 1.1). We also assembled the genome of the 
whale shark Rhincodon typus using short sequence reads previ-
ously generated3 (Supplementary Note 1.2). Using these genome 
assemblies, we performed genome-wide gene prediction, assisted 
by transcript evidence and protein-level homology to other verte-
brates. The obtained genome assemblies and gene models exhibit 
high coverage (Supplementary Fig. 1), and of these, the bamboo 
shark genome assembly achieved the highest continuity (N50 scaf-
fold length, 1.9 Mbp) and completeness (97% of reference ortho-
logues identified at least partially). Using the novel gene models, 
we constructed orthologue groups encompassing a diverse array of 
vertebrate species (see below). Our products outperform existing 
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resources for elasmobranchs and provide the tools for genome-wide 
characterization of molecular evolution at the origin of jawed verte-
brates and later in the chondrichthyan lineages.

Genome-wide trends in molecular evolution. We first examined 
genome-wide trends of molecular evolution, utilizing one-to-one 
orthologues in the constructed orthologue groups (Supplementary 
Note 7). Our comparisons of coding sequences detected a higher 
similarity in nucleotide and amino acid compositions of sharks 
to tetrapods and coelacanth than to actinopterygian fishes 
(Supplementary Fig. 2a,c). We performed a phylogenomic analysis 
using conserved protein-coding genes, which confirmed the phylo-
genetic positions of elasmobranchs and the reduced rate of molec-
ular evolution in the entire chondrichthyan lineage (Fig. 1d). The 
reduced evolutionary rate was further scrutinized by comparing the 
numbers of synonymous substitutions per site (KS) between chon-
drichthyan and osteichthyan lineages (Fig. 1e). The result revealed 

that synonymous substitution rates for the chondrichthyan lineages 
were significantly smaller than those for almost all the osteichthyan 
lineages analysed (Supplementary Note 12), suggesting a reduced 
intrinsic mutation rate in the chondrichthyan lineages. Our cross-
species comparison revealed a remarkable increase in the intron 
lengths of shark genomes and its correlation with genome size  
(Fig. 1f and Supplementary Note 10). Our analysis on the compo-
sition of orthologue groups did not detect massive gene duplica-
tions in the chondrichthyan lineage (Fig. 1g), which was supported 
by the inference of age distribution of paralogues (Supplementary  
Note 11). Thus, the increase of genome size in sharks is not attribut-
able to additional whole-genome duplication.

Characterizing noncoding landscape. To characterize noncod-
ing regions, we first scanned elasmobranch genomes for repeti-
tive sequences including those unique to the species analysed 
(Supplementary Note 4). This identified long interspersed nuclear 
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elements as the most abundant class of repetitive elements, exceed-
ing the proportions of long terminal repeats and those unclassified 
into any existing repetitive element class, both of which were par-
ticularly expanded in the catshark (Fig. 1h). Overall, the genomic 
regions identified as repetitive elements, including simple repeats, 
amounted to half of the individual elasmobranch genome assem-
blies, and their abundance contributed to the observed variation in 
genome size (Fig. 1h).

Next, we surveyed the elasmobranch genomes for homologues 
of human conserved noncoding elements (CNEs), which yielded a 
much larger number of matches than in teleost genomes (Fig. 2a 
and Supplementary Note 13). Our analysis revealed some CNEs 
retained by elasmobranchs but missing in teleost fish and C. milii, 
which included a CNE in an intron of the Tbx4 gene (Fig. 2b) pre-
viously reported as the core lung mesenchyme-specific enhancer9. 
Its presence in a cartilaginous fish that lacks a lung homologue 
prompts a reexamination of its evolutionary significance. This find-
ing also highlights the problem of using only a single holocephalan 
species as a representative of chondrichthyans, whether the CNEs 
missing in this species are lost during evolution or masked in gaps 
in the genome assembly.

We also searched for elasmobranch homologues of human long 
noncoding RNAs (lncRNAs), which again revealed more candidate 
homologues than in teleost fishes (Supplementary Note 14). These 
were screened for transcript evidence in bamboo shark RNA-seq 
data and absence of homology to coding sequences. This screen-
ing resulted in the identification of 38 transcript contigs with vari-
able degrees of spatial expression biases (Fig. 2c). These putative 
lncRNAs included a possible homologue of the Malat1 gene10[,11, 
whose presence in chondrichthyans was recently suggested only by 
a sequence similarity to a C. milii genomic region12. The inclusion 
of the putative bamboo shark Malat1 homologue in our result vali-
dates our screening procedure and more importantly, ascertains its 
noncoding transcription in a chondrichthyan species.

Overall, these findings indicate that despite the variable genome 
sizes and repetitive element compositions, elasmobranch genomes 
have undergone less modification in noncoding regions involved in 
gene regulation since the jawed vertebrate ancestor than is inferred 
by their evolutionary distance.

Evolution of Hox genes and clusters. Hox genes play crucial roles 
in embryogenesis and are organized into four clusters (Hox A–D) 
in osteichthyans (bony vertebrates) except for teleost fishes13. In the 
shark genomes, we found well-conserved Hox A, B and D clusters, 

which have identical gene repertories to their C. milii counterparts 
(Fig. 3a and Supplementary Fig. 5a) expressed in a temporally col-
linear manner (Fig. 3d). For a comparison of conformational regula-
tion of Hox gene expression by CCCTC-binding factor (CTCF)14, we 
analysed the distribution of its binding sites with ChIP-seq (Methods 
and Supplementary Note 15). This comparison on the Hox A, B 
and D clusters revealed a high similarity between elasmobranchs 
and amniotes (Fig. 3b), which makes the whole gnathostomes 
including elasmobranchs distinct from the lamprey that has more 
CTCF binding sites within Hox clusters15 (Supplementary Fig. 4e).  
It is thus suggested that the jawed vertebrate ancestor already pos-
sessed the mechanism of CTCF-dependent conformational regu-
lation of Hox genes documented for mammals16,17. We identified 
antisense transcripts in the genomic region of elasmobranchs con-
taining Hoxa11 and -a13 as putative homologues of lncRNAs previ-
ously known only in tetrapods, Hoxa11-AS and Hottip (Fig. 3c and 
Supplementary Note 14). Although the acquisition of Hoxa11-AS is 
proposed to be linked with the fin-to-limb evolution18, our discov-
ery of the elasmobranch counterparts indicates their early origins in 
the common ancestor of jawed vertebrates.

Although the entire Hox C cluster was reportedly missing from 
elasmobranch genomes19,20, we identified putative Hox C genes in 
the genome and transcript sequences of the analysed shark species 
(Fig. 3a,e and Supplementary Fig. 5a–c). While our phylogenetic 
analyses supported their affiliations to Hox C, those genes showed 
extremely elevated evolutionary rates. Remarkably, none of the iden-
tified, putative shark Hox C genes comprised such a compact clus-
ter as in other jawed vertebrates, spanning within a 100-kbp-long 
genomic region13—for example, catshark Hoxc11 was flanked by a 
50-kbp-long stretch containing no other Hox gene (Supplementary 
Fig. 5a). In addition, although typical jawed vertebrate Hox clusters 
are almost free from repetitive elements21 (at most 2.9% in length for 
elasmobranch Hox A, B and D clusters; Fig. 3a,j), the elasmobranch 
genome scaffolds containing the putative Hox C genes have accu-
mulated repetitive elements (at least 36.8%; Fig. 3j).

Our analysis on embryonic expression patterns indicated that 
the identified elasmobranch Hox C genes are still under spatio-
temporal transcriptional regulation, which is typically exerting on 
clustered Hox genes13,22― Hoxc11 (Fig. 3f–i and Supplementary 
Fig. 5j–l) as well as Hoxc8 (Supplementary Fig. 5g–i) are expressed 
in the posterior regions concomitantly with their sister paralogues 
in the Hox A, B and D clusters. We further surveyed the transcrip-
tome data of other elasmobranch species23,24, which uncovered more 
Hox C genes of the zebra bullhead shark (Fig. 3k). These findings 
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demonstrate that Hox C genes were not lost in a cluster-wide dele-
tion event in the elasmobranch ancestor as proposed previously19, 
but have eroded intermittently during elasmobranch evolution. 
Together, while the Hox A, B and D clusters exhibit the canonical, 
conservative nature even in elongated elasmobranch genomes, their 
Hox C cluster underwent remarkable lineage-specific, sequence-
level modifications.

Encompassing genes secondarily lost in osteichthyan lin-
eages. The constructed orthologue groups contained 304 genes 
that seemingly existed in the vertebrate ancestor are retained by 
elasmobranchs, but have disappeared in osteichthyan evolution 
(Supplementary Table 8). They included a member of the Fox gene 
family (designated as FoxG3) whose orthologues are retained only 

by non-tetrapod vertebrates (Fig. 4a). One of its close paralogues, 
FoxG1, functions as a key regulator of forebrain development in 
diverse animals25,26. The third paralogue, designated as FoxG2, 
was identified in only non-tetrapod vertebrates and some reptiles 
(Fig. 4a). Molecular phylogenetic analysis showed the triplication 
between FoxG1, -G2 and -G3 early in vertebrate evolution and 
among-lineage differential gene loss (Fig. 4a and Supplementary 
Note 17).

While the determinant of loss or retention of gene duplicates is 
often imputed to their functions27, the effect of intrinsic genomic 
characteristics, independent of gene functions, has also been pro-
posed as a cause28. As the less-derived shark genomes are expected 
to better reconstruct the differentiation process of ancient gene 
duplicates, we performed a multi-faceted comparison focusing on 

HoxD11

HoxC11

HoxA11

Hoxa13 Hoxa11 Hoxa10

5 kbp

Sense

Antisense

HoxA13 HoxA11 HoxA10

Hottip
HoxA11-AS

Mouse

Bamboo shark

Sense

Antisense

scf_chipu00000077

chromosome 6
12345679101113

14 3 27 6 59 81013TTLL6

19 8 5 4 3 21014 13 12 11Evx2Lunapark Metaxin2

11 8

Hox A

a

b

e

c

Hox C

Hox B

Hox D

Evx1

0.1 substitutions per site

f

g

h

Hoxa11

Hoxc11

Hoxd11

Repeats
N tract

A13 A11 A10 A9 A7 A6A5 A4 A3 A2 A1

0

200 Bamboo shark stage 27 embryo
CTCF

ChIP-seq

A13 A11 A10 A9 A7 A6 A5 A4 A3 A2 A1

0

150

CTCF

ChIP-seq

Bamboo shark

Whale shark

C. milii

1239 45610 8111213 7

Cloudy catshark

Ocellate spot skate

Zebra bullhead shark

Putative Hox C gene

j

d

i

a1
a2
a3
a4
a5
a6
a7
a9
a10
a11
a13

8 11 14 17 20 23 26 29

Developmental stage

c11
d11

a11 0

0.2

0.6

1.0

N
o
rm

a
liz

e
d

e
x
p
re

s
s
io

n
 le

v
e
l

0.8

0.4

Repeats
N tract

Repeats
N tract

Repeats
N tract

k

0 300100 200 400 (Kbp)

scf_chipu00000077

scf_chipu00000248

scf_chipu00000156

87/ –

Coelacanth

68/0.97
38/ –

91/0.75

79/0.96

100/0.98

87//0.99

70/0.66

Coelacanth

98/1.00
76/0.56

100/0.99

72/0.82

96/0.99
100/0.99

60/0.64
56/0.84

76/0.90

88/0.99

49/ –

99/1.00

99/1.00

100/1.00

Cloudy catshark

C. milii

Bamboo shark

Spotted gar
Coelacanth

Human

Whale shark

Western clawed frog

Zebra bullhead shark

Spotted gar

Human
Western clawed frog

Cloudy catshark

Bamboo shark
Whale shark

Small-spotted catshark
C. milii

Spotted gar

Human
Western clawed frog

Cloudy catshark

Bamboo shark

Whale shark
Small-spotted catshark

C. milii

Chicken stage 25 embryo

0

20

40

60

Whole Hox A Hox B Hox C

Bamboo shark

Whale shark

Catshark

C. milii

R
e
p
e
a
t

c
o
v
e
ra

g
e
 (

%
)

Hox D

613 12

Fig. 3 | elasmobranch Hox genes and clusters. a, Structure of the bamboo shark Hox clusters. Coloured boxes denote coding exons of the Hox genes 

(see Supplementary Fig. 5m for scaffold IDs for Hox C). b, CTCF ChIP-seq peaks in the Hox A cluster for the bamboo shark and the chicken (for details, 

see Supplementary Note 16.1). c, Putative bamboo shark homologues of mammalian lncRNA, Hottip and HoxA11-AS revealed by RNA-seq read mapping 

for a stage 28 bamboo shark embryo. d, Temporal expression patterns of Hox A genes in whole catshark embryos. e, Molecular phylogeny of Hox11 

inferred using 147 residues. f–h, Embryonic expression of catshark Hox11 genes at stage 27. Scale bars, 500 μ m. i, Expression timings of the Hox11 genes 

in whole catshark embryos. j, Repetitiveness of the whole genomes and the Hox-containing genomic regions (see Methods and Supplementary Note 16.4 

for details). The Hoxb10-b13 region was excluded. k, Putative Hox C gene repertories of diverse elasmobranchs. The ocellate spot skate Okamejei kenojei 

and zebra bullhead shark Heterodontus zebra genes were identified in transcriptome data23,24. Closed pink boxes, presence of intact genes; grey boxes, 

pseudogenization indicated by a stop codon inside the homeobox (see Supplementary Fig. 5c). The genes connected by a horizontal line form a tandem 

cluster on a genome scaffold.

NATuRe eCOlOgY & evOluTION | VOL 2 | NOVEMBER 2018 | 1761–1771 | www.nature.com/natecolevol1764

http://www.nature.com/natecolevol


ARTICLESNATURE ECOLOGY & EVOLUTION

the shark FoxG paralogues. A highly conserved nature of FoxG1, 
retained in all the species analysed to date, was observed in not only 
its amino acid sequence but also in synonymous nucleotide and 
flanking noncoding genome sequences (Fig. 4b,c). This coding/non-
coding association was detected for the divergent nature of FoxG2, 
while the level of sequence conservation of FoxG3 was intermedi-
ate (Fig. 4b,c). The among-paralogue variation was also observed 
in the GC-content of fourfold degenerate sites (GC4; Fig. 4b and 
Supplementary Table 15). More remarkably, the flanking sequences 
of the most divergent paralogue FoxG2 contain the most abundant 
repetitive elements and the highest GC-content (Fig. 4b). These 
local genomic characteristics may have facilitated the secondary loss 
of the coding genes embedded in the divergent genomic regions.

Taking advantage of the access to embryonic samples, we anal-
ysed the spatial distribution of catshark FoxG gene expression dur-
ing development (Fig. 4d–f and Supplementary Fig. 6c–p). FoxG2 
was expressed in the acoustico-facial ganglionic complex (VII+ 
VIII) and the vagal ganglion (X) (Fig. 4e). FoxG3 was expressed 
in an anterodorsal part of the retina, in addition to the FoxG2-
positive domains (Fig. 4f), while FoxG1 expression was observed in 
the forebrain in addition to the FoxG3-positive domains (Fig. 4d). 
Together, the more prone a FoxG paralogue is to secondary loss, 
the more restricted is its expression domain in shark embryos. This 
among-paralogue comparison, enabled by the genomic resource of 
an egg-laying shark, confirms the association of the fates of gene 
duplicates with the variable natures of genomic regions containing 
those duplicates.

Early invention of homoeostatic machinery for gut–brain axis. 
To further characterize phenotypic traits refined in jawed verte-
brates, we focused on gene repertories encoding endocrine hor-
mones and their receptors that control growth, reproduction and 
homoeostasis. Our phylogenetic census in shark genomes and tran-
scriptomes revealed potential orthologues of hormone and receptor 

genes previously unidentified in this taxon (Fig. 5a). These included 
prolactin (PRL1), orexin, kisspeptin, spexin, motilin and prolac-
tin receptor implicated in fertility, appetite, digestion and sleep in 
mammals29–31, as well as osmolarity and gastrointestinal control 
in teleost fishes (Supplementary Note 18). For leptin whose puta-
tive orthologue was previously identified in a genomic sequence of  
C. milii32, we confirmed the orthology of the C. milii and elasmo-
branch genes to osteichthyan leptin genes, by means of molecular 
phylogeny and conserved synteny (Supplementary Note 18.10). Of 
these hormone and receptor genes, all but leptin were suggested to 
have existed in the vertebrate ancestor by the presence of possible 
cyclostome orthologues or gene duplication that probably occurred 
in genome expansion before the divergence of all extant verte-
brates33 (Fig. 5a). This inference marks leptin, a key metabolic and 
neuroendocrine regulator in mammals34, and the signalling cascade 
through its receptor (LepR) as an invention in the jawed vertebrate 
lineage (Supplementary Note 18.10). In mammals, leptin is mainly 
expressed in adipose tissues35, and we could not identify any tissue 
with intensive expression of its orthologue in sharks that generally 
lack overt adipose tissues36 (Fig. 5b).

Overall, we identified the orthologues of almost all hormones 
and their receptors involved in the hypothalamo–pituitary and 
gastrointestinal systems documented mainly in mammals (Fig. 5a 
and Supplementary Note 18). Among these, the genes encoding 
oxytocin homologues have undergone a unique gene duplication 
in the elasmobranch lineage37,38, and our genomic and phylogenetic 
analysis indicated its intricate evolutionary history through inter-
mittent gene conversions (Supplementary Note 18.3). The similar-
ity in transcript localization of the identified shark hormone and 
receptor genes to mammalian counterparts, such as PRL1 in the 
pituitary and motilin in the intestine (Fig. 5b and Supplementary 
Fig. 7a), suggests the establishment of genetic components of  
the gut–brain axis39 before the last common ancestor of extant 
jawed vertebrates.
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Sensory and neuronal gene repertories. Visual opsin gene rep-
ertories are often altered on adaptation to new habitats with dim 
light40,41. Previously, two short wavelength-sensitive opsin genes, 
SWS1 and SWS2, were found to be missing in the C. milii genome42. 
Our search in the elasmobranch genome assemblies ascertained the 
absence of not only these two but also the green/blue-sensitive opsin 
gene Rh2 (Fig. 6 and Supplementary Fig. 8). Moreover, long wave-
length-sensitive opsin gene (LWS) is absent from the present cloudy 
catshark genome assembly, and thus rhodopsin (RHO) is the only 
visual opsin gene identified in it (Fig. 6 and Supplementary Note 
19). Previously, the retention of only RHO was reported in some 
animals that adapted to fossorial, nocturnal or aquatic life43–45. In 
fact, the cloudy catshark inhabits not only inshore but also the deep 
sea46 (~300 m) and is a close relative of typical deep-sea dwellers47. 
Thus, the absence of LWS might be due to an evolutionary gene loss 
that was permitted in the catshark ancestor by its possible exclusive 
deep-sea habitat (Fig. 6). Adaptation to the deep sea, into which only 
blue light penetrates48, was previously corroborated for ray-finned 
fishes by the blueshifted absorption spectra of RHO pigments49. Our 
spectroscopic analysis of the RHO pigments revealed blueshifted 
spectra for not only the cloudy catshark (λmax, 484 nm) but also the 
whale shark (478 nm) that occasionally migrates down to the bathy-
pelagic zone (~2,000 m) besides daytime surface feeding habits50 
(Fig. 6). This study portrays the diversity of visual opsin gene reper-
tories among elasmobranchs and illustrates the potential of in vitro 
molecular experiments supported by genomic sequence analysis, in 
understanding underwater ecology of inaccessible species.

Our interest extended to olfactory receptor gene repertories 
that are often linked to adaptation to new lifestyles51. Although 
our present study does not include carnivorous epipelagic sharks 
that might have enhanced olfactory sensing, each of the shark spe-
cies examined in the present study had only three olfactory recep-
tor family genes (Supplementary Note 21), concordantly with the 
retention of few olfactory receptor family members by C. milii52. 
This finding indicates that at least the analysed shark species rely 
on a distinct molecular mechanism for olfaction from the conven-
tional olfactory receptors.

Neuronal cell identities in mammalian brains are defined by 
the combinatorial expression of clustered protocadherin (Pcdh) 
genes53,54. Previously, the C. milii genome was shown to also contain 
a cluster of Pcdh genes55, but their expression profiles have remained 
unknown. Our study showed that elasmobranchs contain slightly 
higher numbers of Pcdh genes in markedly longer clusters than oste-
ichthyans (Supplementary Fig. 9a,b and Supplementary Note 20).  
The bamboo shark transcriptome data demonstrated that most 
of the clustered Pcdh genes consist of both variable and constant 
exons and exhibit a biased expression pattern towards neural tis-
sues, as previously shown for mammalian and teleost counterparts 
(Supplementary Fig. 9c). These findings, which are expected to be 
reinforced by single-cell analysis, suggest the early establishment of 
the mechanism for generating neuronal cell diversity through a Pcdh 
cluster in the last common ancestor of all extant jawed vertebrates.

Discussion
Our study has provided an unprecedented set of genomic, tran-
scriptomic and epigenomic data from three elasmobranch species, 
with the bamboo shark genome assembly achieving the highest con-
tinuity. We focused on unthreatened, oviparous species that allow 
captive breeding for continuous animal experimentation including 
embryonic operation. This is not feasible with other non-tetrapod 
vertebrates whose genomes are evolving relatively slowly, such as 
the coelacanths and the spotted gar. It would be intriguing to fur-
ther explore the possible relationship of the large genome/gene 
sizes and low evolutionary rate of elasmobranchs with metabolic 
rate and/or longevity. Our results also highlighted some genomic 
elements retained by elasmobranchs but missing in holocephalans 
possibly because of the genome compaction in the latter lineage. 
Elasmobranchs have scarce repertories of opsin and olfactory recep-
tor genes, possibly associated with their unique niche. Our study 
suggested that the jawed vertebrate ancestor was already equipped 
with the mechanism for generating neuronal cell diversity as well as 
the hormone gene repertories regulating homoeostasis and repro-
duction in mammals. Also, we showed that elasmobranchs have 
retained at least parts of the Hox C cluster, in which relict Hox C 
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genes are under the typical Hox-like regulation in spite of relaxed 
genomic constraint on them. Our products will fuel diverse life sci-
ence studies on sharks and evolutionary investigation about early 
vertebrates.

Methods
Animals. All samples of the brownbanded bamboo shark Chiloscyllium punctatum 
were supplied by captive breeding at the Osaka Aquarium Kaiyukan. Samples of 
the cloudy catshark Scyliorhinus torazame were supplied by captive breeding at the 
Aquarium Facility of RIKEN Center for Developmental Biology and Atmosphere 
and Ocean Research Institute of University of Tokyo. �e developmental staging 
was performed according to existing literature for small-spotted catshark S. 
canicula56 and our original table for C. punctatum8. For the whale shark Rhincodon 
typus, whose genome sequence reads were publicly available2, only transcriptome 
sequencing and genome size estimation were performed in the present study, 
using blood sampled primarily for the purpose of regular health check-ups 
for captive animals from a male at the Okinawa Churaumi Aquarium (for 
transcriptome sequencing) and a female at the Osaka Aquarium Kaiyukan (for 
genome size estimate with �ow cytometry), respectively. No wildlife was killed 
solely for this study. Animal handling and sample collections at the aquaria were 
conducted by veterinary sta� without restraining the individuals57, in accordance 
with the Husbandry Guidelines approved by the Ethics and Welfare Committee 
of Japanese Association of Zoos and Aquariums. All other experiments were 
conducted in accordance with the Guideline of the Institutional Animal Care and 
Use Committee (IACUC) of RIKEN Kobe Branch (Approval ID: H16-11) or the 
Guideline for Care and Use of Animals at the University of Tokyo.

Genome sequencing and assembly. Genomic DNA was extracted from the liver of 
a 20-cm-long male juvenile brownbanded bamboo shark and a 4-cm-long whole 
cloudy catshark embryo of an unknown sex with phenol/chloroform as previously 
described58. The extracted genomic DNA was sheared with a S220 Focused-
ultrasonicator (Covaris) to retrieve DNA fragments of variable length distributions 
(see Supplementary Table 1 for detailed amounts of starting DNA and conditions 
for shearing). The sheared DNA was used for paired-end library preparation with 
a KAPA LTP Library Preparation Kit (KAPA Biosystems). The optimal numbers 
of PCR cycles for individual libraries were determined with a Real-Time Library 
Amplification Kit (KAPA Biosystems) by preliminary qPCR-based quantification 
using an aliquot of adaptor-ligated DNAs. Small molecules in the prepared libraries 
were removed by size selection using Agencourt AMPure XP (Beckman Coulter). 
The numbers of PCR cycles and conditions of size selection for individual libraries 
are included in Supplementary Table 1. Mate-pair libraries were prepared using a 
Nextera Mate Pair Sample Prep Kit (Illumina), employing our customized iMate 
protocol59 (http://www.clst.riken.jp/phylo/imate.html). The detailed conditions of 
mate-pair library preparation are included in Supplementary Table 2. After size 
selection, the quantification of the prepared libraries was performed using a KAPA 
Library Quantification Kit (KAPA Biosystems). They were sequenced on a HiSeq 
1500 (Illumina), operated by HiSeq Control Software v2.0.12.0 using a HiSeq 
SR Rapid Cluster Kit v2 (Illumina) and HiSeq Rapid SBS Kit v2 (Illumina), and 
MiSeq operated by MiSeq Control Software v2.3.0.3 using MiSeq Reagent Kit v3 
(600 Cycles) (Illumina). Read lengths were 101, 127, 151 or 171 nt on HiSeq and 
251 or 301 nt on MiSeq. Base calling was performed with RTA v1.17.21.3, and the 
fastq files were generated by bcl2fastq v1.8.4 (Illumina). Removal of low-quality 
bases from paired-end reads was processed by TrimGalore v0.3.3 with the options 
‘--stringency 2 --quality 20 --length 25 --paired --retain_unpaired’. Mate-pair 
reads were processed by NextClip v1.160 with default parameters. De novo genome 
assembly and scaffolding employing the processed short reads were carried out by 

the program PLATANUS v1.2.161 with its default parameters. The assembly step 
employed paired-end reads and single reads whose pairs had been removed, and 
the scaffolding step employed paired-end and mate-pair reads. The gap closure 
step employed all of the single, paired-end and mate-pair reads. Resultant genomic 
scaffold sequences were screened for contaminating organismal sequences, PhiX 
sequences loaded as a control, mitochondrial DNA sequences, and those shorter 
than 500 bp, as performed previously28.

Measuring nuclear DNA contents. Nuclear DNA contents of the three species 
were measured as previously described28,62. We used cells prepared from the liver 
and blood of a 32-cm-long juvenile female bamboo shark, the blood of a 5-m-long 
live female whale shark reared in Osaka Aquarium Kaiyukan, and the liver and 
blood of a 16-cm-long juvenile male cloudy catshark (see above for the detail of 
sampling). Mouse embryonic fibroblast cells, used as a reference, were prepared 
from E14.5 embryos and cultured in DMEM media supplemented with 10% FBS, 
at 37 °C with 5% CO2. We also used human GM12878 cells as a reference, which 
were cultured in RPMI-1640 media (Thermo Fisher Scientific) supplemented with 
15% FBS, 2 mM l-glutamine, and 1×  antibiotic-antimycotic solution (Gibco) at 
37 °C with 5% CO2. Liver tissues of bamboo shark and catshark were minced using 
scissors, rinsed once in shark saline solution (222.45 mM NaCl, 1.34 mM KCl, 
2.38 mM NaHCO3 and 333 mM urea)63, and incubated in 0.125% trypsin-EDTA 
solution (1:1 mixture of 0.25% trypsin-EDTA (Thermo Fisher Scientific) and shark 
saline solution) for 15 min at 37 °C with gentle agitation to dissociate the cells. FBS 
was added to stop digestion with trypsin. The cell suspension was filtered through 
a 40 μ m cell strainer (BD Bioscience) to remove cell clumps and debris. Blood of 
bamboo shark and catshark was sampled from the heart using a 1 ml syringe with 
a 21 G needle and immediately diluted 1:10 in shark saline solution containing 
2 mM EDTA. After centrifugation at 500g for 5 min, blood cells were washed once 
in shark saline solution containing EDTA and counted. A total of 1 ×  106 cells were 
collected by centrifugation at 500g for 5 min and permeabilized in shark saline 
solution containing 0.05% Triton X-100. DNA staining was performed by adding 
1 ml of PI/RNase staining buffer (BD Bioscience). After a 15 min incubation at 
room temperature, cells were centrifuged at 1,500g for 5 min and resuspended 
in 400 μ l of fresh propidium iodide (PI)/RNase staining buffer. Fluorescence 
intensities were measured with the excitation at 488 nm and the bandpass filter 
of 575/26 nm on a FACSCanto II cell sorter (BD Bioscience). Measurements were 
carried out with three technical replicates per sample, and the acquired values were 
averaged before DNA content calculations (Supplementary Table 4).

Completeness assessment of genome assemblies. Completeness of the genome 
assemblies was assessed with (1) CEGMA v2.564, (2) BUSCO v2.0.165 and (3) a 
manual curation-based census of Wnt genes (Supplementary Fig. 1). For both 
CEGMA and BUSCO, we employed not only the reference gene sets provided 
inherently with these program pipelines, but also the core vertebrate genes 
introduced particularly for vertebrates, especially species in isolated lineages such 
as elasmobranchs66. The assessments were executed on the gVolante web server67 
(Supplementary Note 2) using a script released by us previously66. The genome-
wide census of Wnt genes was performed with TBLASTN 2.2.31+ 68 searches in the 
elasmobranch genome assemblies using manually curated amino acid sequences 
of the C. milii Wnt homologues as queries, followed by a fine-scale exon search 
using the open reading frame sequences predicted on the individual elasmobranch 
genomes as queries.

Repeat analysis. To obtain species-specific repeat libraries, RepeatModeler 
v1.0.869 was run on the genome assemblies of the individual species with default 
parameters. Detection of repeat elements in the genomes was performed by 
RepeatMasker v4.0.570, which employs National Center for Biotechnology 
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Information (NCBI) RMBlast v2.2.27, using the custom repeat library obtained 
above. For gene prediction, the parts of genome sequences detected as repeats are 
soft-masked with the options ‘-nolow -xsmall’.

Construction of gene models. Construction of gene models on the cloudy 
catshark, whale shark and bamboo shark genomes was performed in this 
order, following the procedure previously reported15 (Supplementary Note 
5). The gene prediction program Augustus v3.1 was employed with ‘trained’ 
species-specific parameters and hints based on RNA-seq reads and amino acid 
sequences of putative homologues from other vertebrates. To build homologue 
hints for the cloudy catshark, we used a set of 117,246 NCBI RefSeq protein 
sequences downloaded on 23 November 2015, including ‘known’ human proteins 
(39,582 sequences), chicken (6,189 sequences) and amniote vertebrates (44,675 
sequences), as well as C. milii (NCBI Genome version 6.1.3, 26,800 sequences). 
For constructing gene models of the whale shark, we used a sequence set 
combining all predicted cloudy catshark peptide sequences along with the above-
mentioned sequence set. Likewise, for the gene prediction of the bamboo shark, 
we incorporated the predicted whale shark peptide sequences into the sequence 
set used in gene prediction for the catshark. RNA-seq data used for exon hint 
construction is indicated in Supplementary Table 6.

RNA-seq and transcriptome data processing. Total RNAs were extracted with 
Trizol reagent (Thermo Fisher Scientific). Quality control of DNase I-treated 
RNA was performed with Bioanalyzer 2100 (Agilent Technologies). Libraries were 
prepared with TruSeq RNA Sample Prep Kit (Illumina) or TruSeq Stranded mRNA 
LT Sample Prep Kit (Illumina) as previously described66. The amount of starting 
total RNA and numbers of PCR cycles are included in Supplementary Table 6. The 
obtained sequence reads were trimmed for removal of adaptor sequences and low-
quality bases with TrimGalore v0.3.3 as outlined above, and de novo transcriptome 
assembly was performed with the program Trinity v2.2.171 with the parameters 
‘--SS_lib_type RF --min_kmer_cov 3’. Alignment of the trimmed RNA-seq reads 
to the genome assembly employed TopHat2 v2.0.11, followed by gene expression 
quantification with Cuffdiff v2.1.1, while read alignment to coding sequences 
employed bowtie2 v2.2.8 and eXpress v1.5.1.

Comparison of conserved noncoding elements (CNE). A set of previously 
identified CNEs for the human genome hg19 was downloaded from UCNEbase72 
(http://ccg.vital-it.ch/UCNEbase/data/download/fasta/hg19_UCNEs.fasta.gz). 
This set included 4,351 genomic segments in the human genome that exhibit > 
95% nucleotide sequence identity with counterparts in the chicken genome and 
are longer than 200 bp. Ten of the retrieved CNEs that include regions annotated 
as protein-coding in the hg38 genome assembly were removed with bedtools 
v2.25.073, and the remaining 4,341 sequences were queried with BLASTN 2.5.0+  in 
two different modes, namely ‘megablast’ and ‘dc-megablast’, against the genome 
assemblies of the bamboo shark and the cloudy catshark from this study and those 
of other vertebrate species (coelacanth, LatCha1; spotted gar, LepOcu1; western 
clawed frog, Xtropicalis_v7; zebrafish, GRCz10; medaka, MEDAKA1; Arctic 
lamprey, LetJap1; sea lamprey, Pmarinus_7.0). The number of best hits that were 
longer than 100 bp was counted for each of the two search modes. In the analysis 
of the enhancer in the Tbx4 locus, the program, LAST v75274, was used to detect 
conserved noncoding elements. Visualization of sequence similarity between species 
employed VISTA75 using a global pairwise alignment program Shuffle-LAGAN76.

Search for long noncoding RNA (lncRNA). Human lncRNA sequences were 
downloaded from GENCODE database77 (release 25; https://www.gencodegenes.
org/), which included 27,692 sequences. We removed sequences of antisense 
RNAs that overlapped open reading frames in the lncRNA database and repetitive 
sequences that were masked with RepeatMasker v4.0.5, as described above. By 
using the program BLASTN 2.5.0+  with the dc-megablast mode, we queried the 
refined set of lncRNAs against the genome assemblies of other vertebrates used 
above in CNE detection. Following the BLASTN searches, the best hits whose bit 
scores exceeded 60 were counted. We first made a transcriptome assembly from the 
bamboo shark RNA-seq data in Supplementary Table 6, using Trinity-v2.4.071 with 
the options ‘--SS_lib_type RF --trimmomatic’. Next, human lncRNAs were queried 
against the transcriptome assembly with BLASTN. Subsequently, we selected the 
best hits of the BLAST search whose bit scores exceeded 50 and removed those that 
were aligned with the opposite strands of human lncRNAs. We also queried the 
lncRNA candidates against the Augustus-predicted coding genes of the bamboo 
shark genome and removed sequences if the best hits were aligned with the 
forward strands of the predicted coding genes. To analyse the tissue distribution 
of the validated lncRNAs using RNA-seq data, we masked repeat elements in the 
transcriptome assembly with RepeatMasker and the repeat library built above for 
the bamboo shark genome, which was followed by read mapping performed as 
described above.

Antibody validation for chromatin immunoprecipitation (ChIP) assays. 
Western blotting for catshark CTCF protein was performed as previously 
described15, using protein extracts from tissues of a juvenile catshark (muscle 
and liver) and a human GM12878 cell line with antibodies for CTCF (Cell 

Signaling Technology, #3418 S in 1:2,000 dilution) and histone H3 (Wako, #304-
34781 in 1:2,000 dilution). Immunoprecipitation was performed as previously 
described15 using the protein extract from the eye of a juvenile cloudy catshark. 
Protein identification was performed as described previously78, with nanoliquid 
chromatography tandem mass spectrometry using LTQ Orbitrap Velos Pro 
(Thermo Fisher Scientific), followed by data analysis with the MASCOT v2.6.1 
software (Matrix Science).

ChIP-seq and data processing. Bamboo shark embryos at stage 27, cloudy 
catshark embryos at stage 27.5 and the stomach of a juvenile cloudy catshark 
were dissected and snap frozen in liquid nitrogen and kept at − 80 °C until use. A 
whole embryo or a stomach of approximately 1 ×  107 cells were used for ChIP with 
the above-mentioned anti-CTCF antibody. ChIP assays, as well as ChIP-seq and 
downstream data analysis, were performed as previously described15. Trimming 
of the obtained sequence reads, mapping against the genome assemblies, and 
peak calling were performed by TrimGalore v0.3.7, Bowtie v0.12.879 and MACS2 
v2.0.1080, respectively. The peaks overlapping between replicates were identified 
by bedtools v2.19.173 and designated as ‘consensus peaks’. A subset of ‘consensus 
peaks’ with a fold enrichment value of no less than 10 was assigned as ‘significant 
peaks’. For the catshark stomach sample without a replicate, peak calling was 
performed using the embryonic sample as input. Significant peaks for the catshark 
stomach sample were determined with a fold enrichment value of no less than 
10. CTCF core and upstream motifs enriched in the top 2,000 peak regions (peak 
summit ±  100 bp) were identified by MEME v4.10.081. FIMO v4.10.182 was then 
used to identify motif locations in the entire peak set (peak summit ±  100 bp). 
When multiple motifs were identified within a peak region, only the motif with the 
lowest p value was adopted for downstream analyses.

In situ hybridization. Catshark and bamboo shark embryos were fixed with 
4% PFA/PBS, dehydrated with methanol series and stored in 100% methanol at 
− 30 °C until use. In situ hybridization using whole-mount embryos and paraffin-
embedded sections of 8 μ m thickness was performed as previously reported83,84. 
Riboprobes were synthesized using complementary DNA amplified with gene 
specific primers in Supplementary Table 14 as templates. The regions for cDNA 
amplification were selected in untranslated or non-conserved coding parts of exons 
to avoid cross-hybridization between paralogues.

Orthologue group construction. We employed the OMA platform85 for producing 
orthologue groups composed of diverse vertebrate species including the four 
cartilaginous fishes (Callorhinchus milii, Chiloscyllium punctatum, R. typus and 
S. torazame). We first retrieved all-against-all alignment results of the predicted 
peptides of the 19 osteichthyans included in Fig. 1d and sea lamprey from the 
OMA database (released in March 2017). OMA standalone v2.1.185 was run to 
perform additional all-against-all comparisons by incorporating the peptides of the 
four cartilaginous fishes and Arctic lamprey, which produced 31,498 hierarchical 
orthologous groups (HOGs).

Quantifying synonymous substitutions. For computation of numbers of 
synonymous substitutions per sites (KS; Supplementary Note 12), 1,656 one-to-
one orthologues retained by the four cartilaginous fishes and ten osteichthyans 
were selected from the HOGs as follows (Supplementary Table 8). First, peptide 
sequences of the retrieved orthologues were aligned with MAFFT v7.299b86 with 
the option ‘-linsi’. The individual alignments were trimmed and back-translated 
into nucleotides with trimAl v1.4 rev1587 with the options ‘-automated1 -backtrans’ 
followed by removal of gapped sites using trimAl with the options ‘-nogaps’. 
Orthologue groups containing fewer than 50 aligned codons or a stop codon were 
discarded. For the selected orthologue groups, KS were computed with codeml in 
the PAML v4.9c88.

Phylogenetic tree inference. To reconstruct the species tree in Fig. 1d, we retrieved 
935 one-to-one orthologue groups retained by all of the 25 vertebrates used in the 
HOGs, allowing for none or one missing orthologue for individual groups. The 
peptides of the individual orthologue groups were aligned with MAFFT v7.299b86 
with the option ‘-linsi’. Unambiguously aligned sites were selected by trimAl v1.4 
rev1587 with the option ‘-strictplus’ followed by a concatenation of these alignments 
into one. Phylogenetic tree inference was performed with the maximum-likelihood 
method using the program RAxML v8.2.889 with the options ‘-m PROTCATWAG 
-f a -# 100’, assuming the partition model for individual orthologue groups  
(the ‘-q’ option).

To infer individual gene family trees, amino acids sequences were retrieved 
from aLeaves90 incorporating Ensembl release 84. Multiple sequence alignment 
was performed with MAFFT with the option ‘-linsi’. The aligned sequence sets 
were processed using trimAl v1.4 rev1587 with the option ‘-automated1’. This was 
followed by another trimAl run with the option ‘-nogaps’ in the tree inference 
for Figs. 3e and 4a, and Supplementary Figs. 4a, 5b, 6a and 7s. Molecular 
phylogenetic trees were inferred by RAxML with the ‘-m PROTCATWAG -f a -# 
1000’ options unless stated otherwise. Tree inference in the Bayesian framework 
was performed with the program PhyloBayes v4.1c91 with the options ‘-cat -dgam 
4 -wag -nchain 2 1000 0.3 50’ unless stated otherwise. This was followed by an 
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execution of bpcomp in the PhyloBayes v4.1c package with the option ‘-x 100’. 
The support values at the nodes of molecular phylogenetic trees included are, in 
order, bootstrap values and Bayesian posterior probabilities. The latter was shown 
only when the relationship at the node in the visualized tree was supported by the 
Bayesian inference.

Clustered Pcdh gene identification. The genomic scaffold sequences of 
elasmobranch sharks were first examined via TBLASTN v2.2.29+  using the amino 
acid sequences of individual clustered Pcdh genes of C. milii (retrieved from 
http://ensembl.fugu-sg.org, gene IDs: B0YN55-B0YN99, B0YNA0 and B0YNA1) 
and human clustered and non-clustered Pcdh genes (retrieved from the UCSC 
Genome Browser) to identify any prospective elasmobranch scaffolds containing 
clustered Pcdh genes. The regions exhibiting the homologies with the known C. 
milii and human clustered Pcdh proteins were utilized for gene prediction, which 
was accomplished by a coordination between GeneWise v2.2.3-rc792 and geneid 
v1.493. The predicted genes were further refined through manual inspection of 
exon–intron junctions and transcript evidence from RNA-seq data (Supplementary 
Table 6). For each species, HISAT2 v2.0.494 was run on each tissue sample with the 
options ‘-k 200 --known-splicesite-infile’ by inputting a list of splice sites extracted 
from the Pcdh gene annotation of the individual species. These alignments were 
passed to StringTie v1.3.095 to generate an additional set of tissue-specific gene 
models. These models were incorporated into the initial Pcdh gene annotation 
through StringTie, which was used to produce sets of read coverage tables 
using StringTie. The output file was utilized by Ballgown v2.6.096 to confirm 
transcription and splice site locations for each putative clustered Pcdh gene. The 
protein domain structures in the predicted clustered Pcdh genes were analysed 
using the HMMer v3.1b297 and SMART98.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome, transcriptome and ChIP sequence reads are deposited in the DNA Data 
Bank of Japan (DDBJ) under the accession number DRA006338. The genome 
assemblies of the brownbanded bamboo shark and cloudy catshark were deposited 
in DDBJ under the accession numbers BEZZ01000001–BEZZ01280241 and 
BFAA01000001–BFAA01458049, respectively. The whale shark genome assembly 
and the gene models of the three shark species are available at https://figshare.com/
projects/sharkgenome1-phyloinfokobe/28863.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 

text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 

variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 

State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection Xcalibur (v2.2.SP1.48) 

FACSDiva (v6.0) 

HiSeq Control Software (v2.0.12.0) 

MiSeq Control Software (v2.3.0.3)

Data analysis CEGMA (v2.5) 

BUSCO (v2.0.1) 

Platanus (v1.2.1) 

DeconSeq (v0.4.3) 

BWA (v0.7.8) 

RepeatModeler (v1.0.8) 

RepeatMasker (v4.0.5) 

NCBI RMBlast v2.2.27 

NCBI BLAST+ (v2.2.31) 

BLASTN (2.2.31+) 

BLASTN (2.5.0+) 

TBLASTN (v2.2.29+) 

FASTA (v36.3.8b) 

PASA (v2.0.2) 
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TrimGalore (v0.3.3) 

TrimGalore (v0.3.7) 

Trinity (v2.2.1) 

Trinity (v2.4.0) 

TopHat2 (v2.0.11) 

Cuffdiff (v2.1.1) 

Bowtie (v0.12.8) 

bowtie2 (v2.2.8) 

HISAT2 (v2.0.4) 

Exonerate (v2.2.0) 

eXpress (v1.5.1) 

Bedtools (v2.19.1) 

bedtools (v2.25.0) 

OMA standalone (v2.1.1) 

VISTA 

Shuffle-LAGAN 

LAST (v752) 

StringTie (v1.3.0) 

MACS2 (v2.0.10) 

MAFFT (v7.299b) 

trimAl (v1.4 rev15) 

Ballgown (v2.6.0) 

HMMer (v3.1b2) 

PAML (v4.9c) 

RAxML (v8.2.8) 

PhyloBayes v4.1c 

R (v3.2.3) 

MEME (v4.10.0) 

FIMO (v4.10.1) 

GeneWise (v2.2.3-rc7) 

geneid (v1.4) 

SMART 

Mesquite (v3.5) 

MASCOT (v2.6.1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 

upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Genome, transcriptome, and ChIP sequence reads are deposited in the DDBJ under the accession number DRA006338. The genome assemblies of the brownbanded 

bamboo shark and cloudy catshark were deposited in DDBJ under the accession numbers BEZZ01000001-BEZZ01280241 and BFAA01000001-BFAA01458049, 

respectively. The whale shark genome assembly and the gene models of the three shark species are available at https://figshare.com/projects/sharkgenome1-

phyloinfokobe/28863.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In gene expression quantification with RNA-seq and detection of CTCF binding sites with CTCF,  we sampled as many bamboo shark and 

cloudy catshark individuals as possible (up to three). But, this was limited by the supply of animals, and we intended to reduce the sacrifice of 

animals (especially wild animals).

Data exclusions We did not exclude data from the manuscript.

Replication Genome size measurements with flow cytometry were performed three times per sample (technical replication).  
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Replication  

Replication in sampling for RNA-seq is as follows (also detailed in Supplementary Table S3.1). Hox gene expression quantification in embryos 

(Fig. 3d, 3i, and Supplementary Fig. S16.3) was performed with triplicates. Gene expression quantification in bamboo shark adult tissues and 

an embryo was performed only with one individual because of the severe limitation in animal supply (Fig. 2c, Extended Data Fig. 9c, Extended 

Data Fig10c, Supplementary Fig. S18.1, and Supplementary Fig. S21.1b). To compensate this, we mainly rely on quantified gene expressions of 

the cloudy catshark, for which we sampled two females, two males, and three embryos of an unknown sex as biological replicates (Fig. 5b, 

Extended Data Fig. 8, Extended Data Fig. 9d, Supplementary Fig. S21.1a) to verify reproducibility. We performed CTCF ChIP-seq with two 

embryos as biological replicates.

Randomization RNA-seq libraries for comparative gene expression analysis were prepared with a uniform protocol and by the same person. They were 

quantified with a uniform method and sequenced in the same sequencing run on HiSeq.

Blinding The investigators were blinded when RNA-seq libraries for stage-by-stage and tissue-by-tissue gene expression quantification were being 

prepared.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials

Policy information about availability of materials

Obtaining unique materials All unique materials are openly available

Antibodies

Antibodies used anti-CTCF antibody (Cell Signaling Technology, #3418S)  

anti-histone H3 antibody (Wako, #304-34781)

Validation Specificity of the anti-CTCF antibody (Cell Signaling Technology, #3418S) to shark species was validated with IP and mass 

spectrometry. 

Specificity of the anti-histone H3 antibody (Wako #304-34781) to shark species was validated with western blotting.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) human GM12878 cell line 

human HEK293S cell line

Authentication The human GM12878 cell line and the human HEK293S cell line were not authenticated.

Mycoplasma contamination Human GM12878 cells were tested using MycoAlert mycoplasma detection kit (Lonza, #LT07-118). HEK293S cells were not 

tested for mycoplasma contamination. 

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study did not involve laboratory animals.

Wild animals We used animals kept for exhibition in the public aquariums or eggs laid by them (Rhincodon typus in Okinawa Churaumi 
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Wild animals Aquarium and Osaka Aquarium Kaiyukan and Chiloscyllium punctatum in Osaka Aquarium Kaiyukan) or kept in the animal facility 

in research institutes (Scyliorhinus torazame in RIKEN CDB and AORI Tokyo Univ.) and did not capture wild animals solely for this 

study. All individual animals of Chiloscyllium punctatum and Scyliorhinus torazame were killed after anesthetization by rapid 

cooling (for juveniles and adults) to conduct tissue dissection and in situ hybridization for gene expression analyses. The two 

individual of Rhincodon typus from which blood was sampled are kept in aquarium tanks. The details (age and sex) of the used 

animals are as follows:  

 

Brownbanded bamboo shark, Chiloscyllium punctatum: 

a 20 cm-long juvenile male for whole genome sequencing, a 20 cm-long juvenile male for RNA-seq, a 32 cm-long female juvenile 

for genome size measurement, stage 26-29 embryos for RNA-seq, and two stage 27 embryos for ChIP-seq. Genome size 

measurement was performed using cells from blood and liver tissue. ChIP-seq was performed using the whole embryo. 

 

Whale shark, Rhincodon typus: 

blood cells of 8.6 m-long male for RNA-seq, and blood cells of 5m-long female for genome size measurement. 

 

Cloudy catshark, Scyliorhinus torazame: 

a 4 cm-long embryo for whole genome sequencing, stage 8-29 embryos for RNA-seq and in situ hybridization, tissues dissected 

from 2 female and 2 male adults for tissue-by-tissue RNA-seq, a 16 cm- long juvenile male for genome size measurement and 

ChIP-seq, two stage 28 embryos for ChIP-seq. Genome size measurement was performed using cells from blood and liver tissue. 

ChIP-seq was performed using the juvenile stomach tissue and the whole embryo.

Field-collected samples The study did not involve wild samples collected from the field, except for the animal samples stated above.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/DRA006/DRA006338/

Files in database submission DRZ014309 Bambooshark_embryo_input.bam 

DRZ014310 Bambooshark_embryo_ChIP_rep1.bam 

DRZ014311 Bambooshark_embryo_ChIP_rep2.bam 

DRZ014316 Bambooshark_embryo_ChIP_rep1_peaks.bed 

DRZ014317 Bambooshark_embryo_ChIP_rep2_peaks.bed 

DRZ014312 Catshark_embryo_input.bam 

DRZ014313 Catshark_embryo_ChIP_rep1.bam 

DRZ014314 Catshark_embryo_ChIP_rep2.bam 

DRZ014315 Catshark_stomach_ChIP.bam 

DRZ014318 Catshark_embryo_ChIP_rep1_peaks.bed 

DRZ014319 Catshark_embryo_ChIP_rep2_peaks.bed 

DRZ014320 Catshark_stomach_ChIP_peaks.bed

Genome browser session 
(e.g. UCSC)

Not applicable

Methodology

Replicates ChIP-seq for bamboo shark and catshark embryos were performed in two biological replicates. ChIP-seq for the juvenile 

catshark stomach was performed without replication.

Sequencing depth The total numbers of reads obtained for the bamboo shark embryos were 43M (for input), 48M (for ChIP replicate 1), and 

45M (for ChIP replicate 2). The total numbers of reads obtained for the catshark embryos were 67M (for input), 58M (for 

ChIP replicate 1), and 55M (for ChIP replicate 2). The total number of reads for the juvenile catshark stomach was 52M.  

Proportion of the reads uniquely mapped to the genome assemblies were 71-75% for bamboo shark and 66-70% for 

catshark. The length of  the sequence reads was single-end 80 bases in all the experiments.

Antibodies CTCF (D31H2) Rabbit mAb (cat# 3418, lot #1) from Cell Signaling Technology.

Peak calling parameters Mapping was performed by Bowtie using '-m 1 -v 2 -a --best --strata' options and '-m 5 -n 2 -a --best --strata' options. Peak 

calling was performed by MACS2 with '-q 0.01' option.

Data quality Number of peaks called by MACS2 at q-value cut-off of 0.01 and above 5-fold enrichment were 74,521 out of 81,513 total 

peaks (bambooshark replicate 1), 62,485 out of 69,985 total peaks (bambooshark replicate 2), 61,955 out of 69,369  total 

peaks (catshark replicate 1), 71,545 out of 80,013 total peaks (catshark replicate 2), and 44,141 out of 46,738 total peaks 

(catshark stomach). 

Software Trim Galore! v0.3.7 

Bowtie v0.12.8 

MACS2 v2.0.10 

Bedtools v2.17.0 
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MEME v4.10.0 

FIMO v4.10.1
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