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SHARP ASYMPTOTIC RESULTS FOR SIMPLIFIED
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We study the asymptotic behavior of a mutation–selection genetic
algorithm on the integers with finite population of size p ≥ 1. The mutation is
defined by the steps of a simple random walk and the fitness function is linear.
We prove that the normalized population satisfies an invariance principle,
that a large-deviations principle holds and that the relative positions converge
in law. After n steps, the population is asymptotically around

√
n times the

position at time 1 of a Bessel process of dimension 2p − 1.

1. Introduction.

1.1. Motivation. Holland [9] introduced genetic algorithms as an optimization
method, inspired by a biological analogy with (what one assumes to be) the
mechanisms of Darwinian evolution. They are now a popular tool for solving hard
combinatorial optimization problems. In these algorithms, a finite population of
particles evolves under the action of three operators:

• Selection randomly resamples the population. Particles with higher fitness are
more likely to be selected, and there is a tendency to eliminate the particles with
lower fitness.

• Mutation randomly modifies each particle.
• Mating creates a new population of “offspring” from pairs of particles of the

previous population.

In a combinatorial optimization context, particles are feasible solutions, and the
fitness of a particle is the function to be maximized. Thus, the selection operator
directs the evolution toward an increase in the fitness, while mutation and mating
preserve the population diversity and allow the algorithm to visit large parts of the
space of solutions.

Despite the successes that genetic algorithms encounter in practical applications
and the numerous experimental studies of their properties, there exist few rigorous
results on their behavior. Among the exceptions is Cerf [5], who obtained
asymptotic convergence results for genetic algorithms with rare transitions. See
also Rabinovich and Wigderson [13], who studied the convergence speed of several

Received March 2001; revised September 2002.
AMS 2000 subject classifications. 60F05, 60F10, 60F17, 92D15.
Key words and phrases. Genetic algorithm, invariance principle, large-deviations, population

dynamics, random walks, interacting particle systems.

1534



A MUTATION–SELECTION ALGORITHM 1535

genetic algorithms defined on binary strings and the rate of escape of algorithms
defined on the integers.

The algorithms we study belong to this latter category. We deliberately choose
a very simplified context to get a detailed understanding of the effects of selection
through a fully rigorous mathematical treatment. We take the fitness function to
be f (x) = x, and our algorithm does not use a mating operator, but mutation
and selection only. The price to pay is that our results do not apply to complex
optimization situations. However, this simple model has been used in biology
to study the evolution of a population of viruses; see [10] and [15]. Moreover,
Bonnaz [4] applied theoretical physics methods to get predictions about its
behavior (asymptotics of the mean and of the variance of the population) and
supported them by numerical simulations. Our results confirm these predictions.

1.2. Description of the model and notation. A mutation–selection genetic
algorithm on the integers with finite population of size p ≥ 1 is specified by a
simple random walk and by the fitness function f (x) = x, as follows.

Let N denote the set of nonnegative integers {0,1,2, . . . }. The algorithm is
defined as a Markov chain Xn = (X

(i)
n )1≤i≤p with state space N

p and starting

state X0 = (1, . . . ,1). The particles (or individuals) X
(1)
n , . . . ,X

(p)
n comprise the

population at time n. Thus, the number of particles is constant equal to p and does
not vary during the time evolution of the population. Note that X

(i)
n stands for both

the location of the individual and its fitness, since we consider the case f (x) = x.
The transitions of the Markov chain Xn are defined as follows:

1. Selection step: Xn → Yn. If Xn = (0, . . . ,0), then Yn = (1, . . . ,1). Else, each
Y

(i)
n , 1 ≤ i ≤ p, is chosen randomly and independently of the others in the set

{X(i)
n , 1 ≤ i ≤ p} according to the probability law

1

Sn

p∑
i=1

X(i)
n δ

X
(i)
n

where Sn =
p∑

i=1

X(i)
n .

Note that this procedure ensures that all Y
(i)
n ’s are different from 0. Thus, the

choice of Y
(i)
n among the X

(i)
n ’s is biased in favor of those X

(i)
n that have the

larger values. The weight of X
(i)
n in this resampling process is proportional to its

value, so we shall refer to this selection procedure as proportional selection, as
opposed to the uniform or neutral selection procedure, which would consist of
resampling the X

(i)
n ’s with equal weights 1/p, regardless of their actual values.

2. Mutation step: Yn → Xn+1. Each particle Y
(i)
n evolves independently of the

others and performs one step of a simple random walk on N (symmetric, to the
nearest neighbors). The new positions are X

(i)
n+1,1 ≤ i ≤ p.

Note that, at a given time, several particles may assume the same value. The
choice Xn = (0, . . . ,0) → Yn = (1, . . . ,1) is arbitrary. The point here is to prevent
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particles from taking negative values. Other choices for the mutation process are
possible.

We shall also consider the neutral selection chain, defined as a Markov chain
Vn = (V

(i)
n )1≤i≤p with state space N

p and starting state V0 = (0, . . . ,0), by the
following transitions.

1. Neutral selection step: Vn → Wn. Each V
(i)
n , 1 ≤ i ≤ p, is chosen randomly

and independently of the others in the set {V (i)
n , 1 ≤ i ≤ p} according to the

probability law
p∑

i=1

1

p
δ
V

(i)
n

.

2. Mutation step: Wn → Vn+1. Each particle W
(i)
n evolves independently of the

others and performs one step of a simple symmetric random walk on N with
boundary transition probabilities p0→0 = p0→1 = 1/2. The new positions are
V

(i)
n+1,1 ≤ i ≤ p.

We denote by Fn and Gn two σ -algebras:

Fn = σ(X0, Y0, . . . ,Xn−1, Yn−1,Xn),

and Gn is the σ -algebra generated by Fn ∪ σ(Yn). We set

Sn =
p∑

i=1

X(i)
n , Tn =

p∑
i=1

Y (i)
n ,

Fn = Sn/p, Gn = Tn/p, �Fn = Fn+1 − Fn.

If x ∈ N
p , Ex denotes the expectation under the law of the Markov chain X starting

from X0 = x. The barycenter m(x) and the diameter d(x) of x are

m(x) = (x1 + · · · + xp)/p, d(x) = sup
1≤i,j≤p

|xi − xj |.

Finally, Mn(t) = X�nt�/
√

n and Zn(t) = m(Mn(t)) = F�nt�/
√

n.

1.3. Statement of the results. For any fixed p, we describe the asymptotic
behavior of (Xn), when n goes to ∞, as follows.

THEOREM 1. The sequence of processes (Mn)n≥0 converges in law in the
Skorohod space D([0,1],R

p) to (1, . . . ,1)R, where R is a Bessel process of
dimension (2p − 1), starting from 0.

THEOREM 2. For all i, the sequence (X
(i)
n /n) satisfies a large-deviations

principle on [0,1] with good rate function I , where I is the rate function
associated with a simple reflected random walk on N, that is,

I (a) = 1
2

[
(1 − a) log(1 − a) + (1 + a) log(1 + a)

]
.
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To state our last result, say that two elements x, y ∈ N
p are equivalent whenever

x − y is an integer multiple of (1, . . . ,1) and denote by �(x) the class of x for
this equivalence relation. Thus, �(Xn) informs us of the relative positions of the
particles in the cloud Xn. Theorem 3 essentially says that these relative positions
converge in law and that performing neutral selection instead of proportional
selection would lead to the same limiting law.

THEOREM 3. �(Xn) converges in law to a law πp, which is also the limiting
law in the case of neutral selection.

(See the remarks about the description of πp in Section 6.)

Theorem 1 has been announced in [2], and weaker versions of Theorems 1 and 2
have been announced in [1].

First, note that, since there is always a positive probability bounded away from 0
of choosing p times the same value in the selection step, the diameter roughly does
not grow with n. This explains why the whole population Xn behaves like a single
point on the

√
n scale. Note that the

√
n growth rate of the fitness is the same

with proportional or neutral selection for any population size p. Neutral selection
would lead, in the limit, to reflected Brownian motion. However, as p increases,
the limiting law for Xn is more and more different from the reflected normal law
that would hold with neutral selection. It gives more and more weight to the large
values. Moreover, on the n scale, the large-deviations principle is identical to the
case of a simple reflected random walk. Thus, Theorems 2 and 3 imply that in the
limit, as n → +∞, selection has no effect on Xn/n or �(Xn).

The behavior of the infinite-population version of this model is strikingly
different; see [12]. In the infinite-population model, the fitness grows linearly,
as opposed to our

√
n scaling factor. This is due to the fact that, in the

infinite-population version, the probability of choosing the same value for all
the components is 0, whereas in the finite-population version, this probability is
bounded away from 0 and essentially forces the process to become closer and
closer to neutral selection.

1.4. Contents. In Section 2, we prove that the cloud of particles goes to ∞
in probability, and we give a stochastic upper bound of the diameter of the cloud.
Section 3 collects technical lemmas. Sections 4 and 5 are devoted to the detailed
exposition of the invariance principle for the normalized cloud (Theorem 1) and of
the large-deviations principle (Theorem 2). In Section 6, we prove the convergence
in law of the nonnormalized cloud of particles (Theorem 3). In Section 7, we
present numerical simulations of the algorithm.
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2. Two preliminary results. From Lemma 1, the cloud of particles Xn is
stochastically bounded from below by a neutral selection chain Vn. For fixed
n and i, V

(i)
n follows the same law as the position at time n of a simple

reflected random walk. However, for fixed i, the component process (V
(i)
n )n =

(V
(i)
0 ,V

(i)
1 ,V

(i)
2 , . . .) itself is not a simple random walk. Lemma 2 provides a

stochastic upper bound on the diameter of Xn.

LEMMA 1. Let x ∈ N
p. It is possible to define on the same probabil-

ity space two p-particle processes Xn = (X
(1)
n , . . . ,X

(p)
n ) ∈ N

p and Vn =
(V

(1)
n , . . . , V

(p)
n ) ∈ N

p , such that:

• the process (Xn) follows the law of the algorithm under study, started at x, as
defined in Section 1.2;

• the process (Vn) follows the law of the neutral selection chain, started at 0, as
defined in Section 1.2;

• V
(i)
n ≤ X

(i)
n , almost surely.

As a consequence, for fixed n and i, V
(i)
n follows the law of the position at

time n of a simple symmetric random walk on N starting from 0 with transition
probabilities p0→0 = p0→1 = 1/2. By the null recurrence of such a random walk,
we get the following result.

COROLLARY 1. For fixed 1 ≤ i ≤ p, X
(i)
n goes to ∞ in probability, that is,

∀K > 0, P
[
X(i)

n ≤ K
] −→
n→+∞ 0.

PROOF OF LEMMA 1. We design a coupling between the process (Xn)n≥0 and
another mutation–selection process (Vn)n≥0 with the same mutation steps but with
neutral selection, started at 0. It should be intuitively clear that (Xn) dominates
(Vn) in some sense, since the selection steps of (Xn) favor individuals with large
values, whereas the selection steps of (Vn) give equal weight to all individuals,
regardless of their respective values.

Before giving precise definitions, let us give an informal description of how our
coupling argument works. We start with two p-tuples Xn and Vn such that, for all
1 ≤ i ≤ p, V

(i)
n ≤ X

(i)
n , and we want to prove that we may simultaneously apply

a proportional selection step to Xn, Xn → Yn, and a neutral selection step to Vn,
Vn → Wn, so as to preserve the ordering and get W

(i)
n ≤ Y

(i)
n for all 1 ≤ i ≤ p. For

the sake of simplicity, assume that all the individuals X
(i)
n have distinct values.

Fix an index 1 ≤ i ≤ p. It is not hard to check that, for all 1 ≤ k ≤ p, the
probability that Y

(i)
n is chosen among the k individuals in Xn that have the smallest

values is less than k × 1/p. Note that k × 1/p is the probability that, during
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a neutral selection step, W
(i)
n is chosen among the V

(j)
n ’s whose indices j are

precisely those of the k smallest individuals in Xn. Thus, it may be clear that
we can couple the proportional selection step Xn → Yn and the neutral selection
step Vn → Wn in such a way that, whenever Y

(i)
n is chosen to be, say, the kth

smallest individual in Xn, W
(i)
n is chosen to be one of the V

(j)
n ’s whose indices j

are precisely those of the k smallest individuals in Xn. Since all those V
(j)
n ’s

have a smaller value than the kth smallest individual in Xn, owing to the fact that
V

(g)
n ≤ X

(g)
n for all g, such a coupling preserves the ordering and leads to p-tuples

Yn and Wn such that, for all i, W
(i)
n ≤ Y

(i)
n .

Let us now give a formal description. We start with V0 = (0, . . . ,0) and X0 =
x ∈ N

p , so the ordering condition V
(i)
0 ≤ X

(i)
0 for all 1 ≤ i ≤ p is obviously met.

Assume that the coupling has already been constructed with the required properties
up to time n.

We explicitly express the selection steps Xn → Yn and Vn → Wn with the help
of p uniform random variables U1, . . . ,Up independent and independent from

the past. Denote by x1 = X
(q1)
n ≤ · · · ≤ xp = X

(qp)
n the ordered values of the

p-tuple Xn and let s = ∑p
i=1 xi . When Xn �= (0, . . . ,0), the individuals Y

(i)
n are

chosen as

Y (i)
n = xki

,

where, for all 1 ≤ i ≤ p, ki is uniquely defined by

ki−1∑
j=1

xj < sUi ≤
ki∑

j=1

xj ∀ i = 1, . . . , p.

When Xn = (0, . . . ,0), we set Yn = (1, . . . ,1).
We easily check that this construction is consistent with the definition of the

process (Xn):

• Conditional on Xn, the Y
(i)
n are independent, since the definition of ki refers

only to Xn and the random variable Ui .
• Conditional on Xn, for all 1 ≤ r ≤ p, the probability that Y

(i)
n is chosen as X

(qr )
n

equals

s−1
r∑

j=1

xj − s−1
r−1∑
j=1

xj = s−1xr = 1

Sn

X(qr ).

Let us now express the neutral selection step Vn → Wn in terms of the same
uniform random variables Ui .

We reindex the V
(i)
n according to the same q1, . . . , qp that were defined by the

reordering of the X
(i)
n : v1 = V

(q1)
n , . . . , vp = V

(qp)
n .
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The individual W
(i)
n is chosen as

W(i)
n = vli ,

where li is uniquely defined by

li − 1 < pUi ≤ li ∀ i = 1, . . . , p.

Again, we check that this construction is consistent with the definition of the
process (Vn):

• Conditional on Vn and Xn, the W
(i)
n are independent since the definition of li

refers only to the random variable Ui .
• Conditional on Vn and Xn, for all 1 ≤ r ≤ p, the probability that W

(i)
n is chosen

as V
(qr )
n equals 1/p.

Conditioning with respect to Xn is a priori necessary in the above argument, since
the indices q1, . . . , qp depend on Xn and were used in the definition of the W

(i)
n .

However, the above argument shows that, conditional on Vn and Xn, all choices

Wn = (V
(i1)
n , . . . , V

(ip)
n ) are equally likely, with common probability 1/pp. Thus,

the conditional law of Wn with respect to both Vn and Xn is, in fact, independent
from Xn, and our construction is consistent with the definition of Vn.

Let us now prove that the ordering is preserved by our definition of the selection
steps. Assume first that Xn �= (0, . . . ,0). The key observation is that, since (xi)i
is a nondecreasing sequence, li must be less than ki for all 1 ≤ i ≤ p. As a
consequence, xli ≤ xki

. Since we assume that, for all i, V
(i)
n ≤ X

(i)
n , vl is less

than xl for all l. Putting these inequalities together, we get

W(i)
n = vli ≤ xli ≤ xki

= Y (i)
n .

When Xn = (0, . . . ,0), Vn must also be equal to (0, . . . ,0) since we assume
that V

(i)
n ≤ X

(i)
n for all i. In this case, Yn = (1, . . . ,1) by definition, and Wn =

(0, . . . ,0), so we again have that W
(i)
n ≤ Y

(i)
n for all i.

Let us now define the mutation steps.
Let ε1, . . . , εp be independent random variables, independent from the past of

symmetric ±1 Bernoulli law:

X
(i)
n+1 = (

Y (i)
n + εi

)
,

V
(i)
n+1 = sup

{
W(i)

n + εi,0
}
.

It is routine to check that this construction is consistent with the definitions of
Xn and Vn and that V

(i)
n+1 ≤ X

(i)
n+1.
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We have thus designed a step-by-step coupling between (Xn) and (Vn) such that
the ordering is preserved. �

The proof of the next lemma is based on the following crucial tool.

DEFINITION 1. For n ≥ 0, call n a crunch time if the population Yn is
concentrated on one point. That is, the selection step Xn → Yn amounts to
choosing p times the same value.

LEMMA 2. Let X0 = x ∈ N
p . For all n ∈ N

∗, there is a random variable An

of geometric law on N
∗ with parameter p1−p , such that

d(Xn) ≤ 2An1{An≤n} + (
d(x) + 2n

)
1{An>n}.

As a special case, if d(x) = 0,

d(Xn) ≤ 2An.

PROOF. The idea of the proof is the following: the probability that n is
a crunch time is strictly bounded away from 0. Hence, looking backwards in
time, the random time interval between n and the last crunch time before n has
subgeometric tail. Since a mutation step does not increase the diameter by more
than a constant, a bound on the diameter at time n follows.

Given Fn, the conditional probability qn that n is a crunch time satisfies

qn ≥ 1

S
p
n

p∑
k=1

(
X(k)

n

)p
.

Indeed, if Xn = (0, . . . ,0), then qn = 1. Else, the probability of selecting p times
the index j is (X

(j)
n )p/S

p
n . In both cases, qn ≥ p1−p. Thus, one may assume

that, conditional on Xn, the proportional selection step Xn → Yn is built owing
to random variable Un with uniform law on [0,1], such that:

• for all 1 ≤ k ≤ p, if

k−1∑
i=1

(
X(i)

n /Sn

)p
< Un ≤

k∑
i=1

(
X(i)

n /Sn

)p
,

then Y
(1)
n = · · · = Y

(p)
n = X

(k)
n ;

• if
p∑

i=1

(
X(i)

n /Sn

)p
< Un ≤ 1,

then the Y
(i)
n ’s are chosen among the X

(i)
n ’s consistently with the definition of

proportional selection (an explicit definition is not needed).
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Consider now the algorithm up to time n and assume that the proportional
selection steps are built using i.i.d. uniform random variables U0, . . . ,Un as
explained above. Define Bn by

Bn = n − sup
({

k < n, Uk ≤ p1−p
} ∪ {−1}).

The above construction yields

{Bn ≤ n} ⊂ {
d(Yn−Bn) = 0

}
.

Moreover, the independence of the random variables Un implies that Bn may be
written as Bn = min{An, (n + 1)}, where An follows a geometric law on N

∗ with
parameter p1−p. A selection step does not increase the diameter of the cloud of
particles. A mutation step does not increase the diameter by more than 2. Hence,

• if Bn ≤ n (i.e., if An ≤ n), then d(Xn) ≤ 2Bn;
• if Bn = n + 1 (i.e., if An > n), then d(Xn) ≤ d(x) + 2n. �

COROLLARY 2. For all x ∈ N
p and k ∈ N, there is a constant αp,k such that,

for all n ≥ 0, the algorithm started at X0 = x satisfies

Exd(Xn)
k ≤ d(x)k + αp,k.

3. Technical lemmas. Lemma 3 computes Ex(�Fn|Fn) and Ex((�Fn)
2|Fn).

LEMMA 3. For all x ∈ N
p ,

Ex(�Fn|Fn) = 1{Xn �=0}
1

p2Fn

∑
1≤i<j≤p

(
X(j)

n − X(i)
n

)2 + 1{Xn=0}

and

Ex
(
(�Fn)

2∣∣Fn

) = p−1 + p−2
∑

1≤i �=j≤p

[
1{Xn �=0}Hi,j (Xn) + 1{Xn=0}

]

+ p−2
∑

1≤i≤p

[
1{Xn �=0}Ki(Xn) + 1{Xn=0}

]
,

where we used the following shorthand:

Hi,j (Xn) = ∑
1≤a,b≤p

X
(a)
n X

(b)
n

S2
n

(
X(a)

n − X(i)
n

)(
X(b)

n − X(j)
n

)
,

Ki(Xn) = ∑
1≤a≤p

X
(a)
n

Sn

(
X(a)

n − X(i)
n

)2
.
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PROOF. We prove the formula for (�Fn)
2 and omit the easier proof of the

formula for �Fn. Note that

Ex
(
(�Fn)

2∣∣Gn

) = E
((

Gn − Fn + (ε1 + · · · + εp)/p
)2∣∣Gn

)
,

where (εi)i is i.i.d., of symmetric ±1 Bernoulli law and independent of Gn. Hence,

Ex(
(�Fn)

2∣∣Gn

) = (Gn − Fn)
2 + p−1.

Conditioning again by Fn, we get the result of the lemma by noting that

Ex(
(Gn − Fn)

2∣∣Fn

) = p−2
∑

1≤i,j≤p

Ex((
Y (i)

n − X(i)
n

)(
Y (j)

n − X(j)
n

)∣∣Fn

)
.

�

Lemma 4 states that the transition probabilities of the selection step can
be approximated by those corresponding to a neutral selection. Lemma 2
means roughly that the diameter d(Xn) remains uniformly bounded. Since, by
Corollary 1, Sn goes to ∞, this means that the difference between any two
transition probabilities X

(i)
n /Sn and X

(j)
n /Sn is small on average.

LEMMA 4. Let x = (x(1), . . . , x(p)) be any p-tuple of nonnegative real
numbers, with x �= 0. Set S = x(1) + · · · + x(p). For k and i1, . . . , ik in {1, . . . , p}
and for n ≥ 0, ∣∣∣∣∣

(
k∏

j=1

x(ij )

S

)
− 1

pk

∣∣∣∣∣ ≤ kd(x)

S
.

PROOF. By induction on k. If k = 1,∣∣∣∣x(i)

S
− 1

p

∣∣∣∣ =
∣∣∣∣∣
∑p

j=1(x(i) − x(j))

pS

∣∣∣∣∣ ≤ d(x)

S
.

If the result holds for all l ≤ k − 1 with k ≥ 2, one has, reducing to the same
denominator,∣∣∣∣∣

k∏
l=1

x(il)

S
− 1

pk

∣∣∣∣∣ = 1

(pS)k

∣∣∣∣∣ ∑
1≤j1,...,jk≤p

(
k∏

l=1

x(il) −
k∏

l=1

x(jl)

)∣∣∣∣∣.
Adding and subtracting x(i1)× · · ·× x(ik−1)× x(jk) to each term of this sum, we
get∣∣∣∣∣

k∏
l=1

x(il)

S
− 1

pk

∣∣∣∣∣ = 1

(pS)k

∣∣∣∣∣ ∑
1≤j1,...,jk≤p

[(
x(ik) − x(jk)

) k−1∏
l=1

x(il)

+ x(jk)

(
k−1∏
l=1

x(il) −
k−1∏
l=1

x(jl)

)]∣∣∣∣∣,



1544 J. BÉRARD AND A. BIENVENÜE

which leads to the bound∣∣∣∣∣
k∏

l=1

x(il)

S
− 1

pk

∣∣∣∣∣ ≤
(

k−1∏
l=1

x(il)

S

)∣∣∣∣∣
p∑

jk=1

x(ik) − x(jk)

pS

∣∣∣∣∣
+ x(jk)

S

∣∣∣∣∣ ∑
1≤j1,...,jk−1≤p

(
k−1∏
l=1

x(il) −
k−1∏
l=1

x(jl)

)∣∣∣∣∣
≤

∣∣∣∣x(ik)

S
− 1

p

∣∣∣∣ +
∣∣∣∣∣
(

k−1∏
l=1

x(il)

S

)
− 1

pk−1

∣∣∣∣∣
≤ (1 + (k − 1))d(x)

S

by the induction hypothesis. �

We omit the proof of Lemma 5.

LEMMA 5. Let α ∈] −1,1[ and q ∈ N. As r goes to ∞,

r−1∑
k=0

αr−1−kkq = 1

1 − α
rq + o(rq).

4. Invariance principle. The following proposition is the key result for
our proof of the invariance principle. It gives asymptotic estimates of the even
moments of Fn that hold uniformly with respect to the initial value X0 = x of
the chain. Theorem 1 follows, using the Markov property of X and the method of
moments. We use the following definition in the statement of the proposition.

DEFINITION 2. For h ∈ N, the function (x, n) �→ β(x,n,h), defined on n ∈ N

and x ∈ N
p , satisfies the property (Qh) if β(x,n,h) is the sum of a finite number

of terms of the form

ε(x,n)m(x)injd(x)k with i, j, k ∈ N, 2j + i ≤ 2h,

where ε(x,n) is bounded and goes to 0 as n goes to ∞ uniformly with respect
to x.

PROPOSITION 1. For h ∈ N, the following property holds, which we denote
by (Ph). For x ∈ N

p ,

ExF 2h
n = f (x,n,h) + α(x,n,h),

where α(x,n,h) satisfies (Qh) and

f (x,n,h) =
h∑

i=0

fi(h)m(x)2inh−i with fi(h) ∈ R.
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The numbers fi(h) are uniquely determined by the following induction equations:

fh(h) = 1,

fi(h) = 2h(p − 1) + h(2h − 1)

h − i
fi(h − 1), 0 ≤ i ≤ h − 1.

(4.1)

Our proof of Proposition 1 is very technical. We defer it to Appendix A and
sketch the idea now. We use induction on q . The main step is to prove that, as
n → +∞, the difference

EF
2q
n+1 − EF 2q

n = E(Fn + �Fn)
2q − EF 2q

n(4.2)

involves only the expectations of the random variables F 2h
r with r ≤ n and

h ≤ q − 1. To see this, we show that, expanding the 2qth power in (4.2), the
leading terms when n → +∞ are those involving �Fn and (�Fn)

2 only. Using
the approximation of the transition probabilities of the selection step by uniform
ones (see Lemma 4), we thus express (4.2) in terms of expectations of F 2h

n and of

ϕh(Xn) = (
X(a)

n − X(b)
n

)2
F 2h

n

for h ≤ q − 1. The asymptotic behavior of quantities of the last type stems
from (Ph) and from an approximate contraction property of the selection operator
which reads as follows:

Eϕh(Xn+1) = λEϕh(Xn) + ψh

[
E(F 2i

r ); r ≤ n, i ≤ q − 1
](

1 + o(1)
)
,

where 0 < λ < 1 and ψh is explicit.

REMARK 1. The details of the proof of Proposition 1 yield that α(x,n,h)

contains no term of the form ε(x,n)m(x)2hd(x)k .

The numbers fi(h) in Proposition 4.1 are related to the (2p − 1)-dimensional
Bessel process (R(t))0≤t≤1 starting from 0. The law of R(t) is as follows.

LEMMA 6. For u ∈ R+,

EuR(t)2h =
h∑

i=0

fi(h)u2i th−i .

PROOF. Let d = 2p − 1 and ν = d/2 − 1 = p − 3/2. Using the explicit
expression of the density of the Bessel semigroup density (see [14], page 415)
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and formulas 6.631 and 9.212 of [8], we get

EuR(t)2h =
∫ ∞

0
t−1

(
y

u

)ν

y2h+1 exp
(
−u2 + y2

2t

)
Iν

(
uy

t

)
dy

= t−1u−ν exp
(
−u2

2t

)
(u/t)ν(h + ν + 1)

2ν+1(2t)−(h+ν+1)(ν + 1)

× �

(
h + ν + 1, ν + 1; u2

2t

)

= (2t)h
(h + ν + 1)

(ν + 1)
�

(
−h, ν + 1;−u2

2t

)

=
h∑

i=0

gi(h)u2i th−i ,

where � = 1F1 is the Kummer confluent hypergeometric function and Iν is the
modified Bessel function of the first kind (see [8] for precise definitions). By the
definition of 1F1, one has

g0(h) = d × (d + 2) × · · · × (
d + 2(h − 1)

)
and, for 1 ≤ i ≤ h,

gi(h) = g0(h)
h × (h − 1) × · · · × (h − i + 1)

(ν + 1) × (ν + 2) × · · · × (ν + 1 + i − 1)

1

2i i!
= g0(h)

h × (h − 1) × · · · × (h − i + 1)

d × (d + 2) × · · · × (d + 2(i − 1))
(i!)−1

=
(

h

i

) ∏
i≤j≤h−1

(d + 2j).

Since the gi(h) satisfy (4.1), we are done. �

The next two propositions study the finite-dimensional marginals of Zn.

PROPOSITION 2. The finite-dimensional distributions of the process Zn

converge to those of R.

PROOF. We prove by induction on m that, for t = (t1, . . . , tm), where the ti ’s
are nonnegative real numbers with ti < ti+1, and for h = (h1, . . . , hm), hi positive
integers, as n goes to ∞,

E
(
Zn(t1)

2h1 × · · · × Zn(tm)2hm
) → E

(
R(t1)

2h1 × · · · × R(tm)2hm
)
.

For m = 1, EZn(t)
h = n−hEF 2h�nt�, that is,

EZn(t)
h = n−h(f + α)(0, �nt�, h) = thf0(h) + o(1),
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according to Proposition 1 and Corollary 2. According to Lemma 6, EZn(t)
h

converges to ER(t)h as n goes to ∞. Assume now that the result holds for
i ≤ m, where m ≥ 1. For x ∈ N

p , r and i ∈ N, set φ(x, r, i) = Ex(F 2i
r ). Fix

h = (h1, . . . , hm+1) and set

F(n,m) = F
2h1�nt1� × · · · × F

2hm�ntm�n
−(h1+···+hm).

Then

E
(
Zn(t1)

2h1 × · · · × Zn(tm+1)
2hm+1

)
= E

(
F(n,m) × F

2hm+1
�ntm+1�

)
n−hm+1

= E
(
F(n,m)φ

(
X�ntm�, �ntm+1� − �ntm�, hm+1

)
n−hm+1

)
= E

(
F(n,m)(f + α)

(
X�ntm�, �ntm+1� − �ntm�, hm+1

)
n−hm+1

)
= An + Bn,

say, where An and Bn are the contributions of f and α, respectively. According to
Proposition 1, the error term Bn is a sum of terms of the form

bn,i,j = EF(n,m)ε
(
X�ntm�, �ntm+1� − �ntm�)

× F i�ntm�(�ntm+1� − �ntm�)j d
(
X�ntm�

)k
n−hm+1,

where ε(u, r) goes to 0 as r goes to ∞ uniformly with respect to u, and 2j + i ≤
2hm+1. According to Hölder’s inequality,

bn,i,j ≤ ε(�ntm+1� − �ntm�)(EF(n,m)2)1/2

× (�ntm+1� − �ntm�)jni/2−hm+1

× (
n−2iEF 4i�ntm�

)1/4(
Ed

(
X�ntm�

)4k)1/4
,

where ε(r) goes to 0 as r goes to ∞.
By the induction hypothesis, EF(n,m)2 and n−2iEF 4i�ntm� converge. Moreover,

according to Corollary 2, Ed(X�ntm�)4k is bounded. Hence, each bn,i,j goes to 0 as
n goes to ∞.

As regards the main term An,

An =
hm+1∑
i=0

EF(n,m)fi(hm+1)F
2i�ntm�(�ntm+1� − �ntm�)hm+1−in−hm+1

=
hm+1∑
i=0

fi(hm+1)EF
2h1�nt1� × · · · × F

2hm−1
�ntm−1� × F

2(hm+i)
�ntm� n−(h1+···+hm+i)

× (tm+1 − tm)hm+1−i
(
1 + o(1)

)
.
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Hence, according to the induction hypothesis, An converges to

A∞ =
hm+1∑
i=0

fi(hm+1)ER(t1)
2h1 × · · · × R

(
t
2hm−1
m−1

)
× R(tm)2(hm+i)(tm+1 − tm)hm+1−i

= E

(
R(t1)

2h1 × · · · × R
(
t2hm
m

)

×
hm+1∑
i=0

fi(hm+1)R(tm)2i(tm+1 − tm)hm+1−i

)
.

According to Lemma 6,

A∞ = ER(t1)
2h1 × · · · × R

(
t2hm
m

)
ER(tm)R(tm+1 − tm)2hm+1

= ER(t1)
2h1 × · · · × R(tm+1)

2hm+1,

and we are done with the proof of the induction.
Now, the method of moments entails that, for all m ≥ 1, the following

convergence in law holds:(
ε1Fn(t1), . . . , εmFn(tm)

) L→ (
ε1R(t1), . . . , εmR(tm)

)
as n goes to ∞, and where the εi ∈ {−1,+1} are i.i.d. random variables,
independent of Fn and R, following a symmetric ±1 Bernoulli law. The limiting
law is uniquely determined by its moments since, for all 0 ≤ t ≤ 1 and λ ∈ R+, the
moment-generating function E(eλRt ) is finite valued. The random variables Fn(ti)

and R(ti) being nonnegative, this implies finally that(
Fn(t1), . . . ,Fn(tm)

) L→ (
R(t1), . . . ,R(tm)

)
. �

PROPOSITION 3. There exists a constant Cp such that, for all 0 ≤ t1 ≤ t ≤
t2 ≤ 1,

E
(
Zn(t) − Zn(t1)

)2(
Zn(t) − Zn(t2)

)2 ≤ Cp(t2 − t1)
3/2.

PROOF. For x ∈ N
p and r, r1, r2 ∈ N, we define

ψ1(x, r) = Ex(
(Fr − F0)

2)
,

ψ2(x, r1, r2) = Ex
(
(Fr1 − F0)

2ψ1(Xr1, r2)
)
.

According to the Markov property, for all integers a < b < c, we have

E(Fb − Fa)
2(Fb − Fc)

2 = E
(
ψ2(Xa, b − a, c − b)

)
.(4.3)
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Since (s1 − s2)
2 ≤ |s2

1 − s2
2 | for nonnegative s1 and s2,

ψ1(x, r) = Ex(Fr − F0)
2 ≤ Ex|F 2

r − F 2
0 |.

The estimates of Proposition 1 and Remark 1 lead to the inequality:

Ex|F 2
r − F 2

0 | ≤ c(1)
p

(
1 + d(x)2)r.

Hence,

ψ2(x, r1, r2) ≤ Ex
(
(Fr1 − F0)

2c(1)
p

(
1 + d(Xr1)

2)
r2

)
.

According to Hölder’s inequality, we have

ψ2(x, r1, r2) ≤ c(1)
p r2

(
Ex(Fr1 − F0)

4)1/2(Ex
(
1 + d(Xr1)

2)2)1/2
.(4.4)

From Corollary 2, Ex(1 + d(Xr1)
2)2 ≤ c

(2)
p (1 + d(x)4). Using once again the

estimates of Proposition 1 and Remark 1, we get

Ex(Fr − F0)
4 ≤ c(3)

p

(
m(x)2r + r2)(1 + d(x)4)

.

Using this bound in (4.4), we obtain

ψ2(x, r1, r2) ≤ c(4)
p r2

(
m(x)2r1 + r2

1
(
1 + d(x)4))1/2

.

Hence, from (4.3),

E(Fb − Fa)
2(Fb − Fc)

2 ≤ (c − b)
[(

F 2
a (b − a) + (b − a)2)(

1 + d(Xa)
4)]1/2

.

Setting a = �t1n�, b = �tn� and c = �t2n�, we get

E
(
Zn(t) − Zn(t1)

)2(
Zn(t) − Zn(t2)

)2

≤ c(4)
p n−2(�t2n� − �tn�)
× (

E
[
m

(
X�t1n�

)2
(�tn� − �t1n�) + (�tn� − �t1n�)2](1 + d

(
X�t1n�

)4))1/2
.

Using Corollary 2 and Proposition 1, one can see that

En−1(m(
X�t1n�

)2(
1 + d

(
X�t1n�

)4))
is bounded from above by a constant since t1 ∈ [0,1]. We deduce that

E
(
Zn(t) − Zn(t1)

)2(
Zn(t) − Zn(t2)

)2 ≤ c(4)
p (t − t1)

√
t2 − t . �

PROOF OF THEOREM 1. The convergence in law of (Zn)n≥0 to R is
a consequence of the well-known Theorem 15.6 of [3], which states that
convergence in law of the finite-dimensional distributions of a process, together
with a tightness criterion, entails the convergence in law of the process on the
Skorohod space. Propositions 2 and 3 provide the convergence of the finite-
dimensional distributions of Zn(t) and the tightness criterion, respectively.
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Furthermore, according to Lemma 2, the p-dimensional process

n−1/2(X(i)
�n·� − X

(1)
�n·�

)
1≤i≤p

goes to 0 in probability as n goes to ∞ for the uniform distance on [0,1] and hence
for the Skorohod topology as well. �

5. Large-deviations principle. We study the Laplace transform

E exp
(
tX(i)

n

)
.

Here again, the idea of the proof is to write recursion relations in which we
approximate the transition probabilities of the selection steps by uniform ones.
With no loss of generality, we consider the case of X

(1)
n . For the sake of brevity,

we defer most of the proofs to Appendix B.

PROPOSITION 4. For t ≥ 0,

1

n
log E exp

(
tX(1)

n

) −→
n→+∞ log cosh(t).(5.1)

Let us sketch the idea of the proof. One has

E
(
et(X

(1)
n+1)

∣∣Fn

) = 1{Xn �=0}
∑

1≤u≤p

X
(u)
n

Sn

et(X
(u)
n ) cosh(t) + 1{Xn=0}et cosh(t).

Hence,

E
(
et(X

(1)
n+1)

) = cosh(t)E
(
et(X

(1)
n )

)(
1 + mn(t)

)
,(5.2)

with

mn(t) = 1

E(et(X
(1)
n ))

E

(
1{Xn �=0}

∑
1≤u≤p

X
(1)
n − X

(u)
n

Sn

et(X
(1)
n )

)

+ 1

E(et(X
(1)
n ))

P[Xn = 0](et − 1).

(5.3)

We want to prove that mn(t) → 0 as n → ∞. We first note that, in the definition
of mn(t), the last term

1

E(et(X
(1)
n ))

P[Xn = 0](et − 1)

goes to 0 since P[Xn = 0](et − 1) is bounded (t is fixed here!) and since

the denominator E(et(X
(1)
n )) → ∞ as n → ∞ (remember that X

(1)
n → ∞ in
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probability). So we have to bound the first term. The inequality

|X(1)
n − X

(u)
n |

Sn

≤ d(Xn)

pFn

yields

E

(
1{Xn �=0}

∑
1≤u≤p

X
(1)
n − X

(u)
n

Sn

et(X
(1)
n )

)

≤ E
(

d(Xn)

pFn

1{Xn �=0} exp
(
t max

i
X(i)

n

))
.

Hence, Proposition 4 follows from the following result (stated as Lemma 8 in
Appendix B): as n → ∞,

E
(

d(Xn)

Fn

1{Xn �=0} exp
(
t max

i
X(i)

n

))
= o

(
E

(
exp

(
tX(1)

n

)))
.

The idea of the proof is the following: we condition the chain by its position at a
time n′ ≤ n, where n′ is such that the probability that there is a crunch time between
n′ and n is high, and such that, on this event, the maximum possible diameter at
time n is small, when compared to Fn. The key observation here, which we used
already in the proof of Lemma 2, is that a nonnegligible piece of this event can be
made independent of the mutation process.

6. Convergence of the cloud. For p ∈ N
∗, let

Mp = {
(x1, . . . , xp) ∈ Z

p; ∀ i, j, xi − xj ∈ 2Z
}

and let Hp be the quotient group Mp/〈(1, . . . ,1)〉: two elements of Mp

are identified whenever they differ by an integer multiple of (1, . . . ,1). Let
� : Mp → Hp denote the canonical projection.

Let (�n)n≥0 be the selection–mutation chain on Z
p with uniform selection and

mutation ±1, starting from 0. Then ξ = (�(�n))n is also a Markov chain on Hp ,
irreducible, aperiodic and positively recurrent. Indeed,

P(ξn = 0|ξn−1) ≥ 2−pp1−p a.s.

Hence, ξn converges in law toward its invariant distribution πp . We now prove
Theorem 3, that is, that �(Xn) converges in law to πp as well.

PROOF OF THEOREM 3. From Lévy’s theorem (cf. [7]), it is enough to prove
that

Dn(t) = E exp
(
i
(
t1X

(1)
n + · · · + tpX(p)

n

))
− E exp

(
i
(
t1�

(1)
n + · · · + tp�(p)

n

))
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goes to 0 for every p-tuple t = (t1, . . . , tp) of real numbers summing to 0. We now
consider the effects of mutation and selection over Dn. The mutation steps of X

and � multiply Dn(t) by cos(t1) × · · · × cos(tp); hence, taking into account the
selection steps as well, one gets

Dn+1(t) = E1{Xn=0}ei(t1+···+tp) cos(t1) × · · · × cos(tp)

+ E
∑

1≤j1,...,jp≤p

cos(t1) × · · · × cos(tp)

×
[

1{Xn �=0}
(

p∏
k=1

X
(jk)
n

Sn

)
exp

(
i

p∑
k=1

tkX
(jk)
n

)

− 1

pp
exp

(
i

p∑
k=1

tk�
(jk)
n

)]
.

To use the approximation of the selection transition probabilities of X by those of
a uniform selection, we add and subtract p−p to

∏
k X

(jk)
n /Sn:

Dn+1(t) = E1{Xn=0}ei(t1+···+tp) cos(t1) × · · · × cos(tp)

+ E
∑

1≤j1,...,jp≤p

cos(t1) × · · · × cos(tp)1{Xn �=0}

×
(( p∏

k=1

X
(jk)
n

Sn

)
− 1

pp

)
exp

(
i

p∑
k=1

tkX
(jk)
n

)

+ E
∑

1≤j1,...,jp≤p

cos(t1) × · · · × cos(tp)

× 1

pp

[
1{Xn �=0} exp

(
i

p∑
k=1

tkX
(jk)
n

)
− exp

(
i

p∑
k=1

tk�
(jk)
n

)]
.

Replacing 1{Xn �=0} by 1 − 1{Xn=0}, we finally obtain

Dn+1(t) = E1{Xn=0}ei(t1+···+tp) cos(t1) × · · · × cos(tp)

+ E
∑

1≤j1,...,jp≤p

cos(t1) × · · · × cos(tp)1{Xn �=0}

×
(( p∏

k=1

X
(jk)
n

Sn

)
− 1

pp

)
exp

(
i

p∑
k=1

tkX
(jk)
n

)
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− E
∑

1≤j1,...,jp≤p

cos(t1) × · · · × cos(tp)

× 1

pp
1{Xn=0} exp

(
i

p∑
k=1

tkX
(jk)
n

)

+ E
∑

1≤j1,...,jp≤p

cos(t1) × · · · × cos(tp)

× 1

pp

[
exp

(
i

p∑
k=1

tkX
(jk)
n

)
− exp

(
i

p∑
k=1

tk�
(jk)
n

)]
.

DEFINITION 3. Jp is the set of maps {1, . . . , p} → {1, . . . , p}. For f ∈ Jp ,
we note #f = #{f (i), i ∈ {1, . . . , p}}. Let J 0

p = {f ∈ Jp, #f = 1}. For f ∈ Jp and
t ∈ R

p , we define f (t) ∈ R
p by

(f (t))i = ∑
f (j)=i

tj ∀ i ∈ {1, . . . , p}.

We note that (f ◦ g)(t) = f (g(t)). With this notation, the last expression of
Dn+1(t) leads to

Dn+1(t) = εn(t) + 1

pp

∑
f ∈Jp

cos(t1) × · · · × cos(tp)Dn(f (t)),

where, owing to Lemma 4,

|εn(t)| ≤ εn = 2P[Xn = 0] + ppE1{Xn �=0}d(Xn)/Fn

≤ 2P[Xn = 0] + pp(
Ed(Xn)

2)1/2(
E1{Xn �=0}F−2

n

)1/2
.

Hence, owing to Corollary 1 and Lemma 2, εn → 0 as n → ∞. Since the
numbers ti add to 0, Dn(f (t)) = 0 if f ∈ J 0

p . Hence,

Dn+1(t) = εn(t) + 1

pp

∑
f ∈Jp\J 0

p

cos(t1) × · · · × cos(tp)Dn(f (t)).(6.1)

The set

Jp(t) = {fk ◦ · · · ◦ f1(t), k ∈ N, f1, . . . , fk ∈ Jp}
is finite, and, for all u ∈ Jp(t),

∑
i ui = 0. Introducing

D̄n(t) = sup
u∈Jp(t)

|Dn(u)|,
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(6.1) leads to

D̄n+1(t) ≤ εn + |Jp \ J 0
p |

pp
D̄n(t).

Since |Jp \ J 0
p |/pp < 1, this proves that Dn(t) goes to 0. �

Although we do not have a close formula for πp, its Fourier transform can be
algorithmically computed as follows. Let

φ(t) = E exp

(
i

p∑
j=1

tj x(j)

)
,

where t = (t1, . . . , tp) is a p-tuple of real numbers summing to 0, and let x =
(x(1), . . . , x(p)) ∈ Mp be a random vector, such that �(x) has the law πp [one
can check that exp(i

∑p
j=1 tj x(j)) is really a function of �(x)]. The invariance

of πp with respect to � yields

φ(t) = cos(t1) × · · · × cos(tp)p−p
∑

1≤j1,...,jp≤p

E exp

(
i

p∑
l=1

tlx(jl)

)

= cos(t1) × · · · × cos(tp)p−p
∑

f ∈Jp

φ(f (t)).

(6.2)

Note #t = #{i, ti �= 0}. The set {f (t), f ∈ Jp} contains p-tuples u such that either
φ(u) = φ(t) (when #u = #t , i.e., when u is deduced from t by a permutation) or
#u < #t . The relation (6.2) gives a method for computing φ(t) by induction on #t ,
since φ(t) = 1 when t = 0. As an example, we compute φ(t) when #t = 2.

PROPOSITION 5. For all 1 ≤ i �= j ≤ p, the sequence X
(i)
n − X

(j)
n converges

in law to a random variable � of law

(1 − α)δ0 + ∑
n≥1

(1 − a)n−1a(δ2n + δ−2n)α/2,

where α = √
p/(

√
p + 1) and a = 2/(

√
p + 1). The variable � may be written as

� = 2ZG, where the law of the random variable Z is

(δ1 + δ−1)α/2 + (1 − α)δ0

and G is a geometric random variable independent of Z: for n ≥ 1,

P[G = n] = (1 − a)n−1a.



A MUTATION–SELECTION ALGORITHM 1555

PROOF. For t ∈ R, (6.2) gives

φ(t,−t,0, . . . ,0)

= cos2 t × p−p

( ∑
f ∈Jp,f (1) �=f (2)

φ(t,−t,0, . . . ,0) + ∑
f ∈Jp,f (1)=f (2)

1

)

= cos2 t

(
p − 1

p
φ(t,−t,0, . . . ,0) + 1

p

)
,

leading to

φ(t,−t,0, . . . ,0) = cos2 t

p − (p − 1) cos2 t
.

The result follows by a simple computation. �

7. Simulations. We have performed numerical simulations of the algorithms
studied in this paper. These simulations first yielded empirical insights into the
behavior of the chain. Afterwards, they showed that the asymptotic results of the
previous sections were indeed observed on real finite-size systems.

As regards the technical side of the simulations, we designed a C computer
program using a Mersenne–Twister random generator; see [11]. We used an egcs
C compiler on a generic Pentium II� computer.

Figure 1 shows the time evolution of the average fitness Fn for a single
realization of the chain. Figure 2 shows the average time evolution of Fn performed
over 104 independent realizations for several values of the population size p.

FIG. 1. Single realization of Fn up to time 105, 4 particles.



1556 J. BÉRARD AND A. BIENVENÜE

FIG. 2. Average of Fn over 104 realizations up to time 105, p = 2,3,4 particles.

Figure 3 displays the empirical distribution of X
(1)
n /

√
n for n = 2 · 104 and p = 2.

Figure 4 displays the empirical joint distribution of (X
(2)
n − X

(1)
n ,X

(3)
n − X

(1)
n ) for

n = 5 · 104 and p = 3. Dashed lines display the theoretical asymptotical values.

FIG. 3. Empirical distribution of X
(1)
n /

√
n, 2 particles, time 2 × 104, 2 × 106 realizations.
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FIG. 4. Frequency of the relative positions of the three particles, time 5 × 104, 106 realizations.

APPENDIX A

PROOF OF PROPOSITION 1. By induction on h, (P0) holds trivially with
f (x,n,0) = 1. Suppose that (Pi) holds for all i ≤ h − 1, with h ≥ 1. Then

ExF 2h
n = m(x)2h + Ex

n−1∑
r=0

(F 2h
r+1 − F 2h

r ).(A.1)

Expanding, we get

Ex(F 2h
r+1 − F 2h

r ) = Ex
(
(Fr + �Fr)

2h − F 2h
r

)
=

(
2h

1

)
Ex(

F 2h−1
r Ex(�Fr |Fr )

)

+
(

2h

2

)
Ex(

F 2h−2
r Ex(

(�Fr)
2∣∣Fr

))

+
2h∑
l=3

(
2h

l

)
Ex(

F 2h−l
r (�Fr)

l).

(A.2)

We start with the contribution of the rightmost sum in (A.2): for 3 ≤ l ≤ 2h,

∣∣ExF 2h−l
r (�Fr)

l
∣∣ ≤

n−1∑
r=0

Ex(1 + Fr)
2h−l|�Fr |l .(A.3)

Since (1 + Fr)
2h−l = (1 + Fr)

2h−l+1/2 × (1 + Fr)
−1/2, Hölder’s inequality yields∣∣ExF 2h−l

r (�Fr)
l
∣∣ ≤

(
Ex(

(1 + Fr)
2h−l+1/2)θ)1/θ

×
(
Ex(

(1 + Fr)
−1/2|�Fr |)lθ ′)1/θ ′

,
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where θ = (2h − 2)/(2h − l + 1/2) > 1 and θ−1 + θ ′−1 = 1. Since l ≥ 3 and
|�Fr | ≤ d(Fr) + 2,

∣∣ExF 2h−l
r (�Fr)

l
∣∣

≤ (
Ex(1 + Fr)

2h−2)1/θ
(
Ex

(
(1 + Fr)

−1/2(
d(Xr) + 2

))lθ ′)1/θ ′
.

(A.4)

We first bound the rightmost factor in (A.4): from Hölder’s inequality,

Ex(
(1 + Fr)

−1/2(
d(Xr) + 2

))lθ ′

≤
[
Ex(

(1 + Fr)
−1/2)2lθ ′

Ex(
d(Xr) + 2

)2lθ ′]1/2

≤ [
Ex(1 + Fr)

−lθ ′]1/2
c
(5)
p,h

(
1 + d(x)8lh

)1/2
,

according to Lemma 2 and since 2lθ ′ ≤ 8lh. Furthermore,

Ex(1 + Fr)
−lθ ′ ≤ E

(
1 + m(Yr)

)−lθ ′
,

where (Yn) is the process defined in Lemma 1. This last term goes to 0 as n goes
to ∞ (and does not depend on x).

We now bound the leftmost factor in (A.4):

(
Ex(1 + Fr)

2h−2)1/θ ≤ Ex(1 + Fr)
2h−2 =

2h−2∑
i=0

(
2h − 2

i

)
ExF i

r .

Using the induction hypothesis (P0, . . . ,Ph−1), we see that the last term of (A.2)
satisfies (Qh−1). Hence, its contribution in (A.1)—summing for r = 0, . . . ,

n − 1—satisfies (Qh).
Now, we study the first term in (A.2). From Lemma 3,

(
2h

1

)
Ex

(
F 2h−1

r Ex(�Fr |Fr )
)

= 2hp−2Ex
∑

1≤i<j≤p

F 2h−2
r

(
X(i)

r − X(j)
r

)2
.

(A.5)

For 0 ≤ s ≤ r − 1 and i �= j ,

ExF 2h−2
s+1

(
X

(i)
s+1 − X

(j)
s+1

)2 = Ex(Fs + �Fs)
2h−2(

X
(i)
s+1 − X

(j)
s+1

)2
,
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and, expanding (Fs + �Fs)
2h−2, we get

ExF 2h−2
s+1

(
X

(i)
s+1 − X

(j)
s+1

)2

=
2h−2∑
l=0

(
2h − 2

l

)
ExF 2h−2−l

s (�Fs)
l(X(i)

s+1 − X
(j)
s+1

)2

= ExF 2h−2
s Ex

((
X

(i)
s+1 − X

(j)
s+1

)2∣∣Fs

)

+
2h−2∑
l=1

(
2h − 2

l

)
ExF 2h−2−l

s (�Fs)
l
(
X

(i)
s+1 − X

(j)
s+1

)2

︸ ︷︷ ︸
(�)

.

(A.6)

Using the same method as for the last term in (A.2), we show that the sum (�)

satisfies (Qh−1).
Moreover, conditioning by Fs yields

Ex((
X

(i)
s+1 − X

(j)
s+1

)2∣∣Fs

)
= 2 + Ex

((
Y (i)

s − Y (j)
s

)2∣∣Fs

)

= 2 + 1{Xs �=0}
∑

1≤a,b≤p

X
(a)
s X

(b)
s

S2
s

(
X(a)

s − X(b)
s

)2
.

(A.7)

If we replace in (A.7) the selection transition probabilities X
(a)
s X

(b)
s /S2

s by
uniform selection transition probabilities p−2, we get in (A.6) an error term that
we bound using Lemma 4: for all 1 ≤ a, b ≤ p,

1{Xs �=0}
∣∣∣∣∣F 2h−2

s

(
X

(a)
s X

(b)
s

S2
s

− 1

p2

)(
X(a)

s − X(b)
s

)2

∣∣∣∣∣
≤ 2p−1d(Xs)F

2h−3
s .

Hence, for 0 ≤ s ≤ r − 1, (A.6) can be written as

ExF 2h−2
s+1

(
X

(i)
s+1 − X

(j)
s+1

)2 = 2ExF 2h−2
s + p − 1

p
ExF 2h−2

s

(
X(i)

s − X(j)
s

)2

+ β1(x, s, h − 1),

where β1(x, s, h − 1) satisfies (Qh−1). Summing these estimates for s = 0, . . . ,
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r − 1, we get, for all 0 ≤ r ≤ n − 1,

ExF 2h−2
r

(
X(i)

r − X(j)
r

)2 =
(

p − 1

p

)r

(xi − xj )
2m(x)2h−2

+
r−1∑
k=0

(
p − 1

p

)r−1−k(
2ExF 2h−2

k + β1(x, k,h − 1)
)

=
(

p − 1

p

)r

(xi − xj )
2m(x)2h−2

+ β2(x, r, h − 1) +
r−1∑
k=0

(
p − 1

p

)r−1−k

2ExF 2h−2
k ,

where β2(x, r, h − 1) satisfies (Qh−1). Hence, according to (Ph−1),
n−1∑
r=0

ExF 2h−2
r

(
X(i)

r − X(j)
r

)2

= p

(
1 −

(
p − 1

p

)n)
(xi − xj )

2m(x)2h−2

+
n∑

r=0

β2(x, r, h − 1)

+
n−1∑
r=0

r−1∑
k=0

(
p − 1

p

)r−1−k

2
(
f (x, k,h − 1) + α(x, k,h − 1)

)
.

Here, the two first lines and the contribution of α(x, k,h − 1) satisfy (Qh). It
remains to show that

n−1∑
r=0

ExF 2h−2
r

(
X(i)

r − X(j)
r

)2

= 2
n−1∑
r=0

r−1∑
k=0

(
p − 1

p

)r−1−k

f (x, k,h − 1) + β3(x, n,h),

(A.8)

where β3(x, r, h) satisfies (Qh). We now consider the sum over k in (A.8). Using
(Ph−1),

r−1∑
k=0

(
p − 1

p

)r−1−k

f (x, k,h − 1)

=
r−1∑
k=0

(
p − 1

p

)r−1−k h−1∑
i=0

fi(h − 1)m(x)2ikh−i

=
h−1∑
i=0

fi(h − 1)m(x)2i
r−1∑
k=0

(
p − 1

p

)r−1−k

kh−i .
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From Lemma 5, one has

r−1∑
k=0

(
p − 1

p

)r−1−k

f (x, k,h − 1)

= p

h−1∑
i=0

fi(h − 1)m(x)2i rh−i[1 + εi(r)],

where the εi ’s are sequences such that εi(n) goes to 0 as n goes to ∞. Using again
(Ph−1), we get

r−1∑
k=0

(
p − 1

p

)r−1−k

f (x, k,h − 1) = pf (x, r, h − 1) + β4(x, r, h − 1),

where β4(x, r, h − 1) satisfies (Qh−1). Plugging this estimate into (A.8) gives

n−1∑
r=0

ExF 2h−2
r

(
X(i)

r − X(j)
r

)2 = β5(x, n,h) + 2p

n−1∑
r=0

f (x, r, h − 1),(A.9)

where β5(x, r, h) satisfies (Qh).
Plugging (A.9) into (A.5) gives

n∑
r=0

(
2h

1

)
ExF 2h−1

r Ex(�Fr |Fr)

= β6(x, n,h) + 2h/p2
∑

1≤i<j≤p

2p

n−1∑
r=0

f (x, r, h − 1)

= β7(x, n,h) + 2h(p − 1)

n−1∑
r=0

f (x, r, h − 1),

(A.10)

where β7(x, n,h) satisfies (Qh).
We now study the second term in (A.2). From Lemma 3, using Lemma 4 to

approximate the selection transition probabilities by uniform ones, as we did for
the first term of (A.2), we get

ExF 2h−2
r Ex(

(�Fr)
2∣∣Fr

)
= p−1ExF 2h−2

r

+ p−4
∑

1≤i �=j≤p

∑
1≤a,b≤p

ExF 2h−2
r

(
X(a)

r − X(i)
r

)(
X(b)

r − X(j)
r

)
+ p−3

∑
1≤i≤p

∑
1≤a≤p

ExF 2h−2
r

(
X(a)

r − X(i)
r

)2

+ β8(x, r, h − 1),

(A.11)

where β8(x, r, h − 1) satisfies (Qh−1).
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For an arbitrary sequence (xi)1≤i≤p , one has∑
1≤i �=j≤p

∑
1≤a,b≤p

(xa − xi)(xb − xj )

= ∑
1≤a,b,i,j≤p

(xa − xi)(xb − xj ) − ∑
i=j,a,b

(xa − xi)(xb − xj ).

By symmetry, the first sum on the right-hand side is 0. As for the last sum, we
separate cases a = b and a �= b:∑

1≤i �=j≤p

∑
1≤a,b≤p

(xa − xi)(xb − xj )

= −∑
i,a

(xa − xi)
2 − ∑

i,a �=b

(xa − xi)(xb − xi).

In the last sum, let (u, v,w) be the ordered triple with elements i, a, b. With this
notation, the last equation reads∑

1≤i �=j≤p

∑
1≤a,b≤p

(xa − xi)(xb − xj )

= −∑
i,a

(xa − xi)
2

−2
∑

1≤u<v<w≤p

(xv − xu)(xw − xu) + (xu − xv)(xw − xv)

+ (xu − xw)(xv − xw).

Note that, for all x, y, z,

2
[
(y − x)(z − x) + (x − y)(z − y) + (x − z)(y − z)

]
= (x − y)2 + (y − z)2 + (x − z)2,

so that∑
1≤i �=j≤p

∑
1≤a,b≤p

(xa − xi)(xb − xj )

= −∑
i,a

(xa − xi)
2 − ∑

1≤u<v<w≤p

(xu − xv)
2 + (xv − xw)2 + (xu − xw)2.

Applying this to the sequence (X
(k)
r )k and plugging it and (A.9) into (A.11), we

get

n−1∑
r=0

ExF 2h−2
r Ex

(
(�Fr)

2∣∣Fr

)

=
[
p−1 − p−4

(
p(p − 1) + 3

(
p

3

))
2p + p−3p(p − 1)2p

]
(A.12)
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×
n−1∑
r=0

f (x, r, h − 1) + β9(x, n,h)

= β9(x, n,h) +
n−1∑
r=0

f (x, r, h − 1),

where β9(x, n,h) satisfies (Qh).
Finally, owing to (A.2), (A.10) and (A.12),

ExF 2h
n = m(x)2h + [2h(p − 1) + h(2h − 1)]

n−1∑
r=0

f (x, r, h − 1) + β10(x, n,h),

where β10(x, n,h) satisfies (Qh). Hence, (Ph) holds, with

fh(h) = 1,

fi(h) = 2h(p − 1) + h(2h − 1)

h − i
fi(h − 1), 0 ≤ i ≤ h − 1.

(A.13)
�

APPENDIX B

Lemma 7 means that E(et(X
(1)
n )) grows from step to step at least as fast as it

should, according to Proposition 4, which we want to prove. Corollary 3 states a

similar result for E(et maxi X
(i)
n ).

LEMMA 7. For all n ≥ 0 and t ≥ 0, mn(t) ≥ 0.

PROOF. Obviously, the last term in (5.3) is nonnegative since t ≥ 0. As regards
the first term, by symmetry,

2E1{Xn �=0}S−1
n

(
X(1)

n − X(u)
n

)
et(X

(1)
n )

= E1{Xn �=0}S−1
n

(
X(1)

n − X(u)
n

)
et(X

(1)
n )

+ E1{Xn �=0}S−1
n

(
X(u)

n − X(1)
n

)
et(X

(u)
n )

= E1{Xn �=0}S−1
n

(
X(1)

n − X(u)
n

)(
et(X

(1)
n ) − et(X

(u)
n )

)
,

which is nonnegative since y �→ ey is an increasing function. �

COROLLARY 3. For all t ≥ 0 and n ≥ q ,

E
(
exp

(
t max

i
X

(i)
n−q

))
≤ p(cosh(t))−qE

(
exp

(
t max

i
X(i)

n

))
.
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PROOF. By Lemma 7,

E exp
(
tX(1)

n

) ≥ coshq(t)E exp
(
tX

(1)
n−q

)
.

Now,

E
(
exp

(
t max

i
X

(i)
n−q

))
≤ ∑

1≤i≤p

E exp
(
tX

(i)
n−q

)

≤ pE
(

exp
(
tX

(1)
n−q

))
≤ p(cosh(t))−qE

(
exp

(
tX(1)

n

))
≤ p(cosh(t))−qE

(
exp

(
t max

i
X(i)

n

))
. �

We now prove the key result.

LEMMA 8. As n goes to ∞,

E
(

d(Xn)

Fn

1{Xn �=0} exp
(
t max

i
X(i)

n

))
= o

(
E

(
exp

(
tX(1)

n

)))
.(B.1)

PROOF. Let (ln)n and (un)n be two increasing sequences of integers. We first
show that only large values of Fn contribute to the left-hand side of (B.1).

Using the upper bound d(Xn) ≤ pFn,

E
(

d(Xn)

Fn

1{Xn �=0} exp
(
t max

i
X(i)

n

)
1{maxi X

(i)
n ≤un}

)
≤ E

(
p exp(tun)1{maxi X

(i)
n ≤un}

)
≤ p exp(tun).

(B.2)

Assume that the selection steps are built through the sequence of random
parameters Um as defined in the proof of Lemma 2. Let

Qn =
n−1⋃

m=n−ln

{Um ≤ p1−p},

so that, on Qn, d(Xn) ≤ 2ln since there is a crunch time between n − ln and n.
Hence,

E
(

d(Xn)

Fn

1{Xn �=0} exp
(
t max

i
X(i)

n

)
1{maxi X

(i)
n ≥un}1Qn

)

≤ 2ln

un/p
E

(
exp

(
t max

i
X(i)

n

)
1Qn

)
(B.3)

≤ 2pln

un

p∑
i=1

E
(

exp
(
tX(i)

n

)
1Qn

)
.
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We introduce additional notation concerning the one-step transitions of (Xn).

• Selection step: Xm → Ym. Y
(i)
m = X

(fm(i))
m , where the fm’s are random functions

on {1, . . . , p} such that, knowing Fm, the (fm(i))1≤i≤p are i.i.d. with law

1{Xn �=0}S−1
m

p∑
j=1

X(j)
m δj + 1{Xn=0}δ(1,...,1).

Obviously, fm and the random parameter Um introduced above are not
independent from each other.

• Mutation step: Ym → Xm+1. Xm+1 = Ym +ηm, where ηm = (η
(1)
m , . . . , η

(p)
m ) and

the random variables η
(i)
m ∈ {−1,+1}, 1 ≤ i ≤ p, are independent from each

other and independent from Gm, with symmetric Bernoulli law.

With this notation, let, for n − ln ≤ m ≤ n,

gm = fn ◦ · · · ◦ fm.

Thus, for all j ∈ {1, . . . , p},
E

(
exp

(
tX(j)

n

)
1Qn

∣∣Fn−ln

)

= E

(
exp

(
t

[
X

(gn−ln (j ))

n−ln
+

n−1∑
m=n−ln

η(gm(j))
m

])
1Qn

∣∣∣Fn−ln

)

≤ exp
(
t max

i
X

(i)
n−ln

)

× E

(
exp

(
t

n−1∑
m=n−ln

η(gm(j))
m

)
1Qn

∣∣∣Fn−ln

)
.

(B.4)

Knowing (Un−ln, . . . ,Un−1), gm depends only on ηr for r < m. Since the ηm’s
are i.i.d. Bernoulli random vectors independent of the Um’s, the conditional law,
knowing (Un−ln, . . . ,Un−1), of

n−1∑
m=n−ln

η(gm(j))
m

is the law of a sum of ln symmetric Bernoulli ±1 independent random variables.
Hence,

E

(
exp

(
t

n−1∑
m=n−ln

η(gm(j))
m

)
1Qn

∣∣∣Fn−ln

)
= (cosh(t))ln × P

(
Qn|Fn−ln

)
.

Plugging this result into (B.4) gives

E
(
exp

(
tX(j)

n

)
1Qn

) ≤ P(Qn)(cosh(t))lnE exp
(
t max

i
X

(i)
n−ln

)
.
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Using Lemma 7, we get

E
(
exp

(
tX(j)

n

)
1Qn

) ≤ pE exp
(
t max

i
X(i)

n

)
.(B.5)

We now study Qc
n:

E
(

d(Xn)

Fn

1{Xn �=0} exp
(
t max

i
X(i)

n

)
1{maxi X

(i)
n ≥un}1Qc

n

)

≤ pE
(
exp

(
t max

i
X(i)

n

)
1Qc

n

)
(B.6)

≤ p

p∑
j=1

E
(

exp
(
tX(j)

n

)
1Qc

n

)
.

Using the same arguments as before, we get

E
(

exp
(
tX(j)

n

)
1Qc

n

) ≤ P(Qc
n)(cosh(t))lnE exp

(
t max

i
X

(i)
n−ln

)
.

Using Lemma 7 and the definition of Qn, we get

E
(

exp
(
tX(j)

n

)
1Qc

n

) ≤ (1 − p1−p)ln(cosh(t))ln

× p(cosh(t))−lnE exp
(
t max

i
X(i)

n

)
(B.7)

≤ p(1 − p1−p)lnE exp
(
t max

i
X(i)

n

)
.

Plugging (B.5) into (B.3) and (B.7) into (B.6), together with (B.2), we get

E
(

d(Xn)

Fn

1{Xn �=0} exp
(
t max

i
X(i)

n

))

≤ p exp(tun) +
(

2p3ln

un

+ p3(1 − p1−p)ln
)

E exp
(
t max

i
X(i)

n

)
.

(B.8)

We note that, owing to Lemma 7,

E exp
(
tX(1)

n

) ≥ (cosh(t))n.

Hence, taking un = o(n) implies that

exp(tun) = o
(
E exp

(
tX(1)

n

))
.

Moreover, using the inequality

E exp
(
t max

i
X(i)

n

)
≤ pE exp

(
tX(1)

n

)
,

we see that it is enough to take ln = o(un) and ln → +∞ to get the result owing to
the estimate (B.8). �
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PROOF OF THEOREM 2. By Proposition 4, for all t ≥ 0, the limit

1

n
log E exp

(
tX(1)

n

) −→
n→+∞ log cosh(t).

Let us consider now a sequence of random variables defined by symmetrization
of X

(1)
n :

Kn = εn × X(1)
n ,

where εn is a symmetric ±1 Bernoulli random variable independent from X
(1)
n .

Thus, we can recover X
(1)
n from Kn owing to the equality X

(1)
n = |Kn|.

Now, the Laplace transform of Kn is given, for all t ∈ R, by

E exp(tKn) = 1
2E exp

(
tX(1)

n

) + 1
2 E exp

(−tX(1)
n

)
= 1

2E exp
(|t|X(1)

n

) + 1
2E exp

(−|t|X(1)
n

)
.

When t = 0, the above Laplace transform equals 1, whereas, when t �= 0, as n

goes to ∞, the term with +|t| dominates (the term with −|t| being bounded from
above by 1). As a consequence, using Proposition 4, for all t ∈ R (not necessarily
nonnegative), one has

lim
n→+∞

1

n
log E exp(tKn) = log cosh(|t|).

The function � : t �→ log cosh(|t|) being finite and differentiable everywhere,
the Gärtner–Ellis theorem of [6], page 52, entails that the sequence (Kn) satisfies
the large-deviations principle with good rate function �∗(t), where �∗ is the
Legendre transform of �. Turning back to X

(1)
n = |Kn|, the contraction principle

(see [6], page 126) implies that X
(1)
n satisfies the large-deviations principle with

rate function I = �∗ on [0,1], so Theorem 2 is proved. �

Acknowledgments. We gratefully acknowledge C. Mazza and D. Piau and
the anonymous referee for their useful comments.

REFERENCES

[1] BÉRARD, J. and BIENVENÜE, A. (2000). Convergence of a genetic algorithm with finite
population. In Mathematics and Computer Science: Algorithms, Trees, Combinatorics
and Probabilities 155–163. Birkhäuser, Basel.

[2] BÉRARD, J. and BIENVENÜE, A. (2000). Un principe d’invariance pour un algorithme
génétique en population finie. C. R. Acad. Sci. Paris Sér. I Math. 331 469–474.

[3] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
[4] BONNAZ, D. (1998). Modèles stochastiques de dynamique des populations. Ph.D. dissertation,

Univ. Lausanne.
[5] CERF, R. (1998). Asymptotic convergence of genetic algorithms. Adv. in Appl. Probab. 30

521–550.



1568 J. BÉRARD AND A. BIENVENÜE

[6] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd ed.
Springer, New York.

[7] DURRETT, R. (1996). Probability: Theory and Examples, 2nd ed. Duxbury, Belmont, CA.
[8] GRADSHTEYN, I. S. and RYZHIK, I. M. (1996). Table of Integrals, Series, and Products,

5th ed. Academic, San Diego.
[9] HOLLAND, J. H. (1975). Adaptation in Natural and Artificial Systems. Univ. Michigan Press,

Ann Arbor.
[10] KESSLER, D., LEVINE, H., RIDGWAY, D. and TSIMRING, L. (1997). Evolution on a smooth

landscape. J. Statist. Phys. 87 519–544.
[11] MATSUMOTO, M. and NISHIMURA, T. (1998). Mersenne twister a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Trans. Modeling Comput. Sim-
ulation 8 3–30.

[12] MAZZA, C. and PIAU, D. (2001). On the effect of selection in genetic algorithms. Random
Structures Algorithms 18 185–200.

[13] RABINOVICH, Y. and WIGDERSON, A. (1999). Techniques for bounding the convergence rate
of genetic algorithms. Random Structures Algorithms 14 111–138.

[14] REVUZ, D. and YOR, M. (1991). Continuous Martingales and Brownian Motion. Springer,
Berlin.

[15] TSIMRING, L. S., LEVINE, H. and KESSLER, D. A. (1996). RNA virus evolution via a fitness-
space model. Phys. Rev. Lett. 76 4440.

LAPCS
UNIVERSITÉ LYON I
BÂTIMENT 101
43 BOULEVARD DU 11 NOVEMBRE 1918
69622 VILLEURBANNE CEDEX

FRANCE

E-MAIL: jean.berard@univ-lyon1.fr

LMC–IMAG
51 RUE DES MATHÉMATIQUES

B.P. 53
38041 GRENOBLE CEDEX 9
FRANCE

E-MAIL: Alexis.Bienvenue@imag.fr


