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SHARP ADAMS-TYPE INEQUALITIES IN Rn

BERNHARD RUF AND FEDERICA SANI

Abstract. Adams’ inequality for bounded domains Ω ⊂ R4 states that the

supremum of
∫
Ω e32π

2u2
dx over all functions u ∈ W 2, 2

0 (Ω) with ‖Δu‖2 ≤ 1 is
bounded by a constant depending on Ω only. This bound becomes infinite for
unbounded domains and in particular for R4.

We prove that if ‖Δu‖2 is replaced by a suitable norm, namely ‖u‖ :=

‖ − Δu + u‖2, then the supremum of
∫
Ω(e

32π2u2 − 1) dx over all functions

u ∈ W 2, 2
0 (Ω) with ‖u‖ ≤ 1 is bounded by a constant independent of the

domain Ω.

Furthermore, we generalize this result to any W
m, n

m
0 (Ω) with Ω ⊆ Rn and

m an even integer less than n.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain. The Sobolev embedding theorem
asserts that

W 1,p
0 (Ω) ⊂ Lq(Ω), 1 ≤ q ≤ np

n− p
.

If we look at the limiting Sobolev case p = n, then

W 1,n
0 (Ω) ⊂ Lq(Ω) ∀q ≥ 1,

but it is well known that

W 1,n
0 (Ω) � L∞(Ω).

To fill in this gap, it is natural to look for the maximal growth function g : R → R+

such that

sup
u∈W 1,n

0 (Ω), ‖∇u‖n≤1

∫
Ω

g(u) dx < +∞,

where ‖∇u‖nn =
∫
Ω
|∇u|ndx denotes the Dirichlet norm of u. S. I. Pohozaev [18] and

N. S. Trudinger [23] proved independently that the maximal growth is of exponential
type and more precisely that there exist constants αn > 0 and Cn > 0 depending
only on n such that

sup
u∈W 1,n

0 (Ω), ‖∇u‖n≤1

∫
Ω

eαn|u|
n

n−1
dx ≤ Cn|Ω|.

Later J. Moser in [16] found the best constant αn and proved the following sharp
result.
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Theorem 1.1 ([16], Theorem 1). There exists a constant Cn > 0 such that

(1.1) sup
u∈W 1,n

0 (Ω), ‖∇u‖n≤1

∫
Ω

eαn|u|
n

n−1
dx ≤ Cn|Ω|,

where αn := nω
1/(n−1)
n−1 and ωn−1 is the surface measure of the unit sphere Sn−1 ⊂

Rn. Furthermore (1.1) is sharp, i.e. if α > αn, then the supremum in (1.1) is
infinite.

In the literature (1.1) is known under the name Trudinger-Moser inequality. In
what follows we will refer to the sharpness of an inequality in the sense expressed
in the second part of Theorem 1.1.

The supremum in (1.1) becomes infinite for domains Ω with |Ω| = +∞. However,

in the case n = 2 (i.e., for W 1, 2
0 (Ω) with Ω ⊆ R2), B. Ruf [19] showed that if the

Dirichlet norm is replaced by the standard Sobolev norm, namely

‖u‖W 1, n := (‖∇u‖nn + ‖u‖nn))
1
n ,

then this supremum is uniformly bounded independently of the domain Ω:

Theorem 1.2 ([19], Theorem 1.1). There exists a constant C > 0 such that for
any domain Ω ⊆ R2

sup
u∈W 1, 2

0 (Ω), ‖u‖W1, 2≤1

∫
Ω

(e4πu
2 − 1) dx ≤ C,

and this inequality is sharp.

In [12], Y. Li and B. Ruf extended Theorem 1.2 to arbitrary dimensions n > 2,

i.e., to W 1,n
0 (Ω) with Ω ⊆ Rn not necessarily bounded and n > 2. Adimurthi and

Y. Yang [2] proved an analogous inequality in Rn involving critical Trudinger-Moser
nonlinearities with singular Hardy coefficients.

In 1988 D. R. Adams [1] obtained a generalized version of (1.1) for Sobolev spaces
with higher order derivatives. For these spaces the Sobolev embedding theorem says
that if Ω ⊂ Rn, then

Wm, p
0 (Ω) ⊂ L

pn
n−pm (Ω),

and hence the limiting case is p = n
m . In the particular case that m is an even

integer and Ω ⊂ Rn with m < n, Adams’ result can be stated as follows: for
u ∈ Wm, p(Ω) with 1 ≤ p < +∞, we will denote by ∇ju, j ∈ {1, 2 . . . , m}, the jth
order gradient of u, namely

∇ju :=

{
Δ

j
2 u j even,

∇Δ
j−1
2 u j odd.

Theorem 1.3 ([1], Theorem 3). Let m be an even integer, and let Ω ⊂ Rn with
m < n. There exists a constant Cm,n > 0 such that

(1.2) sup

u∈W
m, n

m
0 (Ω), ‖∇mu‖ n

m
≤1

∫
Ω

eβ0|u|
n

n−m
dx ≤ Cm,n|Ω|,

where

β0 = β0(m, n) :=
n

ωn−1

[
π

n
2 2mΓ(m2 )

Γ(n−m
2 )

] n
n−m

.

Furthermore inequality (1.2) is sharp.
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As before, one notes that the bound in (1.2) becomes infinite for domains Ω with
|Ω| = +∞. In the case that m is even, namely m = 2k, we will show that replacing
the norm ‖∇mu‖ n

m
with the norm

‖u‖m,n := ‖(−Δ+ I)
m
2 u‖ n

m
= ‖(−Δ+ I)ku‖ n

m
,

where I denotes the identity operator, the supremum in (1.2) is bounded by a
constant independent of Ω.

Let

φ(t) := et −
j n
m

−2∑
j=0

tj

j!
,

where

j n
m

:= min
{
j ∈ N

∣∣∣ j ≥ n

m

}
≥ n

m
.

Our main result is the following:

Theorem 1.4. Let m be an even integer less than n. There exists a constant
Cm,n > 0 such that for any domain Ω ⊆ Rn

(1.3) sup

u∈W
m, n

m
0 (Ω), ‖u‖m,n≤1

∫
Ω

φ
(
β0|u|

n
n−m
)
dx ≤ Cm,n,

and this inequality is sharp.

In [11, Theorem 1.2], Kozono et al. explicitly exhibit a constant β∗
m,n ≤ β0, with

β∗
m, 2m = β0(m, 2m), such that if β < β∗

m,n, then

(1.4) sup
u∈Wm, n

m (Rn), ‖u‖m,n≤1

∫
Rn

φ
(
β|u| n

n−m
)
dx ≤ C(β, m, n),

where C(β, m, n) > 0 is a constant depending on β, m and n, while if β > β0 the
supremum is infinite. To do this, they reduce the inequality to some equivalent
form by means of Bessel potentials, then they apply techniques of symmetric de-
creasing rearrangements and, following a procedure similar to Adams’, they make
use of O’Neil’s result [17] on the rearrangement of convolution functions. But with
these arguments they did not answer the question of whether or not the uniform
boundedness in (1.4) also holds for the limiting case β = β0.

In the proof of Theorem 1.4 we will follow a different approach. The idea is
to adapt the arguments in [19], but in order to do this, one encounters difficulties
in the use of symmetrization techniques to reduce the general problem to the ra-
dial case. Indeed, this cannot be done directly as in [19], since one would have to
establish inequalities between ‖∇mu‖ n

m
and ‖∇mu∗‖ n

m
, where u∗ denotes the sym-

metrized function of u, and such estimates are unknown in general for higher order
derivatives. To get around this problem, the idea is to apply a suitable comparison
principle. For example, in [4] and [5], the authors used the well-known Talenti
comparison principle (see [20]). Under suitable assumptions, this comparison prin-
ciple leads to compare a function u, not necessarily radial, with a radial function
v in such a way that ‖∇mu‖p = ‖∇mv‖p and ‖u‖p ≤ ‖v‖p for any p ∈ [1, +∞).
Therefore, the Talenti comparison principle is a suitable tool if one works with the
Lp-norm of the m-th order gradient. In our case, since we want to obtain an esti-
mate independent of the domain, we need to replace the Dirichlet norm ‖∇mu‖ n

m
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by a larger norm, and a natural choice is the norm

‖u‖m,n := ‖(−Δ+ I)
m
2 u‖ n

m
.

It is easy to check that the norm ‖u‖m,n is equivalent to the Sobolev norm

‖u‖
Wm, n

m
:=
(
‖u‖

n
m
n
m

+
m∑
j=1

‖∇ju‖
n
m
n
m

)m
n

,

and in particular, if u ∈ W
m n

m
0 (Ω) (or u ∈ Wm, n

m (Rn)), then

(1.5) ‖u‖
Wm, n

m
≤ ‖u‖m,n.

But the Talenti comparison principle cannot be applied to the norm ‖u‖m,n since
it increases the ‖ ·‖m,n-norm; however, the norm ‖u‖m,n is well suited to apply (an
iterated version of) a comparison principle due to G. Trombetti and J. L. Vázquez,
which appears in [22], see also [6].

Having reduced the problem to the radial case, in order to prove Theorem 1.4,
we will show that the supremum of∫

BR

φ
(
β0|u|

n
n−m
)
dx

over all radial functions with homogeneous Navier boundary conditions belonging
to the unit ball of(

W
m, n

m

N, rad(BR) := W
m, n

m

N (BR) ∩W
m, n

m

rad (BR), ‖ · ‖Wm, n
m

)
is bounded by a constant independent of R > 0. Here and below, BR := {x ∈
Rn | |x| < R} is the ball of radius R > 0, and

W
m, n

m

N (BR) :=
{
u ∈ Wn, n

m (BR)
∣∣∣ Δju|∂BR

= 0

in the sense of traces for 0 ≤ j <
m

2

}
W

m, n
m

rad (BR) :=
{
u ∈ Wm, n

m (BR) | u(x) = u(|x|) a.e. in BR

}
are respectively the space ofWm, n

m (BR)-functions with homogeneous Navier bound-
ary conditions and the space of radial Wm, n

m (BR)-functions. This result is ex-
pressed in the following.

Proposition 1.1. Let m be an even integer less than n. There exists a constant
Cm,n > 0 such that

(1.6) sup

u∈W
m, n

m
N, rad (BR), ‖u‖

Wm, n/m≤1

∫
BR

φ
(
β0|u|

n
n−m
)
dx ≤ Cm,n

independently of R > 0, and this inequality is sharp.

This ends an outline of the proof of Theorem 1.4.

We point out that, as W
m, n

m
0 (Ω) ⊂ W

m, n
m

N (Ω), we have

sup

u∈W
m, n

m
0 (Ω), ‖u‖m,n≤1

∫
Ω

φ
(
β0|u|

n
n−m
)
dx

≤ sup

u∈W
m, n

m
N (Ω), ‖u‖m,n≤1

∫
Ω

φ
(
β0|u|

n
n−m
)
dx,
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and actually we will also prove the following stronger version of the Adams-type
inequality (1.3).

Proposition 1.2. Let m be an even integer less than n. There exists a constant
Cm,n > 0 such that for any bounded domain Ω ⊂ Rn

(1.7) sup

u∈W
m, n

m
N (Ω), ‖u‖m,n≤1

∫
Ω

φ
(
β0|u|

n
n−m
)
dx ≤ Cm,n,

and this inequality is sharp.

Comparing this last result with Theorem 1.4, in the case of bounded domains,
it is remarkable that the sharp exponent β0 does not depend on all the traces
but only on the zero Navier boundary conditions. This is not obvious, as shown by
A. Cianchi in [7] in the case of first order derivatives: with zero Neumann boundary

conditions (i.e., in W 1, n(Ω) instead of W 1, n
0 (Ω)) the sharp exponent αn in Theorem

1.1 strictly decreases.
This paper is organized as follows. In Section 2 we recall the comparison principle

of G. Trombetti and J. L. Vázquez, and we introduce an iterated version of it. In
the following sections (Sections 3 and 4), we first prove that the supremum of∫

Rn

φ
(
β0|u|

n
n−m
)
dx

over all radial functions belonging to the unit ball of (Wm, n
m (Rn), ‖ · ‖

Wm, n
m
) is

bounded:

Theorem 1.5. Let m be an even integer less than n. There exists a constant
Cm,n > 0 such that

(1.8) sup

u∈W
m, n

m
rad (Rn), ‖u‖

Wm, n/m≤1

∫
Rn

φ
(
β0|u|

n
n−m
)
dx ≤ Cm,n,

where

W
m, n

m

rad (Rn) :=
{
u ∈ Wm, n

m (Rn) | u(x) = u(|x|) a.e. in Rn
}
.

Furthermore this inequality is sharp.

Second we will see that the proof of Theorem 1.5 can be easily adapted to prove
Proposition 1.1. To make transparent the main ideas of the proof, in Section 3 we
prove Theorem 1.5 and Proposition 1.1 in the simplest case m = 2, n = 4, and
we give a general proof for m ≥ 2 even and n > m in Section 4. In Section 5 we
prove the main theorem (Theorem 1.4), and we end the section with the proof of
Proposition 1.2. The proof of the sharpness of (1.3), (1.6), (1.7), and (1.8) is given
in Section 6.

2. An iterated comparison principle

A crucial tool for the proof of Theorem 1.4 in the case m = 2 is the following
comparison principle of G. Trombetti and J. L. Vázquez which we state only for
balls BR ⊂ Rn, n ≥ 2, in order to simplify the notation and as this is the case of
our main interest. We will denote by |BR| the Lebesgue measure of BR, namely
|BR| := σnR

n, where σn is the volume of the unit ball in Rn.
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Let u : BR → R be a measurable function. The distribution funtion of u is
defined by

μu(t) := |{x ∈ BR | |u(x)| > t}| ∀t ≥ 0.

The decreasing rearrangement of u is defined by

u∗(s) := inf{t ≥ 0 | μu(t) < s} ∀s ∈ [0, |BR|],

and the spherically symmetric decreasing rearrangement of u by

u�(x) := u∗(σn|x|n) ∀x ∈ BR.

The function u� is the unique nonnegative integrable function which is radially
symmetric, nonincreasing, and has the same distribution function as |u|.

Let u be a weak solution of

(2.1)

{
−Δu+ u = f in BR,

u ∈ W 1, 2
0 (BR),

where f ∈ L
2n

n+2 (BR).

Proposition 2.1 ([22], Inequality (2.20)). If u is a nonnegative weak solution of
(2.1), then

(2.2) −du∗

ds
(s) ≤ 1

n2σ
2
n
n

s
2
n−2

∫ s

0

(f∗ − u∗) dτ ∀s ∈ (0, |BR|).

We now consider the problem

(2.3)

{
−Δv + v = f � in BR,

v ∈ W 1, 2
0 (BR).

Due to the radial symmetry of the equation, the unique solution v of (2.3) is radially
symmetric, and it is easy to see that

(2.4) −dv̂

ds
(s) =

1

n2σ
2
n
n

s
2
n−2

∫ s

0

(f∗ − v̂) dτ ∀s ∈ (0, |BR|),

where v̂(σn|x|n) := v(x) ∀x ∈ BR.
The maximum principle, together with inequalities (2.2) and (2.4), leads as

proved in [22] to the following comparison of integrals in balls :

Proposition 2.2 ([22], Theorem 1). Let u, v be weak solutions of (2.1) and (2.3),
respectively. For every r ∈ (0, R) we have∫

Br

u� dx ≤
∫
Br

v dx.

We are now interested in obtaining a comparison principle for the polyharmonic
operator, which will allow us to reduce the proof of Theorem 1.4 to the radial case.
To this aim let m = 2k with k a positive integer, and let u ∈ Wm, 2(BR) be a weak
solution of

(2.5)

{
(−Δ+ I)ku = f in BR,

u ∈ Wm, 2
N (BR),
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where f ∈ L
2n

n+2 (BR). If we consider the problem

(2.6)

{
(−Δ+ I)kv = f � in BR,

v ∈ Wm, 2
N (BR),

then the following comparison of integrals in balls holds.

Proposition 2.3. Let u, v be weak solutions of the polyharmonic problems (2.5)
and (2.6), respectively. For every r ∈ (0, R), we have∫

Br

u� dx ≤
∫
Br

v dx.

Proof. Since equations in (2.5) and (2.6) are considered with homogeneous Navier
boundary conditions, they may be rewritten as second order systems:

(P1)

{
−Δu1 + u1 = f in BR,

u1 ∈ W 1, 2
0 (BR),

(Pi)

{
−Δui + ui = ui−1 in BR,

ui ∈ W 1, 2
0 (BR),

(P 1)

{
−Δv1 + v1 = f � in BR,

v1 ∈ W 1, 2
0 (BR),

(P i)

{
−Δvi + vi = vi−1 in BR,

vi ∈ W 1, 2
0 (BR),

for i ∈ {2, 3, . . . , k}, where uk = u and vk = v. Thus we have to prove that for
every r ∈ (0, R),

(2.7)

∫
Br

u�
k dx ≤

∫
Br

vk dx.

When k = 1, inequality (2.7) is the inequality in Proposition 2.2. When k ≥ 2, we
proceed by finite induction, proving that

(2.8)

∫
Br

u�
i dx ≤

∫
Br

vi dx

holds for every i ∈ {1, 2, . . . , k}. By Proposition 2.2 it follows that if i = 1,
then (2.8) holds. Now, assuming that inequality (2.8) has been proved for some
i ∈ {1, 2, . . . , k − 1}, we show that

(2.9)

∫
Br

u�
i+1 dx ≤

∫
Br

vi+1 dx.

Without loss of generality we may assume that ui+1 ≥ 0. In fact, let ui+1 be a
weak solution of {

−Δui+1 + ui+1 = |ui| in BR,

ui+1 ∈ W 1, 2
0 (BR).

Then by the maximum principle ui+1 ≥ 0 and ui+1 ≥ ui+1 in BR.
Since ui+1 is a nonnegative weak solution of (Pi+1) then (2.2) holds, and since

vi+1 is a weak solution of (P i+1) also an analogue of (2.4) holds, namely

−
du∗

i+1

ds
(s) ≤ 1

n2σ
2
n
n

s
2
n−2

∫ s

0

(u∗
i − u∗

i+1) dτ ∀s ∈ (0, |BR|),

−dv̂i+1

ds
(s) =

1

n2σ
2
n
n

s
2
n−2

∫ s

0

(v̂i − v̂i+1) dτ ∀s ∈ (0, |BR|).
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Therefore for any s ∈ (0, |BR|),
dv̂i+1

ds
(s)−

du∗
i+1

ds
(s)− 1

n2σ
2
n
n

s
2
n−2

∫ s

0

(v̂i+1−u∗
i+1) dτ ≤ 1

n2σ
2
n
n

s
2
n−2

∫ s

0

(u∗
i−v̂i) dτ.

But as a consequence of the fact that inequality (2.8) holds for i, we have that∫ s

0

(u∗
i − v̂i) dτ ≤ 0 ∀s ∈ (0, |BR|),

and we get

dv̂i+1

ds
(s)−

du∗
i+1

ds
(s)− 1

n2σ
2
n
n

s
2
n−2

∫ s

0

(v̂i+1 − u∗
i+1) dτ ≤ 0 ∀s ∈ (0, |BR|).

We can now proceed as in [22], setting

y(s) :=

∫ s

0

(v̂i+1 − u∗
i+1) ∀s ∈ (0, |BR|)

so that ⎧⎨
⎩
y′′ − 1

n2σ
2
n
n

y ≤ 0 in (0, |BR|),

y(0) = y′(|BR|) = 0,

and the maximum principle leads us to conclude that y ≥ 0 which is equivalent to
(2.9). �

Actually, in the proof of Theorem 1.4, we will not directly use the comparison of
integrals in balls, Proposition 2.3, to reduce the problem to the radial case; in fact
we will apply a corollary of it. As stated in [22], a well-known direct consequence
of Proposition 2.3 is the following comparison principle:

Proposition 2.4 ([22], Corollary 1). Let u, v be weak solutions of (2.5) and (2.6),
respectively. For every convex nondecreasing function φ : [0, +∞) → [0, +∞), we
have ∫

BR

φ(|u|) dx ≤
∫
BR

φ(v) dx.

Remark 2.1. It is easy to adapt the previous arguments to obtain a result for
general bounded domains. Let Ω ⊂ Rn, n ≥ 2 be a bounded domain. We consider
the problems:{

(−Δ+ I)ku = f in Ω,

u ∈ Wm, 2
N (Ω),

{
(−Δ+ I)kv = f � in Ω�,

v ∈ Wm, 2
N (Ω�),

where f ∈ L
2n

n+2 (Ω) and Ω� is the ball in Rn centered at 0 ∈ Rn with the same
measure as Ω. Then for every convex nondecreasing function φ : [0, +∞) →
[0, +∞), we have ∫

Ω

φ(|u|) dx ≤
∫
Ω�

φ(v) dx.

Remark 2.2. We can now explain how this last proposition may be used in the
proof of Theorem 1.4. Let m = 2k < n with k a positive integer. Let u ∈ C∞

0 (BR)
with BR ⊂ Rn, and define f := (−Δ+ I)ku in BR. By construction u is the unique
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solution of (2.5). Let v be the unique radial solution of (2.6), then by Proposition
2.4 it follows that ∫

BR

φ
(
β0|u|

n
n−m
)
dx ≤

∫
BR

φ
(
β0|v|

n
n−m
)
dx.

Since f ∈ L
n
m (BR), we have that f � ∈ L

n
m (BR) and thus v ∈ W

m, n
m

N, rad(BR). Fur-
thermore,

‖v‖m,n = ‖(−Δ+ I)kv‖ n
m

= ‖f �‖ n
m

= ‖f‖ n
m

= ‖(−Δ+ I)ku‖ n
m

= ‖u‖m,n.

This means that, starting with a function u ∈ C∞
0 (BR), we can always consider a

radial function v ∈ W
m, n

m

N, rad(BR) which increases the integral we are interested in

and which has the same ‖ · ‖m,n-norm as u.

3. An Adams-type inequality for radial functions in W 2, 2(R4)

In this section we will prove the first part of Theorem 1.5 in the case m = 2 and
n = 4, namely we will prove the existence of a constant C > 0 such that

(3.1) sup
u∈W 2, 2

rad (R4), ‖u‖W2, 2≤1

∫
R4

(e32π
2u2 − 1) dx ≤ C.

To do this, we follow the techniques adopted in [19] for the proof of Theorem 1.2,
and the key to adapt these arguments to the case of second order derivatives is the
following stronger version of Adams’ inequality:

Theorem 3.1 ([21]). Let Ω ⊂ R4 be a bounded domain. Then there exists a
constant C > 0 such that

sup
u∈W 2, 2(Ω)∩W 1, 2

0 (Ω), ‖Δu‖2≤1

∫
Ω

e32π
2u2

dx ≤ C|Ω|,

and this inequality is sharp.

Remark 3.1. We point out that Adams’ inequality, in its original form, deals
with functions in W 2, 2

0 (Ω) (see Theorem 1.3) which is the closure of the space

of smooth compactly supported functions. Note that W 2, 2
0 (Ω) is strictly contained

in W 2, 2(Ω) ∩W 1, 2
0 (Ω) and

sup
u∈W 2, 2

0 (Ω), ‖Δu‖2≤1

∫
Ω

e32π
2u2

dx ≤ sup
u∈W 2, 2(Ω)∩W 1, 2

0 (Ω), ‖Δu‖2≤1

∫
Ω

e32π
2u2

dx,

therefore Theorem 3.1 improves Adams’ inequality showing that the sharp exponent
32π2 does not depend on all the traces.

In [21] C. Tarsi obtained more general embeddings in Zygmund spaces, and
Theorem 3.1 is a particular case of these results. For the convenience of the reader,
we give here an alternative proof (see also C. S. Lin and J. Wei [13]). To do this,
we will follow an argument introduced by H. Brezis and F. Merle (see the proof of
Theorem 1 in [3]), who construct an auxiliary function written in Riesz potential
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form, and we will apply to this auxiliary function the following theorem due to
D. R. Adams:

Theorem 3.2 ([1], Theorem 2). For 1 < p < +∞, there is a constant c0 = c0(p)
such that for all f ∈ Lp(Rn) with support contained in Ω, |Ω| < +∞,∫

Ω

e
n

ωn−1

∣∣∣ Iα∗f(x)
‖f‖p

∣∣∣p′
dx ≤ c0,

where 1
p + 1

p′ = 1, ωn−1 is the surface measure of the unit sphere Sn−1 ⊂ Rn and

Iα ∗ f(x) :=
∫
Rn

|x− y|α−nf(y) dy

is the Riesz potential of order α := n
p .

Proof of Theorem 3.1. Let

C∞
D (Ω) :=

{
u ∈ C∞(Ω) ∩ C0(Ω) |u|∂Ω = 0

}
.

By density arguments, it suffices to prove that

sup
u∈C∞

D (Ω), ‖Δu‖2≤1

∫
Ω

e32π
2u2

dx ≤ C|Ω|.

Let u ∈ C∞
D (Ω) be such that ‖Δu‖2 ≤ 1, and set f := Δu in Ω, so that u is a

solution of the Dirichlet boundary value problem{
Δu = f in Ω,

u = 0 on Ω.

We extend f to be zero outside Ω

f(x) :=

{
f(x) x ∈ Ω,

0 x ∈ R4 \Ω,

and we define

u :=

(
4

ω332π2

) 1
2

I2 ∗ |f | in R4

so that −Δu = |f | in R4. By construction u ≥ 0 in R4 and from the maximum
principle, it follows that u ≥ |u| in Ω. Furthermore

32π2u2 ≤ 4

ω3

(
I2 ∗ |f |
‖f‖2

)2

in R4 .

Therefore ∫
Ω

e32π
2u2

dx ≤
∫
Ω

e32π
2u2

dx ≤
∫
Ω

e
4
ω3

(
I2∗|f|(x)

‖f‖2

)2

dx,

and the last integral is bounded by a constant which depends on Ω only as a
consequence of Theorem 3.2 with n = 4 and p = 2. �

We can now begin the proof of (3.1). Let u ∈ W 2, 2
rad (R

4) be such that ‖u‖W 2, 2 ≤
1. Fix r0 > 0 and set

I1 :=

∫
Br0

(e32π
2u2 − 1) dx, I2 :=

∫
R4 \Br0

(e32π
2u2 − 1)dx
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so that ∫
R4

(e32π
2u2 − 1) dx = I1 + I2.

During the proof, we will show that it is possible to choose a suitable r0 > 0
independent of u such that I1 and I2 are bounded by a constant which depends on
r0 only, and so we can conclude that (3.1) holds.

First, we write I2 using the power series expansion of the exponential function

I2 =

+∞∑
k=1

(32π2)k

k!
I2,k , I2,k :=

∫
R4 \Br0

|u|2k dx.

We estimate the single terms I2,k applying the following radial lemma.

Lemma 3.1 ([9], Lemma 1.1, Chapter 6). If u ∈ W 1, 2
rad (R

4), then

|u(x)| ≤ 1√
ω3

1

|x|3/2 ‖u‖W 1, 2

for a.e. x ∈ R4, where ω3 = 2π2 is the surface measure of the unit sphere S3 ⊂ R4.

Hence for k ≥ 2, we obtain

I2,k ≤ ‖u‖2kW 1, 2

(ω3)k
ω3

∫ +∞

r0

1

ρ3k
ρ3 dρ =

‖u‖2kW 1, 2

(ω3)k−1
· r0

4−3k

3k − 4
<

‖u‖2kW 1, 2

(ω3)k−1
r0

4−3k.

This implies that

I2 ≤ 32π2‖u‖22 + ω3r
4
0

+∞∑
k=2

1

k!

(
32π2‖u‖2W 1, 2

ω3r03

)k

≤ c(r0),

where the constant c(r0) > 0 depends only on r0 since by assumption ‖u‖2 ≤ 1 and
‖u‖W 1, 2 ≤ 1.

To estimate I1, the idea is to use Theorem 3.1, and in order to do this we have
to associate to u ∈ W 2, 2(Br0) an auxiliary function w ∈ W 2, 2(Br0) ∩ W 1, 2

0 (Br0)

such that ‖Δw‖2 ≤ 1. Recalling that u ∈ W 2, 2
rad (R

4), we define a radial function
v = v(|x|) as

v(|x|) =: u(|x|)− u(r0) for 0 ≤ |x| ≤ r0,

and we can notice that v ∈ W 2, 2(Br0) ∩ W 1, 2
0 (Br0). Again applying the radial

lemma, we get for 0 < |x| ≤ r0

u2(|x|) = v2(|x|) + 2v(|x|)u(r0) + u2(r0) ≤ v2(|x|) + [v2(|x|)u2(r0) + 1] + u2(r0)

≤ v2(|x|) + v2(|x|)
[

1

2π2

1

r03
‖u‖2W 1, 2

]
+ 1 +

1

2π2

1

r03
‖u‖2W 1, 2

≤ v2(|x|)
[
1 +

1

2π2

1

r03
‖u‖2W 1, 2

]
+ d(r0).

Now we define

w(|x|) := v(|x|)
√
1 +

1

2π2

1

r03
‖u‖2W 1, 2 for all 0 ≤ |x| ≤ r0
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so that w ∈ W 2, 2(Br0) ∩W 1, 2
0 (Br0) and

(3.2) u2(|x|) ≤ w2(|x|) + d(r0) for all 0 < |x| ≤ r0.

By construction∫
Br0

(Δv)2 dx =

∫
Br0

(Δu)2 dx ≤ ‖Δu‖22 ≤ 1− ‖u‖2W 1, 2 ,

and hence ∫
Br0

(Δw)2 dx =

∫
Br0

[
Δ

(
v

√
1 +

1

2π2

1

r03
‖u‖2W 1, 2

)]2
dx

=

(
1 +

1

2π2

1

r03
‖u‖2W 1, 2

)∫
Br0

(Δv)2 dx

≤
(
1 +

1

2π2

1

r03
‖u‖2W 1, 2

)
(1− ‖u‖2W 1, 2)

≤ 1−
(
1− 1

2π2

1

r03

)
‖u‖2W 1, 2 ≤ 1,

provided that r0
3 ≥ 1

2π2 . From (3.2) it follows that

I1 ≤ e32π
2d(r0)

∫
Br0

e32π
2w2

dx,

and if r0 ≥ 3

√
1

2π2 , then the right-hand side of this last inequality is bounded by a

constant which depends on r0 only, as a consequence of Theorem 3.1. This ends the
proof of the first part of Theorem 1.5 in the case m = 2 and n = 4; for sharpness
see Section 6.

Remark 3.2. In the estimate of I1 we might expect to apply Adams’ inequality
(1.2). But to do this, one would need to construct an auxiliary function w which

is in W 2, 2
0 (Br0), and this is not an easy task. However in view of Theorem 3.1

it is sufficient that w ∈ W 2, 2(Br0) ∩ W 1, 2
0 (Br0), ‖Δw‖2 ≤ 1 to conclude that∫

Br0
(e32π

2w2 − 1) dx is bounded by a constant which depends on r0 only.

We can easily adapt the arguments above to obtain a proof of Proposition 1.1
in the case m = 2 and n = 4.

Proof of Proposition 1.1 in the case m = 2 and n = 4. Fix R > 0, and let

u ∈ W 2, 2
N, rad(BR)

be radial and such that ‖u‖W 2, 2 ≤ 1. First of all we recall that

W 2, 2
N (BR) = W 2, 2(BR) ∩W 1, 2

0 (BR),

and so u ∈ W 2, 2
rad (BR)∩W 1, 2

0 (BR). To prove Proposition 1.1, we have to show that
there exists a constant C > 0 independent of R and u such that

(3.3)

∫
BR

(e32π
2u2 − 1) dx ≤ C.
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We have two alternatives:

(I) R ≤ 3

√
1

2π2 . As in particular ‖Δu‖22 ≤ 1, we can apply Theorem 3.1 ob-

taining that∫
BR

(e32π
2u2 − 1) dx ≤ C |BR| ≤ C

∣∣∣B 3
√

1
2π2

∣∣∣.
(II) R > 3

√
1

2π2 . In this case we set

I1 :=

∫
Br0

(e32π
2u2 − 1) dx, I2 :=

∫
BR\Br0

(e32π
2u2 − 1) dx,

where 3

√
1

2π2 ≤ r0 < R, so that∫
BR

(e32π
2u2 − 1) dx = I1 + I2.

To estimate I1 and I2 with a constant independent of R and u, we can use
the same arguments as in the proof of Theorem 1.5. It suffices to notice that
the radial lemma (Lemma 3.1) holds for any radial function in W 1, 2(R4)

and, as u ∈ W 1, 2
0 (BR), we can extend u to be zero outside the ball BR

obtaining that u ∈ W 1, 2(R4), furthermore,

‖u‖W 1, 2(R4) = ‖u‖W 1, 2(BR)

�

4. An Adams-type inequality for radial functions in Wm, n
m (Rn)

In this section we will prove the first part of Theorem 1.5 in the case m = 2k
with k a positive integer and m < n. To this aim a crucial tool is the following
extension of Adams’ inequality to functions with homogeneous Navier boundary
conditions.

Theorem 4.1 ([21]). Let m = 2k with k a positive integer, and let Ω ⊂ Rn, with
m < n, be a bounded domain. There exists a constant Cm,n > 0 such that

sup

u∈W
m, n

m
N (Ω), ‖∇mu‖ n

m
≤1

∫
Ω

eβ0|u|
n

n−m
dx ≤ Cm,n|Ω|,

and this inequality is sharp.

We give an alternative proof, following the idea of the proof of Theorem 3.1:

Proof of Theorem 4.1. By density arguments, it suffices to prove that

sup
u∈C∞

N (Ω), ‖∇mu‖ n
m

≤1

∫
Ω

eβ0|u|
n

n−m
dx ≤ Cm,n|Ω|,

where

C∞
N (Ω) := {u ∈ C∞(Ω) ∩ Cm−2(Ω)

∣∣ u|∂Ω = Δju|∂Ω = 0 , 1 ≤ j < k}.
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Let u ∈ C∞
N (Ω) be such that ‖∇mu‖ n

m
= ‖Δku‖ n

m
≤ 1, and set f := Δku in Ω, so

that u is a solution of the Navier boundary value problem{
Δku = f in Ω,

u = Δju = 0 on ∂Ω ∀j ∈ {1, 2, . . . , k − 1}.
We extend f by zero outside Ω,

f(x) :=

{
f(x) x ∈ Ω,

0 x ∈ Rn \Ω,
and we define

u :=

(
n

ωn−1β0

)n−m
n

Im ∗ |f | in Rn,

so that (−1)kΔku = |f | in Rn. By construction u ≥ 0 in Rn and

β0|u|
n

n−m ≤ n

ωn−1

(
Im ∗ |f |
‖f‖ n

m

) n
n−m

in Rn .

To end the proof, it suffices to show that u ≥ |u| in Ω. Indeed, if u ≥ |u| in Ω,
then ∫

Ω

eβ0|u|
n

n−m
dx ≤

∫
Ω

eβ0|u|
n

n−m
dx ≤

∫
Ω

e

n
ωn−1

(
Im∗|f|
‖f‖ n

m

) n
n−m

dx,

and the last integral is bounded by a constant depending on Ω only, as a consequence
of Theorem 3.2 with p = n

m > 1.
To see that u ≥ |u|, consider the systems,{

Δu1 = f in Ω,

u1 = 0 on ∂Ω,

{
Δui = ui−1 in Ω,

ui = 0 on ∂Ω,
i ∈ {2, . . . , k},

{
Δu1 = (−1)k|f | in Ω,

u1 = Δk−1u on ∂Ω,

{
Δui = ui−1 in Ω,

ui = Δk−iu on ∂Ω,
i ∈ {2, . . . , k},

where obviously uk = u and uk = u in Ω. Since for i ∈ {1, 2, . . . , k − 1} we have

(−1)kΔk−iu

{
≥ 0 i even,

≤ 0 i odd,
in Rn

by finite induction, and with the aid of the maximum principle we can conclude
that u ≥ |u| in Ω and this ends the proof. �

Now we begin the proof of the first part of Theorem 1.5. Let u ∈ W
m, n

m

rad (Rn)
be such that ‖u‖

Wm, n
m

≤ 1. Fix r0 > 0, and set

I1 :=

∫
Br0

φ
(
β0|u|

n
n−m
)
dx, I2 :=

∫
Rn \Br0

φ
(
β0|u|

n
n−m
)
dx,

so that ∫
Rn

φ
(
β0|u|

n
n−m
)
dx = I1 + I2.

We can notice that the starting point is the same as in the proof of the case
m = 2, n = 4 and, as before, we will show that it is possible to choose a suitable
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r0 > 0 independent of u such that I1 and I2 are bounded by a constant which
depends on r0 only.

In the estimate of I2 there are no substantial differences to the case m = 2 and
n = 4, we first need a suitable radial lemma, namely an adaptation of [9], Lemma
1.1, Chapter 6:

Lemma 4.1. If u ∈ W
1, n

m

rad (Rn), then

|u(x)| ≤
(

1

mσn

)m
n 1

|x|n−1
n m

‖u‖
W 1, n

m

for a.e. x ∈ Rn, where σn is the volume of the unit ball in Rn.

Applying this radial lemma and using the power series expansion of the expo-
nential function, we get

I2 ≤ β
j n
m

−1

0(
j n

m
− 1
)
!

∫
Rn \Br0

|u|
n

n−m

(
j n
m

−1
)
dx

+
n2(m− 1)

n−m
σnr

n
0

+∞∑
j=j n

m

1

j!

⎛
⎝ β0‖u‖

n
n−m

W 1, n
m

(mσn)
m

n−m r
n−1
n−mm

0

⎞
⎠

j

≤ β
j n
m

−1

0(
j n

m
− 1
)
!

∫
Rn \Br0

|u|
n

n−m

(
j n
m

−1
)
dx+ c(m, n, r0).

To estimate the first term on the right-hand side of this last inequality, we need the

continuity of the embedding of W
m, n

m

rad (Rn) in suitable Lq-spaces:

Lemma 4.2 ([14], Théorème II.1). The embedding W
m n

m

rad (Rn) ⊂ Lq(Rn) is con-
tinuous for n

m ≤ q < +∞.

Now it suffices to notice that n
n−m

(
j n

m
− 1
)
≥ n

m to conclude that I2≤ c̃(m,n, r0).
To estimate I1 we apply, as in the case m = 2 and n = 4, Theorem 4.1 to an

auxiliary radial function w ∈ W
m, n

m

N (Br0) with ‖∇mw‖ n
m

≤ 1 which increases the
integral we are interested in. But the construction of this auxiliary function is rather
difficult with respect to the case m = 2 and n = 4. In fact, in the case of second
order derivatives, we only need to construct an auxiliary radial function which is
zero on the boundary of Br0 , while when dealing with mth order derivatives, with
m > 2, the auxiliary radial function has to be zero on the boundary of Br0 together
with its jth order Laplacian for any j ∈ {1, 2, . . . , k − 1}.

If m = 2k > 2, then for each i ∈ {1, 2, . . . , k − 1} we define

gi(|x|) := |x|m−2i ∀x ∈ Br0

so that gi ∈ W
m, n

m

rad (Br0) and

Δjgi(|x|) =
{
cji |x|m−2(i+j) for j ∈ {1, . . . , k − i},
0 for j ∈ {k − i+ 1, . . . , k},

∀x ∈ Br0 ,

where

cji :=

j∏
h=1

[n+m− 2(h+ i)] [m− 2(i+ h− 1)] ∀j ∈ {1, 2, . . . , k − i}.
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These functions will be helpful in the construction of the auxiliary radial function
w. A similar device was used in [8] to prove an embedding result for higher order
Sobolev spaces, but with another aim, namely to show that a radial function defined
in a ball may be extended to the whole space without increasing the Dirichlet norm
while increasing the Lp-norm.

Let

v(|x|) := u(|x|)−
k−1∑
i=1

aigi(|x|)− ak ∀x ∈ Br0 ,

where

ai :=
Δk−iu(r0)−

∑i−1
j=1 ajΔ

k−igj(r0)

Δk−igi(r0)
, ∀i ∈ {1, 2, . . . , k − 1},

ak := u(r0)−
k−1∑
i=1

aigi(r0).

We point out that if m = 2k = 2, namely when we deal with second order deriva-
tives, then v reduces to

v(|x|) := u(|x|)− u(r0) ∀x ∈ Br0 .

By construction v ∈ W
m, n

m

N (Br0) ∩ W
m, n

m

rad (Br0) and Δkv = Δku in Br0 or
equivalently ∇mv = ∇mu in Br0 . Furthermore

Lemma 4.3. For 0 < |x| ≤ r0 we have

∣∣∣u(|x|)∣∣∣ n
n−m ≤

∣∣∣v(|x|)∣∣∣ n
n−m

(
1 + cm,n

k−1∑
j=1

1

r
2j n

m−1
0

‖Δk−ju‖
n
m

W 1, n
m

+
cm,n

rn−1
0

‖u‖
n
m

W 1, n
m

) n
n−m

+ d(m, n, r0),

where cm,n > 0 depends only on m and n and d(m, m, r0) > 0 depends only on
m, n and r0.

Proof. To simplify the notation, let

g(|x|) :=
k−1∑
i=1

aigi(|x|) + ak ∀x ∈ Br0

so that v(|x|) = u(|x|)− g(|x|) for all x ∈ Br0 . Fix 0 < |x| ≤ r0, and set r := |x| so
0 < r ≤ r0.

Step 1. We want to dominate |u(r)| n
n−m with |v(r)| n

n−m up to multiplicative and
additive constants depending only on m, n, r0 and g(r), and more precisely we will
prove that
(4.1)

|u(r)| n
n−m ≤ |v| n

n−m

(
1 +

m

n−m
2

m
n−m |g(r)| n

m

)
+ 2

m
n−m

(
1 +

n

n−m
|g(r)| n

n−m

)
.

To this aim we recall that the binomial estimate

(a+ b)q ≤ aq + q2q−1(aq−1b+ bq)
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is valid for q ≥ 1 and a, b ≥ 0. Using the definition of v and applying this binomial
estimate we get

(4.2) |u(r)| n
n−m ≤ |v(r)| n

n−m +
n

n−m
2

m
n−m

(
|v(r)| m

n−m |g(r)|+ |g(r)| n
n−m
)
.

As Young’s inequality says that

ab ≤ m

n
(ab)

n
m +

n−m

n

provided that ab ≥ 0, we can estimate

(4.3) |v(r)| m
n−m |g(r)| ≤ m

n
|v(r)| n

n−m |g(r)| n
m +

n−m

n
,

and this together with inequality (4.2) gives (4.1).

Step 2. We have to obtain a suitable estimate for |g(r)|α and in particular we are
interested in the cases α = n

m and α = n
n−m , so we will assume that α > 1. By

convexity arguments

|g(r)|α ≤ 2k(α−1)+1
k−1∑
i

|ai|αgαi (r0) + 2α−1|u(r0)|α.

We will prove in Step 3 below that

(4.4) |ai|α ≤ ci

i∑
j=1

r
2α(i−j)
0

∣∣Δk−ju(r0)
∣∣α ∀i ∈ {1, 2, . . . , k − 1},

where the constants ci > 0 depend on m and n only. As a consequence of (4.4) we
get

|g(r)|α ≤ 2k(α−1)+1
k−1∑
i=1

i∑
j=1

cir
α(m−2j)
0

∣∣Δk−ju(r0)
∣∣α + 2α−1|u(r0)|α

= 2k(α−1)+1
k−1∑
j=1

(
r
α(m−2j)
0

∣∣Δk−ju(r0)
∣∣α k−1∑

i=j

ci

)
+ 2α−1|u(r0)|α

= 2k(α−1)+1
k−1∑
j=1

c̃jr
α(m−2j)
0

∣∣Δk−ju(r0)
∣∣α + 2α−1|u(r0)|α

with

c̃j :=

k−1∑
i=j

ci ∀j ∈ {1, 2, . . . , k − 1}.

Now the radial lemma, Lemma 4.1, leads to

|g(r)|α ≤ 2k(α−1)+1

(
1

mσn

)m
n α k−1∑

j=1

c̃jr
α(m−2j−n−1

n m)
0 ‖Δk−ju‖α

W 1, n
m

+ 2α−1

(
1

mσn

)m
n α

1

r
n−1
n mα

0

‖u‖α
W 1, n

m
.

(4.5)
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Step 3. We have to show that (4.4) holds. We proceed by finite induction on i.
When i = 1, by the definition of a1 and g1 we have

|a1|α =

∣∣∣∣ Δk−1u(r0)

Δk−1g1(r0)

∣∣∣∣
α

=
1

(ck−1
1 )α

∣∣Δk−1u(r0)
∣∣α ,

which is nothing but (4.4) provided that c1 := (ck−1
1 )−α. We now assume that (4.4)

holds for any j ∈ {1, 2, . . . , i} with i ∈ {1, 2, . . . , k − 2}, and we show that

|ai+1|α ≤ ci+1

i+1∑
j=1

r
2α(i+1−j)
0

∣∣Δk−ju(r0)
∣∣α .

Using the definition of ai+1 and gi+1, we get

|ai+1|α ≤ 2α−1

(ck−i−1
i+1 )α

∣∣Δk−i−1u(r0)
∣∣α +

2i(α−1)

(ck−i−1
i+1 )α

i∑
j=1

|aj |α
∣∣Δk−i−1gj(r0)

∣∣α .

By finite induction assumption and by definition of gj with j ∈ {1, 2, . . . , i}, we
can estimate

i∑
j=1

aαj
(
Δk−i−1gj(r0)

)α ≤
i∑

j=1

j∑
h=1

cj(c
k−i−1
j )αr

2α(i+1−h)
0

∣∣Δk−hu(r0)
∣∣α

=

i∑
h=1

r
2α(i+1−h)
0

∣∣Δk−hu(r0)
∣∣α ( i∑

j=h

cj(c
k−i−1
j )α

)

=

i∑
h=1

ĉhr
2α(i+1−h)
0

∣∣Δk−hu(r0)
∣∣α

with

ĉh :=
i∑

j=h

cj(c
k−i−1
j )α.

In conclusion

|ai+1|α ≤ 2α−1

(ck−i−1
i+1 )α

∣∣Δk−i−1u(r0)
∣∣α +

2i(α−1)

(ck−i−1
i+1 )α

i∑
h=1

ĉhr
2α(i+1−h)
0

∣∣Δk−hu(r0)
∣∣α

≤ ci+1

i+1∑
h=1

r
2α(i+1−h)
0

∣∣Δk−hu(r0)
∣∣α .

Step 4. Combining (4.1) and inequality (4.5) with α = n
n−m , we obtain that

|u(r)| n
n−m ≤ |v| n

n−m

(
1 +

m

n−m
2

m
n−m |g(r)| n

m

)
+ d(m, n, r0),

as ‖Δk−ju‖
W 1, n

m
≤ 1 for j ∈ {1, . . . , k − 1} and ‖u‖

W 1, n
m

≤ 1. Now, a further

application of inequality (4.5) with α = n
m leads to

|u(r)| n
n−m ≤ |v(r)| n

n−m

(
1 + cm,n

k−1∑
j=1

1

r
2j n

m−1
0

‖Δk−ju‖
n
m

W 1, n
m

+
cm,n

rn−1
0

‖u‖
n
m

W 1, n
m

)

+ d(m, n, r0),

which easily implies the inequality expressed by the lemma. �
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Now we define

w(|x|) := v(|x|)
(
1+ cm,n

k−1∑
j=1

1

r
2j n

m−1
0

‖Δk−ju‖
n
m

W 1, n
m
+

cm,n

rn−1
0

‖u‖
n
m

W 1, n
m

)
∀x ∈ Br0 .

As v ∈ W
m, n

m

N (Br0) ∩W
m, n

m

rad (Br0), we have that w ∈ W
m, n

m

N (Br0) ∩W
m, n

m

rad (Br0)
and from Lemma 4.3 it follows that∣∣∣u(|x|)∣∣∣ n

n−m ≤
∣∣∣w(|x|)∣∣∣ n

n−m

+ d(m, n, r0) ∀0 < |x| ≤ r0.

Since

‖∇mv‖ n
m

= ‖∇mu‖ n
m

≤
(
1−

k−1∑
j=1

‖Δk−ju‖
n
m

W 1, n
m

− ‖u‖
n
m

W 1, n
m

)m
n

,

and the inequality

(1−A)q ≤ 1− qA

holds for 0 ≤ A ≤ 1 and for 0 < q ≤ 1, we have that

‖∇mv‖ n
m

≤
(
1− m

n

k−1∑
j=1

‖Δk−ju‖
n
m

W 1, n
m

− m

n
‖u‖

n
m

W 1, n
m

)
.

Therefore

‖∇mw‖ n
m

= ‖∇mv‖ n
m

(
1 + cm,n

k−1∑
j=1

1

r
2j n

m−1
0

‖Δk−ju‖
n
m

W 1, n
m

+
cm,n

rn−1
0

‖u‖
n
m

W 1, n
m

)

≤
(
1− m

n

k−1∑
j=1

‖Δk−ju‖
n
m

W 1, n
m

− m

n
‖u‖

n
m

W 1, n
m

)

·
(
1 + cm,n

k−1∑
j=1

1

r
2j n

m−1
0

‖Δk−ju‖
n
m

W 1, n
m

+
cm,n

rn−1
0

‖u‖
n
m

W 1, n
m

)
,

and in conclusion
(4.6)

‖∇mw‖ n
m

≤ 1+
k−1∑
j=1

(
cm,n

r
2j n

m−1
0

− m

n

)
‖Δk−ju‖

n
m

W 1, n
m
+

(
cm

rn−1
0

− m

n

)
‖u‖

n
m

W 1, n
m

≤ 1,

provided that r0 > 0 is sufficiently large: this is our choice of r0 > 0. In conclusion

I1 ≤ eβ0d(m,n, r0)

∫
Br0

eβ0|w|
n

n−m
dx,

and the right-hand side of this inequality is bounded by a constant depending on
r0 only as a consequence of Theorem 4.1.

We end this section with the

Proof of Proposition 1.1. We want to adapt the above arguments to obtain a proof
of Proposition 1.1. The idea is to proceed exactly as in the case m = 2 and n = 4,
but for this we have to specify

• how the radial lemma (Lemma 4.1) can be used to obtain pointwise esti-
mates for u and Δju with j ∈ {1, 2, . . . , k − 1}; and
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• how to modify the argument (Lemma 4.2) used in the estimate of I2 to
obtain an upper bound for the integral

(4.7)

∫
BR\Br0

|u|
n

n−m

(
j n
m

−1
)
dx

independent of u and R.

Let u ∈ W
m, n

m

N, rad(BR) with BR ⊂ Rn. Since

W
m, n

m

N (BR) ⊂ W
1, n

m
0 (BR),

we may extend u by zero outside BR, and obtain u ∈ W
1, n

m

rad (Rn) with

‖u‖
W 1, n

m (Rn)
= ‖u‖

W 1, n
m (BR)

.

Thus we can apply Lemma 4.1 to u.
Similarly, for fixed j ∈ {1, 2, . . . , k − 1}, we have

W
m−2j, n

m

N (BR) ⊂ W
1, n

m
0 (BR),

and since Δju ∈ W
m−2j, n

m

N, rad (BR), we have in particular Δju ∈ W
1, n

m
0 (BR). We

extend Δju to be zero outside BR

fj :=

{
Δju in BR,

0 in Rn \BR.

As Δju ∈ W
1, n

m
0 (BR) is radial, we have that fj ∈ W

1, n
m

rad (Rn) and fj satisfies the
assumption of Lemma 4.1. Therefore, for a.e. x ∈ BR, we have

|Δju(x)| = |fj(x)| ≤
(

1

mσn

)m
n 1

|x|n−1
n m

‖fj‖W 1, n
m (Rn)

=

(
1

mσn

)m
n 1

|x|n−1
n m

‖Δju‖
W 1, n

m (BR)
.

It remains only to specify how to obtain an upper bound independent of u and

R for the integral (4.7). Let u ∈ W
m, n

m

N, rad(BR) be such that ‖u‖
Wm, n

m
≤ 1. As

u ∈ W
1, n

m

rad (Rn), from Lemma 4.1, it follows that there exists r1 = r1(m, n) > 0
independent of u and R such that

|u(x)| < 1 for a.e. x ∈ Rn \Br1 .

Therefore for R > r1, we can choose 0 < r1 ≤ r0 < R so that

|u(x)| < 1 for a.e. x ∈ Rn \Br0 ,

and since
n

n−m

(
j n

m
− 1
)
≥ n

m
,

we obtain that∫
BR\Br0

|u|
n

n−m

(
j n
m

−1
)
dx ≤

∫
Rn \Br0

|u|
n

n−m

(
j n
m

−1
)
dx ≤

∫
Rn \Br0

|u| n
m dx ≤ 1.

To conclude, we can argue as in the proof of Proposition 1.1 in the case m = 2
and n = 4, but now the two alternatives that we have to distinguish are R < R̃
and R ≥ R̃ with R̃ > r1 and such that (4.6) holds. �
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5. Proof of the main theorem (Theorem 1.4)

Let m = 2k with k a positive integer, let m < n and let Ω ⊆ Rn be a domain.

Since any function u ∈ W
m, n

m
0 (Ω) can be extended to be zero outside Ω obtaining

a function in (Wm, n
m (Rn), ‖ · ‖m,n), we have that

sup

u∈W
m, n

m
0 (Ω), ‖u‖m,n≤1

∫
Ω

φ
(
β0|u|

n
n−m
)
dx

≤ sup
u∈Wm, n

m (Rn), ‖u‖m,n≤1

∫
Rn

φ
(
β0|u|

n
n−m
)
dx,

and the proof of the first part of Theorem 1.4 reduces to the inequality

(5.1)

∫
Rn

φ
(
β0|u|

n
n−m
)
dx ≤ Cm,n ∀u ∈ Wm, n

m (Rn), ‖u‖m,n = 1

for some constant Cm,n > 0.
Let u ∈ Wm, n

m (Rn) be such that ‖u‖m,n = 1. Then there exists {uj}j≥1 ⊂
C∞

0 (Rn) such that uj → u in (Wm, n
m (Rn), ‖ · ‖m,n) and ‖uj‖m,n = 1 ∀j ≥ 1.

Therefore uj → u a.e. in Rn, up to subsequences, and by Fatou’s lemma∫
Rn

φ
(
β0|u|

n
n−m
)
dx ≤ lim inf

j→+∞

∫
Rn

φ
(
β0|uj |

n
n−m
)
dx.

But, for each fixed j ≥ 1, there exists Rj > 0 such that supp uj ⊂ BRj
, so∫

Rn

φ
(
β0|uj |

n
n−m
)
dx =

∫
BRj

φ
(
β0|uj |

n
n−m
)
dx.

It is clear that if we can bound the integral on the right-hand side of this last
equality with a constant independent of j, then the proof of (5.1) is completed and
hence Theorem 1.4 is thus proved. So it suffices to show that there exists a constant
Cm,n > 0 independent of j such that

(5.2)

∫
BRj

φ
(
β0|uj |

n
n−m
)
dx ≤ Cm,n ∀j ≥ 1.

To this aim, for fixed j ≥ 1, we define

fj := (−Δ+ I)kuj ,

and consider the problem

(5.3)

{
(−Δ+ I)kvj = f �

j in BRj
,

vj ∈ Wm, 2
N (BRj

).

We now apply Proposition 2.4, which leads to a comparison between the integral
in (5.2) and an analogous one involving vj , as pointed out in Remark 2.2. In this
way we obtain the estimate∫

BRj

φ
(
β0|uj |

n
n−m
)
dx ≤

∫
BRj

φ
(
β0|vj |

n
n−m
)
dx.

This estimate reduces the proof of (5.2) to the inequality

(5.4)

∫
BRj

φ
(
β0|vj |

n
n−m
)
dx ≤ Cm,n
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for some constant Cm,n > 0 independent of j. But, as already noticed in Remark

2.2, vj ∈ W
m, n

m

N, rad(BR) and by (1.5)

‖vj‖Wm, n
m

≤ ‖vj‖m,n = ‖uj‖m,n = 1.

Thus (5.4) is a consequence of Proposition 1.1. �
We end the section with the proof of Proposition 1.2.

Proof of Proposition 1.2. As in the proof of Theorem 4.1, by density arguments it
suffices to prove that (1.7) holds for functions in

C∞
N (Ω) :=

{
u ∈ C∞(Ω) ∩ Cm−2(Ω)

∣∣∣ u|∂Ω = Δju|∂Ω = 0 , 1 ≤ j < k :=
m

2

}
.

Let u ∈ CN
∞(Ω) be such that ‖u‖m,n ≤ 1. We define

f := (−Δ+ I)ku,

and we consider the problem

(5.5)

{
(−Δ+ I)kv = f � in Ω�,

v ∈ Wm, 2
N (Ω�),

where Ω� is the ball in Rn centered at 0 ∈ Rn with the same measure as Ω. Thus, as
Ω is a bounded domain, we can apply the iterated version of the Trombetti-Vazquez
comparison principle (see Remark 2.1) obtaining that∫

Ω

φ
(
β0|u|

n
n−m
)
dx ≤

∫
Ω�

φ
(
β0|v|

n
n−m
)
dx,

and the last integral is bounded by a constant Cm,n > 0 independent of the domain
Ω as a consequence of Proposition 1.1. �

6. Sharpness

We have already mentioned in the Introduction that Kozono et al. ([11], Corol-
lary 1.3) proved that the supremum

sup
u∈Wm, n

m (Rn), ‖u‖m,n≤1

∫
Rn

φ
(
β|u| n

n−m
)
dx

is infinite for β > β0. To do this, they argue by contradiction using Bessel potentials
and the sharpness of Adams’ inequality (1.2), while here we will exhibit a sequence
of test functions for which the integral in (1.3) can be made arbitrarily large, if the
exponent β0 is replaced by a number β > β0.

In the case m = 2 and n = 4, we will consider a sequence of test functions that
was used in [15] to prove a generalized version of Adams’ inequality for bounded
domains in R4. The following proposition gives the sharpness of inequality (1.3) in
the case m = 2 and n = 4.

Proposition 6.1. Assume that β > 32π2. Then for any domain Ω ⊆ R4

sup
u∈W 2, 2

0 (Ω), ‖u‖2, 4≤1

∫
Ω

(eβu
2 − 1) dx = +∞.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SHARP ADAMS-TYPE INEQUALITIES IN R
n 667

Proof. Without loss of generality we assume that the unit ball B1 ⊂ Ω. For ε > 0,
we define

(6.1) uε(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1

32π2 log
1
ε − |x|2√

8π2ε log 1
ε

+ 1√
8π2 log 1

ε

|x| ≤ 4
√
ε,

1√
2π2 log 1

ε

log 1
|x|

4
√
ε < |x| ≤ 1,

ηε |x| > 1,

where ηε ∈ C∞
0 (Ω) is such that ηε|∂B1

= ηε|∂Ω = 0 , ∂ηε

∂ν |∂B1
= 1√

2π2 log 1
ε

, ∂ηε

∂ν |∂Ω =

0 and ηε, |∇ηε|, Δηε are all O
(
1/
√

log 1
ε

)
. If 0 < ε < 1, then we have that

uε ∈ W 2, 2
0 (Ω), and easy computations give

‖uε‖22 = o
( 1

log 1
ε

)
, ‖∇uε‖22 = o

( 1

log 1
ε

)
, ‖Δuε‖22 = 1 + o

( 1

log 1
ε

)

and ‖uε‖2, 4 =
(
‖Δuε‖22+2‖∇uε‖22+ ‖uε‖22

)1/2
→ 1 as ε → 0+. Now we normalize

uε, setting

ũε :=
uε

‖uε‖2, 4
∈ W 2, 2

0 (Ω)

for ε > 0 sufficiently small. Since

ũε ≥
1

‖uε‖2, 4

√
1

32π2
log

1

ε
on B 4

√
ε ,

we have

sup
u∈W 2, 2

0 (Ω), ‖u‖2, 4≤1

∫
Ω

(eβu
2 − 1) dx ≥ lim

ε→0+

∫
B 4√ε

(eβũ
2
ε − 1) dx

≥ lim
ε→0+

2π2
(
e

1
‖uε‖2

β

32π2 log 1
ε − 1

)[r4
4

] 4
√
ε

0

= +∞.

�

The test functions uε with ε > 0 defined in (6.1) of the above proof also give the
sharpness of inequalities (1.6), (1.7), and (1.8) in the case m = 2 and n = 4.

We now consider the general case m = 2k < n with k a positive integer. In this
case the sequence of test functions which gives the sharpness of Adams’ inequality in
bounded domains in [1] also gives the sharpness of Adams’ inequality in unbounded
domains.

Proposition 6.2. Assume that β > βm. Then, for any domain Ω ⊆ Rn

sup

u∈W
m, n

m
0 (Ω), ‖u‖m,n≤1

∫
Ω

φ
(
β|u| n

n−m
)
dx = +∞.

Proof. Without loss of generality we assume that the unit ball B1 ⊂ Ω. Let φ ∈
C∞([0, 1]) be such that

φ(0) = φ′(0) = · · · = φm−1(0) = 0,

φ(1) = φ′(1) = 1, φ′′(1) = · · · = φ(m−1)(1) = 0.
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For 0 < ε < 1
2 we set

H(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εφ
(
t
ε

)
0 < t ≤ ε,

t ε < t ≤ 1− ε,

1− εφ
(
1−t
ε

)
1− ε < t ≤ 1,

1 1 < t,

and the choice of 0 < ε < 1
2 will be made during the proof. We introduce Adams’

test functions

ψr(|x|) := H

( log 1
|x|

log 1
r

)
∀x ∈ Rn \{0}.

By construction, for r > 0 sufficiently small, ψr ∈ W
m, n

m
0 (Ω), ψ(|x|) = 1 for

x ∈ Br \ {0}, and Adams in [1] proved that

‖∇mψr‖
n
m
n
m

≤ ωn−1a(m, n)
n
m

(
log

1

r

)1− n
m

Ar,

where

a(m, n) :=
β

n−m
n

0

nσ
m
n
n

, Ar = Ar(m, n) :=

[
1 + 2ε

(
‖ψ′‖∞ +O

(
(log 1/r)−1

)) n
m

]
.

Easy computations also give that for r > 0 sufficiently small

‖ψr‖
n
m
n
m

= o
((

log
1

r

)−n−m
m

)
,

‖∇jψr‖
n
m
n
m

= o
((

log
1

r

)−n−m
m

)
∀j ∈ {1, 2, . . . , m− 1}.

Now we define

ur(|x|) :=
(
log

1

r

)n−m
n · ψr(|x|) ∀x ∈ Rn \{0}.

We can notice that for r > 0 sufficiently small ur∈W
m, n

m
0 (Ω), ur(|x|)=

(
log 1

r

)n−m
n

for x ∈ Br \ {0} and

‖ur‖
n
m
m,n ≤ ‖∇mu‖

n
m
n
m

+ cm,n

(
‖ur‖

n
m
n
m

+

m−1∑
j=1

‖∇jur‖
n
m
n
m

)

≤ ωn−1a
n
m (m, n)

(
Ar + o(1)

)
,

so in particular

‖ur‖
n

n−m
m,n ≤ ω

m
n−m

n−1 a
n

n−m (m, n)
(
Ar + o(1)

) m
n−m =

β0

n

(
Ar + o(1)

) m
n−m .
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Therefore, for r > 0 sufficiently small, we have

sup

u∈W
m, n

m
0 (Ω), ‖u‖m,n≤1

∫
Ω

φ
(
β|u| n

n−m
)
dx ≥ lim

r→0+

∫
Br

φ

(
β
( |ur|
‖ur‖m,n

) n
n−m

)
dx

≥ lim
r→0+

σnφ

(
β

‖ur‖
n

n−m
m,n

log
1

r

)
rn

≥ lim
r→0+

σne
log r

(
n− β

‖ur‖
n

n−m
m, n

)
.

If we choose 0 < ε < 1
2 so that

β0 < β0

(
1 + 2ε‖φ′‖

n
m∞
) m

n−m < β,

then

lim
r→0+

(
n− β

‖ur‖
n

n−m
m,n

)
≤ n

(
1− β

β0(1 + 2ε‖φ′‖
n
m∞)

m
n−m

)
< 0

and

lim
r→0+

σne
log r

(
n− β

‖ur‖
n

n−m
m, n

)
= +∞

�

The same proof also gives the sharpness of inequalities (1.6), (1.7), and (1.8) in
the general case m = 2k < n with k a positive integer.
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93. MR2580505 (2011a:46049)

[5] D. Cassani, B. Ruf, C. Tarsi, Best Constants for Moser Type Inequalities in Zygmund
Spaces, Mat. Contemp., 36 (2009), 79–90. MR2582539 (2010m:46046)

[6] G. Chiti, Orlicz norms of the solutions of a class of elliptic equations, Boll. UMI A(5), vol.
16 (1979), no. 1, 178–185. MR0530146 (80h:35004)

[7] A. Cianchi, Moser-Trudinger Inequalities without Boundary Conditions and Isoperimetric
Problems, Indiana Univ. Math. J. 54 (2005), No. 3, 699–705. MR2151230 (2006a:26031)

[8] F. Gazzola, H. C. Grunau, G. Sweers, Optimal Sobolev and Hardy-Rellich Constants Un-
der Navier Boundary Conditions, Ann. Ma. Pura Appl. (4) 189 (2010), No. 3, 475–486.
MR2657420

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=960950
http://www.ams.org/mathscinet-getitem?mr=960950
http://www.ams.org/mathscinet-getitem?mr=2669653
http://www.ams.org/mathscinet-getitem?mr=2669653
http://www.ams.org/mathscinet-getitem?mr=1132783
http://www.ams.org/mathscinet-getitem?mr=1132783
http://www.ams.org/mathscinet-getitem?mr=2580505
http://www.ams.org/mathscinet-getitem?mr=2580505
http://www.ams.org/mathscinet-getitem?mr=2582539
http://www.ams.org/mathscinet-getitem?mr=2582539
http://www.ams.org/mathscinet-getitem?mr=0530146
http://www.ams.org/mathscinet-getitem?mr=0530146
http://www.ams.org/mathscinet-getitem?mr=2151230
http://www.ams.org/mathscinet-getitem?mr=2151230
http://www.ams.org/mathscinet-getitem?mr=2657420


670 BERNHARD RUF AND FEDERICA SANI
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